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Abstract 

 

This thesis proposes a test method for evaluating the perceived vibration which occurs 

at the driver's hand in automotive steering wheel interface. The objective of the research 

was to develop frequency weightings for quantifying the human perception of steering 

wheel hand-arm vibration. Family of frequency weightings were developed from equal 

sensation curves obtained from the psychophysical laboratory experimental tests. 

 

The previous literature suggests that the only internationally standardised frequency 

weighting Wh is not accurate to predict human perception of steering wheel hand-arm 

vibration (Amman et. al, 2005) because Wh was developed originally for health effects, 

not for the human perception. In addition, most of the data in hand-arm vibration are 

based upon responses from male subjects (Neely and Burström, 2006) and previous 

studies based only on sinusoidal stimuli. Further, it has been continuously suggested by 

researchers (Gnanasekarna et al., 2006; Morioka and Griffin, 2006; Ajovalasit and 

Giacomin, 2009) that only one weighting is not optimal to estimate the human 

perception at all vibrational magnitudes.  

 

In order to address these problems, the investigation of the effect of gender, body mass 

and the signal type on the equal sensation curves has been performed by means of 

psychophysical laboratory experimental tests. The test participants were seated on a 

steering wheel simulator which consists of a rigid frame, a rigid steering wheel, an 

automobile seat, an electrodynamic shaker unit, a power amplifier and a signal 

generator. The category-ratio Borg CR10 scale procedure was used to quantify the 

perceived vibration intensity. A same test protocol was used for each test and for each 

test subject. 

 

The first experiment was conducted to investigate the effect of gender using sinusoidal 

vibration with 40 test participants (20 males and 20 females). The results suggested that 

the male participants provided generally lower subjective ratings than the female 

participants. The second experiment was conducted using band-limited random 

vibration to investigate the effect of signal type between sinusoidal and band-limited 

random vibration with 30 test participants (15 males and 15 females). The results 
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suggested that the equal sensation curves obtained using random vibration were 

generally steeper and deeper in the shape of the curves than those obtained using 

sinusoidal vibration. These differences may be due to the characteristics of random 

vibration which produce generally higher crest factors than sinusoidal vibration. The 

third experiment was conducted to investigate the effect of physical body mass with 40 

test participants (20 light and 20 heavy participants) using sinusoidal vibration. The 

results suggested that the light participants produced generally higher subjective ratings 

than the heavy participants. From the results it can be suggested that the equal sensation 

curves for steering wheel rotational vibration differ mainly due to differences of body 

size rather than differences of gender. The final experiments was conducted using real 

road signals to quantify the human subjective response to representative driving 

condition and to use the results to define the selection method for choosing the adequate 

frequency weightings for the road signals by means of correlation analysis. The final 

experiment was performed with 40 test participants (20 light and 20 heavy participants) 

using 21 real road signals obtained from the road tests. From the results the hypothesis 

was established that different amplitude groups may require different frequency 

weightings. Three amplitude groups were defined and the frequency weightings were 

selected for each amplitude group. 

 

The following findings can be drawn from the research: 

 

• the equal sensation curves suggest a nonlinear dependency on both the frequency and 

the amplitude. 

• the subjective responses obtained from band-limited random stimuli were steeper and 

the deeper in the shape of the equal sensation curves than those obtained using 

sinusoidal vibration stimuli. 

• females provided higher perceived intensity values than the males for the same 

physical stimulus at most frequencies.  

• light test participants provided higher perceived intensity than the heavy test 

participants for the same physical stimulus at most frequencies. 

• the equal sensation curves for steering wheel rotational vibration differ mainly due to 

differences in body size, rather than differences of gender. 

• at least three frequency weightings may be necessary to estimate the subjective 

intensity for road surface stimuli. 
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jω

) in z-domain 

zjk Normal deviate of the frequency percentage of preference 

Z Steering wheel vertical measurement direction 

Z(f) Driving point mechanical impedance [N/ms
-1

] 

 

β Stevens‟ power exponent 

ε Ripple parameter in the pass-band of the Chebyshev filter 

ΔI Difference threshold in the physical stimulus of intensity 

θ(ω) Phase response of the filter 

μ Mean value [m/s
2
] 

μx Mean value of a time series [m/s
2
] 

2

x  Mean square value of a time series [m/s
2
] 

σj Standard deviation of the discriminal distribution of stimulus j 

σk Standard deviation of the discriminal distribution of stimulus k 

σ2 Estimate of the error variance 
2

x  Variance of a time series [m/s
2
] 

Ψ Sensation magnitude 

Ψ0 Sensation magnitude at threshold 

ω Angular frequency [s
-1

] 

ωa Analog cut-off frequency 

ωc Desired filter cut-off frequency 
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ASTM American Society for Testing and Materials 

BS British Standards 
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CF Crest Factor 
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DFT Discrete Fourier transform 

dTi Turbocharged diesel direct injection system 
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FA Fast acting receptors 
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ISO International Organization for Standardization 
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MIRA Motor Industry Research Association 

NPⅠ Non-Pacinian channel typeⅠ 

NPⅡ Non-Pacinian channel typeⅡ 
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OICA International Organization of Motor Vehicle Manufacturers 

P Pacinian channel 

PAS Power Assist Steering 

PSD Power spectral density 

R Radial 

RSS Residual sum of squares 

SA Slow acting receptors 

SAL Saloon Sedan 

SAE Society of Automotive Engineers 

SD Standard deviation 

TDF Test Data File 

THD Total harmonic distortion 

TSS Total sum of squares 
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Chapter 1 

 Introduction 

 

1.1 Steering Wheel Vibration 

 

The number of households possessing a car has been steadily increasing since the 1960s 

in most countries. For example, according to U.K. National Statistics (2006), 74 % of 

households possessed at least one car in 2003 whereas only 31 % of households owned 

a car in 1961. In addition, the importance of the car is reflected by the fact that 80 % of 

annual travels are made by car rather than by public transportation such as bus or train 

(National Travel Survey, 2005). 

 

While driving or when the engine is at idle automobile drivers are continuously exposed 

to vibrational stimuli. Drivers perceive vibration through different vibrating surfaces 

including the floor panel, pedals, seat, gearshift lever and the steering wheel as shown in 

Figure 1.1. Of these, the steering wheel is particularly important due to the great 

sensitivity of the skin tactile receptors of the hand (Gescheider et al., 2004) and due to 

the lack of intermediate structures such as shoes or clothing which can attenuate 

vibration. 
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Floor and Pedal Vibration 

Steering Wheel Vibration 

Seat Vibration 

Gearshift Lever Vibration 

 

 

 

 

 

 

 

 

[Figure 1.1] Vibration stimuli arriving at the driver of a road vehicle. 

 

Automobile steering wheel vibration is affected by various internal and external 

vibrational sources. The internal sources are the rotational irregularity of the engine 

which is caused by both the stochastic combustion forces and the dynamic unbalance of 

components such as the translating pistons. The external sources include the road 

surface irregularities and the aerodynamic forces. (Kim et al., 1985; Ajovalasit and 

Giacomin, 2007). For both the internal and external sources the vibration which actually 

reaches the driver is moderated by the dynamic response of the automobile chassis 

components. 

 

Figure 1.2 presents the three principal vibrational axes of the steering wheel defined by 

standard SAE J670e (1976). The vibration at the steering wheel is normally measured 

along these three axes: 

 

 The X – axis is taken along the fore-and-aft direction of the automobile with the 

positive direction taken as forwards, i.e. from the driver towards the front bumper. 

 The Y – axis is taken along the lateral direction of the automobile with the positive 

direction towards the left of the vehicle. 

 The Z – axis is taken along the vertical direction of the automobile with the 

positive direction towards the roof of the vehicle. 
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[Figure 1.2] Three axes of vibration measured on a steering a wheel. 

 

Steering wheel vibration can reach frequencies of up to 300 Hz during driving 

(Giacomin et al., 2004) and vibrational modes of the wheel and column can produce 

large resonant peaks in the steering wheel power spectrum at frequencies from 20 to 50 

Hz (Pottinger et al., 1986; Fujikawa, 1998). Although steering wheel vibrations do not 

normally exceed levels which present a health risk in automobiles (Masmejean et al., 

1999; Mansfield and Marshall, 2001), such vibrations nevertheless can cause discomfort, 

annoyance and physical or mental fatigue (Giacomin et al., 2004). 

 

Research by Peruzzetto (1988) has shown that translational hand-arm vibration has 

equivalent discomfort levels to translational whole-body vibration when the acceleration 

level is 5 to 7 times larger. Similar results can also be found in a study performed by 

Bellmann (2002), which noted that the acceleration magnitudes measured at the steering 

wheel are several times higher, and also contain more energy, than vibrations measured 

at the seat or the floor panel. 

 

Figures 1.3 and 1.4 present the acceleration power spectral densities measured along the 

three orthogonal directions for steering wheel and seat vibration on examples of large, 

medium and small automobiles. Given the acceleration levels normally measured at the 

steering wheel and at the seat in road vehicles, the steering wheel vibration should be 

considered an important source of discomfort, annoyance and fatigue during driving 

(Giacomin et al., 2004). 

 

 

 

Fore-aft (X) 

Vertical (Z) 

Lateral (Y) 
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

[Figure 1.3] Mean acceleration power spectral densities for steering wheel vibrations of 

petrol (left) and diesel (right) automobiles in all three axes (x, y and z) measured on (a) 

large (nP* = 9, nD** = 26), (b) medium (nP = 18, nD = 27) and (c) small (nP = 21, nD = 

22) automobiles (adapted from Bellman, 2002).  

* nP denotes the number of test conditions of petrol cars. 

** nD denotes the number of test conditions of diesel cars. 
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

[Figure 1.4] Mean acceleration power spectral densities for seat vibrations of petrol 

(left) and diesel (right) automobiles in all three axes (x, y and z) measured on (a) large 

(nP* = 9, nD** = 26), (b) medium (nP = 18, nD = 27) and (c) small (nP = 21, nD = 22) 

automobiles (adapted from Bellman, 2002).  

* nP denotes the number of test conditions of petrol cars. 

** nD denotes the number of test conditions of diesel cars. 

 

1.2 Quantifying the Human Subjective Response to Steering Wheel 

Vibration 

 

Driver's subjective response to steering wheel vibration can be investigated from several 

different points of view. Research findings have been reported concerning the perceived 

intensity of short-term steering wheel vibration (Giacomin et al., 2004), concerning the 

long-term fatigue that is induced in the human upper body by steering wheel vibration 

(Giacomin and Screti, 2005) and concerning the cognitive information carried by 
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steering vibration stimuli (Giacomin and Woo, 2004). Given the importance of the 

perceived intensity towards both intensity and information, it is useful to know what 

values of the quantity are associated by drivers with various operating conditions of the 

automobile. 

 

The Cambridge advanced learner‟s dictionary (2008) defines intensity as "the strength 

of something which can be measured such as light, sound, etc.” With similar meaning, 

the term intensity is used in this research to refer to the sensation magnitude of steering 

wheel hand-arm vibration. This is in line with standard practice in the field of 

psychophysics since Fechner, the founder of psychophysics, used the term intensity 

when expressing psychological magnitude (Warren, 1981). 

 

In order to quantitatively assess the perceived intensity of steering wheel vibration the 

recorded acceleration values are traditionally weighted according to the frequency, so as 

to represent the differences in human sensitivity with respect to frequency (Mansfield, 

2005). A frequency weighting, commonly used for the assessment of perceived human 

vibration, is a transfer function which models the frequency dependency of the human 

subjective response (Griffin, 1990). Frequency weightings are applied to convert the 

physical (objective) input acceleration into perceived (subjective) human response. A 

frequency weighting expresses the human sensitivity by attenuating according to the 

frequency range (Mansfield, 2005). 

 

The mostly commonly used hand-arm vibration standards are the International 

Organization for Standardization 5349-1 (2001) and British Standards Institution 6842 

(1987) which both numerically specify the frequency weighting Wh. Both standards use 

the same frequency weighting, Wh, for each of the three translational axes of vibration 

at the point of entry to the hand. Figure 1.5 shows the ISO 5349-1 Wh frequency 

weighting curve for hand-transmitted vibration. 
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[Figure 1.5] Wh frequency weighting curve for hand-transmitted vibration defined in 

ISO 5349-1 (reproduced from ISO 5349-1, 2001). 

 

The Wh weighting, the standardising of which was mainly based on the work of Miwa 

(1967) who measured hand-arm perception threshold curves and hand-arm equal 

sensation curves for both vertical and horizontal sinusoidal vibration, was primarily 

defined for use in measuring and reporting hand-arm exposures for the purpose of 

quantifying health effects and risk of injury over the frequency range from 8 to 1000 Hz. 

As the only internationally standardised frequency weighting for the hand-arm system, 

the Wh weighting has been applied to the evaluation of the perception of hand-arm 

vibration and has even been used in the automotive industry (Peruzzetto, 1988; Pak et 

al., 1991; Isomura et al., 1995). 

 

Several criticisms have been raised, however, regarding the use of Wh for modeling the 

human perception of vibration at magnitudes lower than the vibration exposures limits, 

or in the case of vibration having significant energy at frequencies below 8 Hz or above 

1000 Hz. In fact, studies of the subjective response to hand-arm vibration (Neely and 

Burström, 2006) have suggested that the Wh frequency weighting underestimates the 

perceived intensity of hand-arm vibration, and Morioka and Griffin (2006) have also 

suggested that Wh does not appear to be optimum for predicting the perception of 

steering wheel vibration. 
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Further, in the steering application, it is not obvious whether Wh is appropriate in the 

case of steering wheel rotation. Giacomin et al. (2004) have proposed a new hand-arm 

frequency weighting for steering wheel rotational vibration, called Ws, which presents 

significant differences with respect to the Wh weighting at low (3 to 6.3 Hz), 

intermediate (6.3 to 50 Hz) and high (above 50 Hz) frequencies. An important 

difference is the higher human sensitivity to hand-arm vibration indicated by Ws at 

frequencies below 6.3 Hz, and the constant velocity weighting from 6.3 to 50 Hz as 

opposed to the constant acceleration weighting from 8 to 16 Hz of Wh. The constant 

velocity contour of Ws has been found to be in agreement with the equal sensation 

curves for steering wheel rotational vibration developed by Amman et al. (2005), who 

suggest a constant velocity weighting in the frequency range from 8 to 20 Hz. Figure 

1.6 presents comparisons between the frequency weighting Ws and Wh curves.  

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 1.6] Comparison between the proposed frequency weighting Ws for rotational 

steering wheel vibration and frequency weighting Wh. 

 

Gnanasekaran et al. (2006) have evaluated the correlation between the weighted 

acceleration obtainable when applying the Wh or Ws weightings and the subjective 

perceived intensity responses provided by test participants for eight different types of 

steering vibration stimuli. The results suggest that the Ws weighting provides a slightly 

better correlation than the Wh weighting. The results also suggest, however, that more 

accurate vibration perception weightings are required, analogous to psychoacoustics 
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weightings, due to the variable vibration perception according to the amplitude ranges 

of steering wheel rotational vibration. Ajovalasit and Giacomin (2009) also insist that a 

range of weightings are useful in some work environments where a wide range of 

vibration amplitudes occur. 

 

1.3 Research Objectives 

 

Several new frequency weightings of hand-arm vibration (Thomas and Beaucamp, 

1998; Tominaga, 2005; Dong et al. 2006) have been recently proposed. However, the 

studies have investigated the health effects produced by human hand-arm vibration. 

Only a few research studies dealt with steering wheel hand-arm vibration (Hong et al., 

2003; Giacomin et al., 2004). 

 

In addition, a single frequency weighting may not provide accurate estimations of 

subjective response of hand-arm vibration since the results of previous studies (Morioka 

and Griffin, 2006; Ajovalasit and Giacomin, 2009) have suggested that no one 

weighting may not be suitable at all magnitudes of vibration. Further, the current 

frequency weighting is based mainly upon the subjective response from male 

participants despite the fact that since the 1970s the percentage of female drivers has 

increased in most countries (National Travel Survey, 2005), thus the availability of only 

the current Wh frequency weighting appears problematic. 

 

The general objective of the research presented in this thesis was to quantify the human 

subjective response to steering wheel rotational vibration in order to develop frequency 

weightings for automotive drivers. The general objective was achieved by means of a 

set of intermediate objectives, which subdivided the research activity into separate 

phases. The intermediate objectives were: 

 

 To quantify the human subjective response to steering wheel rotational vibrational 

stimuli by means of laboratory experiments involving a steering wheel vibration 

test facility and test subjects.  

 
 
 To determine the effect of signal differences between sinusoidal and narrow band-
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limited random vibration on the human perceived intensity. 

 
 To determine the effect of gender differences on the human perceived intensity. 

 
 To determine the effect of physical body mass differences on the human perceived 

intensity. 

 
 To select the adequate frequency weightings for evaluating steering wheel 

rotational hand-arm vibration by establishing the level of correlation between the 

subjective responses and the analytical estimates of the human subjective 

responses. 

 

The main questions which the research set out to answer were the following: 

 

 How do the subjective responses change when the frequency changes? 

 
 How do the subjective responses change when the amplitude changes? 

 
 How nonlinear is the human response? 

 
 Is the subjective response dependent on the signal type? 

 
 Is the subjectively perceived intensity for males and females the same when the 

steering wheel vibration is the same? 

 
 Is the subjectively perceived intensity for light and heavy individuals the same 

when the steering wheel vibration is the same? 

 
 How many frequency weightings are necessary for quantifying human perception 

of steering wheel hand-arm vibration? 
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Chapter 2 

 Psychophysics 

 

Psychophysics is the study of the relationship between the properties of physical stimuli 

and the psychological reactions to those properties (Coren et al., 2003). Psychophysical 

theory has shown that to discriminate two stimuli as different it is necessary that they 

present a specific difference, ΔI, in the magnitude of the physical stimuli. The value of 

ΔI represents the smallest increment of a stimulus that can be detected. The proportion 

by which stimulus intensity I must be changed in order to produce a just noticeable 

difference (JND) in sensation is referred to as the Weber fraction (WF): 

c
I

I



                                            (2.1) 

where ΔI is the difference threshold in the physical stimulus of intensity I, and c is the 

Weber fraction constant. The ΔI difference threshold increases with increases in the 

magnitude of the vibration stimulus I, whereas c is a constant which depends on the 

type of stimulus. The smaller the Weber fraction value, the greater the sensitivity to 

stimulus differences along a sensory dimension. The Weber fraction for hand-

transmitted vibration has been found to vary from a minimum of 0.05 as found by 

Knudson (1928) in a study for the detection of changes in vibration amplitude using 

needles indenting the skin of the fingertips, to a maximum of 0.15 to 0.18 as found by 
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Morioka (1999) in a study using sinusoidal vibration at frequencies from 8 to 500 Hz 

applied to a wooden handle. 

 

Fechner, by assuming the validity of Weber‟s law of Equation 2.1, derived an indirect 

measure of sensory magnitude from the difference thresholds in the stimulus magnitude. 

The general assumption made by Fechner and co-workers (Gescheider, 1997) was that 

each JND was an equal psychological increment in sensation magnitude, regardless of 

the size of difference threshold ΔI. By counting an increase of 1 psychological unit of 

subjective response for each JND value, which increases with increasing stimulus 

intensity, a response curve is produced which is characterised by a linear abscissa being 

plotted against a logarithmic ordinate. 

 

Given the shape of the response curve, Fechner proposed that the sensation magnitude 

increased with the logarithm of the stimulus intensity, deriving a general formula which 

is known as Fechner‟s law: 

Ψ = c log I                                         (2.2) 

where Ψ is the sensation magnitude, I is the intensity of the stimulus in units above the 

absolute threshold, and c is the Weber fraction. Fechner‟s law is presented in Figure 2.1 

where it can be seen that equal increments in sensation correspond to increasingly larger 

values of stimulus intensity as the stimulus intensity increases. 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 2.1] Relationship between the perceived sensation and the stimulus intensity 

according to Fechner‟s law (adapted from Stevens, 1986). 
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Stevens (1986) later proposed that the perceived intensity of a stimulus was best related 

to the physical intensity by a power law relationship, which in its most general form is 

expressed as: 

Ψ = Ψ0 + k(X-Xth)
β
                                        (2.3) 

where Ψ is the subjective perceived magnitude, k is a constant determined from the 

measurement units, Ψ0 and Xth are constants which define the subjective and stimulus 

magnitudes at threshold, which indicate the starting point of the growth function on the 

response axis (y-axis) and on the stimulus axis (x-axis) respectively, and β is the power 

exponent defining the growth of the human response. The Stevens‟ power exponent β is 

useful since it provides a means for translating the measurable physical objective 

quantities into perceived subjective quantities. As shown in Figure 2.2, power function 

exponents have been found to be as small as 0.33 for brightness, and as large as 3.5 for 

electric shock on the fingertip. 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 2.2] Relationship between stimulus intensity and perceived sensation according 

to Stevens‟ power law (adapted from Stevens, 1986). 

 

2.1 Psychophysical Scaling 

 

Scaling is defined (Griffin, 1990) as “the process of determining a scale along a 

subjective or psychological dimension which has a continuous mathematical relation to 

β = 3.5 

β = 1.0 

β = 0.33 
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some physical dimension. As summarised in Figure 2.3, the four main types of scale are 

nominal scale, ordinal scale, interval scale and ratio scale. A nominal scale categorises 

objects, and the numbers reflect only that the objects are different from one another. An 

ordinal scale uses numbers to rank objects with respect to some characteristic such that 

different numbers have a greater-than-less-than relation between them. In an ordinal 

scale, the intervals between the assigned numbers are meaningless. In an interval scale, 

the size of the differences between numbers, as well as their ordinal relation, has 

meaning. However, the zero point of the scale can be set arbitrarily and therefore does 

not necessarily represent the zero amount of the property measured. A ratio scale, on the 

other hand, as well as having the properties of order and distance, has a natural origin to 

represent zero amount of the stimulus. The property of having a true zero value 

guarantees that the ratios which can be determined from different values of the scale 

values have meaning (Gescheider, 1997). 

 

Scale 
Operations 

we perform 
Permissible transformations Some appropriate statistics Examples 

Nominal Identify and  Substitution of any number Number of cases Numbering football players 

 classify for any other number Mode Model numbers 

   Contingency correlation  

     

Ordinal Rank order Any change that preserves Median Preference lists 

  order Percentiles Hardness of minerals 

   Rank-order correlation Rank lists 

     

Interval Find distances Multiplication by a constant Mean Temperature Fahrenheit 

 or differences  Standard deviation Temperature Celsius 

  Addition of a constant Product-moment correlation Calendar time 

    Standard scores 

     

Ratio Find ratios, Multiplication by a  Geometric mean Length, weight, numerosity, 

 fractions, or constant only Percent variability duration, and most physical scales 

 multiples   Temperature Kelvin 

    Loudness in sones 

[Figure 2.3] Four main types of measurement scale (adapted from Stevens, 1986). 

 

According to Fechner, a subject can only perceive the relative difference between two 

stimuli with respect to a given attribute and, therefore, sensation can only be indirectly 

scaled. On the other hand, Stevens (1986) proposed that a subject can actually judge the 

strength of a given stimulus attribute, implying that sensation can be directly scaled. 
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The remaining sections of this chapter provide an overview of the most commonly used 

indirect and direct scaling methods. A brief summary is provided for each, as there are 

key bibliographic references which can be used to obtain more detailed explanation of 

the individual methods. 

 

2.2 Indirect Scaling Methods 

 

Indirect scaling is defined as those methods in which measurements of psychological 

magnitude are derived from data on how well observers can tell one stimulus from 

another. Fechnerian JND scales and thurstonian scales are examples of indirect scaling 

(Geshcheider, 1997). Fechner‟s indirect method, which is based on JND counting, is not 

considered suitable for constructing scales since it depends on only the distance 

between the stimuli on the psychological continuum, and does not take into account the 

statistical variability in the subjective estimates. Thurstones‟ law of comparative 

judgment (Thurstone, 1959) is the indirect scaling method that is most frequently used 

to construct a psychophysical scale, due to its generality and reliability. 

 

2.2.1 The Method of Constant Stimuli 

 

In the method of constant stimuli, stimuli of varied intensity are presented several times 

in a random order to an observer who, in the case of measuring absolute threshold, is 

required to report the presence or absence of the stimulus or who, in the case of 

measuring difference thresholds, must report which of two stimuli is more intense 

(Gescheider, 1997). The method of constant stimuli is frequently used when the 

threshold must be measured precisely, but it is time consuming because it requires many 

stimulus presentations and responses. 

 

2.2.2. The Method of Limits 

 

In the method of limits the intensity of the stimulus presented to the observer is 

increased or decreased on successive trials until the stimulus is no longer detected or, in 

the case of measuring difference thresholds, until a stimulus difference is no longer 

noticed (Gescheider, 1997). The experimenter presents successively lower levels of the 
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stimulus or successively higher levels of the stimulus, and on each trial the observer 

indicates whether the stimulus is above threshold or not. The observer is asked to say 

„yes‟ if the stimulus is detected or „no‟ if it is not. 

 

2.2.3 The Method of Adjustment 

 

In the method of adjustment the test subject is required to adjust the test stimuli until it 

produces the same perceived sensation as was produced by the reference stimuli in the 

case of measuring difference thresholds, while the test subject is required to ask the 

observer either to increase the intensity level until it is just perceptible, or to decrease 

the intensity until the sensation just disappears in the case of measuring absolute 

thresholds. (Gescheider, 1997). 

 

2.2.4 The Paired-Comparisons Method Using Thurstone’s Model 

 

In the method of paired-comparisons (Thurstone, 1959; David, 1988) all stimuli are 

presented to the test subjects in all possible pairs. The subjects are required to make 

comparative judgments for all the pairs, so as to state which of the two stimuli is greater 

than the other with respect to a chosen semantic attribute (e.g. unpleasantness, intensity, 

etc.). The test subject is not required to directly judge the magnitude of the stimulus. 

The method of paired-comparisons is not suitable when large numbers of stimuli are to 

be tested since the number of comparisons required by the method is equal to the 

number of possible combinations, which for a number ns of stimuli is given by: 

  ssss nnnn  21                                         (2.4) 

Thus, the number of comparative judgments increases with the square of the number of 

the stimuli considered. 

 

Thurstone (1959) developed a mathematical model for deriving subjective scale values 

from comparative judgment proportions. Thurstone‟s model assumes that a given 

stimulus is capable of producing a range of momentary estimates of the position of the 

stimulus along the human internal psychological continuum. Variations in the human 

subjective response from one presentation to the next occur due to changes in human 

physiological sensitivity, contextual effects, fatigue and learning effects. In thurstone‟s 
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model the variations in the estimates are assumed to be normally distributed along the 

psychological continuum, and the standard deviation of each distribution is usually 

referred to as the discriminal dispersion. The difference between the means of two 

distributions, associated with two stimuli, specifies the difference on the psychological 

continuum between the sensations produced by the two stimuli. Thurstone‟s law of 

comparative judgments is: 

kjjkkjjkkj rzSS  222                               (2.5) 

where Sj and Sk are the subjective scale values of stimuli j and k respectively, zjk is the 

normal deviate corresponding to the proportion of times the stimulus j is preferred over 

the stimulus k when they are compared, σj and σk are the standard deviations of the 

distribution of momentary estimates and rjk is the coefficient of correlation between the 

pairs of discriminal processes. Thurstone (1959) presented five different cases of the 

law of comparative judgment which solve Equation 2.5. Each of the five cases involves 

a different set of assumptions that simplify the equation. Analytical procedures have 

been devised to give good estimates of the unknown terms when using one of 

thurstone‟s five cases (Torgerson, 1958). Thurstone‟s model has been widely used in 

several scientific disciplines (Stevens, 1966; Gescheider, 1997) because of its generality 

and ability to quantify numerous psychological qualities for which there are no obvious 

measurable, physical stimulus properties (Guilford, 1954). 

 

2.3 Direct Scaling Methods 

 

In direct scaling methods, the test subjects are assumed to be capable of estimating 

quantitative relations between subjective experiences, and are thus asked to assign 

numbers to stimuli to represent the magnitude of their subjective sensation (Stevens, 

1986; Gescheider, 1997). 

 

2.3.1 The Method of Magnitude Estimation 

 

In the method of magnitude estimation, subjects are required to make direct numerical 

estimations of the sensory magnitudes produced by the various test stimuli. In the 

magnitude estimation procedure a subject is presented with a standard stimulus that the 

experimenter assigns an arbitrary subjective magnitude value such as 100. Other stimuli 
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are then presented, and the subject is asked to estimate the subjective magnitude of each 

of them as a multiple or ratio of the standard subjective value. Magnitude estimation 

thus offers the advantage of reducing the range effects that can be encountered when 

using fixed scale techniques such as semantic scales or numbered scales (Gescheider, 

1997). However, a major disadvantage is that different subjects may give wildly 

different magnitude estimates (Teghtsoonian and Teghtsoonian, 1983; Stevens, 1986), 

which is referred to as the regression effect. Subject training is therefore required in 

order to minimise unwanted trends in the data. 

 

2.3.2 The Method of Magnitude Production 

 

The method of magnitude production is the inverse of the method of magnitude 

estimation. The subject is presented with a standard stimulus whose magnitude is 

described by an arbitrary number, then is asked to adjust the level of a comparison 

stimulus such that the subjective sensation it produces bears a given ratio to the 

sensation produced by the standard stimulus (Griffin, 1990). Unfortunately, this method 

can result in a bias towards low settings, since subjects do not like exposing themselves 

to uncomfortable stimuli (Stevens, 1986; Griffin, 1990), which is again a regression 

effect. 

 

2.3.3 Category Scaling 

 

Category scaling is a direct method for quantifying subject opinion about a certain 

attribute of the stimulus (Stevens, 1986; Gescheider, 1997). When the subject is 

presented with the stimulus, he or she is asked to assign it to a specified number 

category (such as 1, 2 or 3) or to an adjective (such as low, medium or high). The results 

obtained when using semantic scales depend on the question phrasing, and on the words 

actually chosen for the scale. It is important that the choice of the attribute to describe 

the sensation be appropriate to the application (Gescheider, 1997). The number of useful 

semantic labels has been found to be limited by the human ability to resolve differences 

between stimuli and situations. Research (Pollack, 1952) suggests that the optimum is 

from 5 to 9 levels. The use of semantic scales normally involves large inter-subject 

differences due to the fact that each subject attaches a slightly different meaning to the 



 19 

descriptive label. 

 

2.3.4 Category-Ratio Scaling (Borg CR10 Scale) 

 

According to Borg (1998), ratio scaling procedures cannot actually provide information 

about the absolute levels of subjective impressions, and thus are not able to 

meaningfully compare the absolute values of magnitude estimations of individual 

observers. Borg therefore created a scaling procedure that had properties of both 

category and ratio scales. Category-ratio scaling is a method for controlling for 

individual differences in the use of numbers. Adjectives such as extremely strong, 

strong, moderate, weak, extremely weak and so on, are associate with specific numbers, 

forming a verbally labelled category scale. The numbers, however, are chosen so that 

the results are linearly related to magnitude estimation scales and, therefore, this type of 

scale is considered to be category-ratio scale. 

 

Borg (1998) initially designed the category ratio scale to measure perceived exertion 

during exercise. He assumed that all observers share a common scale of perceived 

exertion, with a common anchor at the point of maximal exertion. Descriptive adjectives 

such as extremely strong, moderate, etc. were used to describe the various experiences 

of exertion. The major assumption was that a similar level of perceived exertion could 

be described by a particular adjective which would be experienced in the same way by 

different observers. 

 

The Borg CR10 scale is a category-ratio scale for use in quantifying subjective 

perceptions of stimuli intensity anchored at the number 10, which represents the value 

of maximal perceived intensity. The Borg CR10 scale, shown in Figure 2.4, consists of a 

numerical scale from 0 (nothing at all) to 10 (extremely strong) with nine verbal anchors 

placed along the number scale in approximately logarithmic order. The “Extremely 

strong” 10 rating value is used to represent the strongest perception that has been 

previously experienced by the test subject. The rating “absolute maximum”, located 

below the value 10 and indicated by a dot “●”, provides an opportunity for estimating 

the intensity value of any test stimuli which is stronger than the personal experience of 

the test subject. Test subjects are instructed to use the scale by first finding the verbal 
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anchor which best fits the perceived sensation, and by then choosing an appropriate 

numerical value from those associated with the verbal anchor. Subjects are allowed to 

use any number, including fractions or decimals. If subjects experience the perceived 

intensity to be stronger than their own personal experience, they are allowed to choose a 

number greater than 10 in order to avoid ceiling effects (Gescheider, 1997). 

 

The validity and reliability of the Borg CR10 scale when used to quantify the human 

subjective response to hand-arm vibration has been investigated by Wos et al. (1988b), 

who have claimed that the Borg CR10 scale is highly reliable, with reliability 

coefficients ranging from 0.841 to 0.986. Neely et al. (1992) have reported coefficients 

of determination (R
2
) of 0.79 between Borg CR10 results and subjective data obtained 

by means of a visual analogue scale, and also reported typical retest coefficients of 

determination of 0.98. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 2.4] The Borg CR10 scale (reproduced from Borg, 1998). 
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Chapter 3 

 Hand-Arm Vibration 

 

3.1 Biomechanical Response of the Hand-Arm System 

 

3.1.1 Mechanical Impedance of the Hand-Arm System 

 

Mechanical impedance is the complex ratio of the force to the velocity, where force and 

velocity may be taken at the same or different points in the same system (Griffin, 1990). 

These measurements provide invaluable insights into the relative importance of 

different vibration frequencies (Stelling and Dupuis, 1996; Sörensson and Burström, 

1997) and convenient tools for investigate the influence of variables such as hand-arm 

posture, body size, grip force and grip contact area on the likely effect of vibration at the 

hand (Reynolds and Soedel, 1972; Pyykkö et al., 1976; Lundström and Burström, 1989). 

 

The driving point mechanical impedance is defined as: 

 
 
 fv

fF
fZ                                              (3.1) 

where F is the input force measured at the driving point, v is the response velocity 

measured at the driving point, and f is the frequency of oscillation. The mechanical 
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impedance Z can be described as the resistance of a mechanical structure to an applied 

vibration (Pyykkö et al., 1976; Lundström and Burström, 1989). For the hand-arm 

system, the driving point mechanical impedance is usually measured using a T-bar 

handle which rigidly attached to a vibration exciter (e.g. an electrodynamic shaker) to 

produce the input stimulus into the hand. The handle is usually also equipped with strain 

gauges for measurements of both the grip and the feed forces applied by the subject to 

the handle over the frequency range from 10 to 1000 Hz (ISO 5349-1, 2001). 

 

The driving point mechanical impedance characteristics of the hand-arm system have 

been investigated by several researchers (Reynolds and Soedel, 1972; Mishoe and 

Suggs, 1977; Lundström and Burström, 1989; Gurram et al., 1995). Considerable 

differences are known to exist among the impedance measurements reported by the 

different investigators. These differences may be due to variations in the experimental 

techniques used, the hand-arm postures used and the grip forces adopted. 

 

Reynolds and Soedel (1972) studied the mechanical response of the hand-arm system to 

translational sinusoidal vibration in the frequency range from 20 to 500 Hz when 

gripping a handle. They concluded that arm position had only a minor effect on the 

impedance of the hand across the frequency range tested, but that grip tightness and 

hand pressure influenced the vibration response at frequencies greater than 60 Hz. They 

also suggested that once a method of grip had been established, the hand-arm system 

could be treated as a linear system. 

 

Lundström and Burström (1989) investigated the mechanical impedance of the hand-

arm system in the frequency range from 20 to 1500 Hz. Firmer grips as well as higher 

vibration levels resulted in higher impedance magnitudes for frequencies above 100 Hz. 

Below 100 Hz, increasing the vibration input lowered somewhat the hand-arm 

impedance, while the grip force had little or no influence. All impedance curves had a 

pronounced minimum in the frequency range from 50 to 150 Hz, while the overall 

tendency outside that frequency range was of increasing impedance with increasing 

frequency, indicating that remote elements of the arm become less active as the 

frequency rises, eventually reaching a situation where only the fingers vibrate with the 

handle. 
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Typical values of impedance have been defined by summarizing the values reported in 

the literature for similar measurement conditions. The mechanical impedance of the 

hand-arm system under conditions representative of power-tool operation is shown in 

Figure 3.1 (Gurram et al., 1995) for vibration along the directions Xh, Yh and Zh of the 

standardised coordinate system for the hand. Gurram et al., synthesised the dynamic 

impedance data obtained from the test data sets of the 9 other studies which each 

involved from 1 to 75 male adult subjects. The dotted line shows the mean value of the 

data, while the dark solid lines indicate the maximum and minimum values found in the 

data. Also shown is a dashed line which represents the impedance values of a 4-degree-

of-freedom biodynamic model. 

 

 

 

 

 

 

 

 

 

 

 

[Figure 3.1] Mechanical driving point impedance of the hand-arm system in the three 

orthogonal directions as defined in ISO 5349, the dotted line indicates the mean value, 

the dark lines indicate the maximum value, and the dashed line represents impedance 

values of a 4-degree-of-freedom biodynamic model: (a) Xh direction (b) Yh direction (c) 

Zh direction (reproduced from Gurram, 1995). 

 

From Figure 3.1, it can be observed that the mechanical impedance of the hand-arm 

system in the Xh direction increases in magnitude with frequency, with a maximum 

from 20 to 70 Hz. The variation in the mean driving point impedance magnitude in the 

Yh and Zh directions is less pronounced, and more difficult to describe. The standard 

error in impedance magnitude approaches 30 to 37 percent at 1000 Hz. From the 

Xh (a) Yh (b) Zh (c) 
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analysis of their data Gurram et al. have suggested that changes in the grip force caused 

variations in the driving point mechanical impedance magnitude and phase estimates of 

less than 10 percent at all frequencies below 100 Hz. 

 

3.1.2 Vibration Transmissibility through the Hand-Arm Vibration 

 

The human mechanical response to hand-arm vibration is also commonly reported in 

terms of acceleration transmissibility. Transmissibility is the ratio of the force at one 

point to the force at another point, or the motion at one point to the same form of motion 

at another point. Transmissibility is normally expressed in terms of the measured 

acceleration since accelerometers are the most commonly used motion sensors (BS 

6842, 1987; ISO 5349-1, 2001). When expressed in terms of acceleration, 

transmissibility is defined as: 

 
 
 fa

fa
fH

in

out                                           (3.2) 

where the acceleration a is measured at reference points which represent the points of 

input and output to the system, and f is the frequency of the vibration. The acceleration 

at the input is usually measured by an accelerometer attached to the hand where the 

vibration enters, while the acceleration at the output is measured by one attached to a 

specific location along the body, such as the wrist, elbow, shoulder, neck, etc. (Pyykkö 

et al., 1976; Reynolds and Angevine, 1977). 

 

Transmissibility results found in the research literature suggest a considerable 

attenuation of vibration from wrist to upper arm at frequencies above 100 Hz (Pyykkö 

et al., 1976), whereas vibration at frequencies below 40 Hz is generally found to be 

transmitted to the hand (from the tip of the finger to wrist) with little attenuation 

(Sörensson and Lundström, 1992). This suggests that the hand-arm system operates as a 

low-pass filter. Iwata et al. (1972) studied the properties of the hand-arm system by 

using varying psychophysical compression forces and an input acceleration level of 2 g 

in the frequency range from 6.3 to 100 Hz. They reported that at very low frequencies in 

the range from 6.3 to 20 Hz the hand-arm system operates like an amplifier due to the 

presence of resonances. 
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[Figure 3.2] Mean transmissibility curves for vibration in the (a) vertical direction, (b) 

horizontal direction and (c) axial direction, to the hand and arm positions [① middle 

phalanx; ② proximal phalanx; ③ third metacarpal; ④ triquestrum carpal; ⑤ styloid 

process of ulna; ⑥ olecranon; ⑦ medial epicondyle; ⑧ acromoin] (reproduced from 

Reynolds and Angevine, 1977). 

 

Reynolds and Angevine (1977) placed small accelerometers at eight points along the 

hand-arm system and measured the transmissibility properties of the handle-induced 

vibration in the three orthogonal directions as shown in Figure 3.2. The locations of the 

accelerometers attached to the skin were: three measurement points on the middle finger 
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(① middle phalanx; ② proximal phalanx; ③ third metacarpal), two measurement 

points on the wrist (④ triquestrum carpal; ⑤ styloid process of ulna), two measurement 

points on the elbow (⑥ olecranon; ⑦ medial epicondyle) and on measurement point on 

the shoulder (⑧ acromoin). From Figure 3.2 it can be observed that the vibration 

amplitude was greatly attenuated at frequencies above approximately 150 Hz between 

the location 1 (middle finger) and the location 3 (palm) suggesting that vibration at 

frequencies above 150 Hz tended to be concentrated in the areas of the hand and fingers 

directly in contact with the vibrating handle. From Figure 3.2 it can be also observed 

that the vibration amplitude was greatly decreased at locations 4 and 5 (wrist) at 

frequencies greater than 100 Hz, indicating that most of the vibration at frequencies 

above 100 Hz was limited to the hand and fingers. Another feature which can be noted 

is that the vibration amplitude was greatly decreased from locations 5 (wrist) to 7 

(elbow) for the vertical and axial directions, while no reduction was found in horizontal 

direction. From this finding Reynolds and Angevine suggested that the amount of the 

transmitted vibration is very little from wrist to elbow when the vibration direction is 

perpendicular to forearm.  

 

3.2 Human Subjective Response to Hand-Arm Vibration 

 

The term subjective refers to something which is influenced by or based on personal 

beliefs or feelings, rather than based on facts (Cambridge advanced learner‟s dictionary, 

2008) and the term response refers to an answer or reaction to something (Cambridge 

advanced learner‟s dictionary, 2008). Therefore, the term subjective response in this 

thesis refers to a reaction to something which is dependent on an individual (Griffin, 

1990). 

 

Reynolds et al. (1977) have stated that the human subjective response to hand-arm 

vibration is composed of four main parameters: quality, intensity, locus and affect. 

Quality is the subjective difference that allows a name to be associated with a sensation, 

i.e. heat, cold, taste or smell, etc. Intensity represents the strength or amplitude of 

perception. Locus indicates the position from which the sensation originates. Affect is 

the characteristic of the sensation that allows a subject to classify the sensation as 
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pleasant or unpleasant. 

 

The subjective response to hand-arm vibration has been found to depend on several of 

the physical parameters of the vibration (Griffin, 1990). This section therefore provides 

an overview of the main independent physical variables which affect the subjective 

response to hand-arm vibration. 

 

3.2.1 The Mechanoreceptors of Human Skin 

 

The human skin acts as a sensor to various forms of external energy such as mechanical, 

thermal, chemical or electrical stimuli. The sensory effect of stimulation of the skin is 

termed cutaneous sensitivity (Martin and Jessell, 1999). Research has demonstrated that 

the glabrous (non-hairy) skin of the hand contains different types of mechanoreceptors, 

the cutaneous end organs responsible for transducing mechanical energy into neural 

signals. Bolanowski et al. (1988), in a series of experiments involving selective masking 

of the various tactile receptors, provided evidence for the existence of four main afferent 

fibre types in glabrous skin. These receptors are the Merkel‟s disks, Ruffini cylinders, 

Meissner‟s corpuscles and Pacinian corpuscles shown in Figure 3.3. The four receptors 

form the so-called four-channel model of mechanoreception which is currently accepted 

by most psychophysical researchers (Bolanowski et al., 1988; Hollins and Roy, 1996; 

Gescheider et al., 2001; Morioka, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 3.3] Location of the mechanoreceptors in hairy and glabrous skin of the human 
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hand. (reproduced from Kandel et al., 1991). 

 

Studies involving electrophysiological recording (Talbot et al., 1968; Mountcastle et al., 

1972), direct recordings from human nerves (Knibestol and Vallbo, 1970; Johansson et 

al., 1982; Phillips et al., 1992) and psychophysics (Békésy, 1940; Verrillo, 1966; 

Gescheider, 1976; Verrillo, 1985; Bolanowski et al., 1988; Lamoré and Keemink, 1988; 

Hollins and Roy, 1996; Gescheider et al., 2001) have shown these mechanoreceptive 

fibres to possess distinct capacities to respond to specific frequency ranges of vibratory 

stimuli. The mechanoreceptive fibres are thus classified depending on how quickly they 

adapt to a steady stimulus, being defined as either fast acting (FA) or slow acting (SA). 

Slowly acting units continue to respond throughout the duration of the stimulus, 

whereas the response dies out quickly in the case of the fast acting units (Johansson et 

al., 1982). 

 

The four-channel model consists of the high frequency Pacinian (P) channel and the 

high frequency non-Pacinian NPⅡ channel, along with the two low frequency channels 

non-Pacinian NPⅠ and non-Pacinian NPⅢ. Research has suggested that stimuli detection 

may be performed within the individual channel that is most sensitive to the signal in 

question (Bolanowski et al., 1988; Hollins and Roy, 1996; Gescheider et al., 2001). 

Evidence to support the independence of the different sensory channels is found in 

studies of adaptation (Verrillo and Gescheider, 1977), of enhancement (Gescheider et al., 

1977) and of masking (Labs et al., 1978; Hamer et al., 1983). Figure 3.4 shows the 

salient characteristics of the four channel model of mechanoreception, while Figure 3.5 

illustrates the differences in area and frequency selectivity between the four tactile 

channels. 

 

 

 

 

 

 

 

[Figure 3.4] Properties of the four-channel model of mechanoreception (reproduced 
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from Ajovalasit, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 3.5] Detection threshold as a function of frequency and of contactor area for the 

four individual tactile channels (reproduced from Gescheider et al., 2001). 

 

3.2.2 Effect of Vibration Frequency on Subjective Response 

 

Several researchers have measured perception thresholds and annoyance thresholds in 

response to stimuli of different frequency. Research has shown that a constant vibration 

magnitude does not produce the same intensity at all frequencies (Stevens, 1986; Griffin, 

1990). Figure 3.6 presents a set of contours of equal sensation magnitude obtained by 

Verrillo et al. (1969) using sinusoidal vibration stimuli applied to the skin of the index 

finger by means of a vibrating needle. Each curve describes the combinations of 

frequency and amplitude that result in judgments of equal subjective intensity. At 

threshold, the curve is U-shaped, resembling the vibrotactile perception threshold of the 

hand (Verrillo, 1985), and has a flattened portion in the smoother shape over the high 

frequency range from 100 to 1000 Hz. The flatening of the equal sensation curves as the 

vibration intensity increases is analogous to the behaviour of the well-known equal 

loudness contours for hearing (Moore, 1997), indicating that high-intensity sounds 

appear equally loud regardless of the frequency. 
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[Figure 3.6] Equal sensation magnitude contours. Each curve describes the 

combinations of frequency and intensity that give rise to equal sensation magnitudes 

(reproduced from Verrillo et al., 1969). 

 

Research has suggested that, when plotted in terms of acceleration amplitude, human 

subjective response to hand-arm vibration decreases almost monotonically as a function 

of frequency (Miura et al., 1959; Miwa, 1967; Reynolds et al., 1977; Verrillo, 1985; 

Griffin, 1990; Giacomin et al., 2004). Miwa (1967), for example, performed equal 

sensation and perception threshold tests for 10 subjects holding their palm flat against a 

vibration plate, for vertical and horizontal vibration. Acceleration threshold was found 

to reach a maximum sensitivity at 100 Hz. Reynolds et al. (1977) studied the subjective 

response to vertical and axial direction translational handle vibration by measuring 

perception and annoyance threshold curves for eight test subject. For fixed acceleration 

amplitude, their results showed a general trend of reduced sensitivity with increasing 

frequency. 
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Giacomin and Onesti (1999) produced equal sensation curves for the frequency range 

from 8 Hz to 125 Hz using a sinusoidally rotating steering wheel at reference 

amplitudes of 1.86 and 5.58 m/s
2
. From the results they suggested that the subjective 

response was found to be linear as a function of frequency over the frequency range 

considered, and that grip tightness did not have a great effect on the subjective response. 

Giacomin et al. (2004) have investigated the hand-arm perception of rotational steering 

wheel vibration by means of four equal sensation and one annoyance threshold tests. All 

equal sensation curves showed a decrease in human sensitivity to hand-arm vibration 

with increasing frequency. Giacomin et al. (2004) suggested that two characteristic 

transition points existed in the curves of equal subjective response, shown in Figure 3.7, 

at frequencies of 6.3 Hz and in the interval from 50 to 80 Hz. The first was stated to be 

due to mechanical decoupling of the hand-arm system, while the second was claimed to 

be due to the onset of Pacinian receptor output. The Giacomin et al. study also 

suggested that the human sensitivity decreased by 6 dB and 10 dB per octave in the 

frequency range from 6.3 to 50 Hz and from 160 to 315 Hz respectively while 0 dB per 

octave corresponding constant acceleration was observed in both frequency ranges from 

0 to 6.3 Hz and from 50 to 160 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 3.7] Equal sensation data from studies of translational and rotational vibration 

(reproduced from Giacomin et al. 2004). 

 

Regarding the effect of vibration frequency on subjective response it can be stated that: 
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 The subjective response magnitude is different at each vibrational frequency 

(Stevens, 1986). 

 The shape of equal sensation magnitude contours has qualitative similarities to 

the well known equal loudness contours for hearing in terms of its frequency 

dependency (Moore, 1997); at low vibration magnitudes the curve is U-shaped, 

while at high vibration magnitude the curve is flat-shaped. 

 The subjective response to steering wheel hand-arm vibration is characterised by 

two transition points, one at 6.3 Hz and the other in the interval from 50 to 80 

Hz (Giacomin et al., 2004). 

 The subjective sensitivity decreases by 6 dB per octave in the frequency range 

from 6.3 to 50 Hz while it decreases 10 dB per octave in the range from 160 to 

315 Hz and 0 dB per octave in the rest of the frequency ranges from 0 to 6.3 Hz 

and from 50 to 160 Hz (Giacomin et al., 2004). 

 From the results of the previous research studies it is observed that the use of a 

logarithmic transformation for the frequency values provided a more accurate 

description of the physical phenomena. (Miwa, 1967; Verrillo et al., 1969; 

Reynolds et al., 1977; Giacomin and Onesti, 1999; Giacomin et al., 2004).  

 

3.2.3 Effect of Vibration Magnitude on Subjective Response 

 

The magnitude of a mechanical vibration refers to the extent of its oscillatory motion. It 

can be measured in terms of either displacement, velocity or acceleration (Griffin, 1990). 

For practical convenience, the magnitude of vibration is usually expressed in terms of 

the acceleration, whose units are m/s
2
, and is normally measured by means of 

accelerometers (ISO 5349-1, 2001). Magnitude of hand-transmitted vibration is usually 

expressed in terms of the average power of the acceleration, namely the root-mean-

square value (m/s
2
 r.m.s.). Several studies have attempted to answer the question how 

the human subjective response to hand-arm vibration changes as a function of the 

magnitude of the vibration. 

 

Verrillo et al. (1969) determined the rate at which the subjective intensity grows as a 

function of the vibration amplitude of sinusoidal stimuli which were applied to the skin 

of the index finger by means of a vibrating needle. The resulting curves, shown in 
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Figure 3.8, suggest that the subjective magnitude increased as the physical intensity of 

the vibration was increased. At low intensities, the subjective response was found to 

grow approximately linearly with respect to the intensity of the vibration at frequencies 

from 25 to 250 Hz. This result is in agreement with Zwislocki‟s theory of vibration 

sensitivity (Zwislocki, 1960) which states that sensory magnitude is approximately 

proportional to the stimulus intensity near threshold. 

 

 

 

 

 

 

 

 

 

 

 

[Figure 3.8] Subjective response magnitude of suprathreshold vibration presented at the 

fingertip at frequencies of 25, 100, 250 and 500 Hz (reproduced from Verrillo et al., 

1969). 

 

The subjective response curves of Figure 3.8 are parallel at the upper intensities except 

for the 500 Hz stimuli which is steeper. This result was thought to be a reflection of the 

flattening of the equal sensation curves of Figure 3.6 as the vibration intensity increases. 

 

Wos et al. (1988a) studied the subjective response to hand-arm vibration as a function of 

the vibration intensity using sinusoidal stimuli of frequencies of 30, 75 and 187 Hz at 

five amplitude values ranging from 26 to 5130 μm peak-to-peak values. The test 

subjects were asked to quantify their subjective responses by means of a Borg CR10 

scale of perceived intensity (Borg, 1988). The function describing the relationship 

between the stimulus amplitude and the subjective response was determined for two 

different groups of test subjects. The first group consisted of engineers who were 

experienced in analysing vibrational phenomena, while the second group consisted of 
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individuals with no specific experience in analysing vibrational phenomena. Subjective 

response was found to be a negatively acceleration function of the vibration intensity. 

As shown in Figure 3.9, the experienced engineers were found to provide higher 

intensity ratings at the test frequencies of 30 and 75 Hz. Figure 3.9 also presents the line 

of best fit through the mean subjective response values, which is a power function with 

exponent ranging from 0.72 to 1.10. 

 

 

 

 

 

 

 

 

  (a)         (b) 

[Figure 3.9] Subjective response to sinusoidal hand-arm vibration of (a) 30 Hz and (b) 

75 Hz. Data was determined for engineers with experience in analysing vibration 

(indicated as Re) and individuals with no specific experience in analysing vibration 

(indicated as Rine). Data was presented as mean value plus or minus one standard 

deviation (reproduced from Wos et al., 1988a).  

 

Regarding the effect of vibration magnitude on subjective response it can be stated that: 

 The subjective response magnitude increases as the physical intensity of the 

vibration is increased (Verrillo et al., 1969). 

 The subjective response of experienced subjects produced higher intensity 

ratings than that of inexperienced subjects at test frequencies of 30 and 75 Hz. 

(Wos et al., 1988a). 

 The subjective response magnitude increases at a rate of power function 

exponent 0.72 for experienced subjects and 0.79 for inexperienced subjects at a 

frequency of 30 Hz while it increases at a rate of 0.74 for experienced subjects 

and 1.10 for inexperienced subjects at a frequency of 75 Hz (Wos et al., 1988a). 

 From the results of the previous research studies it is observed that the use of a 

logarithmic transformation for the vibration magnitude values provided a more 
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accurate description of the physical phenomena (Verrillo et al., 1969; Wos et al., 

1988a). 

 

 

3.2.4 Effect of Vibration Direction on Subjective Response 

 

International Organization for Standardization 5349-1 (2001) and British Standards 

Institution 6842 (1987) define the directions along which the vibration is transmitted to 

the hand, referring to the anatomical and basicentric co-ordinate system, as presented in 

Figure 3.10. The anatomical co-ordinate system is defined in both standards as centred 

on the hand in the head of the third metacarpal bone while the basicentric co-ordinate 

system is defined as centred on (or adjacent to) the vibrating surface. In practice, 

vibration measurements are usually obtained with respect to basicentric co-ordiante 

system (ISO 5349-1, 2001). 

 

 

 

 

 

 

 

[Figure 3.10] Standardised anatomical and basicentric co-ordinate system for the 

directions of vibration for the hand (reproduced from ISO 5349-1, 2001)  

 

In the studies of equal sensation and annoyance threshold reported by Miwa (1967), it 

was found that the subjective response to hand-arm vibration was the same in both the 

horizontal and vertical directions, for one or two hands pushing against the plate, and 

for various shapes of the handle grip. Reynolds et al. (1977) studied the subjective 

response to vertical and axial direction translational handle vibration for eight test 

subjects. For fixed acceleration amplitude, they observed that vibration along the 

vertical direction caused the greatest subjective intensity, while vibration along the 

tubular handle caused the least subjective intensity.  

 

Anatomical co-ordinate system 

Basicentric co-ordinate system 
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In the case of perceived intensity relative to an automobile steering wheel, Schröder and 

Zhang (1997) investigated the subjective response to steering wheel acceleration stimuli 

measured along the three orthogonal axes on a mid-sized European passenger car for 

different driving speeds ranging from 30 to 70 km/h over three different road surfaces. 

Comparison of the subjective ratings to the measured steering wheel acceleration values 

suggested that the vibration along the vertical direction of the steering wheel correlates 

best with the subjective ratings of the drivers in the frequency range from 30 to 90 Hz, 

which is the frequency range where most of the vibration energy is present at the 

steering wheel (Peruzzetto, 1988; Amman et al., 2001; Giacomin et al., 2004). 

 

Regarding the effect of vibration direction on subjective response it can be stated that: 

 The subjective response to hand-arm vibration appears to be the same in both the 

horizontal and vertical directions from the results of Miwa‟s study (1967) while 

Reynolds et al. (1977) observed that vibration along the vertical direction causes 

the greatest subjective intensity. 

 The subjective response to hand-arm vibration appears to be the same when 

pressing the vibration table with and without handle grip in both the horizontal 

and vertical directions (Miwa, 1967). 

 The subjective responses of test subjects appear to be best correlated with the 

level of vertical direction for a steering wheel (Schröder and Zhang, 1997). 

 

3.2.5 Effect of Vibration Duration on Subjective Response 

 

Research has shown that the stimulus duration affects both the vibrotactile sensitivity at 

threshold (Verrillo, 1965; Gescheider, 1976; Checkosky and Bolanowski, 1992) and at 

suprathreshold levels of stimulation (Verillo et al., 1969; Gescheider, 1997). For stimuli 

frequencies greater than 40 Hz and stimuli durations shorter than approximately 1.0 

second, the threshold amplitude for detection has been found to decrease monotonically 

with stimulus duration (Verrillo, 1965; Gescheider, 1976). The phenomenon is usually 

referred to as temporal summation or temporal integration. For stimuli frequencies 

greater than 40 Hz and stimuli durations longer than approximately 1.0 second the 

perception threshold does not change with increases in stimulus duration (Verrillo, 

1965; Gescheider, 1976). For vibration frequencies less than 40 Hz, no temporal 
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summation has been observed (Gescheider, 1976). 

 

Figure 3.11 illustrates the nature of the temporal summation effect in terms of 

perception thresholds for vibratory stimulation at 30 Hz and 200 Hz delivered to the 

hand. It can be seen that the non-Pacinian channels NPⅠ and NPⅢ have an 

approximately constant sensitivity at low frequencies below 40 Hz and thus do not 

present temporal integration properties (Verrillo, 1965; Gescheider, 1976; Bolanowski et 

al., 1988; Gescheider et al., 1994). Since increases in stimulus duration produce 

decreases in the thresholds of the Pacinian receptors (at 200 Hz) and the non-Pacinian 

NPⅡ receptors (at 30 Hz), these two sensory systems are believed to be capable of 

temporal integration (Verrillo, 1965, 1966; Gescheider, 1976; Gescheider et al., 1985; 

Bolanowski et al., 1988). 

 

 

 

 

 

 

 

 

 

 

[Figure 3.11] Temporal summation effects on vibrotactile perception threshold 

(reproduced from Gescheider, 1976).  

 

Cohen and Kirman (1986) have performed an experiment to measure the vibrotactile 

frequency discrimination at durations of 30, 50, 100 and 200 milliseconds (ms) with a 

standard frequency of 100 Hz. From the experimental results they suggested that 50 ms 

is the minimum vibratory duration for good frequency discrimination. Other research 

studies (Craig, 1985; Gescheider et al., 1990; Biggs and Srinivasan, 2002) have 

suggested that only a few ms are enough to perceive stimuli in human tactile vibration. 
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Most laboratory studies of hand-arm vibration have involved protocols in which the test 

subjects judged the subjective intensity of the vibration for brief exposures from 2 to 10 

seconds (Miwa, 1968; Giacomin and Onesti, 1999; Giacomin et al., 2004; Morioka, 

2004; Morioka and Griffin, 2006). Miwa (1968), for example, asked subjects to judge 

the relative subjective intensity produced by short periods of sinusoidal vibration, and 

pulsed sinusoidal vibration, for signal durations up to 6 seconds. From the test results 

Miwa suggested that for vibration in the frequency range from 2 to 60 Hz there is no 

further increase in sensation intensity for stimuli durations greater than approximately 

2.0 seconds, whereas for vibration in the frequency range from 60 to 200 Hz the same 

limit is approximately 0.8 seconds. 

 

Regarding the effect of vibration duration on subjective response it can be stated that: 

 NPⅠ and NPⅢ receptors do not present temporal summation properties at 

frequencies lower than 40 Hz (Verrillo, 1965; Gescheider, 1976; Bolanowski Jr 

et al., 1988; Gescheider et al., 1994) while Pacinian and NP receptors produce 

the temporal summation at 200 Hz and at 30 Hz respectively (Verrillo, 1965, 

1966; Gescheider, 1976; Gescheider et al., 1985; Bolanowski Jr et al., 1988).  

 A stimulus duration of 50 milliseconds is the minimum vibratory duration for 

good frequency discrimination (Cohen and Kirman, 1986). 

 Most research studies for hand-arm vibration have involved brief vibration 

exposures of from 2 to 10 seconds (Miwa, 1968; Giacomin and Onesti, 1999; 

Giacomin et al., 2004; Morioka, 2004; Morioka and Griffin, 2006).   

 Subjective intensity does not increase for stimuli durations greater than 

approximately 2.0 seconds in the frequency range from 2 to 60 Hz, while the 

same limit is approximately 0.8 seconds in the frequency range from 60 to 200 

Hz (Miwa, 1968). 
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Chapter 4 

 A Review of Digital Signal Processing 

 

4.1 Introduction 

 

The main objective of signal processing analysis is to determine the statistical properties 

of a signal which can be used to identify and describe the nature of the signal which is 

being analysed (Bendat and Piersol, 1986; Piersol, 1992). The identified signal statistics 

provide objective metrics that can be used to quantify the overall effect of an individual 

signal condition, and to compare the signal properties of different sets of data. The 

effectiveness of a signal processing technique depends mainly on the type of signal 

being analyzed, and on the type of signal information that is to be determined (Bendat 

and Piersol, 1986; Piersol, 1992). This chapter provides an introduction to the 

definitions and techniques from the field of digital signal processing which are 
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fundamental towards the understanding of the experiments performed during the 

research which is described in this thesis. 

 

4.2 Classification of Signals 

 

Two broad classifications of signal are generally accepted by the scientific community 

(Bendet and Piersol, 1986): deterministic and random. If the excitation acting on the 

vibratory system can be described by a mathematical function at any given time, the 

motion is said to be predictable or deterministic. A deterministic signal can further be 

characterised as being periodic or nonperiodic. A signal is periodic if it repeats with a 

characteristic period for all time. A signal is nonperiodic, instead, if it only exists for a 

finite time range (transient signal) or when one or more of the signal statistical 

parameters change with time (aperiodic). Periodic signals can further be characterised 

by having one single frequency (sinusoidal signal) or being a superposition of two or 

more harmonic waves (complex periodic). A generally accepted system of signal 

classification is presented in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

[Figure 4.1] Classification of signals (adapted from Bendat and Piersol, 1996). 

 

4.2.1 Continuous and Discrete Signals 

 

A signal is a description of how one parameter is related to another parameter. Since 

both parameters can assume a continuous range of values, it is called a continuous 

signal. In comparison, signals formed from parameters that are quantized are said to be 

Signal 

Deterministic Random 

Periodic Nonperiodic Stationary Nonstationary 

Sinusoidal 

Complex 
periodic 

Aperiodic 

Transient 

Ergodic 

Nonergodic 

Mildly 
nonstationary 
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discrete signals or digitised signals. The nature of the two parameters must be clearly 

stated (Smith, 2003). 

  

A typical method of obtaining a discrete signal from a continuous signal is through 

periodic sampling (Oppenheim et al., 1999; Wanhammer, 1999), i.e., 

    n   -                 )(nTxnx c
     (4.1) 

where x[n] is a sequence of samples, xc(t) is a continuous signal, T is a sampling period 

and its reciprocal is the sampling frequency or sampling rate (fs = 1/T). However, if the 

sampling rate is less than twice the highest frequency of the input a phenomenon known 

as the aliasing which is the effect of appearing as a lower frequency signal in the 

sampled data will occur (Kester, 2003) shown in Figure 4.2.  

 

 

  

 

 

 

[Figure 4.2] Effect of the aliasing appeared by improper sampling (reproduced from 

Mansfield, 2005). 

 

When converting the values of each sample from continuous to discrete, another 

phenomenon known as the quantization error or quantization uncertainty which is a 

difference between the actual analog input and the exact value of the digital output will 

occur (Kester, 2003) shown in Figure 4.3.  
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[Figure 4.3] Effect of the quantization appeared by converting the values of each sample 

from continuous (analog input) to discrete (digital output) (reproduced from Kester, 

2003). 

 

4.2.2 Deterministic and Random Signals 

 

When the value of the excitation at a given time cannot be predicted, the excitation is 

instead said to be random. In this case, the signal can be described only in terms of 

probability distributions and statistical averages computed over the ensemble of the 

sample records representing the random process. The probability distribution P(x) for a 

random process is defined as (Bendat and Piersol, 1986): 

   dxxpxP 



                                                (4.2) 

where p(x) is the probability density function (PDF) expressing the probability that the 

random variable takes a value between x and x+dx. A random process x(t) is said to be 

stationary if for any time t1, t2, …, tn, its probability distribution does not depend on 

time, i.e. 

               nn txtxtxPtxtxtxP ,...,,,...,, 2121                 (4.3) 

where τ is an arbitrary time displacement. In practice, low order statistics are employed 

to describe random process, leading to the definition of the term “weak stationarity” to 

describe stationarity up to order 2. Under this condition, a stationary random process 

can be described by the statistical averages up to the second order, computed over the 

ensemble of Ns sample records, i.e. 
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● the mean square value:  
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● the variance:   
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● the autocorrelation function:      
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● the cross correlation function:      
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             (4.8) 

By definition, the weakly stationary condition implies that the mean value, the mean 

square value and the variance are constant and independent of time, and that the 

autocorrelation and cross correlation functions are dependent only on the time 

displacement τ. If the random process is stationary and the statistical properties as 

defined in Equation 4.4 to 4.8 do not differ when computed over different sample 

records k, the random process is said to be ergodic. 

 

A commonly used model of a stationary random process is the Gaussian distribution, 

which occurs when random signal amplitudes follow the well known „bell-shaped‟ 

probability distribution illustrated in Figure 4.4.  

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 4.4] The Gaussian distribution. 

 

In this case the distribution of amplitudes is described by the mathematical expression 

  22
2exp

2

1
)( 



 xxp       (4.9) 

where p(x) is the probability of occurrence of the amplitude x and where m and  are 

constants; the mean value and the variance, respectively. Newland (1993) suggests that 

the normal or Gaussian probability distribution is extensively used in random vibration 

theory to approximate the characteristics of random excitation. The function is 

symmetric about the mean value μ, where it achieves its maximum value.  

 

A random process x(t) is said to be non-stationary if for any time t1, t2, …, tn, its 

probability distribution depends on time. According to Giacomin et al. (1999) non-

stationary signals can be further divided into two categories, mildly non-stationary and 

μ 
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heavily non-stationary. Figure 4.5 presents examples of automobile steering wheel 

acceleration signals which exhibit stationary, mildly non-stationary and heavily non-

stationary characteristics.   

 

 

 

 

 

 

 

[Figure 4.5] Examples of a stationary and non-stationary time histories: (a) Stationary 

Gaussian signal (Highway Surface), (b) Mildly non-stationary signal (Speed Circuit 

Surface) and (c) Heavily non-stationary signal (Bump). 

 

A mildly non-stationary signal is defined by Priestley (1988) as a random process with 

stable mean, variance and root-mean-square values for most of the record, but with 

short periods of changed signal statistics due to the presence of transient behaviour. A 

heavily non-stationary signal is defined in a similar manner to mildly non-stationary 

signals, but is characterised by the presence of more transient events (Giacomin et al., 

2000). 

 

4.3 Global Signal Statistics 

 

Global signal statistics calculated from the time series are commonly used in order to 

describe data sets and to quantify the extent of any departures from stationary-Gaussian 

behaviour. 

 

4.3.1 Root Mean Square Value 

 

The root-mean-square (r.m.s.) value, which is a 2
nd

 statistical moment, gives a measure 

of the overall energy of a signal. For a time series, the r.m.s. is defined as: 
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where xj is the instantaneous value of the sampled process x(t) at time t = jΔt and N is 

the number of the sampled values. The sampling interval Δt is equal to 1/fs where fs is 

the sampling frequency of the signal. For a sinusoidal motion of amplitude A the r.m.s. 

value is 2
-1/2

A (i.e. approximately 0.7071A). 

 

 

4.3.2 Skewness 

 

The skewness, which is a 3
rd

 statistical moment, characterizes the degree of asymmetry 

of a distribution around its mean value. It is dimensionless and it is expressed as: 
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For a symmetrical distribution, such as a harmonic waveform or for a stationary 

Gaussian process, the value of skewness is zero. Positive skewness indicates a 

distribution with an asymmetric tail extending toward more positive values. Negative 

skewness indicates a distribution with an asymmetric tail extending toward more 

negative values. 

 

4.3.3 Kurtosis 

 

The kurtosis, which is a 4
th

 statistical moment, is highly sensitive to outlying data 

among the instantaneous values and therefore characterizes the relative peakedness or 

flatness of a distribution compared to the normal distribution. It is dimensionless and it 

can be expressed as: 
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The kurtosis is an important metric since it helps quantify the extent of departure from 

stationary Gaussian distribution, for which the kurtosis value should be close to 3. Any 

positive deviation from this value indicates a relatively peaked distribution, while a 

kurtosis less than 3 indicates a relatively flat distribution. For a sinusoidal signal the 

kurtosis value is, instead, 1.5. For the purpose of hand-transmitted vibration evaluation, 

an estimate in terms of kurtosis is useful due to the close correspondence between this 

metric and the 4
th

 power methods, where the 4
th

 power reflects an increased human 
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sensitivity to high amplitude events (Howarth and Griffin, 1991). 

 

4.3.4 Root Mean Quad Value 

 

The root mean quad (r.m.q.) of a time series is given by 

41

1

41
...











 


N

j

jx
N

qmr        (4.13) 

For a sinusoidal motion of amplitude A the r.m.q. value is (3/8)
1/4

A (i.e. approximately 

0.7825A). 

 

4.3.5 Crest Factor Value 

 

The Crest Factor (CF) is defined as the ratio of the maximum instantaneous value of a 

sampled signal and the calculated r.m.s. value.  

...
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smr

x
CF

j
                                                 (4.14) 

Crest factors can be either positive or negative depending on the sign of the maximum 

instantaneous value. For a Gaussian distribution the crest factor should normally lie in 

the range 3.5 to 4.5. 

 

4.4 Frequency Domain Analysis 

 

4.4.1 The Fourier Transform 

 

Spectral analysis is widely used to analyse vibration signals. The mathematical function 

used to transform a time data series x(t) into the frequency domain is called the Fourier 

Transform. The Fourier transform is used to convert a non-periodic function of time, 

x(t), into a continuous function of frequency. The Fourier Transform of x(t) is defined by 

the expression 

    dtetx ti 


                                    (4.15) 

where i = 1  and ω is called the frequency variable, which is in units of rad/s in SI 

units. From a Fourier transformed dataset X(ω) it is also possible to reverse the 
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transformation by obtaining its inverse; 

      detx ti





                              (4.16) 

Equations 4.15 and 4.16 are called the Fourier Transform pairs, and they exist if x(t) is 

continuous and integrable as defined by the admissibility condition 

  



dttx                          (4.17) 

 

4.4.2 The Discrete Fourier Transform (DFT) 

 

Frequency analysis is concerned with the estimating of the spectrum of a random 

process x(t) by analysing the discrete time series obtained by sampling a finite length of 

the sample function shown in Figure 4.6.  

 

 

 

 

 

 

 

[Figure 4.6] Sampling a continuous function of time at regular intervals (Newland, 

1993). 

 

In most applications the Fourier transform is applied to sampled data on a digital 

computer. The digital interpretation of the Fourier transform is called the Discrete 

Fourier Transform (DFT) and is defined for N discrete samples of x(t) as 
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for ω = 0, 1, 2, …, N-1. The inverse of the discrete Fourier transform is defined by 
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for x = 0, 1, 2, …, N-1. Again, the continuity and differentiability of the underlying 

processes are necessary conditions for the existence of the transform and of its inverse.  

 

 

xr= x(t= r) 

r 
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4.4.3 The Fast Fourier Transform (FFT) 

 

The DFT makes possible the computer implementation of the Fourier Transform, but it 

is not efficient. The number of complex multiplications and additions required to 

implement Equations 4.18 and 4.19 is proportional to the square of the number of data 

points N. For every X(ω) which is calculated, it is necessary to use all x(0), …, x(N-1) 

data points. 

 

It has been shown, however, that the decomposition of Equation 4.18 can be achieved 

using a number of multiplication and addition operations which is proportional to N log2 

N. The decomposition procedure in question is called the Fast Fourier Transform (FFT) 

algorithm. The FFT works by partitioning the full sequence xr into a number of shorter 

sequences, it then combines together in a way which takes advantage of the symmetry 

of the matrix of reduction operations so as to yield the full DFT of xr.  

 

If the full sequence xr (see Figure 4.7a) is partitioned into two shorter sequences yr and 

zr (Figure 4.7b), two half sequences are yielded. The half sequence are expressed as yr= 

x2r and zr= x2r+1 when r = 0, 1, 2, …, (N/2 – 1). 

 

 

 

 

 

 

 

 

 

[Figure 4.7] Partioning the sequences xr into two half sequences yr and zr (Newland, 

1993). 

 

The DFT‟s of these two short sequences, Yk and Zk, after simplification of the expression 

4.18 are found to be 

 

(a) 

(b) 
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Returning to the DFT of the original sequence and considering rearranging the 

summation into two separate sums similar to those occurring in Equation 4.20, the 

resultant equation is the heart of the FFT method, mathematically expressed as 
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A useful representation in the case of random vibration signals is the autospectral 

density function which is commonly referred to as the Power Spectral Density (PSD) 

(Bendant and Piersol, 1986). The PSD represents the mean squared value as a function 

of frequency. It avoids the problem that random signals, producing a continuous 

frequency spectra, have the signal energy measured within only a certain frequency 

band (Bendant and Piersol, 1986). Because the Fourier Transform in Equation 4.18 is 

computed only on one time interval, the spectrum is not typical of the complete time 

history. Averaging of the spectra from different intervals of the signal is thus necessary 

in order to obtain a more accurate representation. The PSD of a time series is thus 

defined as: 
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where Xi(f,T) is the FFT of the signal computed over the i
th

 data interval of duration T 

and nd is the number of averages used in the calculation. The segment duration T 

determines the frequency resolution Δf = 1/T = 1/Ndata٠fs for the FFT computation, and 

is normally chosen based on the characteristics of the type of data being analysed.  

 

4.5 Digital Filters 

 

A filter is considered a black box which contains some form of processing that 

generates outputs from inputs (Winder, 2002). As shown in Figure 4.8 the output can be 

found mathematically by multiplying the input by the transfer function, which is a 

frequency dependent equation relating the input and output. The outputs should be more 

useful than the inputs, thus the purpose of using a filter is to improve the quality of the 

FILTER 
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outputs and to extract information (Winder, 2002). 

 

 

 

 

 [Figure 4.8] A transfer function of input and output (adapted from Winder, 2002). 

 

Digital filters fall into one of two main categories: finite impulse response (FIR) filters 

and infinite impulse response (IIR) filters. This section provides an introduction to both 

types of filter. 

 

4.5.1 Finite Impulse Response (FIR) Filters 

 

Finite Impulse Response (FIR) filters are often called nonrecursive filters because the 

output of the filter is calculated only from the current and previous input values (Bendat 

and Piersol, 1986; Elliott, 1987; Smith, 2003; Kester, 2003). The equation of an Nth 

order FIR filter is  
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where y(n) is the filter output for time n, x(n-k) is the filter input at time (n-k), h(k) is the 

filter coefficient (k), and N is the number of taps, which defines how many input data 

points are used to calculate the simple output data point.  

 

If the FIR filter is subjected to a digital impulse defined as 



 


otherwise

nif
kn

,0

0,1
                              (4.24) 

the response is called the filter's impulse response, and is a characteristic trait of the 

filter. If the input is a digital impulse, then 
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each product of the sum is zero except the product where n = k. The impulse response 

of the FIR filter therefore consists of the coefficients of the filter. The length of the 

nonzero portion of the impulse response is dictated by the number of coefficients in the 

filter. Since these filters have at most N nonzero coefficients, the impulse response can 

be no longer than N. For this reason, the filters have a finite duration (Kester, 2003), 

thus the use of the name finite impulse response. 

 

When the input to a filter is x(n) = e
jωn

 which is equivalent to a sampled sinusoid of 

frequency ω, Equation 4.23 is to be 

 

 

         (4.27) 

 

 

The quantity H(e
jω

) is the frequency response function of the filter. The frequency 

response of the filter has an amplitude and a phase (LMS International Inc., 2002; 

Elliott, 1987) 
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In the case of the filter with a symmetric impulse response [h(n) = h(N-1-n)] the filter 

has a linear phase response (Elliott, 1987). Therefore, the phase response of the filter is 
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which shows a linear phase filter with a constant group delay of (N-1)/2 (Elliott, 1987). 

  

Figure 4.9 shows the four most commonly used frequency responses. A pass-band refers 

to those frequencies that are passed, while a stop-band contains those frequencies that 

are blocked. The frequency interval between the pass-band and the stop-band is a 

transition band, which is related to a filter parameter called the roll-off sharpness. 
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[Figure 4.9] Four commonly used frequency responses; A (a) low-pass, (b) high-pass, 

(c) band-pass and a (d) band-stop responses (reproduced from Smith, 2003). 

 

Figure 4.10 shows three filter characteristics which are commonly used to indicate how 

well a filter performs in the frequency domain. To separate closely spaced frequencies, 

the filter must have a fast roll-off, as illustrated in (a) and (b). For the pass-band 

frequencies to move through the filter unaltered, there must be no pass-band ripple, as 

shown in (c) and (d). Lastly, to adequately block the stop-band frequencies, it is 

necessary to have good stop-band attenuation, displayed in (e) and (f). 
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[Figure 4.10] Three filter characteristics which are used to indicate frequency domain 

performance (reproduced from Smith, 2003). 

 

4.5.1.1 FIR Filter Design 

The FIR filter design process consists of determining the impulse response from the 

desired frequency response, and then quantizing the impulse response to generate the 

filter coefficients (Kester, 2003). The main FIR filter design methods are the Fourier 

transform method (Winder, 2002), the Frequency sampling method (Kester, 2003) and 

the Parks-McClellan method (Winder, 2002; Kester, 2003). 

 

 Fourier transform method 

The frequency response of a filter can be expanded into the Fourier series. 
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The coefficients of the Fourier series are identical to the impulse response of the filter. 

However, when the impulse response is truncated to a reasonable number of N taps it 

can become a problem since repetition implies a discontinuity, meaning that the input 

signal is not periodic in time as shown in Figure 4.11. The discontinuity creates a 

smearing of energy throughout the frequency domain which is called leakage. The 

solution to the problem of leakage is known as windowing (Kester, 2003). A time 

window function has value zero at the ends and is large in the middle so that the 

discontinuity is eliminated. 

 

 

 

 

 

 

 

 

[Figure 4.11] Input signal not periodic in time record (reproduced from Kester, 2003). 
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After truncation and windowing, an FFT is used to generate the corresponding 

frequency response which can be modified by choosing different window functions. 

Some popular window functions (Elliott, 1987; Taylor, 1994) were summarised below: 
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 Triangular window:  
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 Hanning window:  
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 Hamming window:  
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 Blackman window:  
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 Frequency sampling method 

This method is useful in generating an FIR filter which has an arbitrary frequency 

response. The desired frequency response H(k) is specified as a series of amplitude and 

phase points in the frequency domain using the DFT Equation 4.18. The points are then 

converted into real and imaginary components. The impulse response is obtained by 

taking the complex inverse FFT of the frequency response. The impulse response is then 

truncated to N points, and a window function is applied to minimize the effects of 

truncation. The filter design should then be tested by taking its FFT and evaluating the 

frequency response. Several iterations may be required to achieve the desired frequency 

response (LMS International Inc., 2002; Kester, 2003). 

 

 Parks-McClellan method 

The Parks-McClellan method uses the Remez exchange algorithm (Winder, 2002; 

Kester, 2003) which tries to generate a set of filter coefficients that will produce the 
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same response. The algorithm is a curve-fitting method that minimizes the error 

between the model and the filter in which the final response has equal errors above and 

below the desired frequency response (Winder, 2002). The filter designer needs to 

specify the parameters which are the pass-band ripple, the stop-band attenuation and the 

transition region. When the parameters are specified, the algorithm estimates the 

number of taps required to implement the filter based on the specifications. 

 

4.5.2 Infinite Impulse Response (IIR) Filters 

 

Infinite Impulse Response (IIR) filters are often called recursive filters because the 

output of an IIR filter is calculated not only using the input values, but also using 

previous output values (Bendat and Piersol, 1986; Elliott, 1987; Smith, 2003; Kester, 

2003). The equation of an N, M order IIR filter is  
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where y(n) is the filter output for time (n), x(n-k) is filter input at time (n-k), y(n-k) is the 

filter output at time (n-k), a(k) are the coefficients of the non-recursive component of 

the filter, b(k) are the coefficients of the recursive component of the filter and N and M 

are the number of taps. When the digital impulse is applied as input only the n = k term 

contributes to the non-recursive sum. The impulse response of the IIR filter can remain 

nonzero for even large indices. The recursive portion continues to generate an output 

long after the a(k)s are zero. For this reason, the IIR filters have a infinite duration 

(Kester, 2003). 

 

When the input to an IIR filter is x(n) = e
jωn

 then Equation 4.36 becomes 

         (4.37) 

 

The frequency response function of an IIR filter is thus expressed as H(ω)  
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The frequency response of an IIR filter is thus determined by the weighted sum of the 

recursive and non-recursive coefficients. The frequency response is the most useful 

  






 
M

k

n

N

k

knj ykbekany
1

1

0

)( )()( 



 56 

characterization of both recursive and non-recursive filters, but it only provides 

information regarding how the filter behaves with exponential inputs. The z-transform 

shows instead how the filter responds to a broader class of inputs. There exists a direct 

relationship between the coefficients of a recursive filter and the filter's z transform. 

From the Equation 4.38 the following equation can be obtain 
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where z is e
jω

. The non-recursive coefficients appear in the numerator while the 

recursive coefficients appear in the denominator. In the z-domain the transfer function 

of a digital filter is written as one polynomial divided by another polynomial, the roots 

of the denominator are the poles of the system, while the roots of the numerator are the 

zeros (Smith, 2003). 

 

IIR filters are usually more efficient than FIR filters because they have infinite memory, 

while FIR filters have finite memory (Elliott, 1987). However, when designing IIR 

filters the designer must pay attention to stability and phase nonlinearity (Elliott, 1987). 

Therefore if sharp cut-off filters are needed, and processing time is at a premium, IIR 

filters are a good choice, but if the number of taps is not restrictive, and linear phase is a 

requirement, the FIR should be chosen (Kester, 2003). 

 

4.5.2.1 IIR Filter Design 

Since the transfer function is frequency dependent the frequency response is complex 

(Winder, 2002). Therefore the frequency response is described in terms of s, where s is 

jω, rather than frequency ω and it is called s-domain. Then the analog transfer function 

becomes H(s) defined by the Laplace transform. A common method for designing IIR 

filter is to first design the analog equivalent filter and then mathematically transform the 

analog transfer function H(s) into z-domain, H(z) (Kester, 2003). There are three 

methods used to convert the Laplace transform into the z-transform: impulse invariant 

transformation, bilinear transformation and the matched z-transform (Kester, 2003). 

Only the bilinear transformation provides a general-purpose conversion function that 

can be used for low-pass, high-pass, band-pass. and band-reject  (or band-stop) 

responses (Winder, 2002). The impulse invariant conversion function (Winder, 2002) 
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can only be used for low-pass filter while the matched z-transform (Elliott, 1987) can be 

used for high-pass and band-stop filters. For these reasons, only bilinear transformation 

is considered below.  

 

 Bilinear transformation 

Bilinear transform is used to convert the analog frequency response (s-domain) into a 

digital domain (z-domain) response. Once in the z-domain, the response function can be 

reorganised and the filter coefficients read off directly (Winder, 2002). The bilinear 

transform is defined by 
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where s is jω, z is e
jωT

 and T is the sampling rate in seconds per sample. However, the 

bilinear transform approach is an approximation and will not produce the exact 

frequency response required. The frequency response will be distorted by what is called 

the warping effect (Winder, 2002). Frequency warping effects can be reduced or 

altogether eliminated by designing digital filters from a pre-warp analog frequency 

response shown in Equation 4.41 and Figure 4.12. 
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where ωa is a analog cut-off frequency and ωc is a desired filter cut-off frequency. This 

should be used in the s-domain transfer function before applying the bilinear transform. 

 

 

 

 

 

 

 

 

 

 

 

[Figure 4.12] Conversion from digital to analog frequencies (reproduced from LMS 
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International Inc., 2002). 

*ωa: a analog cut-off frequency, ωc: a desired filter cut-off frequency, ωd: a digital cut-off frequency 

 

4.5.2.2 Some Typical IIR Filters 

Unlike the FIR filters which have no real analog counterparts, IIR filters have traditional 

analog counterparts which are Butterworth, Chebyshev, Elliptic and Bessel. This section 

therefore introduces the characteristics of the analog counterparts commonly used in the 

field of signal processing. 

 

 Butterworth filters 

These are characterised by the response being maximally flat in the pass-band and 

monotonic in the pass-band and stop-band. Maximally flat means as many derivatives 

as possible are zero at the origin. The squared magnitude response of a Butterworth 

filter is 
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where s is jω, sc is jωc (ωc is a cut-off frequency) and n is the order of the filter. 

Butterworth filters are all-pole filters i.e. the zeros of H(s) are all when s is infinite. 

They have magnitude of 1/ 2  when ω/ωc is 1 i.e. the magnitude response is down 3dB 

at the cut-off frequency. 

 

 Chebyshev (typeⅠ) 

The Chebyshev (typeⅠ) filter, instead, has a faster roll-off than the Butterworth for the 

same number of poles and has ripple in the pass-band. The formula is 
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where Cn(ω) are the Chebyshev polynomials and ε is the parameter related to the ripple 

in the pass-band. As the ripple increases the roll-off becomes sharper (Smith, 2003) 

meaning the optimal concession is required to obtain a desired response. Given the 

existence of the ripple the transition width of a Chebyshev filter is narrower than for a 

Butterworth filter of the same order. 
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 Elliptical (Cauer) 

The Elliptical (Cauer) filter has poles and zeros, and ripple in both the pass-band and 

stop-band. This filter has even faster roll-off than the Chebyshev for the same number of 

poles. These filters are optimum in the sense that for a given filter order and ripple 

specifications, they achieve the fatest transitioin between the pass- and the stop-band. 

They have equiripple stop-bands and pass-bands. The transfer function is given by 

)(1

1
)(

22

2

LR
H

n 



         (4.44) 

where ε is a parameter related to the pass-band ripple, Rn(ωL) is called a Chebyshev 

rational function and L is a parameter describing the ripple properties of Rn(ωL). This 

group of filters is characterised by the property that the group delay is maximally flat 

meaning the delay is independent of frequency. However this characteristic is not 

normally preserved by the bilinear transformation and it has poor stop-band 

characteristics. For a given requirement, this approximation will require a lower order 

than the Butterworth or the Chebyshev filters. The Elliptical approximation will thus 

lead to the least costly filter realization, but at the expense of the worst delay 

characteristics. 

 

 Bessel (Thompson) 

The Bessel (Thompson) filter is an all-pole filter optimised for pulse response and linear 

phase but has the poorest roll-off of any of the types discussed for the same number of 

poles. The goal of the Bessel approximation for filter design is to obtain a flat delay 

characteristic in the pass-band. The delay characteristics of the Bessel approximation 

are far superior to those of the Butterworth and the Chebyshev approximations, however, 

the flat delay is achieved at the expense of the stop-band attenuation which is even 

lower than that for the Butterworth. The poor stop-band characteristics of the Bessel 

approximation make it impractical for most filtering applications. Bessel filters have 

sloping pass- and stop-bands and a wide transition width resulting in a cut-off frequency 

that is not well defined. The transfer function is given by 

)(
)( 02

sB

d
sH

n

          (4.45) 

where Bn(s) is the nth order Bessel polynomial and d0 is a normalizing constant. 
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Chapter 5 

 Steering Wheel Vibration Measured from Road 

Testing 

 

5.1 Introduction 

 

This chapter describes the steering wheel acceleration data obtained from several road 

surfaces and several automobiles which were used in the research presented in this 

thesis. In particular, signal analysis was applied to quantify the typical statistical 

variation which occurred in the steering wheel acceleration when driving over different 

road surfaces. 

 

Variations in the magnitude and frequency content of steering acceleration signals are 
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primarily caused by variations of the road roughness and by variations of the 

automobile speed (Gillespie and Sayers, 1983; Rouillard and Sek, 2002), where road 

roughness has been defined by the ASTM E1364-95 (2005) as “the deviation of a 

surface from a true planar surface with characteristic dimensions that affect vehicle 

dynamics, ride quality, dynamic loads, and drainage”. While the data presented in this 

chapter cannot be considered to be a definitive scientific analysis of road vehicle 

vibration, the values obtained can be considered to be typical of the automotive 

vibration problem, thus useful for the purpose of defining specific laboratory-based 

experiments which can be considered representative of the automobile environment. 

 

5.2 Experimental Vibration Tests 

 

Before performing any laboratory tests of human perception, real stimuli from real 

automobiles had to be selected which could serve as the base stimuli for use in the 

research. From a review of the available literature treating automotive vibration, and 

from a review of the aims and objectives of the planned experimentation, it was decided 

that the group of steering acceleration signals which could be used to study the human 

perception should satisfy a set of logical conditions which can be summarised as the 

following: 

 

 The stimuli should come from normal production automobiles of the most 

commonly encountered manufacturers such as Ford, Renault, Toyota and 

Volkswagen and from the most commonly encountered market segments defined 

by the International Organization of Motor Vehicle Manufacturers, 

“Organisation Internationale des Constructeurs d‟Automobiles” (OICA, 2008). 

 The stimuli should have been produced by commonly encountered road surfaces 

such as city asphalt, pavé, potholes, bumps, country asphalt and smooth 

motorway surfaces, so as to be representative of ordinary driving conditions 

(Giacomin and Gnanasekaran, 2005). 

 The automobile test speeds should be reasonable values which are commonly 

used when driving over each specific type of surface (Department of Transport, 

2006). 
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 Where possible, the choices described above should be made in such a way as to 

be as close as possible to the values used by the testing programmes of the major 

European automobile manufacturers, given their vast experience in the field of 

testing. 

 Where possible, the choices described above should be made in such a way as to 

widen the amplitude range, the frequency range and the frequency distribution of 

the stimuli so as to produce the widest possible operational envelope of test 

stimuli. 

 

The steering wheel acceleration signals used in the research were provided by MIRA 

(Motor Industry Research Association), by the Michelin Group, by Honda Motor 

Company or were directly measured by tests over road surfaces in and around Uxbridge, 

West London, UK (Berber-Solano, 2009). All acceleration measurements were made at 

the automotive steering wheel. The measurement point was on the surface of the 

steering wheel at the 60 position (two o‟clock position) with respect to top centre. This 

location coincides with a typical grip position of the driver‟s hand when holding an 

automotive steering wheel (Giacomin and Gnanasekaran, 2005).  

 

In the sections which follow, each of the steering wheel acceleration data sets which 

was considered and analysed will be described in terms of the test equipment and 

experimental protocol, and the statistical properties of the acquired signals will be 

summarised. The order of presentation is based on the source of the data sets, thus the 

order is: Mira tests, Michelin tests, Honda tests and Uxbridge tests. 

 

5.2.1 Mira Tests  

 

Six steering wheel acceleration signals were measured at MIRA‟s proving ground in 

Nuneaton, Warwickshire, UK, which has a comprehensive range of circuits and 

facilities which are used to carry out a wide range of tests (MIRA Ltd, 2006). All data 

were measured using an accelerometer which was clamped to the steering wheel 

measurement position by means of a mounting bracket of sufficient stiffness to 

guarantee accurate measurements to frequencies in excess of 500 Hz. The steering 

wheel acceleration time histories were digitally acquired using a PC-based digital data 
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acquisition system running MIRA‟s own in-house software. The data acquisition system 

was placed inside the vehicle, and the data acquisition was triggered by the driver when 

driving over each road surface at a single constant speed. The sensors used in the road 

test data acquisition were Kyowa model AS-5GB accelerometers. The calibration of the 

MIRA measurement equipment was guaranteed by regularly scheduled calibration tests 

and by an internal quality assurance scheme.  

 

The automobile used by MIRA during the experimental vibration test was an Audi A4 

model year 2000, type 4/5S SAL (4 doors, 5-speed manual transmission and saloon 

sedan). The engine was a turbocharged diesel 4-cylinder 1.8L with an EFi (Electronic 

Fuel injection) fuel system. The Audi A4 steering system was a rack and pinion Power 

Assist Steering (PAS). The front suspension was an independent, four-link, double 

wishbone, and anti-roll bar, while the rear suspension was an independent, trapezoidal 

link and anti-roll bar. The front and rear tyres specifications were P195/65 R 15 

meaning tires from a passenger car (P), nominal section width in mm of 195, an aspect 

ratio of 65 for the ratio of the height to the total width of the tire, Radial (R) 

construction of the fabric carcass of the tire and a rim diameter in inches of 15. 

 

The road surfaces used to measure the test stimuli were a Coarse Asphalt, Cobblestone 

surface, Concrete surface, Low Bump, Slabs surface and a Tarmac surface. Figure 5.1 

presents the six road surfaces as viewed from directly above and as seen from a distance 

as when driving, along with the automobile velocity at which they were measured.  

 

Steering wheel tangential acceleration time histories were measured for the Audi A4 

when driving over the six surfaces shown in Figure 5.1. For each road surface a 2 

minute data recording was acquired. From each 2 minute recording a 7 second data 

segment of the tangential direction steering wheel acceleration time history was 

extracted from each data set to serve as test stimuli. The individual segment for each 

surface type was selected such that the root mean square value, kurtosis value and 

power spectral density were statistically close to those of the complete 2 minute 

recording. Figure 5.2 presents the single 7 second time history segment which was 

extracted for each of the six test roads.  
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Tarmac Road (vehicle speed 96 km/h) 

 

 

 

 

 

[Figure 5.1] Road surfaces used by MIRA for their steering wheel vibration tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 5.2] A 7 second segments of the tangential acceleration time history measured at 

the steering wheel for each of the six road surfaces (The MIRA test). 

 

The global statistical properties calculated for the complete original 2 minute recording 

of each road surface are presented in Table 5.1 along with the automobile speed used 

during the measurement. The global statistical properties were calculated by means of 

the equations of the r.m.s., kurtosis, skewness, crest factor and the r.m.q. described in 

Chapter 4. Results from Table 5.1 suggest that vibration at the steering wheel achieved 

root mean square (r.m.s.) acceleration levels from a minimum of 0.056 m/s
2
 for the 

tarmac surface to a maximum of 0.315 m/s
2
 for the low bump surface. The kurtosis 

values were from 3.101 to 8.064 while the skewness values were from -0.22 to 0.133. 
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The maximum crest factor (CF) was 5.95 for the low bump surface, while the minimum 

CF was 3.435 for the tarmac surface. The root mean quad (r.m.q.) values were from a 

minimum of 0.073 m/s
2
 for the tarmac surface to a maximum of 0.509 m/s

2
 for the low 

bump surface. 

 

[Table 5.1] Global statistical properties of the six road stimuli measured from Mira 

tests. 

Type of road 

Global Statistics and Characteristics 

r.m.s. 

(m/s
2
) 

Kurtosis Skewness 
Crest 

Factor 

Speed 

(km/h) 

r.m.q. 

(m/s
2
) 

Coarse Asphalt 

Cobblestone 

Concrete 

Low bump 

Slabs 

Tarmac 

0.095 

0.278 

0.117 

0.315 

0.182 

0.056 

4.207 

3.180 

3.461 

8.064 

5.275 

3.101 

0.177 

0.069 

-0.001 

-0.220 

0.133 

0.091 

4.236 

4.336 

3.823 

5.950 

5.388 

3.435 

96 

30 

96 

50 

96 

96 

0.136 

0.377 

0.164 

0.509 

0.281 

0.073 

 

The power spectral density (PSD) of each of the two minute acceleration signals was 

calculated and the results are presented as Figure 5.3. Observation of the results 

suggests that the principal frequency content is mostly in the range from 0 to 80 Hz for 

all six road surfaces. The frequency distributions suggest that the higher peaks of energy 

correspond to the typical automobile resonance frequencies (Hamilton, 2000; Kulkarni 

and Thyagarajan, 2001; Pottinger et al., 1986). The first region of resonance behaviour 

in the region from 0 to 5 Hz is common in any road data due to rigid body motion of the 

automobile chassis on the main suspensions. The second broader resonance region 

covering frequencies from 5 to 13 Hz can be associated with the behaviour of 

suspension units separately or with the rigid body motion of the engine/transmission 

unit. The third region resonance behaviour distributed between 13 and 22 Hz may 

reflect low frequency flexible body modes of the chassis. Finally, the fourth region from 

22 to 100 Hz is probably mostly defined by higher-frequency modes of the chassis and 

by tire resonances (Giacomin and Lo Faso, 1993; Pottinger et al., 1986). 
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[Figure 5.3] Power Spectral Densities (PSD) calculated from the four tangential 

acceleration time histories of the 2 minute duration which were measured at the steering 

wheel.  

 

5.2.2 Michelin Tests 

 

Four of the steering wheel acceleration signals were provided by the Michelin Group. 

The acceleration measurements were performed at the Claremont-Ferrand proving 

ground in the province of Auvergne, France, which has a comprehensive range of 

circuits and facilities which are used to carry out a wide range of tests. The steering 

wheel vibrations were measured by means of a tri-axial piezoresistive accelerometer 
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(Entran EGAS3-CM-25). The acceleration signals were amplified by means of an 

Entran MSC6 signal-conditioning unit, and stored using 6 channels of a Sony PC 216A 

Digital Audio Tape (DAT) recorder and monitored by a Tektronix TDS 210 digital 

oscilloscope. The DAT sampling rate chosen for the vibration measurements was 5 kHz. 

The steering wheel acceleration time histories were digitally acquired using a PC-based 

digital data acquisition system running Michelin‟s own in-house software.  

The automobile used by Michelin during the acceleration measurements was a Renault 

Megane 1.9 dTi model year 1996, type 2+2 FHC (Fixed-Head Coupé), with 3 doors and 

a 5-speed manual transmission. The engine was a turbocharged diesel direct injection 

system (dTi) 4-cylinder 1.9 L. The Renault steering system was a rack and pinion Power 

Assist Steering (PAS). 

 

The front suspension was an independent and Macpherson strut, while the rear 

suspension was an independent. The front and rear tyre specifications were P175/65 R 

14. The road surfaces used by Michelin to measure the steering wheel acceleration 

stimuli were named Harsh surface, Noise surface, Service surface and Gravel surface. 

Figure 5.4 presents these road surfaces as viewed from directly above, and as seen from 

a distance as when driving, along with the automobile test velocity.  

 

Gravel Road (vehicle speed 80 km/h) 
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Noise Road (vehicle speed 80 km/h) 
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Service Road (vehicle speed 80 km/h) 

 

 

 

 

 

 

 

[Figure 5.4] Road surfaces used by Michelin for their steering wheel vibration tests. 

 

For each road surface a 1 minute data recording was available from experimental testing. 

A 7 second data segment of the tangential direction steering wheel acceleration time 

history was extracted from each data set to serve as test stimuli. The segments were 

selected such that the root mean square value, kurtosis value and power spectral density 

were statistically close to those of the complete recording. Figure 5.5 presents the time 

history segments selected for each of the road surfaces. As expected, different shapes 

and different acceleration levels are observed from the road surfaces.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 5.5] A 7 second segments of the tangential acceleration time history measured at 

the steering wheel for each of the four road surfaces (The Michelin test). 

 

The global statistical properties calculated for the complete original 1 minute recording 

over each road surface is presented in Table 5.2 along with the automobile speed used 

during the measurement. Table 5.2 suggests that vibration at the steering wheel 

achieved root mean square (r.m.s.) acceleration levels from 0.711 to 1.987 m/s
2
. The 
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acceleration levels achieved for these road surfaces were higher than those achieved in 

the MIRA measurements, where the acceleration level achieved by all the road surfaces 

was below 0.4 m/s
2
. The lowest kurtosis value was 2.925 for the noise surface while the 

highest kurtosis value was 17.117 for the harsh surface. The noise surface also produced 

the lowest skewness value of -0.056 which was close to 0.0 while the harsh surface 

produced a skewness value of 1.047 which was the highest, which suggests that its 

acceleration data is not Gaussian distributed. The harsh surface also had the higher crest 

factor (CF) of 6.886 while the noise surface had the lowest CF of 3.55. The root mean 

quad (r.m.q.) values were from 0.955 to 2.725 m/s
2
 which were also higher than those 

achieved in the MIRA measurements, where the r.m.q. value achieved by all the road 

surfaces was below below 0.6 m/s
2
. 

 

[Table 5.2] Global statistical properties of the four Michelin road stimuli. 

Type of road 

Global Statistics and Characteristics 

r.m.s. 

(m/s
2
) 

Kurtosis Skewness 
Crest 

Factor 

Speed 

(km/h) 

r.m.q. 

(m/s
2
) 

Gravel 

Harsh 

Noise 

Service 

1.066 

1.320 

0.711 

1.987 

2.998 

17.117 

2.925 

3.850 

-0.055 

1.047 

-0.056 

0.169 

3.687 

6.886 

3.550 

4.182 

80 

40 

80 

80 

1.415 

2.523 

0.955 

2.725 

 

The power spectral density (PSD) calculated for each acceleration measurement is 

presented in Figure 5.6. As with the MIRA road surfaces, the principal frequency 

content is in the range from 0 to 80 Hz for all the road surfaces. The acceleration power 

spectral densities were found to be different among these road surfaces, and also 

different from those of the MIRA road surfaces which were shown in Figure 4.3. 
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[Figure 5.6] Power Spectral Densities (PSD) calculated from the four tangential 

acceleration time histories of the 1 minute duration which were measured at the steering 

wheel.  

 

5.2.3 Honda Tests 

 

Six steering wheel acceleration signals were provided by the Honda Motor Company. 

The acceleration measurements were performed at the Millbrook proving ground in 

Millbrook, Bedfordshire, UK, which has a comprehensive range of circuits and facilities 

which are used to carry out a wide range of tests. The automobile used by Honda Motor 

Company during the acceleration measurements was a Honda Accord 2.0 i-VTEC SE, 4 

door saloon with a 5-speed manual transmission and a petrol 2.0-liter DOHC 4-cylinder 

engine. The Accord steering system was a rack and pinion Power Assist Steering (PAS). 

The front suspension was an independent and Double Wishbone, while the rear 

suspension was an Independent Multi-Link. The front and rear tyre specifications were 

P195/65 R 15.  

 

The road surfaces used by Honda Motor Company to measure the steering wheel 

acceleration stimuli were named Broken Road surface, Cats-eye, Expansion Joints, 

Manhole Cover, Stone on Road and UK City Street surface. Figure 5.7 presents these 

road surfaces as viewed from directly above, and as seen from a distance as when 

driving, along with the automobile test velocity.  

 

For each road surface a 1 minute data recording was available from experimental testing. 

A 7 second data segment of the tangential direction steering wheel acceleration time 

history was extracted from each data set to serve as test stimuli. The segments were 

selected such that the root mean square value, kurtosis value and power spectral density 

were statistically close to those of the complete recording. Figure 5.8 presents the time 

history segments selected for each of the road surfaces. As expected, different shapes 
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and different acceleration levels are observed from the road surfaces. 

 

 

 

 

 

 

Broken Road (vehicle speed 40 km/h) 
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Stone on Road (vehicle speed 20 km/h) 
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UK City Street (vehicle speed 90 km/h) 

 

 

 

 

 

 

 

[Figure 5.7] Road surfaces used by Honda for their steering wheel vibration tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 5.8] A 7 second segments of the tangential acceleration time history measured at 

the steering wheel for each of the six road surfaces (The Honda test). 

 

Table 5.3 presents the global statistical properties determined from the data of each of 

the road surfaces. Root mean square (r.m.s.) acceleration levels from a minimum of 

0.665 m/s
2
 for the stone on road surface to a maximum of 1.394 m/s

2
 for the UK city 

street surface were found. All the road surfaces produced the higher kurtosis values 

which were larger than 3.0 from a minimum value of 3.263 for the manhole surface to a 

maximum value of 11.0 for the stone on road surface. The largest skewness value was 

found for the expansion joints surface with a value of 1.209, while the remaining road 
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surfaces had skewness values close to 0.0. The stone on road surface had the highest 

crest factor (CF) at approximately 6.441. The root mean quad (r.m.q.) values from a 

minimum of 1.160 m/s
2
 for the stone on road surface to a maximum of 2.047 m/s

2
 for 

the UK city street surface were found. The root mean square (r.m.s.) acceleration levels 

and the root mean quad value (r.m.q.) achieved with these six road surfaces were higher 

than those achieved for the MIRA test but lower than those achieved for the Michelin 

test. 

[Table 5.3] Global statistical properties of the six Honda road stimuli. 

Type of road 

Global Statistics and Characteristics 

r.m.s. 

(m/s
2
) 

Kurtosis Skewness 
Crest 

Factor 

Speed 

(km/h) 

r.m.q. 

(m/s
2
) 

Broken Road 

Cats-eye 

Expansion Joints 

Manhole Cover 

Stone on Road 

UK City Street 

1.218 

1.132 

0.705 

0.966 

0.665 

1.394 

3.935 

4.677 

10.291 

3.263 

11.000 

5.119 

-0.062 

-0.158 

1.209 

0.011 

-0.016 

-0.081 

4.101 

4.249 

5.173 

4.282 

6.441 

5.488 

40 

100 

16 

60 

20 

90 

1.715 

1.578 

1.243 

1.328 

1.160 

2.047 

 

Figure 5.9 p resents the PSD calculated for each acceleration measurement. As with the 

MIRA and the  Michelin road surfaces, the principal frequency content is in the range 

from 0 to 80 Hz for all the road surfaces. The acceleration power spectral densities were 

found to be different among these road surfaces, and also different from those produced 

by the MIRA and the Michelin road surfaces. 
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[Figure 5.9] Power Spectral Densities (PSD) calculated from the two tangential 

acceleration time histories of the 1 minute duration which were measured at the steering 

wheel. 

 

5.2.4 Uxbridge Tests 

 

In order to provide the widest possible statistical base of steering wheel acceleration 

signals, a small number of measurements were also performed by the Perception 

Enhancement Systems research group of Brunel University over local roads whose 

characteristics differed from those which are typically found at the testing facilities of 

the motor vehicle manufacturers (Berber-Solano, 2009). The acceleration measurements 

were performed over road surfaces in and around Uxbridge, West London, UK. The 

road surfaces were chosen due to their appearance and physical composition, which 

differed significantly from the road surfaces of the MIRA, Michelin and the Honda. 

 

The steering wheel acceleration was measured by means of a SVAN 947 Sound and 

Vibration Level Meter and Analyser manufactured by SVANTEK Ltd., which uses a 

Low Impedance Voltage Mode (LIVM) accelerometer 3055B1. The specifications of 

the accelerometer and the test equipment are provided in Appendix A. The 

accelerometer at the steering wheel measurement position was fixed by means of an 

aluminium clamp and mounting screws which guaranteed sufficient coupling stiffness 

to perform acceleration measurements in excess of 300 Hz. The geometrical dimensions 

of the steering wheel clamp are provided in Appendix B. The acceleration signals were 

stored using the SVAN 947 by means of its fast USB 1.1 interface (with 12MHz clock) 

which created a real time link for the application of the SVAN 947 as a PC front-end.  

 

The SVAN 947 was run using a battery so as to eliminate electronic noise from vehicle 

systems. The sampling rate chosen for the acceleration measurements was 1 kHz. The 
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rate of 1 kHz was sufficient to ensure that the acceleration stimuli were recorded with 

adequate definition at the maximum frequency of interest of 512 Hz. The maximum 

analysis frequency of 512 Hz was chosen based on the assumption that the vibrational 

energy transmitted to the steering wheel can reach frequencies of up to 300 Hz when 

driving over certain road asperities and that the largest resonances are presented in the 

frequency range from 20 to 50 Hz (Pottinger et al., 1986). The recorded signals were 

reacquired and analyzed at the Perception Enhancement Systems Laboratory by means 

of the T-MON module of the LMS CADA-X 3.5E software (LMS International Inc., 

2002), where signals were read as WAV files, transferred and converted to TDF (Test 

Data File) files into the LMS software. The signals were then resample at 512 Hz.  

 

The automobile used for the steering wheel tangential acceleration acquisition was a 

VW Golf 1.9 TDI model year 2005, 5 door Hatchback with 5-speed manual 

transmission. The engine was a turbocharged diesel direct injection (TDI) 4-cylinder 

1.9l. The steering system was a rack and pinion Power Assist Steering (PAS). The front 

suspension was an Independent, Macpherson Strut, Coil Spring with an Anti-Roll Bar, 

while the rear suspension was an Independent, Torsion Bar, Coil Spring with an Anti-

Roll Bar. The front and rear tyres specifications were P205/55 R 16. 

 

The five road surfaces were used for the steering acceleration tests are shown in Figure 

5.10. They were named as a Broken Concrete, Broken Lane, Bump, Country Lane and a 

Motorway surface. 

 

Steering wheel tangential acceleration time histories were measured using a VW Golf 

automobile which was driven over the five surfaces shown in Figure 5.10. For each road 

surface a 1 minute data recording was made. Figure 5.11 presents the 7 second data 

segment which was extracted from the tangential direction steering wheel acceleration 

time history of each data set so as to serve as test stimuli. The segments were selected 

such that the root mean square value, the kurtosis and the power spectral density were 

statistically close to those of the complete recording. From Figure 5.11 it can be 

observed that each road surface achieved a rather different acceleration level. 
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Motorway Road (vehicle speed 110 km/h) 

 

 

 

 

 

 

 

 

[Figure 5.10] Road surfaces for the Uxbridge steering wheel tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 5.11] A 7 second segments of the tangential acceleration time history measured 

at the steering wheel for each of the five road surfaces (The Uxbridge test). 
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Table 5.4 presents the global statistical properties determined from the data of each of 

the road surfaces. Root mean square (r.m.s.) acceleration levels from a minimum of 

0.916 m/s
2
 for the bump surface to a maximum of 1.982 m/s

2
 for the country lane 

surface were found. Kurtosis value larger than 3.0 were found for the bump surface 

which produced an impulsive input to the vehicle subsystems, while the remaining road 

surfaces had kurtosis values close to 3.0. The largest skewness value was found for the 

bump surface with a value of 0.158, while the remaining road surfaces had skewness 

values close to 0.0. The bump had the highest crest factor (CF) at approximately 6.324. 

The root mean quad (r.m.q.) values from a minimum of 1.514 m/s
2
 for the motorway 

surface to a maximum of 2.68 m/s
2
 for the country lane surface were found. The root 

mean square (r.m.s.) acceleration levels and the root mean quad value (r.m.q.) achieved 

with these five road surfaces were generally higher than those achieved for the MIRA, 

Michelin and Honda tests. 

[Table 5.4] Global statistical properties of the five Uxbridge road stimuli. 

Type of road 

Global Statistics and Characteristics 

r.m.s. 

(m/s
2
) 

Kurtosis Skewness 
Crest 

Factor 

Speed 

(km/h) 

r.m.q. 

(m/s
2
) 

Broken concrete 

Broken lane 

Bump 

Country lane 

Motorway 

1. 673 

1. 858 

0.916 

1.982 

1.132 

3. 194 

3. 799 

10.164 

3.438 

3.066 

0.013 

-0.060 

0.158 

-0.048 

0.073 

3.458 

4.225 

6.324 

3.534 

3.706 

50 

40 

60 

40 

110 

2.286 

2.529 

1.569 

2.680 

1.514 

 

Power spectral densities (PSD) were calculated for the five acceleration measurements 

and are shown in Figure 5.12. The principal frequency content is in the range from 0 to 

80 Hz as was previously seen in the MIRA, Michelin and the Honda tests. The highest 

peaks in the PSD energy were found for the broken concrete surface, while the lowest 

peaks were found for the motorway surface. The acceleration PSDs were found to be 

different across the seven road surfaces, and also different from those produced by the 

MIRA, Michelin and the Honda road surfaces. 
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[Figure 5.12] Power Spectral Densities (PSD) calculated from the four tangential 

acceleration time histories of the 1 minute duration which were measured at the steering 

wheel. 

 

5.2.5 Summary of the Road Testing Data 

 

Although the data presented in this chapter cannot be considered to be a definitive 

scientific analysis of road vehicle vibration, the values obtained can be considered to be 

typical of the automotive vibration problem, thus useful for the purpose of defining 

specific laboratory-based experiments which are representative of the automobile 

environment. The selected group of stimuli respect the five criteria which were 

established at the beginning of the chapter for the purpose of obtaining steering wheel 

vibrations for use in the study of the human perception of steering wheel hand-arm 

vibration. 

 

The global statistical properties of all 21 road surfaces analysed in this chapter suggest 

that the road surfaces differ between themselves significantly in terms of the root mean 

square (r.m.s.) and the root mean quad (r.m.q.). Figure 5.13 and 5.14 present the 

distribution of the 21 road surfaces based on these two statistical properties which 

suggested that the steering wheel acceleration data from the tests performed in this 

chapter provided r.m.s. acceleration levels from a minimum approximately of 0.06 m/s
2
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to a maximum approximately of 1.99 m/s
2
, and r.m.q. values from a minimum 

approximately of 0.07 m/s
2
 to a maximum approximately of 2.73 m/s

2
.  

 

 

 

 

 

 

 

 

[Figure 5.13] Comparison between the root mean square value and the root mean quad 

value of the 21 road surfaces. 

 

 

 

 

 

 

 

 

 

 

[Figure 5.14] Distribution of the statistical values of the 21 road surfaces: r.m.s. 

acceleration level against r.m.q. value. 

 

As can be seen in Figure 5.14 the distribution of the 21 road surfaces based on the two 

metrics suggests that the steering wheel acceleration data from the tests may provide a 

wide statistical base of steering wheel magnitudes when compared to the vibration 

  : r.m.q. [m/s
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acceleration magnitude ranges from the previous research studies (Giacomin and Woo, 

2004; Gnanasekaran et al., 2006; Berber-Solano, 2009). For example, Giacomin and 

Woo performed psychophysical laboratory experimental tests using steering wheel 

vibration stimuli with the acceleration magnitude range of 0.05 to 0.27 m/s
2
 r.m.s. while 

Gnanasekaran et al. performed the psychophysical testing with stimuli in the range of 

0.098 to 2.02 m/s
2
 r.m.s. and Berber-Solano performed psychophysical tests with stimuli 

in the range of 0.056 to 2.355 m/s
2
 r.m.s. and the range of 0.07 to 3.34 m/s

2
 r.m.q.. Thus 

the acceleration data from the road tests in this chapter can be considered a wide and 

representative operating envelope for use in laboratory-based experiments of 

automotive steering wheel vibration. 

 

For the 21 road surface stimuli Figure 5.15 presents the minimum, mean and the 

maximum amplitudes at each frequency from 0 to 300 Hz. From Figure 5.15 it can be 

noted that a significant amount of vibrational energy is present in the rotational 

direction between 5 and 50 Hz (p<0.01), but that vibrational energy was much lower 

outside this range. However, there was still the perceivable energy in the higher 

frequencies approximately up to 300 Hz. From this result, it was noted that steering 

wheel road vibration produced perceptible energy in the frequency range from 

approximately 5 to 300 Hz.  

 

Based on the steering wheel acceleration signals which are described in this chapter it 

was considered reasonable to assume that a frequency bandwidth from 5 to 300 Hz, and 

an amplitude range from 0.06 to 1.99 m/s
2
 r.m.s., are required for laboratory 

experiments of steering wheel hand-arm vibration. 
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[Figure 5.15] The minimum, mean and the maximum acceleration magnitude for each 

frequency from 0 to 300 Hz of the 21 road surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

 Human Subjective Response to Steering Wheel 

Hand-Arm Vibration consisting of Sinusoidal 
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Vibration 

 

6.1 Introduction 

 

The human subjective response to sinusoidal hand-arm vibration has been investigated 

in several studies. Equal sensation curves have been established which indicate the 

combination of sinusoidal frequency and amplitude that produces a similar sensation of 

perceived intensity. 

 

Miwa (1967) established equal sensation curves for 10 male participants who held their 

palm flat against a plate which was vibrated sinusoidally in either the vertical or 

horizontal direction at acceleration amplitudes of either 0.31, 3.1 or 31.1 m/s
2
 r.m.s. 

over the frequency range from 2 to 300 Hz. Human subjective response to hand-arm 

vibration was found to decrease almost monotonically as a function of frequency. 

 

Reynolds et al. (1977) established equal sensation curves for 8 male participants who 

gripped with one hand a handle which was vibrated sinusoidally in either the vertical, 

axial or horizontal directions at acceleration amplitudes of either 1.0, 10.0 or 50.0 m/s
2
 

r.m.s. over the frequency range from 16 to 1000 Hz. The three curves suggested a 

nonlinear acceleration dependency of the perceived intensity of hand-arm vibration, and 

a general trend of reduced sensitivity with increasing frequency. 

 

Morioka and Griffin (2006) established a family of equal sensation curves for 12 male 

participants who gripped with one hand a cylindrical handle which was vibrated 

sinusoidally in either the vertical, axial or horizontal directions over the frequency range 

from 8 to 400 Hz. At acceleration magnitudes greater than about 2.0 m/s
2
 r.m.s. the 

equal sensation curves suggested a decreased sensitivity to hand-arm vibration with 

increasing frequency, while at lower acceleration magnitudes the curves suggested an 

increased sensitivity to hand-arm vibration with increasing frequency from 20 to 100 Hz. 

At all vibration magnitudes, the curves suggested decreased sensitivity with increasing 

frequency from 8 to 16 Hz. 
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With respect to automotive steering vibration Giacomin et al. (2004) established equal 

sensation curves for 15 participants (10 males and 5 females) who held a rigid 

sinusoidally rotating steering wheel with both hands at two acceleration amplitudes of 

1.0 and 1.5 m/s
2
 r.m.s. over the frequency range from 3 to 315 Hz. A constant 

acceleration dependency was noted from 3 to 5 Hz, and a decrease in the human 

sensitivity to hand-arm rotational vibration was found with increasing frequency from 5 

to 315 Hz. 

 

Amman et al. (2005) established equal sensation curves for 28 participants (gender was 

not reported) who held an automotive steering wheel with both hands. The study 

investigated the human subjective response to 1.0 m/s
2
 r.m.s. amplitude sinusoidal 

vibration applied along either the longitudinal, lateral or vertical over the frequency 

range from 8 to 64 Hz. The study also investigated the subjective response to vibration 

along the rotational direction by means of sinusoidal stimuli with acceleration 

amplitudes of 0.8 and 1.6 m/s
2
 r.m.s. over the frequency range from 8 to 20 Hz. Amman 

et al.‟s equal sensation curves suggested a general trend of decreasing sensitivity to 

vibration with increasing frequency over the frequency range investigated. 

 

Table 6.1 provides a compilation of the main parameter values considered by the 

previous researchers when establishing equal sensation curves. This compilation was 

referenced extensively during the design of the test programme used in the research 

which is described in this thesis. 

 

[Table 6.1] Test protocol parameters adopted in previous studies of human subjective 

response sinusoidal hand-arm vibration. 

Reference 

Subjects 

[numbers 

(male, 

female)] 

Psychophysical 

Method 

Semantic 

word used 
Direction 

Stimulus 

Type / 

Duration 

Posture 
Vibration 

Exciter 

Reference 

Frequency 

Frequency 

range 

Amplitude 

level 

[Hz] [Hz] r.m.s [m/s2] 

Miwa 

(1967) 

10 

 (10, 0) 

Non-

experienced 

Paired 

Comparison 

Vibration 

Greatness 

Vertical 
Sinusoidal, 

3 or 6 sec.* 

One hand 

pressing 

plate 

Electro- 

dynamic 

shaker 

20 3 ~ 300 

0.31, 3.1, 31 

Horizontal 1, 10 

Reynolds 

et al. 

(1977) 

8 

(8, 0) 

Method of 

Adjustment 
Sensation 

Vertical 

Sinusoidal  

One hand 

gripping a 

handle 

Electro- 

dynamic 

shaker 

100 16 ~ 1000 1, 10, 50 Horizontal 

Axial 

Giacomin, 

Onesti 

(1999) 

25 

 (13, 12) 

Non-

experienced 

Method of 

Adjustment 
Sensation Rotational 

Sinusoidal, 

10 sec. 

Both hand 

gripping a 

steering 

wheel 

Electro- 

dynamic 

shaker 

16 or 63 4 ~ 125 1.9 ~ 5.6 
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Giacomin 

et al. 

(2004) 

15 

(10, 5) Non-

experienced 

Method of 

Adjustment 
Intensity Rotational 

Sinusoidal, 

10 sec. 

Both hand 

gripping a 

steering 

wheel 

Electro- 

dynamic 

shaker 

63 3 ~ 315 1, 1.5 

Morioka 

(2004) 

12 

(12, 0) Non-

experienced 

Magnitude 

Estimation 
Discomfort Rotational 

Sinusoidal, 

2 sec. 

Both hand 

gripping a 

steering 

wheel 

Electro- 

dynamic 

shaker 

31.5 4 ~ 250 0.1 ~ 1.58 

Amman et 

al. (2005) 
28 

Method of 

Adjustment 
Annoyance Rotational Sinusoidal 

Both hand 

gripping a 

steering 

wheel 

Hydraulic 

shaker 

14 8 ~ 20 0.8, 1.6 

25 8 ~ 64 1 

Morioka, 

Griffin 

(2006) 

12 

(12, 0) Non-

experienced 

Magnitude 

Estimation 
Discomfort 

Vertical 

Sinusoidal, 

2 sec. 

One hand 

gripping a 

handle 

Electro- 

dynamic 

shaker 

50 8 ~ 400 
0.002 ~ 

0.126 m/s 
Horizontal 

Axial 

* 3 seconds used for above 10 Hz, 6 seconds used for below 10 Hz. 

 

As can be seen in Table 6.1 the equal sensation curves established in most of the studies 

performed to date represent the average responses of small groups of 8 to 15 people. In 

addition, the human subjective response to hand-arm vibration stimuli is based mainly 

upon responses from male participants, despite the fact that since the 1970s the 

percentage of female drivers has increased in most countries as described in Chapter 1. 

  

From the summary of the previous chapter it was observed that the steering wheel 

vibrational energy reached up to 300 Hz and the amplitude range was approximately 

from 0.06 to 2.0 m/s
2
 r.m.s.. However, no previous study has investigated those 

representative ranges of automobile steering wheel shown in Table 6.1. 

 

The primary objective of the research which is described in this chapter was to establish 

a family of equal sensation curves for sinusoidal steering wheel rotational vibration by 

means of the most commonly applied regression models, namely, least squares 

regression, all possible regression, backward elimination regression and stepwise 

regression procedure. The equal sensation curves were to be developed for use across 

the operating envelope of steering wheel vibration stated above. Statistical regression 

was chosen for summarising the experimental data because it produces relatively simple 

analytical models (Aleksander, 1995) and because the model coefficients often have 

obvious physical explanations. The secondary objective was to investigate the effect of 

gender differences on the shape of the equal sensation curves for hand-arm steering 

wheel rotational vibration in order to develop the individual family of equal sensation 

curves. 
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6.2 Experimental Apparatus 

 

6.2.1 Test Facility 

 

Figure 6.1 presents a schematic representation of the steering wheel rotational vibration 

test facility used in this research and of the associated signal conditioning and data 

acquisition systems. The main geometric dimensions of the test rig, which were based 

on average data taken from a small European automobile, are presented in Table 6.2. 

The rotational steering system consisted of a 350 mm diameter aluminium wheel 

attached to a steel shaft which was in turn mounted to two low friction bearings which 

were encased in a square steel casing. The steering wheel consisted of a 5 mm thick 

central plate with two cylindrical handles of 25 mm diameter and 3 mm thickness 

welded at the extremities. The steering wheel was made of aluminium in order to obtain 

a first natural frequency greater than 350 Hz. Rotational vibration was applied by means 

of a G&W V20 electrodynamic shaker, which was connected to the shaft by means of a 

steel stinger rod, and amplified by PA100 amplifier (Gearing and Watson Electronics 

Limited, 1995) using an Leuven Measurement Systems (LMS) Cada-X 3.5 E software 

and a 12-channel Difa Systems Scadas Ⅲ front-end unit (LMS International Inc., 

2002). The acceleration obtained at the steering wheel was measured using an Entran 

MSC6 signal-conditioning unit (Entran Devices Inc., 1991). The acceleration was 

measured in the tangential direction. The car seat was fully adjustable in terms of 

horizontal position and back-rest inclination as in the original vehicle. The safety 

features of the test rig, and the acceleration levels used, conform to the health and safety 

recommendations outlined by British Standard 7085 (1989). 
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[Figure 6.1] Steering wheel rotational vibration test rig and associated electronics. 

 

[Table 6.2] Geometric dimensions of the steering wheel rotational vibration test rig. 

 

 

6.2.2 Accuracy of Signal Reproduction  

 

According to the British Standards Institution BS 6840-2 (1993) for sound reproduction 

fidelity, signal distortion is defined as an error phenomenon that causes the appearance 

of extraneous signals at the output of a test equipment. These errors are directly based 

on the frequency content of the input signal. The parameter generally used to evaluate 

the fidelity of signal reproduction is termed the total harmonic distortion (THD), which 

is specified by the standard BS EN 60268-5 (1997). 

 

 

When loaded by a human hand-arm system and tested at frequencies of 4.0, 8.0 16.0 

31.5 63.0, 125 and 250 Hz at amplitudes of 0.2, 2.0 and 20.0 m/s
2
 r.m.s., the test bench 

provided a maximum total harmonic distortion (THD) of 11.15% at 3Hz and 1 m/s
2
. 

With both increasing frequency and decreasing amplitude the THD dropped to a 

minimum of 0.01% at 200 Hz and 0.2 m/s
2
. During the tests, which measured the bench 

tangential direction total harmonic distortion, a linear fore-and-aft direction acceleration 

measurement was also performed at the same point on the rigid wheel. Unwanted fore-

and-aft acceleration was found to be no greater than -50dB with respect to the tangential 

acceleration in all cases measured.  

 

Beyond the basic measure of total harmonic distortion, a specific evaluation was also 

performed of the accuracy of the test facility when reproducing target test stimuli. The 

Geometric Parameter Value 

Steering column angle (H18) 23 

Steering wheel hub centre height above floor (H17) 710 mm 

Seat H point height from floor (H30) 275 mm 

Horizontal distance adjustable from H point to steering wheel hub centre (d) 390-550 mm 

Steering wheel handle diameter 25 mm 

Steering wheel diameter 350 mm 
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accuracy of the signal reproduction was quantified by measuring the maximum r.m.s. 

error between the target signal and the actual steering wheel motion achieved by means 

of the LMS software, the front end electronics unit, the shaker, the accelerometer and 

the signal conditioning unit. Three test subjects were used in the process, and maximum 

and minimum response r.m.s. acceleration values were obtained. The response r.m.s 

values were then expressed as a percentage of the target r.m.s. value, as presented in 

Table 6.3. The results suggest that the maximum percentage error of the target r.m.s. 

value was below 11.0%, which compared favourably with the just-noticeable-difference 

value for human perception of hand-arm vibration of 15 to 18% (Morioka, 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Table 6.3] Bench steering vibration reproduction error defined as a percentage of the 

target r.m.s. acceleration level (n = 3 test subjects). 

Frequency Target r.m.s. Min. response Max. response 

[Hz] [m/s
2
] [r.m.s. m/s

2
] Error [%] [r.m.s. m/s

2
] Error [%] 

3 0.08 0.073 -9.59 0.079 -1.27 

4 1.26 1.14 -10.89 1.29 2.02 

5 3 2.8 -7.10 3.22 6.77 

6.3 0.45 0.44 -2.95 0.49 6.78 

8 0.08 0.075 -6.67 0.086 6.98 

10 3.92 3.78 -3.87 3.91 -0.38 

12.5 8 7.82 -2.28 8.45 5.28 

16 1.26 1.17 -8.23 1.34 5.46 

20 2.87 2.67 -7.30 3.04 5.57 

25 0.73 0.68 -7.02 0.8 7.92 

31.5 0.36 0.35 -4.90 0.39 5.94 

40 0.17 0.16 -8.18 0.18 5.49 

50 0.08 0.075 -6.67 0.088 9.09 

63 0.85 0.83 -3.14 0.93 8.67 

80 22 21 -4.76 23.8 7.60 

100 0.06 0.055 -9.09 0.067 10.45 

125 4.46 4.15 -7.44 4.75 6.02 

160 10.31 9.43 -9.33 10.62 2.97 
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200 4.71 4.65 -1.29 4.94 4.54 

250 13.27 12.16 -9.08 13.1 -1.26 

315 1.36 1.3 -4.86 1.48 8.36 

400 6.35 6.52 2.59 6.98 9.09 

 

 

6.3 Laboratory Based Experimental Testing using Sinusoidal Vibration  

 

6.3.1 Test Stimuli 

 

In chapter 5 it was shown that steering wheel road vibration stimuli normally contain 

significant energy over the interval from 5 to 300 Hz. Despite the observation that the 

steering wheel vibrational energy reached only up to 300 Hz, the maximum frequency 

was extended to 400 Hz in this research in order to obtain a good interpolation of the 

asymptotic segment of the equal sensation curves at the highest frequencies. On the 

other hand the maximum stroke of the test rig shaker unit (±10 mm) limited the 

maximum achievable acceleration at the steering wheel which, in turn, limited the 

minimum test frequency to 3 Hz. For frequencies lower than approximately 3 Hz 

accurate sinusoidal acceleration signals could not be achieved at the rigid wheel. Based 

on these considerations, the frequency interval of the test stimuli was chosen to be from 

3 Hz to 400 Hz. 

 

The individual test frequencies were chosen to be all 1/3 octave band centre frequencies 

in the range from 3 to 400 Hz. The 1/3 octave band centre frequencies were chosen 

because it was felt that octave band analysis would provide a sufficiently fine resolution 

(Griffin, 1990) and because it was used often in the studies of hand-arm vibration listed 

in Table 6.1. A total of 22 frequencies (3, 4, 5, 6.3, 8, 10, 12.5, 16, 20, 25, 31.5, 40, 50, 

63, 80, 100, 125, 160, 200, 250, 315 and 400 Hz) were thus chosen. 

  

With regard to the steering wheel acceleration magnitudes, the automotive steering 

wheel vibration summarised in chapter 5 suggested that the maximum amplitude level 

of each frequency did not reach to the hand-arm vibration annoyance threshold (Miwa, 

1967; Reynolds et al., 1977; Giacomin et al., 2004). The maximum amplitude levels 

defined for the laboratory test were thus extended up to the vicinity of the annoyance 

threshold. The maximum amplitude level was chosen to be 27 m/s
2
 r.m.s. which was 
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sufficient to cover the annoyance threshold obtained for steering wheel hand-arm 

vibration (Giacomin et al., 2004). 

 

The minimum amplitude of each frequency was chosen to be in the vicinity of the hand-

arm vibration perception threshold (Morioka, 2004). The minimum amplitude level 

chosen was 0.04 m/s
2
 r.m.s. at 160 Hz due to the response of the Pacinian 

mechanoreceptors, which produces a lowest response in the vicinity of 100 Hz (Verrillo, 

1966; Reynolds et al., 1977). This minimum amplitude it was sufficient to cover the 

minimum amplitude level of all the road surface stimuli which were described in 

chapter 5. 

 

In order to maximise the signal density in the frequency-amplitude plane while 

simultaneously also not exceeding a test duration of 60 minutes so as to avoid any 

learning or fatigue effects (Coolican, 1999), a total of 86 steering wheel rotational 

sinusoidal vibration stimuli were used in the experiment as illustrated in Figure 6.2 and 

listed in Table 6.4. Four test amplitudes were used at each frequency, but the highest 

amplitudes at 300 and 400 Hz were removed since those signals were so powerful as to 

produce audible sound.  
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[Figure 6.2] Comparison the 86 sinusoidal rotational steering wheel vibration stimuli 

with the hand-arm vibration perception threshold (Morioka, 2004) and the hand-arm 

vibration annoyance threshold (Miwa, 1967; Reynolds et al., 1977; Giacomin et al., 

2004). 

 

[Table 6.4] Frequency and amplitude of the 86 sinusoidal rotational steering wheel 

vibration stimuli. 

Frequency [Hz] Acceleration amplitude [r.m.s. m/s
2
] 

3 

4 

5 

6.3 

8 

10 

12.5 

16 

20 

25 

31.5 

40 

50 

63 

80 

100 

125 

160 

200 

250 

315 

400 

0.08, 0.17, 0.49, 1.0 

0.13, 0.32, 0.5, 1.26 

0.08, 0.23, 1.07, 3.0 

0.14, 0.45, 0.81, 2.58 

0.08, 0.28, 1.75, 6.0 

0.15, 0.56, 1.07, 3.92 

0.08, 0.3, 2.15, 8.0 

0.16, 0.63, 1.26, 5.02 

0.08, 0.34, 2.87, 12.0 

0.17, 0.73, 1.53, 6.69 

0.08, 0.36, 3.52, 16.0 

0.17, 0.8, 1.71, 7.91 

0.08, 0.38, 3.98, 19.0 

0.18, 0.85, 1.88, 9.09 

0.07, 0.36, 4.26, 22.0 

0.06, 0.78, 1.84, 10.2 

0.06, 0.34, 4.46, 25.0 

0.04, 0.64, 1.62, 10.31 

0.06, 0.34, 4.71, 27.0 

0.15, 1.41, 2.98, 13.27 

0.4, 1.36, 8.53 

0.8, 3.78, 6.35 

 

6.3.2 Test Subjects 

 

A total of 40 university students and staff, 20 male and 20 female, were randomly 

selected to participate in the experiment. An optimum sample size of approximately 25 

to 30 participants has been previously proposed for use in experimental research 

(Coolican, 1999), therefore the use of 40 participants was considered a conservative 

approach which would ensure representative sample statistics. 

 

A consent form and a short questionnaire were presented to each participant prior to 

testing, and information was gathered regarding their anthropometry, health and history 

of previous vibration exposures. Table 6.5 presents a basic summary of the physical 

characteristics of the group of test participants. The mean values and the standard 
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deviations of the height and mass of the test participants were close to the 50 percentile 

values for the U.K. population (Pheasant and Haslegrave, 2005). A statistical t-test 

performed for the test groups suggested significant physical differences in height and 

mass between the males and the females (p<0.05), while no significant differences were 

found in age between the males and the females. All subjects declared themselves to be 

in good physical and mental health. 

 

[Table 6.5] Mean and standard deviation summary statistics for the test participants. 

 

6.3.3 Test Protocol 

 

For each test subject, a strict test protocol was adhered to in which a predetermined 

sequence of events, each of fixed time duration, was performed. Upon arriving in the 

laboratory, each subject was issued an information and consent form, and was provided 

an explanation of the experimental methods and of the laboratory safety features. The 

consent form and the instruction sheet detailing the fixed verbal instructions used during 

the testing procedure are presented in Appendix C. 

 

Before commencing testing each subject was required to remove any heavy clothes such 

as coats, and to remove any watches or jewellery that they were wearing. In order to 

reduce the statistical variance in the test results the driving posture was controlled for 

each test participant since the body posture is known to effect subjective response 

(Griffin, 1990). Four postural angles were controlled which were the wrist, elbow, 

shoulder and back angles (Norkin and White, 2003). For the wrist angle the range from 

177 to 190 was chosen while for the elbow, shoulder and back angles the range from 

102 to 126, from 23 to 39 and from 95 to 105 were chosen, respectively, based on the 

range of comfortable postures suggested by the literature (Andreoni et al., 2002; Babbs, 

1979; Hanson et al., 2006; Henry Dreyfuss Associates, 2002; Park et al., 1999; Porter 

and Gyi, 1998; Rebiffé, 1969; Seidl, 1994; Shayaa, 2004; Tilley, 1994; Wisner and 

Rebiffé, 1963). The chosen data of the ranges for each postural angle were the median 

Test Group Age [years] Height [m] Mass [kg] 

Male (n=20) 

Female (n=20) 

Total (N=40) 

33.9 (6.2) 

34.3 (6.6) 

34.1 (6.4) 

1.81 (0.08) 

1.61 (0.06) 

1.71 (0.12) 

84.2 (14.0) 

56.5 (7.1) 

70.3 (17.8) 
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values of the data presented in Table 6.6. 

 

Since grip type and grip strength (Reynolds and Keith, 1977) are also known to effect 

the transmission of vibration to the hand-arm system, the subjects were asked to 

maintain a constant palm grip on the steering wheel using both hands. In addition, they 

were asked to maintain the grip strength which they felt they would use when driving an 

automobile on a winding country road. The subjects were also asked to wear ear 

protectors so as to avoid auditory cues. Room temperature was maintained within the 

range from 20˚ to 25℃ so as to avoid significant environmental effects on the skin 

sensitivity (ISO 13091-1, 2001). 

                                                                         [unit : degree] 

 

 

 

 

 

 

 

 

 

 

[Table 6.6] Minimum and maximum angles of the (a) wrist, (b) elbow, (c) shoulder and 

(d) back which were found to guarantee postural comfort. 

* The angle is from shoulder to the vertical (γ). 

 

A Borg CR10 category-ratio scale (Borg, 1998), which was introduced in Chapter 2, 

was used to estimate the subjectively perceived intensity of the steering wheel rotational 

vibration. The information describing the experiment was presented to the test 

participant by the experimenter using the instructions provided by Borg (Borg, 1998) for 

the scale‟s administration. The test subjects were further asked to focus their eyes on a 

board which was placed about 1 meter ahead at eye level, which presented the Borg 

rating scale. Before starting the experiment a trial run involving three stimuli was 

performed so as to familiarize the participants with the test procedure. 

 

The 86 test stimuli were repeated three times in three single blocks, for a total of 258 

assessment trials for each participant. The mean Borg CR10 values of the three 

Research a b c d 

Andreoni et al. (2002) - 115 ± 10 32 ± 10 93 ± 6 

Wisner-Rebiffé (1963) - 80 ~ 90 15 ~ 35 85 ~ 100 

Rebiffé (1969) 170 ~ 190 80 ~ 120 10 ~ 45 * 95 ~ 120 

Babbs (1979) 170 ~ 190 80 ~ 110 15 ~ 35 * 85 ~ 115 

Seidl (1994) 187 126 33 97.9 

Tilley (1994) - 80 ~ 165 0 ~ 35 95 ~ 100 

Porter and Gyi (1998) - 121 ± 18 45.1 ± 2.6 100 ± 5.6 

Park et al. (1999) - 112 ± 11 19.2 ± 5.6 116 ± 6.5 

Shayaa (2004) 214 ± 6.1 139 ± 18.9 38 ± 7 108 ± 7.8 

Hanson et al. (2006) 187 ± 10 128 ± 16 39 ± 15 100 ± 4.4 

b 

d 

c 

a γ 
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repetitions, and the standard deviation values, were calculated for each stimulus. In 

order to minimize any possible bias resulting from learning or fatigue effects, the order 

of presentation of the test signals was randomised for each subject for each block. A 

break of 1 minute after the presentation of each block was used to reduce annoyance 

effects. A 7 second stimulus duration was used so as to provide a vibrotactile stimulus 

which remained within human short-term memory (Sinclair and Burton, 1996), thus a 

stimulus which could be judged without reliance upon the long-term storage of stimuli 

information by the test participant. A complete session required approximately 60 

minutes to complete with one participant. The test procedure adhered to the fixed phases 

and the mean time durations outlined in Table 6.7. 

 

 

 

 

 

 

 

 

 

 

 

[Table 6.7] Steering wheel rotational vibration testing protocol.  

Phase Tasks Performed and Information Obtained 

Consent form and 

questionnaire 

( ~ 3 minutes) 

The participant was asked to read the instructions and intended purpose 

of the experiments and to sign a consent form. Each subject also 

completed a questionnaire concerning age, height, mass, health and 

previous exposure to vibration. 

Measurement of 

postural angles 

( ~ 3 minutes) 

The participant was asked to remove heavy clothing, watches and 

jewellery. Sitting posture angles were measured using a full circle 

goniometer and adjusted into the standard comfort range so as to 

minimise individual postural differences. 

Preparation for test 

( ~ 1 minute) 

The participant was asked to wear ear protectors and to close eyes 

before gripping the steering wheel. The grip strength was suggested to 

be that required to drive an automobile over a country road. Once 

comfortable with grip, the participant was asked to keep it constant 

during all tests. 
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Familiarization for 

test 

( ~ 1 minutes) 

The participant was given a verbal introduction to the experiment. The 

range of experimental frequencies and amplitudes applied so as to 

familiarise the subject with the stimuli. 

Perception testing 

( ~ 45 minutes) 

The participant performed psychophysical tests of hand-arm vibration 

with the combination signals of frequency and amplitude presented in 

random order so as to avoid learning or fatigue effects. A total of 86 

vibration stimuli were repeated three times. Each stimulus lasted 7 

seconds to each subject. 

Breaks 

( ~ 5 minutes) 

A short break of 1 minute was made every 43 stimuli so as to avoid 

annoyance effects. 

 

6.3.4 Multivariate Regression Methods 

 

There are a large number of multivariate approaches that can be applied to analyzing the 

correlations between subjective and objective metrics. These include a variety of 

iterative methods such as genetic algorithms (Goldberg, 1989) and neural networks 

(Aleksander and Morton, 1995), as well as non-iterative methods such as regression 

methods (Ezekiel and Fox, 1959) which use statistical techniques such as least squares 

to establish a system equation whose results can then be rated for accuracy using other 

statistical measures such as correlation coefficients. A statistical regression analysis was 

performed using both MATLAB (Mathworks Inc., 2002) and the SPSS software (SPSS 

Inc., 2004).  

 

The objective was to establish a mathematical model to express the Borg CR10 

subjective intensity as a function of the two independent parameters of frequency and 

magnitude. A linear fitting procedure was chosen since nonlinear fitting methods often 

suffer from convergence problems (Mathworks Inc., 2002) and since the deviation from 

linear forms in the current application were not so dramatic as to produce extensive 

local minima or widely differing multiple solutions. As the most widely used modelling 

methods, the least squares regression (NIST, 2006), all possible regressions, backward 

elimination and the stepwise regression procedures (Draper and Smith, 1998) were 

chosen. Based on the results from a previous study (Ajovalasit and Giacomin, 2009) all 

the regression models were expressed in logarithmic polynomial form up to either 4
th

, 

5
th

 or 6
th

 order. The use of a logarithmic transformation and of polynomial regression 

terms from 4
th

 to 6
th

 order for both the frequency and the acceleration values was found 

in a previous study to provide the most accurate description of the physical phenomena 
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contained in the dataset (Ajovalasit and Giacomin, 2009). 

 

6.3.4.1 MethodⅠ: Least Squares Regression Procedure 

Least squares regression is a mathematical procedure for finding the regression curve 

which best fits a set of data points. In this method the estimated values are found by 

minimizing the sum of the squares of the error between each point and curve (Draper 

and Smith, 1998). 

 

6.3.4.2 MethodⅡ: All Possible Regressions Procedure 

This procedure analyzes every possible combination of the independent variables. If 

there are r independent variables, 2
r
 equations must be tested (Draper and Smith, 1998). 

 

6.3.4.3 MethodⅢ: Backward Elimination Procedure 

In this technique a regression equation containing all variables is calculated and then the 

variables are eliminated one by one based on the significance of the variables, until an 

optimum solution has been found (Draper and Smith, 1998). 

 

6.3.4.4 MethodⅣ: Stepwise Regression Procedure 

The first step of this process is to select and add the most correlated variable into a 

model. After the variable has been added, the model is checked for significance to 

determine if any variable should be deleted. If the model is significant, the next 

predictor variable is added. If the model is not significant, the procedure will be stopped 

to conclude the model. The procedure is continued until a final model is derived (Draper 

and Smith, 1998). 

 

6.3.4.5 Selection Criteria 

Several methods can be used to rate the quality of the fit of a correlation equation 

(Hocking, 1976; Pickering, 2005). Four selection criteria are commonly used for 

choosing an optimal model (Draper and Smith, 1998). These are the residual mean-

square (MSE), the coefficient of determination (R
2
), the adjusted coefficient of 

determination ( 2
aR ) and the total squared error (Cp), i.e. 
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● the residual mean-square: ;
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● the total squared error: ;2
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where RSS is the residual sum of squares, p is the number of parameters in a model, TSS 

is the total sum of squares and σ
2
 is a estimate of the error variance. The term residual 

refers the difference between the observed value and the estimated value (Draper and 

Smith, 1998). Therefore the residual sum of squares (RSS) was defined as the sum of 

squares of the residuals of the model shown in Equation 6.5. The total sum of squares 

(TSS) is, thus, the sum of the squares of the difference of the variable and its grand 

mean (Draper and Smith, 1998) shown in Equation 6.6. 

● the residual sum of squares: ;)ˆ( 2
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
n
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ii YYRSS                      (6.5) 

● the total sum of squares: ;)( 2

1





n

i

ii YYTSS                         (6.6) 

where iŶ  is the estimated value in the model and iY  is the mean value of the variables. 

 

A baseline value of the 2
aR  equal or greater than 0.95 was chosen for use in the model 

selection, following the recommendations of Draper and Smith (1998). A baseline value 

of the MSE of 0.5 was chosen based on the just-noticeable value of the Borg CR10 scale, 

which in the case of Borg CR10 rated hand-arm vibration is approximately 0.3 (Neely et 

al., 2001). 

 

From the selection criteria listed above the MSE and the 2
aR  were the only ones which 

were used in this thesis since the 2
aR  is the only criterion to be maximum when MSE is 

the minimum (Park, 1993), and since the Cp can be used in a similar way to the R
2
 

(Gorman and Toman, 1966). Therefore the primary criteria was that the fitted model 

should produce the highest goodness-of fit as defined by the highest 2
aR  when the MSE 

is the smallest (Hocking, 1976; Draper and Smith, 1998). 
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The secondary criteria was that the equal sensation curves which are defined by means 

of the regression model should present similar frequency dependency characteristics to 

those found in previous studies on the physiology of vibrotactile perception. Finally, a 

third criteria was applied which was the consideration that the fitted mathematical 

equation should be as simple as possible in light of possible practical application.  

 

6.3.5 Results 

 

Table 6.8 presents the mean and one standard deviation values obtained for each 

frequency and each amplitude tested in the experiment. For each test amplitude the 

mean Borg CR10 subjective values can be seen to generally decrease with increasing 

test frequency, suggesting a lower perceived intensity at higher frequencies, as expected 

from psychophysical theory (Gescheider, 1997) and from previous research (Miwa, 

1967; Reynolds et al., 1977; Giacomin et al., 2004; Amman et al., 2005; Morioka, 2004; 

Morioka and Griffin, 2006). Another feature that can be observed is that the standard 

deviation was found to generally increase with increasing test amplitude, suggesting a 

greater difficulty on the part of the test participants to distinguish high amplitude stimuli. 

 

6.3.5.1 Effect of the Multivariate Regression Approach 

In order to identify an optimal model with which to represent the equal sensation curves, 

the goodness-of-fit statistics were evaluated for each polynomial regression expression 

determined by means of each multivariate regression procedure. Table 6.9 presents the 

goodness-of-fit statistics for the overall test dataset in the experiment obtained using the 

four multivariate regression analysis procedures at polynomial orders up to the 6
th

 order. 

Although the differences in MSE and 2
aR  were small among the different approaches 

used, the best result was achieved by means of the stepwise regression procedure using 

terms up to 6
th

 order, which obtained the lowest MSE value (0.084) and the highest 2
aR  

value (0.983). 

 

[Table 6.8] Summary of the subjective responses to sinusoidal steering wheel vibration 

stimuli obtained by means of Borg CR10 scale (n = 40). 

Freq. Acceleration Subjective Standard  Freq. Acceleration Subjective Standard 
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[Hz] [r.m.s. m/s2] response deviation  [Hz] [r.m.s. m/s2] response deviation 

3 0.08 

0.17 

0.49 

1 

0.7 

1.53 

2.66 

4.13 

0.54 

0.76 

1.01 

1.21 

 40 0.17 

0.8 

1.71 

7.91 

0.7 

2.09 

2.33 

6.34 

0.56 

1.09 

0.9 

2.68 

4 0.13 

0.32 

0.5 

1.26 

0.84 

1.65 

2.41 

4.1 

0.72 

0.83 

0.86 

1.31 

 50 0.08 

0.38 

3.98 

19 

0.19 

1.23 

3.91 

7.61 

0.28 

0.69 

1.43 

2.95 

5 0.08 

0.23 

1.07 

3 

0.58 

1.61 

4.69 

6.19 

0.53 

0.8 

1.75 

1.75 

 63 0.18 

0.85 

1.88 

9.09 

0.83 

1.51 

2.72 

4.41 

0.61 

0.77 

1.43 

1.72 

6.3 0.14 

0.45 

0.81 

2.58 

1.43 

2.43 

3.97 

6.54 

0.8 

0.94 

1.79 

1.66 

 80 0.07 

0.36 

4.26 

22 

0.2 

1.11 

3.6 

6.46 

0.22 

0.63 

1.69 

1.95 

8 0.08 

0.28 

1.75 

6 

0.41 

2.2 

4.81 

8.65 

0.47 

0.89 

1.25 

2.71 

 100 0.06 

0.78 

1.84 

10.2 

0.09 

1.78 

1.8 

4.62 

0.18 

1.17 

0.82 

2.07 

10 0.15 

0.56 

1.07 

3.92 

0.99 

2.22 

3.51 

6.27 

0.69 

0.96 

1.37 

1.31 

 125 0.06 

0.34 

4.46 

25 

0.13 

1.27 

2.72 

5.48 

0.22 

0.77 

1.19 

2.65 

12.5 0.08 

0.3 

2.15 

8 

0.46 

1.36 

5.39 

8.38 

0.36 

0.64 

2.16 

1.8 

 160 0.04 

0.64 

1.62 

10.31 

0.04 

1.32 

2.39 

3.97 

0.13 

0.74 

1.14 

1.68 

16 0.16 

0.63 

1.26 

5.02 

0.73 

2.52 

3.23 

6.85 

0.43 

1.1 

0.81 

2.4 

 200 0.06 

0.34 

4.71 

27 

0.1 

0.88 

2.69 

4.43 

0.18 

0.73 

1.27 

2.42 

20 0.08 

0.34 

2.87 

12 

0.21 

1.65 

4.62 

8.57 

0.22 

0.79 

1.18 

2.77 

 250 0.15 

1.41 

2.98 

13.27 

0.24 

1.46 

2.27 

3.35 

0.41 

0.84 

1.29 

1.65 

25 0.17 

0.73 

1.53 

6.69 

0.65 

1.95 

4.08 

6.21 

0.51 

1.03 

2.08 

1.68 

 315 0.4 

1.36 

8.53 

0.5 

1.3 

3.04 

0.61 

0.95 

1.81 

31.5 0.08 

0.36 

3.52 

16 

0.23 

1.12 

4.49 

8.15 

0.33 

0.68 

1.98 

1.94 

 400 0.8 

3.78 

6.35 

0.71 

2.22 

2.31 

0.77 

1.69 

1.49 

 

[Table 6.9] Goodness of fit statistics obtained for overall data set (n = 40). 

Regression 

method 

Polynomial 

order 

Interaction 

terms 

Residual mean 

square 

(MSE) 

Adjusted coefficient 

of determination 

(
2
aR ) 

Number of 

regression 

coefficients 

Least-squares 

procedure 

4
th

 3
rd

 0.107 0.979 12 

4
th

 0.088 0.982 15 

5
th

 3
rd

 0.108 0.978 14 

4
th

 0.093 0.981 17 

5
th

 0.093 0.980 21 

6
th

 3
rd

 0.108 0.978 16 

4
th

 0.091 0.981 19 

5
th

 0.092 0.980 23 

6
th

 0.098 0.975 28 
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[Figure 6.3] Equal sensation curves obtained for Borg subjective perceived intensity 

values from 0.5 to 8.0 using the four regression procedures in the experiment (n = 40): 

(a) Least-square regression procedure, (b) All possible regressions procedure, (c) Backward elimination 

regression procedure and (d) Stepwise regression procedure. 

 

Figure 6.3 presents the equal sensation curves which achieved the lowest MSE and the 

highest 2
aR  for each of the different multivariate regression procedures. The curves 

obtained by means of the stepwise regression procedure suggested a decreased 

sensitivity with increasing frequency from 6.3 to 400 Hz, a constant sensitivity from 3 

to 6.3 Hz, and a dip behaviour in the vicinity of 100 Hz similar to the well known 

response of the Pacinian mechanoreceptors (Verrillo, 1966; Reynolds et al., 1977). In 

addition, the 6
th

 order stepwise regression procedure produced a regression model with 

Stepwise 

procedure 

4
th

 - 0.106 0.979 9 

5
th

 - 0.085 0.983 13 

6
th

 - 0.084 0.983 12 

Backward 

elimination 

procedure 

4
th

 - 0.101 0.980 11 

5
th

 - 0.099 0.980 11 

6
th

 - 0.099 0.981 10 

All possible 

procedure 

4
th

 - 0.100 0.980 13 

5
th

 - 0.106 0.980 17 

6
th

 - 0.109 0.979 19 

a b 

c d 
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only 12 coefficients which was 

 

S = 3.4268 + 0.7638log(f) + 2.3058log(a) + 0.5289log(a)
2
 – 0.2506log(f)

3
 + 

   – 0.0978log(f)
2
log(a) – 0.0881log(f)log(a)

2
 + 0.0396log(a)

3
 + 0.0523log(f)

4
 + 

   – 0.0004log(f)
6
 + 0.0003log(f)

5
log(a) – 0.0003log(f)

3
log(a)

3               (6.7) 

 

where S is the Borg CR10 subjective intensity value which is determined by the fitted 

model, f is the frequency in units of Hertz and a is the r.m.s. acceleration magnitude in 

units of meters per second squared. 

 

6.3.5.2 Effect of Gender 

Table 6.10 presents the goodness-of-fit statistics obtained for the regression models 

which were fit separately to the data of only the male test participants (n = 20) and of 

only the female test participants (n = 20) using the stepwise regression procedure. The 

model order which provided the best results for the complete dataset was applied also to 

the data obtained for each individual gender group. The stepwise regression procedure 

provided a MSE value of 0.064 and a value of 0.985 for 2
aR  for the males while it 

produced a MSE value of 0.168 and a value of 0.973 for 2
aR  for the females. 

 

[Table 6.10] Goodness of fit statistics obtained separately for the male test participants 

data set (n = 20) and for the female test participants data set (n = 20). 

 

Figure 6.4 presents the equal sensation curves obtained for the male and the female 

sample groups obtained by means of the stepwise regression procedure. From the results 

of Figure 6.4 it can be seen that the females provided higher perceived intensity values 

than the males for the same physical stimulus at most frequencies. At frequencies above 

approximately 20 Hz the equal sensation curves for the female test group are 

characterised by a flatter shape than those obtained for the male test group, whereas at 

frequencies below approximately 20 Hz similar shape was found for both groups. 

Regression 

method 
Gender 

Polynomial 

order 

Residual 

mean square 

(MSE) 

Adjusted coefficient 

of determination 

(
2
aR ) 

Number of 

regression 

coefficients 

Stepwise 

procedure 

M 
6

th
 

0.064 0.985 12 

F 0.168 0.973 12 
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Gender differences were more marked at acceleration amplitudes above approximately 

1.0 m/s
2
 r.m.s.. For example, it can be seen in Figure 6.4 that the subjective response of 

the females for the stimulus with amplitude of 2.0 m/s
2
 r.m.s. and frequency of 30 Hz 

was approximately 4.0 on the Borg CR10 scale, while that of males for the same 

stimulus was approximately 3.0 on the Borg CR10 scale.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 6.4] Equal sensation curves obtained separately for the male test participants  

(n = 20) and for the female test participants (n = 20), obtained by means of the stepwise 

regression procedure. 

 

 

6.4 Discussion 

 

The results of this experiment suggest that the stepwise regression procedure provided 

the best model of the hand-arm equal sensation curves because the best fit equation 

provided the lowest MSE of 0.084 and the highest adjusted coefficient of determination 

2
aR  of 0.983 using only 12 coefficients. Compared to the other regression procedures 

used in this research, the equal sensation curves obtained by means of stepwise 

regression suggested small variations in the shape of the curves at low vibration 

Borg Value 

of the Perceived Intensity 

8.0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 
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amplitudes and more uniform shape at high vibration amplitudes, resembling the curves 

defined by previous researchers (Reynolds et al., 1977; Gescheider et al., 2004). 

 

A possible explanation of the effectiveness of the stepwise regression procedure may be 

that only a small number of coefficients were included in the model. Direct support for 

this can be found in the study of Barrett and Gray (1994) who applied the stepwise 

regression procedure for constructing a multivariate regression model. They found that 

the stepwise regression procedure provided a better model using a rather small number 

of variables as opposed to the approach based on the use of all possible subsets. In 

addition, the general efficiency of stepwise regression was noted by Wallace (1964), 

who suggested that the stepwise regression procedure provided a better model because 

of the reduced bias of the coefficients selection procedure. 

 

The results of this experiment also suggest that the equal sensation curves for steering 

wheel rotational vibration differed between males and females. These differences are 

most obvious at intensity levels above approximately 1.0 m/s
2
 and at frequencies above 

approximately 20 Hz. This difference is partially supported by the results of Verrillo 

(1979) who found that vibratory stimuli at suprathreshold levels are felt more intensely 

by females than by males, and by those of Neely and Burström (2006) which suggest 

that females report higher levels of physical intensity and discomfort than males. 

Similar indications can also be found in the study of steering wheel vibration induced 

fatigue performed by Giacomin and Abrahams (2000), which found that females 

reported greater arm region discomfort than males, and by the questionnaire-based 

investigation of Giacomin and Screti (2005) which found that female drivers reported 

higher discomfort responses than male drivers for the hand-arm region. 
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[Figure 6.5] Equal sensation curves obtained in the current study and those obtained in 

previous studies of hand-arm translational or rotational vibration. 

 

Figure 6.5 presents the best fit equal sensation curves determined in this experiment, the 

results of Miwa (1967) for hand-arm vibration in the vertical direction (n = 10), the 

results of Reynolds et al. (1977) for hand-arm axial direction vibration (n = 8), the 

results of Giacomin et al. (2004) (n = 15) and those of Amman et al. (2005) (n = 28) for 

steering wheel hand-arm rotational vibration. Each of the equal sensation curves shown 

in Figure 6.5 represents a curve of equal subjective perceived intensity. The equal 

sensation curves of the current research are interpolations of the Borg values provided 

by the test subjects. The curves shown in Figure 6.5 are for the Borg values 0.5, 1.0, 1.5, 

2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0. The equal sensation curves from the previous 

research studies are, instead, interpolations of the acceleration data points obtained 

using magnitude estimation test protocols in the case of Reynolds et al., Giacomin et al. 

and Amman et al. and a paired-comparison method in the case of Miwa. All the curves 

suggest a decreased sensitivity of hand-arm vibration with increasing frequency for 

frequencies above about 6.3 Hz. For frequencies below 6.3 Hz, the curves obtained in 

this experiment suggest a constant sensitivity as also found in the results of Miwa and of 
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Giacomin et al.. The reduction in sensitivity was found, however, to be greater in the 

curves of Miwa than in either those of Reynolds et al. or those of the current research. 

While difficult to demonstrate without replication of each of the previous studies, a 

possible explanation for the differences may in part be the use of different 

psychophysical test methods in the various investigations and the use of only male test 

participants. As can be seen from Figure 6.4, females were found to provide higher 

perceived intensity values than males, resulting in a lower equal sensation curve. 

 

It is also evident from Figure 6.5 that at low perceived intensities from 0.5 (just 

noticeable) to 1.0 (very weak) of the Borg CR-10 scale the equal sensation curves 

determined in the current experiment show similarities in shape to the well-known 

vibrotactile perception threshold curves of the human hand. As the perceived intensity 

increases towards the maximum value of 8.0 found in the current experiment the equal 

sensation curves assume a more uniform shape, however, resembling the annoyance 

threshold for the hand-arm system defined by Reynolds et al. (1977). Comparison of the 

results of Figure 6.5 suggests that while the curves of Miwa and of Amman et al. 

suggest relatively small dependencies on the vibration amplitude, the equal sensation 

curves of the current research and those of Reynolds et al. suggest a significant 

nonlinear response. A possible explanation of these differences may be the use of 

relatively low reference frequencies in the studies of Miwa and of Amman et al. The use 

of a low reference frequency has been found to affect the shape of equal sensation 

curves, especially at frequencies above approximately 50 Hz (Giacomin et al., 2004).  

 

6.5 Summary 

 

Psychophysical response tests of 40 participants (20 males and 20 females) were 

performed in a steering wheel rotational vibration simulator using the category-ratio 

Borg CR10 scale procedure for direct estimation of perceived vibration intensity. The 

equal sensation curves for steering wheel hand-arm rotational vibration were established 

using multivariate regression analysis procedures. The best fit regression model to 

describe the equal sensation curves was found to be a 6
th

 order polynomial model 

having 12 terms, which was obtained by means of a stepwise regression procedure. The 

results suggest a nonlinear dependency of the subjective perceived intensity on both 
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frequency and amplitude. The equal sensation curves were found to be characterised by 

a decreased sensitivity to hand-arm vibration with increasing frequency from 6.3 to 400 

Hz, but a constant sensitivity from 3 to 6.3 Hz. The best fit regression models 

determined for the male test participants and for the female test participants suggest 

important differences in the frequency range from 20 to 400 Hz, while both sets of 

curves suggest similar sensitivity at frequencies below 20 Hz. Females were found to be 

more sensitive to steering wheel rotational vibration than males, particularly at intensity 

levels above approximately 1.0 m/s
2
 r.m.s. and at frequencies above approximately 20 

Hz (p < 0.05). 
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Chapter 7 

 Human Subjective Response to Steering Wheel 

Hand-Arm Vibration consisting of Random 

Vibration 

 

7.1 Introduction 

 

In the majority of the previous research studies the equal sensation curves which were 

established to describe the human subjective response to the hand-arm vibration 

(Giacomin et al., 2004; Amman et al., 2005; Morioka, 2004; Morioka and Griffin, 2006; 

Ajovalasit and Giacomin, 2009) were based on the use of sinusoidal vibration due to the 

great simplicity of the wave form (Bendat and Piersol, 1986). Nevertheless, random 

vibration is closer in nature to the real vibrational stimuli which are encountered in 

automobiles (Griffin, 1990). 

 

Miwa (1969) established equal sensation curves for 10 male participants who held their 

palm flat against a plate which was vibrated in the vertical direction using either one or 

1/3 octave band-limited random vibration stimuli at acceleration amplitudes of either 

0.31, 1.74 or 0.98 m/s
2
 r.m.s. respectively over the frequency range from 2 to 250 Hz. 
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Although the equal sensation curves obtained using random vibration showed similarity 

of shape to those obtained using sinusoidal vibration, differences as large as 3 dB were 

found below 8 Hz and above 125 Hz. Miwa also investigated the effect of bandwidth by 

comparing the results of experiments which used one octave wide band-limited random 

stimuli to those which used 1/3 octave wide band-limited random vibration. In this case, 

however, no significant differences were found between the two sets of subjective 

responses. 

 

Reynolds et al. (1977) established equal sensation curves for 8 male participants who 

gripped with one hand a handle which was vibrated along either the vertical, axial or 

horizontal directions. The vibration stimuli consisted of 1/3 octave band-limited random 

vibration at acceleration amplitudes of either 1.0, 10.0 or 50.0 m/s
2
 r.m.s. over the 

frequency range from 25 to 1000 Hz. The shape of the equal sensation curves was found 

to be similar in shape to those obtained using sinusoidal vibration. However, the slope 

of the curves obtained using random vibration was slightly steeper than that obtained 

using sinusoidal vibration.  

 

The primary objective of the research which is described in this chapter was to 

determine equal sensation curves for steering wheel hand-arm rotational vibration using 

random vibration, in order to investigate the effect of the vibrational signal type. The 

secondary objective was to confirm the effect of gender on the shape of equal sensation 

curves for hand-arm steering wheel rotational vibration, which was first noted from the 

results of the experiment which used sinusoidal vibration. 

 

7.2 Laboratory Based Experimental Testing using Random Vibration 

 

The laboratory based experiment which is described in this chapter was performed using 

the same test facility and the same test protocol which were first described in this thesis 

in sections 6.2.1 and 6.3.3 respectively. 

 

7.2.1 Test Stimuli 

 

Band-limited random vibration has been used frequently in tests of human response to 

hand-arm vibration (Miwa, 1969; Reynolds et al., 1977) and to whole-body vibration 

(Griffin, 1976) because band-limited random vibration can be thought of as containing a 
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large number of simultaneous sinusoidal functions of similar spectral magnitude 

(Ministry of Defence, 2007). Thus band-limited random vibration was employed also in 

the current context to serve as a test signal of the laboratory experimental testing for 

human perception of hand-arm vibration. 

 

In order to investigate only differences caused by the change of signal type, the same 

frequency range from 3 to 400 Hz and the same amplitude range from 0.04 to 27 m/s
2
 

r.m.s. were used as in the previous experiment for sinusoidal vibration. One-third octave 

band centre frequencies in the range from 3 to 400 Hz were also chosen to define the 

position of the test stimuli. Twenty two centre frequencies (3, 4, 5, 6.3, 8, 10, 12.5, 16, 

20, 25, 31.5, 40, 50, 63, 80, 100, 125, 160, 200, 250, 315 and 400 Hz) were used in the 

experiment. 

 

A one-third octave band width was adopted for the test signals of the experiment in 

order to avoid some errors which may arise when using broad band octave analysis 

(Griffin, 1990) and because it was used often in the studies of hand-arm vibration 

consisting of random signals (Miwa, 1969; Reynolds et al., 1977). Therefore 1/3 octave 

band width test signals centred at the above frequencies were used. 

 

The 1/3 octave band width test signals were obtained by passing a Gaussian white noise 

signal generated by LMS software, shown in Figure 7.1, through a Butterworth band-

pass filter. A Butterworth band-pass filter was chosen for use in constructing the test 

signals because it produces no ripples in the pass-band or the stop-band (Kester, 2003). 

An attenuation rate of 48 dB per octave was chosen in order to provide a strong 

transition between the pass band and the stop band (LMS International Inc., 2002). 

 

 

 

 

 

 

 

 

 

 

 

[Figure 7.1] Gaussian white noise signal used to be filtered by applying Butterworth 

band-pass filter. 
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In order to maximise the signal density in the frequency-amplitude plane while 

simultaneously also not exceeding a test duration of 60 minutes, so as to avoid any 

learning or fatigue effects (Coolican, 1999), a total of 86 steering wheel rotational 1/3 

octave band-limited random vibration stimuli were used in the experiment. In order to 

investigate the differences caused by only the change of signal type, the same amplitude 

levels were used as in the previous experiment in chapter 6. Figure 7.2 presents the time 

series and frequency distributions of three of the 1/3 octave band-limited random 

stimuli which were employed in this experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a)     (b) 

[Figure 7.2] Three examples of the band-limited random signals used in the experiment: 

(a) time series representation and (b) power spectral density (PSD) representation. 
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Based on these considerations, a total of 86 steering wheel rotational 1/3 octave band-

limited random vibration stimuli in the frequency range from 3 to 400 Hz with the 

acceleration magnitudes range from 0.04 to 27 m/s
2
 r.m.s. were used in the experiment. 

Table 7.1 provides the band centre frequency, the lower and upper cutoff frequencies, 

and the r.m.s. acceleration amplitude of each of the steering wheel test stimuli. 

 

[Table 7.1] Frequency and amplitude of the 86 steering wheel rotational 1/3 octave 

band-limited random vibration stimuli. 

Centred frequency [Hz] Cut-off frequency [Hz] Acceleration amplitude [r.m.s. m/s
2
] 

3 

4 

5 

6.3 

8 

10 

12.5 

16 

20 

25 

31.5 

40 

50 

63 

80 

100 

125 

160 

200 

250 

315 

400 

2.6 / 3.4 

3.5 / 4.5 

4.4 / 5.6 

5.5 / 7.1 

7.0 / 9.0 

8.7 / 11.3 

10.9 / 14.1 

13.9 / 18.1 

17.4 / 22.6 

21.8 / 28.2 

27.4 / 35.6 

34.8 / 45.2 

43.5 / 56.5 

54.8 / 71.2 

69.6 / 90.4 

87.0 / 113.0 

108.8 / 141.2 

139.2 / 180.8 

174.0 / 226.0 

217.5 / 282.5 

274.1 / 355.9 

348.0 / 452.0 

0.08, 0.15, 0.41, 0.80 

0.12, 0.24, 0.34, 0.7 

0.08, 0.20, 0.8, 2.0 

0.13, 0.38, 0.64, 1.79 

0.08, 0.26, 1.53, 5.0 

0.15, 0.56, 1.07, 3.92 

0.08, 0.3, 2.15, 8.0 

0.16, 0.63, 1.26, 5.02 

0.08, 0.34, 2.87, 12.0 

0.17, 0.73, 1.53, 6.69 

0.08, 0.36, 3.52, 16.0 

0.17, 0.8, 1.71, 7.91 

0.08, 0.38, 3.98, 19.0 

0.18, 0.85, 1.88, 9.09 

0.07, 0.36, 4.26, 22.0 

0.14, 0.78, 1.84, 10.2 

0.04, 0.34, 4.46, 25.0 

0.1, 0.64, 1.62, 10.31 

0.06, 0.34, 4.71, 27.0 

0.31, 1.41, 2.98, 13.27 

0.4, 1.36, 8.53 

0.8, 3.78, 6.35 

 

7.2.2 Test Subjects 

 

A total of 30 university students and staff, 15 male and 15 female, were randomly 

chosen to participate in the experiment. The use of 30 participants was still considered a 

conservative approach (Coolican, 1999) as stated in the previous chapter. A consent 

form and a short questionnaire were presented to each participant prior to testing, and 

information was gathered regarding their anthropometry, health and history of previous 

vibration exposures. 

 

Table 7.2 presents a basic summary of the physical characteristics of the group of test 
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participants. The mean value and the standard deviation of the height and mass of the 

group of test participants were close to the 50 percentile values for the U.K. population 

(Pheasant and Haslegrave, 2005). A statistical t-test performed to check for gender 

based differences suggested significant physical differences in height and mass between 

the males and the females (p<0.05), while no significant differences were found in age 

between the males and the females. All subjects declared themselves to be in good 

physical and mental health. 

 

[Table 7.2] Mean and standard deviation summary statistics for the test participants. 

 

7.2.3 Results 

 

Table 7.3 presents the mean and one standard deviation values obtained for each 

frequency and each amplitude tested, for the 30 participants. The general tendency of 

decreasing Borg CR10 subjective values with increasing frequency for each r.m.s. test 

amplitude was found to be similar to those obtained by means of sinusoidal vibration 

stimuli. Another feature that can be observed is that the standard deviation was found to 

increase with increasing test amplitude, which is also consistent with the results 

obtained using sinusoidal vibration stimuli, suggesting a greater difficulty on the part of 

the test participants to distinguish high amplitude stimuli. 

 

The stepwise regression procedure was employed to develop sensation curves using the 

data from the band-limited random vibration (n = 30) tests because it had provided the 

best fit regression model among other regression procedures presented in the previous 

chapter (n = 40). Table 7.4 presents the goodness of fit statistics obtained for the 

regression model by means of the stepwise regression procedure implemented by 

Matlab software (Mathworks Inc., 2002). The same selection criteria as those described 

in the previous chapter were adopted to rate the quality of the fit of a correlation 

equation. The stepwise regression procedure lead to a residual mean square (MSE) value 

of 0.071 and an adjusted coefficient of determination ( 2
aR ) value of 0.984. 

Test Group Age [years] Height [m] Mass [kg] 

Male (n=15) 

Female (n=15) 

Total (N=30) 

30.1 (6.5) 

31.9 (6.8) 

31.0 (6.6) 

1.78 (0.06) 

1.61 (0.04) 

1.70 (0.10) 

77.7 (9.3) 

55.2 (5.3) 

66.4 (13.7) 
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[Table 7.3] Summary of the subjective responses obtained by means of Borg CR10 scale. 

Freq. Acceleration Subjective 

response 

Standard 

deviation 

 Freq. Acceleration Subjective 

response 

Standard 

deviation [Hz] [r.m.s. m/s2]  [Hz] [r.m.s. m/s2] 

3 0.08 

0.15 

0.41 

0.8 

1.34 

1.94 

3.3 

4.56 

0.80 

0.93 

1.31 

1.40 

 40 0.17 

0.8 

1.7 

7.91 

0.68 

2.05 

2.32 

4.92 

0.40 

0.84 

1.04 

1.58 

4 0.12 

0.24 

0.34 

0.7 

1.41 

2.42 

3.04 

4.52 

0.76 

0.95 

1.02 

1.74 

 50 0.08 

0.38 

3.98 

19 

0.33 

1.26 

3.86 

7.13 

0.35 

0.73 

1.35 

2.2 

5 0.08 

0.20 

0.8 

2 

0.65 

2.0 

4.55 

6.57 

0.54 

0.9 

1.18 

2.13 

 63 0.18 

0.85 

1.88 

9.09 

0.96 

1.48 

2.36 

4.28 

0.56 

0.76 

0.95 

1.41 

6.3 0.13 

0.38 

0.64 

1.79 

1.05 

2.32 

3.84 

6.27 

0.63 

0.9 

1.0 

1.71 

 80 0.07 

0.36 

4.26 

22 

0.37 

1.21 

3.07 

6.03 

0.34 

0.66 

1.0 

1.9 

8 0.08 

0.26 

1.53 

5 

0.4 

1.68 

4.98 

8.34 

0.32 

0.67 

1.41 

1.65 

 100 0.14 

0.78 

1.84 

10.2 

0.78 

1.58 

1.62 

3.66 

0.49 

0.76 

0.79 

1.28 

10 0.15 

0.56 

1.07 

3.92 

1.29 

2.75 

3.81 

6.94 

0.60 

0.90 

1.35 

1.93 

 125 0.04 

0.34 

4.46 

25 

0.29 

1.33 

2.45 

5.14 

0.33 

0.79 

1.07 

2.07 

12.5 0.08 

0.3 

2.15 

8 

0.61 

1.47 

5.4 

8.41 

0.40 

0.56 

1.50 

2.06 

 160 0.1 

0.64 

1.62 

10.31 

0.57 

1.32 

2.14 

4.01 

0.42 

0.81 

1.09 

1.69 

16 0.16 

0.63 

1.26 

5.02 

0.82 

2.75 

4.09 

7.02 

0.31 

0.74 

1.43 

2.12 

 200 0.06 

0.34 

4.71 

27 

0.21 

1.12 

2.63 

4.32 

0.21 

0.62 

1.14 

1.83 

20 0.08 

0.34 

2.87 

12 

0.38 

2.11 

4.45 

7.66 

0.27 

0.78 

1.37 

2.02 

 250 0.31 

1.41 

2.98 

13.27 

0.95 

1.58 

2.36 

3.37 

0.62 

0.96 

1.05 

1.62 

25 0.17 

0.73 

1.53 

6.69 

0.85 

2.04 

3.17 

5.93 

0.48 

0.78 

1.04 

1.67 

 315 0.4 

1.36 

8.53 

0.68 

1.5 

2.83 

0.59 

0.83 

1.34 

31.5 0.08 

0.36 

3.52 

16 

0.28 

1.08 

3.61 

7.24 

0.22 

0.45 

1.30 

1.9 

 400 0.8 

3.78 

6.35 

0.93 

2.15 

2.38 

0.66 

1.22 

1.16 

 

 

[Table 7.4] Goodness of fit statistics obtained for overall data set (n = 30). 

 

Regression 

method 

Polynomial 

order 

Residual mean 

square 

(MSE) 

Adjusted coefficient of 

determination 

(
2
aR ) 

Number of 

regression 

coefficients 

Stepwise 

procedure 
6

th
 0.071 0.984 12 
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The stepwise regression procedure produced a 6
th

 order polynomial regression model 

with 12 regression coefficients. The best fit model was 

 

S = 5.843 – 0.2774log(f) + 2.5245log(a) + 0.4179log(a)
2
 – 0.2204log(f)

3
 + 

   – 0.1289log(f)
2
log(a) – 0.0676log(f)log(a)

2
 + 0.0243log(a)

3
 + 0.0517log(f)

4
 + 

   – 0.0005log(f)
6
 + 0.0004log(f)

5
log(a) – 0.0001log(f)

3
log(a)

3               (7.1) 

 

where S is the Borg CR10 subjective intensity value which is determined by the fitted 

model, f is the centre frequency in units of Hertz and a is the r.m.s. acceleration 

magnitude in units of meters per second squared. 

 

Figure 7.3 presents the family of equal sensation curves which are defined by the 

regression equation 7.1. From Figure 7.3 it can be noted that there is a decreased 

sensitivity with increasing frequency over much of the frequency range which was 

tested, with the exception of the dip behaviour in the vicinity of 100 Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 7.3] Equal sensation curves obtained for Borg subjective perceived intensity 

values from 0.5 to 8.0 using the regression formula obtained for the band-limited 

random vibration. 
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7.2.3.1 Effect of the Signal Type 

 

Figure 7.4 presents the family of equal sensation curves which were obtained from the 

sinusoidal vibration tests which were described in the previous chapter (n = 40), and 

those obtained from the tests involving the use of 1/3 octave band-limited random 

vibration stimuli (n = 30). The curves presented for the band-limited random vibration 

were determined by means of the regression equation 7.1 which was determined by 

means of stepwise regression procedure which produced the lowest MSE value (0.071) 

and the highest 2
aR  value (0.984). 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 7.4] Comparison of the equal sensation curves which were obtained using the 

band-limited random signals to those obtained using the sinusoidal signals. 

 

With regard to the effect of the test signal type, Figure 7.4 suggests that the subjective 

responses obtained using band-limited random vibration stimuli were generally steeper 

in the shape of the equal sensation curves than those obtained using sinusoidal vibration 

stimuli in the frequency interval from 3 to 400 Hz. This tendency in the shape of the 

equal sensation curves resembles the results of Reynolds et al. (1977). 

 

The results also suggest that the equal sensation curves obtained using random vibration 

produced deeper dips in the vicinity of 100 Hz than those obtained using sinusoidal 

Borg Value 

of the Perceived Intensity 

 Curves from random signals (MSE: 0.071, 2
aR : 0.984) 

 Curves from sinusoidal signals (MSE: 0.084, 2
aR :0.983) 

0.5 

1 

1.5 

2 

2.5 

3 

4 
5 6 7 8 
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vibration at acceleration levels below approximately 1.0 m/s
2
 r.m.s.. This tendency in 

the shape of the equal sensation curves resembles the results of Miwa (1969). 

 

7.2.3.2 Confirming of the Effect of Gender 

 

Table 7.5 presents the goodness-of-fit statistics obtained for the regression models 

which were fit separately to the data of only the male test participants (n = 15) and only 

the female test participants (n = 15) using the stepwise regression procedure. The model 

order which provided the best results for the complete dataset was applied also to the 

data obtained of each individual gender group. The stepwise regression procedure 

provided a MSE value of 0.076 and a value of 0.981 for 2
aR  for the males while it 

produced a MSE value of 0.101 and a value of 0.979 for 2
aR  for the females. 

 

[Table 7.5] Goodness of fit statistics obtained by fitting to the data of the male test 

participants (n = 20) and the female test participants (n = 20) separately. 

 

Figure 7.5 presents a comparison between the equal sensation curves obtained for the 

male and the female sample groups, using the sinusoidal and the 1/3 octave band-

limited random vibration stimuli. All the curves shown in Figure 7.5 were obtained by 

means of the stepwise regression procedure. The differences between the curves 

obtained for the two genders using 1/3 octave band-limited random vibration were 

smaller than those using sinusoidal vibration. However, similar global tendencies are 

present in both sets of experimental results. For example, the equal sensation curves 

obtained using 1/3 octave band-limited random vibration suggest that the females 

provided higher perceived intensity values than the males for the same physical 

stimulus at frequencies above approximately 20 Hz, which is consistent with the results 

obtained using sinusoidal vibration. 

 

 

Regression 

method 
Gender 

Polynomial 

order 

Residual 

mean square 

(MSE) 

Adjusted coefficient 

of determination 

(
2
aR ) 

Number of 

regression 

coefficients 

Stepwise 

procedure 

M 
6

th
 

0.076 0.981 12 

F 0.101 0.979 12 
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  (a)                                       (b) 

[Figure 7.5] Equal sensation curves obtained separately for the male test participants 

and for the female test participants, obtained by means of the stepwise regression 

procedure using (a) sinusoidal vibration stimuli and (b) band-limited random vibration 

stimuli. 

 

7.3 Discussion 

 

The results of this experiment suggest a similar general tendency to that noted from the 

experiment involving sinusoidal vibration, a decreased sensitivity with increasing 

frequency. However, compared to the previous equal sensation curves obtained using 

sinusoidal vibration, some differences were found in the shape of the curves. 

 

The shape of the equal sensation curves obtained using the 1/3 octave band-limited 

random vibration stimuli were generally steeper than those obtained using sinusoidal 

vibration stimuli and deeper in the vicinity of 100 Hz. This tendency suggests that the 

perceived vibration magnitude caused by random vibration increases more rapidly with 

increasing frequency than that caused by sinusoidal vibration. For example, the 

vibration magnitudes associated with the equal sensation curve of 3.0 Borg CR10 

increased from approximately 0.3 to 7.0 m/s
2
 r.m.s. across the frequency range from 3 to 

160 Hz for the band-limited random vibration model while those obtained using 

sinusoidal vibration increased only from approximately 0.6 to 5.0 m/s
2
 r.m.s. across the 

same frequency range. A possible explanation of the effect of the test signal type may be 
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that the occasional peak acceleration value of random vibration was well in excess of 

the r.m.s. value when the crest factor exceeded 3 (Griffin, 1976). The crest factor values 

of band-limited random vibration used in the experiment were generally in the range 

from 2.4 to 8.4, which was similar to the values of the real road stimuli which were 

described in chapter 5. The high peak events may produce more intense response for the 

human perception of steering wheel hand-arm vibration. 

 

With regard to the effect of gender, the results of this experiment confirm the finding of 

the sinusoidal vibration tests, that the equal sensation curves for steering wheel 

rotational vibration differed between males and females. Although the differences found 

using random vibration were smaller than those found using sinusoidal vibration stimuli, 

similar tendencies can be noted in the frequencies above approximately 20 Hz, which 

includes the range of the large resonances of the steering wheel and column (Pottinger 

et al., 1986). It implies that the gender differences of the subjective responses may occur 

regardless the type of the signal. 

 

While substantial differences in the perception of hand-arm vibration between males 

and females appear to be present in the research literature (Verrillo, 1979; Neely and 

Burström, 2005), the exact cause has yet to be clarified. While gender itself may be a 

dominant factor, particularly in the trends identified by Verrillo (1979), the actual 

mechanical mass of the hand-arm system may be the primary cause of the variance 

found in several research investigations, including this current research. For example, 

Burström and Lundström (1994) have suggested that the size and mass of the subject‟s 

hand and arm greatly affect energy absorption. It was therefore decided that it would 

prove helpful to investigate the effect of the body mass of the human hand-arm system 

on the human subjective response to steering wheel rotational vibration. 

 

7.4 Summary 

 

Psychophysical response tests of 30 participants (15 males and 15 females) were 

performed in a steering wheel rotational vibration simulator using the category-ratio 

Borg CR10 scale procedure for direct estimation of perceived vibration intensity. The 

equal sensation curves for steering wheel hand-arm rotational vibration were established 
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using 1/3 octave band-limited random vibration stimuli by means of a stepwise 

regression procedure. 

 

The general tendency of decreasing subjective intensity rating with increasing frequency 

for each r.m.s. test amplitude was found to be similar to that found by means of 

sinusoidal vibration stimuli. However, the equal sensation curves obtained using band-

limited random vibration stimuli were generally steeper in the shape in the frequency 

interval from 3 to 400 Hz, with deeper dips in the vicinity of 100 Hz than those obtained 

using sinusoidal vibration stimuli. These differences may be due to the characteristics of 

random vibration which produce generally higher crest factors than sinusoidal vibration. 

 

With regard to the differences of the equal sensation curves obtained between the males 

and the females, a similar tendency was found in both the equal sensation curves 

obtained using band-limited random vibration and those obtained using sinusoidal 

vibration. Females provided higher perceived intensity values than the males for the 

same physical stimulus at all frequencies above approximately 20 Hz, which is 

consistent with the results obtained using sinusoidal vibration. 
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Chapter 8 

 Effect of Physical Body Mass Difference on the 

Subjective Perceived Intensity of Steering Wheel 

Vibration  

 

8.1 Introduction 

 

From the results of the experiments which were described in the previous two chapters, 

it was noted that male subjects were less sensitive than female subjects in terms of their 

subjective response to steering wheel hand-arm vibration. However, it was not possible 

from those tests to establish whether the differences are sensory or, instead, 

biomechanical in nature, because the male test participants also differed from the female 

participants in terms of their body mass (p<0.05). In fact, body mass is one of the 

principle determinants for the energy absorptions in both whole-body vibration (Wang 

et al., 2006) and hand-arm vibration (Burström and Lundström, 1994). 

 

This chapter therefore describes an experiment which investigated the effect of physical 

body mass on the subjective response. A psychophysical experimental was performed in 

which the test participants were separated into two groups: one consisting of individuals 
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with small overall body mass and one consisting of individuals of large overall body 

mass.  

 

8.2 Laboratory Based Experimental Testing of the Effect of Physical 

Body Mass 

 

The laboratory based experiment described in this chapter was performed using 

sinusoidal vibration. The test facility, test stimuli and the test protocol were the same as 

described in this thesis in sections 6.2.1, 6.3.1 and 6.3.3. 

 

8.2.1 Test Subjects 

 

A total of 40 university students and staff, 20 light participants and 20 heavy 

participants, were randomly selected to participate in the experiment. Those of less than 

65 kg of body mass were classified into the light body mass group, while the other 

participants who were more than 65kg were assigned to the heavy body mass group. 

The value of 65 kg was used because it was the median value of the subjects who 

participated in the experiment. Each group consisted of 10 males and 10 females in 

order to avoid the possible effect of gender. 

 

A consent form and a short questionnaire were presented to each participant prior to 

testing, and information was gathered regarding their anthropometry, health and history 

of previous vibration exposures. Table 8.1 presents a basic summary of the physical 

characteristics of the test participants in terms of the mean value and the standard 

deviation of the age, height and mass. A statistical t-test performed for the test groups 

suggested significant differences in height and mass between the light and the heavy test 

participants (p<0.05), while no significant differences were found in age. All subjects 

declared themselves to be in good physical and mental health. 

 

[Table 8.1] Mean and standard deviation summary statistics for the test participants. 

Test Group Age [years] Height [m] Mass [kg] 

Lighter (n=20) 

Heavier (n=20) 

Total (N=40) 

30.6 (7.2) 

33.4 (7.1) 

32.0 (7.2) 

1.66 (0.08) 

1.75 (0.11) 

1.71 (0.10) 

57.4 (5.2) 

78.5 (12.0) 

68.0 (14.1) 
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8.2.2 Results for the complete test group 
 

Table 8.2 presents the mean and one standard deviation values obtained for each 

frequency and each amplitude tested for the complete 40 participants. The results 

obtained from this experiment were not significantly different from those obtained in 

the previous experiment for the effect of gender which was described in chapter 6. A t-

test performed at a 5% confidence level (p>0.05) found no statistically significant 

difference, at any frequency or amplitude, between the mean value of the new data set 

and the results from the experiment which was described in chapter 6. 

 

[Table 8.2] Summary of the subjective response of the complete group of 40 test 

subjects to sinusoidal steering wheel vibration, obtained by means of Borg CR10 scale. 
Freq. Acceleration Subjective 

response 

Standard 

deviation 

 Freq. Acceleration Subjective 

response 

Standard 

deviation [Hz] [r.m.s. m/s2]  [Hz] [r.m.s. m/s2] 

3 0.08 

0.17 

0.49 

1 

0.6  

1.51  

2.67  

4.43 

0.4  

0.65  

1.03  

1.3 

 40 0.17 

0.8 

1.71 

7.91 

0.72  

1.95  

2.47  

6.23 

0.51  

0.81  

1.03  

2.69 

4 0.13 

0.32 

0.5 

1.26 

0.7  

1.58  

2.5  

4.06 

0.55  

0.78  

0.72  

1.48 

 50 0.08 

0.38 

3.98 

19 

0.17  

1.11  

3.68  

7.46 

0.18  

0.63  

1.3  

2.9 

5 0.08 

0.23 

1.07 

3 

0.46  

1.49  

4.55  

6.32 

0.51  

0.8  

1.25  

1.69 

 63 0.18 

0.85 

1.88 

9.09 

0.8  

1.61  

2.52  

4.42 

0.58  

0.87  

1.09  

1.84 

6.3 0.14 

0.45 

0.81 

2.58 

1.35  

2.24  

3.95  

6.67 

0.71  

0.77  

1.26  

1.65 

 80 0.07 

0.36 

4.26 

22 

0.18  

1.16  

3.35  

6.62 

0.2  

0.74  

1.36  

2.09 

8 0.08 

0.28 

1.75 

6 

0.35  

2.21  

4.78  

8.78 

0.27  

0.81  

1.18  

2.03 

 100 0.06 

0.78 

1.84 

10.2 

0.08  

1.52  

1.85  

4.35 

0.16  

0.67  

0.9  

2.12 

10 0.15 

0.56 

1.07 

3.92 

0.84  

2.01  

3.62  

6.31 

0.57  

0.67  

1.38  

1.41 

 125 0.06 

0.34 

4.46 

25 

0.12  

1.15  

2.61  

5.25 

0.18  

0.7  

1.26  

2.65 

12.5 0.08 

0.3 

2.15 

8 

0.34  

1.35  

5.17  

8.07 

0.26  

0.61  

1.59  

1.93 

 160 0.04 

0.64 

1.62 

10.31 

0.05  

1.22  

2.18  

3.88 

0.11  

0.72  

1.05  

1.73 

16 0.16 

0.63 

1.26 

5.02 

0.69  

2.26  

3.17  

6.86 

0.37  

0.64  

0.76  

2.25 

 200 0.06 

0.34 

4.71 

27 

0.1  

0.78  

2.51  

4.19 

0.18  

0.63  

1.19  

2.35 

20 0.08 

0.34 

2.87 

12 

0.15  

1.5  

4.46  

8.44 

0.17  

0.72  

1.3  

2.3 

 250 0.15 

1.41 

2.98 

13.27 

0.2  

1.4  

1.99  

3.24 

0.27  

0.9  

1.24  

1.55 

25 0.17 

0.73 

1.53 

6.69 

0.52  

1.75  

3.35  

6.1 

0.35  

0.89  

1.16  

1.9 

 315 0.4 

1.36 

8.53 

0.4 

1.18 

2.73 

0.45 

0.93 

1.7 

31.5 0.08 

0.36 

3.52 

16 

0.19  

1.06  

4.12  

8.15 

0.21  

0.56  

1.68  

2.04 

 400 0.8 

3.78 

6.35 

0.65 

1.92 

2.19 

0.61 

1.62 

1.31 
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The stepwise regression procedure was again employed to produce equal sensation 

curves for Borg subjective perceived intensity values from 0.5 to 8.0 obtained from the 

experiment (n = 40) because it again provided the best fit regression model with respect 

to the other regression procedures presented in chapter 6 (n = 40). Table 8.3 presents the 

goodness of fit statistics obtained for the regression model by means of the stepwise 

regression procedure implemented by Matlab software (Mathworks Inc., 2002). The 

same selection criteria were adopted to rate the quality of the fit of the correlation 

equation. The stepwise regression procedure provided a residual mean square (MSE) 

value of 0.073 and an adjusted coefficient of determination ( 2
aR ) value of 0.985. 

 

[Table 8.3] Goodness of fit statistics obtained for overall data set (n = 40). 

 

For the complete group of 40 test participants the stepwise regression procedure 

produced a 6
th

 order polynomial regression model with 12 regression coefficients. The 

best fit model was  

 

S = 3.8812 – 0.4091log(f) + 2.3672log(a) + 0.544log(a)
2
 – 0.218log(f)

3
 + 

   – 0.1063log(f)
2
log(a) – 0.09log(f)log(a)

2
 + 0.0436log(a)

3
 + 0.0469log(f)

4
 + 

   – 0.0004log(f)
6
 + 0.0003log(f)

5
log(a) – 0.0003log(f)

3
log(a)

3               (8.1) 

 

where S is the Borg CR10 subjective intensity value which is determined by the fitted 

model, f is the frequency in units of Hertz and a is the r.m.s. acceleration magnitude in 

units of meters per second squared. 

 

Figure 8.1 presents the family of the equal sensation curves defined by equation 8.1, 

which was determined using sinusoidal vibration obtained data and the stepwise 

regression procedure. The equal sensation curves obtained for the complete group of 40 

Regression 

method 

Polynomial 

order 

Residual mean 

square 

(MSE) 

Adjusted coefficient of 

determination 

(
2
aR ) 

Number of 

regression 

coefficients 

Stepwise 

procedure 
6

th
 0.073 0.985 12 
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participants were not significantly different from those obtained in the previous 

experiment for the effect of gender which was described in chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 8.1] Equal sensation curves for the complete group of 40 participants obtained 

for Borg subjective perceived intensity values from 0.5 to 8.0 using the regression 

formula obtained for sinusoidal vibration. 

 

8.2.2.1 Results for the two test groups that were subdivided according to Physical 

Body Mass 

Table 8.4 presents the mean and one standard deviation values obtained for each 

frequency and each amplitude for the light and heavy body mass groups consisting of 

20 test participants respectively. The subjective response values of the light participants 

were generally higher than those of the heavy participants. Significant differences were 

found in Borg CR10 values at frequencies from 6.3 to 100 Hz obtained between the 

subjective responses of the light and heavy participants at a 5 % confidence level 

(p<0.05). 

 

Table 8.5 presents the goodness-of-fit statistics obtained for the regression models 

which were fit separately to the data of only the light participants (n = 20) and of only 

the heavy participants (n = 20) by means of the stepwise regression procedure. The 

model order which provided the best results for the complete dataset was applied also to 
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the data obtained for each individual body mass group. The stepwise regression 

procedure provided an MSE value of 0.147 and a value of 0.975 for 2
aR  for the light 

test participants, while it produced an MSE value of 0.06 and a value of 0.986 for 2
aR  

for the heavy test participants. 

 

 

[Table 8.4] Summary of the subjective response obtained separately for the light test 

participants data set (n = 20) and for the heavy test participants data set (n = 20) by 

means of Borg CR10 scale. 

Freq. Acceleration Lighter Heavier  Freq. Acceleration Lighter Heavier 

[Hz] [r.m.s. m/s2] Borg SD Borg SD  [Hz] [r.m.s. m/s2] Borg SD Borg SD 

3 0.08 

0.17 

0.49 

1 

0.61  

1.72  

2.57  

4.54 

0.35  

0.68  

0.81  

1.24 

0.59 

1.3 

2.77 

4.32 

0.46 

0.56 

1.23 

1.37 

 40 0.17 

0.8 

1.71 

7.91 

0.85 

2.3 

2.8 

7.38 

0.52 

0.86 

1.09 

3.22 

0.58 

1.61 

2.14 

5.09 

0.47 

0.59 

0.88 

1.31 

4 0.13 

0.32 

0.5 

1.26 

0.66  

1.45  

2.53  

3.8 

0.59  

0.59  

0.74  

1.18 

0.73 

1.72 

2.47 

4.33 

0.52 

0.92 

0.72 

1.72 

 50 0.08 

0.38 

3.98 

19 

0.16 

1.34 

3.79 

8.61 

0.16 

0.74 

1.32 

3.46 

0.18 

0.89 

3.57 

6.32 

0.2 

0.41 

1.36 

1.6 

5 0.08 

0.23 

1.07 

3 

0.48 

1.33 

4.68 

6.41 

0.65 

0.7 

1.31 

1.75 

0.44 

1.65 

4.42 

6.23 

0.33 

0.88 

1.22 

1.67 

 63 0.18 

0.85 

1.88 

9.09 

0.93 

1.73 

2.79 

4.84 

0.63 

0.95 

1.3 

1.84 

0.67 

1.49 

2.24 

4 

0.51 

0.79 

0.76 

1.79 

6.3 0.14 

0.45 

0.81 

2.58 

1.64 

2.4 

4.44 

6.79 

0.73 

0.63 

1.17 

1.74 

1.07 

2.08 

3.46 

6.59 

0.57 

0.88 

1.17 

1.59 

 80 0.07 

0.36 

4.26 

22 

0.2 

1.29 

3.84 

7 

0.22 

0.77 

1.6 

1.98 

0.16 

1.03 

2.85 

6.25 

0.17 

0.71 

0.85 

2.17 

8 0.08 

0.28 

1.75 

6 

0.45 

2.56 

4.77 

9.42 

0.29 

0.8 

1.18 

2.19 

0.25 

1.86 

4.78 

8.14 

0.21 

0.67 

1.22 

1.68 

 100 0.06 

0.78 

1.84 

10.2 

0.08 

1.69 

2.06 

5.07 

0.15 

0.74 

0.86 

2.56 

0.09 

1.36 

1.64 

3.64 

0.18 

0.56 

0.91 

1.29 

10 0.15 

0.56 

1.07 

3.92 

0.9 

2.1 

4.17 

6.57 

0.61 

0.6 

1.46 

1.54 

0.78 

1.91 

3.08 

6.06 

0.53 

0.75 

1.09 

1.27 

 125 0.06 

0.34 

4.46 

25 

0.12 

1.4 

2.79 

6 

0.19 

0.84 

1.35 

3.26 

0.13 

0.9 

2.43 

4.49 

0.17 

0.43 

1.16 

1.62 

12.5 0.08 

0.3 

2.15 

8 

0.36 

1.6 

5.56 

8.2 

0.32 

0.63 

1.72 

2.14 

0.33 

1.1 

4.79 

7.95 

0.2 

0.48 

1.39 

1.75 

 160 0.04 

0.64 

1.62 

10.31 

0.03 

1.27 

2.32 

3.93 

0.08 

0.77 

1.2 

1.72 

0.07 

1.17 

2.04 

3.84 

0.13 

0.69 

0.87 

1.78 

16 0.16 

0.63 

1.26 

5.02 

0.79 

2.41 

3.28 

7.35 

0.42 

0.67 

0.82 

2.53 

0.59 

2.12 

3.06 

6.37 

0.29 

0.6 

0.7 

1.86 

 200 0.06 

0.34 

4.71 

27 

0.09 

0.78 

2.59 

4.91 

0.18 

0.8 

1.15 

2.92 

0.11 

0.78 

2.44 

3.48 

0.18 

0.42 

1.25 

1.33 

20 0.08 

0.34 

2.87 

12 

0.15 

1.73 

4.63 

9.18 

0.17 

0.77 

1.49 

2.56 

0.16 

1.26 

4.29 

7.7 

0.16 

0.59 

1.1 

1.77 

 250 0.15 

1.41 

2.98 

13.27 

0.2 

1.3 

2.06 

3.48 

0.32 

0.92 

1.42 

1.62 

0.2 

1.5 

1.92 

3.01 

0.23 

0.89 

1.05 

1.48 

25 0.17 

0.73 

1.53 

6.69 

0.72 

2.06 

3.53 

6.43 

0.35 

0.9 

1.26 

2.03 

0.31 

1.44 

3.18 

5.77 

0.2 

0.78 

1.06 

1.75 

 315 0.4 

1.36 

8.53 

0.36 

1.04 

3.01 

0.49 

0.97 

2.14 

0.44 

1.31 

2.44 

0.41 

0.9 

1.11 

31.5 0.08 

0.36 

3.52 

16 

0.22 

1.22 

4.62 

8.6 

0.24 

0.62 

1.96 

2.11 

0.16 

0.91 

3.62 

7.71 

0.17 

0.46 

1.19 

1.92 

 400 0.8 

3.78 

6.35 

0.52 

1.99 

2.21 

0.53 

2.04 

1.4 

0.78 

1.85 

2.17 

0.67 

1.11 

1.24 
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[Table 8.5] Goodness of fit statistics obtained separately for the light participants data 

set (n = 20) and for the heavy participants data set (n = 20). 

 

For the light group of 20 test participants the stepwise regression procedure produced a 

6
th

 order polynomial regression model with 12 regression coefficients. The best fit 

model was 

 

S = 3.7106 + 0.5765log(f) + 2.3673log(a) + 0.5571log(a)
2
 – 0.2137log(f)

3
 + 

   – 0.1007log(f)
2
log(a) – 0.0883log(f)log(a)

2
 + 0.0537log(a)

3
 + 0.0442log(f)

4
 + 

   – 0.0004log(f)
6
 + 0.0003log(f)

5
log(a) – 0.0003log(f)

3
log(a)

3               (8.2) 

 

For the heavy group of 20 test participants the stepwise regression procedure also 

produced a 6
th

 order polynomial regression model with 12 regression coefficients. The 

best fit model was 

 

S = 4.0526 + 0.2414log(f) + 2.3672log(a) + 0.53091log(a)
2
 – 0.2222log(f)

3
 + 

   – 0.1119log(f)
2
log(a) – 0.0918log(f)log(a)

2
 + 0.0336log(a)

3
 + 0.0496log(f)

4
 + 

   – 0.0005log(f)
6
 + 0.0003log(f)

5
log(a) – 0.0002log(f)

3
log(a)

3               (8.3) 

 

Figure 8.2 compares the two families of equal sensation curves obtained for the light 

test participants (n = 20) and the heavy test participants (n = 20). The light participants 

rated the subjective intensity generally higher than the heavy participants for the same 

vibration stimulus, especially in the frequency range from 6.3 to 100 Hz.  

 

 

 

Regression 

method 

Body 

mass 

Polynomial 

order 

Residual 

mean square 

(MSE) 

Adjusted coefficient 

of determination 

( 2
aR ) 

Number of 

regression 

coefficients 

Stepwise 

procedure 

Light 
6

th
 

0.147 0.975 12 

Heavy 0.06 0.986 12 



 128 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

[Figure 8.2] Equal sensation curves obtained separately for the light test participants and 

the heavy test participants using the regression formulas obtained for sinusoidal 

vibration. 

 

The differences were found to be similar to the results obtained using the sinusoidal 

vibration which was described in chapter 6 and the band-limited random vibration 

which was described in chapter 7. The equal sensation curves of the light participants 

resemble those of the female test participants, while those of heavy participants 

resemble those of the male test participants. In all three data sets the female or the light 

participants produced higher subjective response values than the male or the heavy 

participants, at frequencies above approximately 6.3 Hz. 

 

8.3 Discussion 

 

When the shapes of the equal sensation curves of Figure 8.2 are compared to those of 

Figure 7.5 from the two previous experiments it can be observed that the curves of the 

light test participants resemble those of the female subjects, while the curves of the 
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heavy test participants resemble those of the male subjects. As previously noted in the 

tests described in chapter 6 and 7, these differences were most obvious at frequencies in 

the range from approximately 6.3 to 100 Hz. For example, the subjective response of 

the light participants for the stimulus with amplitude of 1.0 m/s
2
 r.m.s. and frequency of 

30 Hz was approximately 2.5 on the Borg CR10 scale, while that of heavy participants 

for the same stimulus was approximately 2.0 on the Borg CR10 scale as shown in 

Figure 8.2.  

 

The differences between the light participants and the heavy participants are partially 

supported by the previous results of Giacomin and Abrahams (2000), who suggested 

that the light test subjects perceived greater discomfort than the heavy test subjects in 

their arms for the 4 and 8 Hz test frequencies. Another similar indication supporting the 

current result is that the size and mass of the subject‟s hand and arm greatly affect 

energy absorption (Burström and Lundström, 1994). From the results of this experiment 

it can therefore be suggested that the equal sensation curves for steering wheel 

rotational vibration differ mainly due to differences in body size, rather than differences 

of gender. 

 

8.4 Summary 

 

Psychophysical response tests of 40 test participants (20 lighter and 20 heavier) were 

performed in a steering wheel rotational vibration simulator using the category-ratio 

Borg CR10 scale procedure for direct estimation of perceived vibration intensity. The 

equal sensation curves for steering wheel hand-arm rotational vibration were established 

using sinusoidal vibration stimuli by means of a stepwise regression procedure. 

 

The results obtained from this experiment were not significantly different at a 5% 

confidence level (p>0.05) from those obtained in the previous experiment for the effect 

of gender which was described in chapter 6. The subjective response values of the light 

participants were generally higher than those of the heavy participants, suggesting that 

the equal sensation curves of the light test participants resemble those of the female 

subjects, while the equal sensation curves of the heavy test participants resemble those 

of the male subjects. 
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Significant differences were found in Borg CR10 values at frequencies from 6.3 to 100 

Hz between the light and heavy participants at a 5 % confidence level (p<0.05). For 

example, the subjective response of the light participants for the stimulus with 

amplitude of 1.0 m/s
2
 r.m.s. and frequency of 30 Hz was approximately 2.5 on the Borg 

CR10 scale, while that of heavy participants for the same stimulus was approximately 

2.0 on the Borg CR10 scale. From the results of this experiment it can therefore be 

suggested that the equal sensation curves for steering wheel rotational vibration differ 

mainly due to differences in body size rather than differences of gender, and that the 

lighter individuals suffer greater subjective intensity for the same physical intensity of 

steering wheel vibration. 
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Chapter 9 

 Human Subjective Response to Steering Wheel 

Hand-Arm Vibration consisting of Real Road 

Stimuli 

 

9.1 Introduction 

 

Current evaluation methods for the estimation of human subjective response to steering 

wheel rotational vibration in the automotive industry are based on the use of either the 

original (unweighted) acceleration signal, the ISO Wh frequency weighted acceleration 

signal or the Ws frequency weighted acceleration signal. Automobile steering system 

designers and noise, vibration and harshness (NVH) experts apply one of these 

frequency weightings to the acceleration data which they measure at the steering wheel. 

However, the estimation using any one of the current evaluation methods applies to all 

the vibrational data in the measurement regardless of the magnitude of the vibration. 

Further, it has been continuously suggested by researchers (Morioka and Griffin, 2006; 

Ajovalasit and Giacomin, 2009) that the use of only one weighting is not optimal to 

estimate the human perception at all vibrational magnitudes. Therefore the question has 

been raised regarding how many frequency weightings are necessary for quantifying the 
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human perception of steering wheel hand-arm vibration.  

 

From both previous research and from the findings described in this thesis it would 

appear that no single equal sensation curve, thus no single frequency weighting, would 

prove optimal at each point in time during a vibration measurement. In order to answer 

the question of how to best select frequency weightings, the research described in this 

chapter had the following objectives.  

 

 To quantify the human subjective response to representative driving conditions, i.e. 

real steering wheel road vibration stimuli. 

 To use a family of the equal sensation curves to obtain intensity estimates for the 

same set of representative driving conditions. 

 To establish the level of correlation between the subjective responses and the 

vibration metric obtained by means of the frequency weighting. 

 To use the test results to define recommendations regarding the choice of frequency 

weighting to use in automotive testing. 

 

9.2 Laboratory Based Experimental Testing using Real Road Stimuli 

 

A laboratory based experiment was carried out in order to obtain the subjective response 

to steering wheel hand-arm vibration using real road stimuli. The test facility was the 

same as described in this thesis in section 6.2.1. The test protocol was also the same as 

described in this thesis in section 6.3.3, except for the fact that the total elapsed time of 

the experiment was approximately 40 minutes rather than 60 minutes, due to use of only 

21 road stimuli with three repetitions. The perceived intensity of subjective response 

was quantified by means of a Borg CR10 scale, as in the previous experiments which 

used sinusoidal or band-limited random vibration at the steering wheel. 

 

9.2.1 Test Stimuli 

 

The 21 road stimuli presented in chapter 5 can be considered to be typical of the 

automotive steering vibration problem, thus useful for the purpose of defining  

laboratory-based experiments which are representative of the automobile environment. 
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The selected group of stimuli respect the five criteria which were established in chapter 

5 for the purpose of obtaining steering wheel vibrations for use in the study of the 

human perception of steering wheel hand-arm vibration. 

 

Table 9.1 presents the global statistics of the 21 road stimuli. The root mean square 

(r.m.s.) amplitude levels are from a minimum of 0.056 m/s
2
 for the tarmac surface to a 

maximum of 1.987 m/s
2
 for the service surface. The kurtosis values are from 2.925 to 

17.117 while the skewness values were from -0.22 to 1.209. The maximum crest factor 

(CF) was 5.95 and was for the low bump surface, while the minimum CF was 3.435 and 

was for the tarmac surface. The root mean quad (r.m.q.) values varied from a minimum 

of 0.074 m/s
2
 for the tarmac surface to a maximum of 2.725 m/s

2
 for the service surface.  

 

[Table 9.1] Global statistical properties of the 21 steering wheel rotational road stimuli 

used the laboratory experimental testing. 

Type of road 

Global Statistics and Characteristics 

Speed 

(km/h) 

r.m.s. 

(m/s
2
) 

r.m.q 

(m/s
2
) 

Kurtosis Skewness 
Crest 

Factor 

Service 

Country lane 

Broken lane 

Broken concrete 

UK City Street 

Harsh 

Broken Road 

Cats-eye 

Motorway 

Gravel 

Manhole Cover 

Bump 

Noise 

Expansion Joints 

Stone on Road 

Low bump 

Cobblestone 

Slabs 

Concrete 

Coarse Asphalt 

Tarmac 

80 

40 

40 

50 

90 

40 

40 

100 

110 

80 

60 

60 

80 

16 

20 

50 

30 

96 

96 

96 

96 

1.987 

1.982 

1.858 

1.673 

1.394 

1.32 

1.218 

1.132 

1.132 

1.066 

0.966 

0.916 

0.711 

0.705 

0.665 

0.315 

0.278 

0.182 

0.117 

0.095 

0.056 

 

2.725 

2.68 

2.529 

2.286 

2.047 

2.523 

1.715 

1.578 

1.514 

1.415 

1.328 

1.569 

0.955 

1.243 

1.16 

0.509 

0.377 

0.281 

0.164 

0.136 

0.073 

 

3.85 

3.438 

3.799 

3.194 

5.119 

17.117 

3.935 

4.677 

3.066 

2.998 

3.263 

10.164 

2.925 

10.291 

11 

8.064 

3.18 

5.275 

3.461 

4.207 

3.101 

0.169 

-0.048 

-0.06 

0.013 

-0.081 

1.047 

-0.062 

-0.158 

0.073 

-0.055 

0.011 

0.158 

-0.056 

1.209 

-0.016 

-0.22 

0.069 

0.133 

-0.001 

0.177 

0.091 

4.182 

3.534 

4.225 

3.458 

5.488 

6.886 

4.101 

4.249 

3.706 

3.687 

4.282 

6.324 

3.55 

5.173 

6.441 

5.95 

4.336 

5.388 

3.823 

4.236 

3.435 

 

The 21 road surface stimuli were repeated three times in three single blocks, for a total 

of 63 assessment trials for each participant. The mean Borg CR10 values of the three 

repetitions, and the standard deviation Borg CR10 values, were calculated for each 
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stimulus. In order to minimize any possible bias resulting from learning or fatigue 

effects, the order of presentation of the test signals was randomised for each subject for 

each block. A break of 1 minute after the presentation of each block was used to reduce 

annoyance effects. A seven second stimulus duration was used so as to provide a 

vibrotactile stimulus which remained within human short-term memory (Sinclair and 

Burton, 1996), thus a stimulus which could be judged without reliance upon the long-

term storage of stimuli information by the test participant. A complete session required 

approximately 40 minutes to complete with one participant. The test procedure adhered 

to the fixed phases and the mean time durations outlined in Table 9.2. 

 

[Table 9.2] Steering wheel rotational vibration testing protocol. 

Phase Tasks Performed and Information Obtained 

Consent form and 

questionnaire 

( ~ 3 minutes) 

The participant was asked to read the instructions and intended purpose 

of the experiments and to sign a consent form. Each subject also 

completed a questionnaire concerning age, height, mass, health and 

previous exposure to vibration. 

Measurement of 

postural angles 

( ~ 3 minutes) 

The participant was asked to remove heavy clothing, watches and 

jewellery. Sitting posture angles were measured using a full circle 

goniometer and adjusted into the standard comfort range so as to 

minimise individual postural differences. 

Preparation for test 

( ~ 1 minute) 

The participant was asked to wear ear protectors and to close eyes 

before gripping the steering wheel. The grip strength was suggested to 

be that required to drive an automobile over a country road. Once 

comfortable with the grip, the participant was asked to keep it constant 

during all tests. 

Familiarization for 

test 

( ~ 1 minutes) 

The participant was given a verbal introduction to the experiment. The 

range of experimental frequencies and amplitudes applied so as to 

familiarise the subject with the stimuli. 

Perception testing 

( ~ 27 minutes) 

The participant performed psychophysical tests of hand-arm vibration 

with the 21 road surface stimuli presented in random order so as to 

avoid learning or fatigue effects. The 21 road surface stimuli were 

repeated three times. Each stimulus lasted 7 seconds to each subject. 

Breaks 

( ~ 5 minutes) 

A short break of 1 minute was made every 21 stimuli so as to avoid 

annoyance effects. 

 

9.2.2 Test Subjects 

 

A total of 40 university students and staff, 20 light participants and 20 heavy 

participants, were randomly chosen to participate in this experiment. The participants 

below 67 kg of body mass were classified into the light body mass group, while the 
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participants of more than 67kg of body mass were classified as belonging to the heavy 

body mass group. The value of 67 kg was used as a reference value because it was the 

median value of the subjects who participated in the experiment. Each body mass group 

consisted of 10 males and 10 females in order to avoid the possible effect of gender. A 

consent form and a short questionnaire were presented to each participant prior to 

testing, and information was gathered regarding their anthropometry, health and history 

of previous vibration exposures. Table 9.3 presents the mean value and the standard 

deviation of the age, height and mass of the light body mass group, the heavy body 

mass group, and of both groups together. A statistical t-test performed for the two test 

groups suggested significant differences in height and mass between the heavy 

participants and the light participants (p<0.05), while no significant differences were 

found in age between the light participants and the heavy participants. All subjects 

declared themselves to be in good physical and mental health. 

 

[Table 9.3] Mean and standard deviation summary statistics for the test participants. 

 

9.2.3 Results 

 

Each of the 21 road surface stimuli was presented 3 times to each of the 40 test 

participants. Hence a total of 120 intensity estimates were collected for each driving 

condition. Table 9.4 presents the mean and standard deviation of the Borg CR10 

perceived intensity of steering wheel vibration, as judged by the complete group of 40 

test subjects for each of the road surfaces. Table 9.4 also reports the subjective ratings 

for the light body mass group (n = 20) and the heavy body mass group (n = 20) 

individually. The general tendency was that the human subjective response increased 

with increasing amplitude level of the stimuli, as expected from the results of the 

previous literature (Verrillo et al., 1969; Wos et al., 1988a; Ajovalasit and Giacomin, 

2009) and from the experiments described in this thesis. 

 

It can be observed from the test data that the perceived intensity values spread from 0.2 

to 6.3 on the Borg CR10 scale, which represents the range of semantic expressions from 

Test Group Age [years] Height [m] Mass [kg] 

Light (n=20) 

Heavy (n=20) 

Total (N=40) 

28.4 (5.9)  

31.9 (5.5)  

30.1 (5.9)  

1.67 (0.07) 

1.75 (0.11) 

1.71 (0.10) 

57.0 (6.2) 

79.3 (11.8) 

68.1 (14.6) 
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extremely weak to strong. This dynamic range of the perceived intensity for the 21 road 

surfaces is similar to that reported by Gnanasekaran et al. in their 2006 study of the 

subjective response to steering wheel vibration. 

 

With regard to the difference between the subjective responses obtained from the light 

and heavy body mass groups shown in Table 9.4, the subjective responses of the light 

participants were generally higher than those of the heavy participants, which was 

consistent with the results of the equal sensation curves obtained for the light and heavy 

participants investigated in the previous chapters.  

 

[Table 9.4] Mean and standard deviation Borg CR10 subjective intensity values 

obtained for the complete group of test participants and for the light and heavy 

subgroups, for each road stimuli. 

Road surfaces 
Unweighted 

r.m.s. [m/s
2
] 

Mean CR10 subjective response (Standard deviation) 

Complete Group Light Heavy 

Country lane 1.98 6.3 (1.8) 6.8 (2.0) 5.6 (1.4) 

Service 1.99 5.9 (1.7) 6.3 (1.8) 5.2 (1.5) 

Broken lane 1.86 5.2 (1.4) 5.5 (1.4) 4.6 (1.0) 

Broken concrete 1.67 4.8 (1.4) 5.3 (1.6) 4.0 (0.7) 

Bump 0.92 4.7 (1.3) 4.8 (1.3) 4.3 (1.3) 

Harsh 1.32 4.6 (1.3) 4.8 (1.6) 4.2 (0.8) 

UK City Street 1.39 4.5 (1.3) 4.9 (1.5) 3.9 (0.9) 

Motorway 1.13 3.8 (1.0) 4.0 (1.3) 3.5 (0.7) 

Broken Road 1.22 3.8 (1.0) 4.0 (1.3) 3.3 (0.5) 

Manhole Cover 0.97 3.7 (1.1) 3.9 (1.3) 3.3 (0.8) 

Expansion Joints 0.71 3.6 (1.0) 3.5 (1.1) 3.3 (0.9) 

Cats-eye 1.14 3.4 (0.9) 3.6 (1.0) 3.0 (0.6) 

Gravel 1.07 3.4 (0.8) 3.5 (1.0) 3.1 (0.6) 

Stone on Road 0.67 3.0 (0.9) 3.0 (0.9) 2.8 (0.9) 

Noise 0.71 2.7 (0.8) 2.7 (0.9) 2.6 (0.6)  

Low bump 0.32 1.6 (0.8) 1.5 (0.8) 1.6 (0.8) 

Cobblestone 0.28 1.3 (0.6) 1.3 (0.6) 1.3 (0.7) 

Slabs 0.18 1.0 (0.7) 0.9 (0.6) 1.1 (0.7) 

Concrete 0.12 0.8 (0.6) 0.8 (0.5) 0.9 (0.6) 

Coarse Asphalt 0.10 0.4 (0.4) 0.4 (0.3) 0.4 (0.4) 

Tarmac 0.06 0.2 (0.2) 0.1 (0.2) 0.2 (0.2) 

 

9.3 Discussion 

 

From the results presented in Table 9.4 it can be observed that the perceived intensity 

obtained using the 21 road surfaces produced a dynamic range of Borg CR10 scale from 

0.2 to 6.3. The range can be split into three segments based on the different semantic 

expressions of Borg CR10 scale: weak (2.0) for the road surfaces from tarmac to low 
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bump, moderate (3.0) for the road surfaces from noise to motorway and strong (5.0) for 

the road surfaces from UK city street to country lane. 

 

Considering the three intensity segments, it can be hypothesised that each may possibly 

require a different frequency weighting because the results presented in the previous 

chapters suggest that each level of Borg CR10 scale intensity produces an equal 

sensation curve of different shape in the frequency and amplitude plane. In practice, the 

three semantic segments may be connected to the road surface stimuli groups which can 

be divided based on the acceleration magnitude: low, medium and high. For example, 

the weak segment of Borg CR10 scale may be connected to the low amplitude group 

while the moderate segment may be connected to the medium amplitude group and the 

strong segment may be connected to the high amplitude group. Support for the 

hypothesis that each amplitude group may require a different frequency weighting can 

also be found in the previous research (Morioka and Griffin, 2006; Gnanasekaran et al., 

2006; Ajovalasit and Giacomin, 2009) which have suggested that different frequency 

weightings are necessary to estimate human perception at different vibration magnitudes. 

 

9.4 Frequency Weightings developed from the Equal Sensation Curves 

 

In order to construct the frequency weightings from the equal sensation curves, the data 

of each equal sensation curve was first normalised to the lowest stimuli intensity found 

on the curve. The frequency weighting was then achieved by taking the reciprocal of 

each data point on the curve. 

 

In order for the frequency weighting to accommodate a wide frequency range, 

extrapolation was performed from 400 Hz to 2000 Hz, which is the recommended 

frequency range limit for a test of hand-arm vibration as suggested by ISO 8041 (2005). 

The normalised values of each frequency weighting were extended with a slope of -20 

dB per octave in the frequency range from 400 to 2000 Hz. For the extension at 

frequencies below 3Hz, a slope of -6 dB per octave was chosen based on the slope of 

the existing frequency weightings Wh (ISO 5349-1, 2001) and Ws (Giacomin et al., 

2004) in the frequency range from 1 to 3 Hz. In summary, a total frequency bandwidth 

from 1 to 2000 Hz was obtained for use in filtering automotive vibration signals. The 
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frequency weightings were achieved, and checked to be within a 2% accuracy limit in 

terms of filter gain across the frequency range, within the LMS T-MON software (LMS 

International Inc., 2002). Appendix D of this thesis provides an example of the 

procedure which was used to develop each of the frequency weighting filters. 

 

Figure 9.1 presents the frequency weightings which were obtained for the Borg CR10 

intensity values of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0 and 8.0. The frequency 

weighting which were defined based on the equal sensation curves from the tests which 

used sinusoidal stimuli are labelled Wssn, while those from tests which used random 

stimuli are labelled Wsrn. The numeral suffixes 'n' in Wssn and Wsrn indicate the Borg 

perceived intensity value (n = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0). 

 

Figure 9.1 also compares the families of the Wssn and Wsrn weightings with the existing 

Wh weighting and Ws weighting. Like the Ws frequency weighting, all curves of Wssn 

and Wsrn have greater gains than the Wh weighting at frequencies below approximately 

6.3 Hz. The Wssn weightings obtained from Borg CR10 0.5 to 3.0 (i.e. from Wss0.5 to 

Wss3.0) and the Wsrn weightings obtained from Borg CR10 0.5 to 2.5 (i.e. from Wsr0.5 to 

Wsr2.5) also have greater gains than the Wh weighting at frequencies above 

approximately 25 Hz and 40 Hz, respectively. In contrast, the Wssn weightings obtained 

from Borg CR10 4.0 to 8.0 (i.e. from Wss4.0 to Wsr8.0) and the Wsrn weightings obtained 

from Borg CR10 3.0 to 8.0 (i.e. from Wsr3.0 to Wsr8.0) suggest a lower gain than the Wh 

weighting at frequencies above approximately 6.3 Hz. 

 

Comparison of the newly defined frequency weightings to the standard Wh weighting 

suggests that the Wh weighting underestimates human perception of hand-arm vibration 

at frequencies below approximately 6.3 Hz and above approximately 25 Hz for the low 

subjective intensities below approximately Borg CR10 2.5. Further, the Wh weighting 

overestimates human perception of hand-arm vibration at frequencies above 

approximately 25 Hz for the high subjective intensities above approximately Borg 

CR10 3.0 or 4.0 for the Wssn and Wsrn weightings, respectively. 
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[Figure 9.1] Comparisons the existing frequency weightings Wh (ISO 5349-1, 2001) and 

Ws (Giacomin et al., 2004) to the (a) Wssn and (b) Wsrn frequency weightings obtained 

from the equal sensation curves using sinusoidal and band-limited random steering 

wheel rotational vibration respectively. 

 

9.4.1 Estimates obtained by means of the Frequency Weightings 

 

The LMS T-MON software digital filter implementations of all the frequency 

weightings Wh, Ws, Wssn and Wsrn were used to filter the 21 steering wheel stimuli so 

as to obtain numerical estimates of the subjectively perceived intensity. Table 9.5 

presents the r.m.s. acceleration magnitudes of the unweighted, the Wh weighted, the Ws 

weighted, and both the Wssn and Wsrn weighted signals.
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[Table 9.5] The r.m.s. acceleration magnitudes of the unweighted, the Wh weighted, the Ws weighted and both the Wssn and Wsrn weighted 

signals along with the corresponding mean Borg CR10 subjective response value for the stimulus. 

Road surfaces 

Mean 

Perceived 

Intensity 

Unweighted Wh weighted Ws weighted Wssn weighted r.m.s.[m/s2] 

 

Wsrn weighted r.m.s.[m/s2] 

[Borg value] r.m.s.[m/s2] r.m.s.[m/s2] r.m.s.[m/s2] Wss0.5 Wss1.0 Wss1.5 Wss2.0 Wss2.5 Wss3.0 Wss4.0 Wss5.0 Wss6.0 Wss7.0 Wss8.0  Wsr0.5 Wsr1.0 Wsr1.5 Wsr2.0 Wsr2.5 Wsr3.0 Wsr4.0 Wsr5.0 Wsr6.0 Wsr7.0 Wsr8.0 

Country lane 6.3 1.98 1.22 0.75 1.20 1.14 1.11 1.07 1.04 1.01 0.97 0.92 0.88 0.85 0.83  0.86 0.81 0.78 0.76 0.74 0.73 0.70 0.68 0.66 0.65 0.63 

Service 5.9 1.99 1.04 0.55 1.05 0.97 0.92 0.89 0.85 0.82 0.78 0.73 0.70 0.68 0.66  0.75 0.68 0.64 0.61 0.59 0.57 0.54 0.52 0.51 0.50 0.48 

Broken lane 5.2 1.86 0.94 0.65 1.05 0.97 0.92 0.89 0.86 0.84 0.80 0.76 0.73 0.71 0.69  0.80 0.72 0.67 0.65 0.63 0.62 0.60 0.59 0.57 0.56 0.55 

Broken concrete 4.8 1.67 0.80 0.44 0.89 0.80 0.75 0.71 0.68 0.66 0.62 0.58 0.55 0.53 0.51  0.65 0.57 0.52 0.49 0.47 0.45 0.43 0.41 0.40 0.39 0.38 

Bump 4.7 0.92 0.60 0.37 0.57 0.55 0.54 0.53 0.51 0.50 0.48 0.45 0.44 0.42 0.41  0.40 0.39 0.39 0.38 0.37 0.37 0.35 0.34 0.33 0.33 0.32 

Harsh 4.6 1.32 0.52 0.30 0.66 0.57 0.53 0.50 0.47 0.45 0.42 0.40 0.38 0.36 0.35  0.49 0.42 0.38 0.35 0.33 0.32 0.30 0.29 0.28 0.28 0.27 

UK City Street 4.5 1.39 0.70 0.41 0.74 0.68 0.65 0.63 0.60 0.58 0.55 0.53 0.51 0.49 0.48  0.54 0.50 0.47 0.45 0.43 0.42 0.41 0.39 0.38 0.38 0.37 

Motorway 3.8 1.13 0.54 0.31 0.59 0.53 0.50 0.47 0.45 0.44 0.41 0.39 0.38 0.36 0.35  0.46 0.39 0.35 0.33 0.32 0.31 0.30 0.29 0.28 0.27 0.27 

Broken 3.8 1.22 0.45 0.32 0.51 0.47 0.45 0.44 0.42 0.41 0.39 0.37 0.36 0.35 0.34  0.38 0.35 0.33 0.32 0.32 0.31 0.30 0.29 0.28 0.28 0.28 

Manhole Cover 3.7 0.97 0.48 0.26 0.53 0.48 0.45 0.43 0.41 0.39 0.37 0.35 0.33 0.32 0.31  0.38 0.34 0.31 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.23 

Expansion Joints 3.6 0.71 0.38 0.28 0.41 0.39 0.38 0.37 0.36 0.35 0.34 0.32 0.32 0.31 0.30  0.31 0.30 0.29 0.28 0.28 0.27 0.27 0.26 0.26 0.25 0.25 

Cats-eye 3.4 1.13 0.38 0.23 0.52 0.45 0.41 0.38 0.36 0.34 0.32 0.30 0.28 0.27 0.27  0.41 0.33 0.29 0.26 0.25 0.24 0.23 0.22 0.21 0.21 0.20 

Gravel 3.4 1.07 0.37 0.32 0.56 0.48 0.45 0.42 0.40 0.39 0.37 0.36 0.35 0.34 0.33  0.47 0.39 0.34 0.32 0.31 0.31 0.30 0.29 0.29 0.28 0.28 

Stone on Road 3.0 0.67 0.34 0.24 0.37 0.34 0.33 0.32 0.31 0.30 0.29 0.28 0.27 0.26 0.26  0.27 0.26 0.25 0.24 0.24 0.23 0.23 0.22 0.22 0.21 0.21 

Noise 2.7 0.71 0.30 0.25 0.41 0.36 0.34 0.33 0.32 0.31 0.30 0.28 0.28 0.27 0.26  0.33 0.29 0.27 0.26 0.25 0.25 0.24 0.23 0.23 0.23 0.23 

Low bump 1.6 0.32 0.16 0.10 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.11 0.11  0.12 0.11 0.11 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 

Cobblestone 1.3 0.28 0.15 0.07 0.15 0.14 0.13 0.12 0.12 0.11 0.10 0.10 0.09 0.09 0.09  0.11 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.06 0.06 0.06 

Slabs 1.0 0.18 0.10 0.06 0.10 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07  0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 

Concrete 0.8 0.12 0.07 0.03 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04  0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 

Coarse Asphalt 0.4 0.10 0.05 0.03 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03  0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Tarmac 0.2 0.06 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
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From Table 9.5 it can be observed that the Wssn and Wsrn weighted acceleration 

magnitudes for the test road surfaces were generally lower than the Wh weighted 

acceleration magnitudes. This is due to the greater gain of the Wh weighting at 

frequencies from approximately 6.3 to 25 Hz. 

 

From Table 9.5 it can also be observed that the subjectively perceived intensity 

estimates obtained using the Wssn weightings were generally higher than those obtained 

using the Wsrn weightings. This is due to the higher gain of the Wssn weightings at 

frequencies from approximately 6.3 to 40 Hz. 

 

9.4.2 Selecting the Frequency Weightings 

 

In order to test the hypothesis of section 9.3 that different steering wheel amplitude 

groups may require different frequency weightings, a series of criteria for selecting 

frequency weightings was established. Table 9.6 presents a summary of the procedure 

which was adopted to determine the adequate frequency weighting filters for various 

amplitude magnitudes of the road surface stimuli by means of correlation analysis. The 

term adequate is here taken to mean "enough" or "satisfactory" for producing an 

estimate value which is highly correlated with subjective response. 

 

[Table 9.6] Procedure used to define the adequate frequency weighting. 

Step Procedure 

1 

The frequency distribution of each steering wheel acceleration signal was subdivided into three 

intervals based on the use of the characteristics transition points defined by Giacomin et al., 

(2004). A check was then performed so as to establish which intervals contained energy which 

was above the threshold of perception. 

2 

The group of 21 steering wheel acceleration signals was ordered from the lowest r.m.s. to the 

highest r.m.s. based on the energy content in the frequency range where the signal was mostly 

greater than the threshold of perception. 

3 

The group of 21 steering wheel acceleration signals were subdivided into three amplitude 

groups of "low", "medium" and "high" based on the semantic descriptor of the Borg CR10 scale 

of subjective perceived intensity, as calculated for the frequency range where the signal was 

mostly greater than the threshold of perception. 

4 

Each of the frequency weightings Wssn and Wsrn was used to filter each of the 21 steering 

wheel acceleration signals, and a cross-correlation coefficient was calculated between the 

numerical r.m.s. values provided by the frequency weighting and the experimentally determined 

Borg CR10 value for the same steering wheel stimuli. 

 

Figure 9.2 compares the amplitude range (minimum amplitude, mean amplitude and 
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maximum amplitude) of the 21 road surface stimuli with the equal sensation curves 

obtained using random vibration. From Figure 9.2 it can be noted that the greatest part 

of the vibrational energy measured at the steering wheel was located in the frequency 

range from 6.3 to 50 Hz. Further, it can also be noted that the equal sensation curves 

exhibit changes in shape, due to the changing mechanisms of human hand-arm 

perception, at approximately the same two frequencies. The range from 6.3 to 50 Hz can 

therefore be considered the critical interval of the steering vibration perception problem. 

Finally, it can also be noted that for many roads the vibrational energy above 

approximately 50 Hz is lower than the threshold curve of human perception, suggesting 

that the inclusion of the steering wheel energy above 50 Hz in estimations of subjective 

intensity may prove misleading. 

 

Table 9.7 presents the r.m.s. value of each road surface signal for each frequency range. 

As can be seen in both Figure 9.2 and Table 9.7 the vibrational energy of the road 

surface stimuli is uneven across the frequency range from 3 to 400 Hz. For example, 

60% of vibrational energy is located in the frequency range from 6.3 to 50 Hz while 

only 17% and 23% of the energy are located in the frequency ranges from 0 to 6.3 Hz 

and from 50 to 250 Hz, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure 9.2] Comparison of the amplitude range of the steering wheel road vibration 

signals, the equal sensation curves obtained using band-limited random signals and the 

perception threshold curves defined by Miwa (1967) and by Morioka (2004). 
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[Table 9.7] The r.m.s. acceleration values of the steering wheel acceleration signals in 

each frequency range. 

Amplitude 

Group 
Road name 

Subjective 

response 

R.M.S. value (m/s2) 

Global 
Frequency range Ⅰ 

[0 – 6.3 Hz] 

Frequency rangeⅡ 

[6.3 – 50 Hz] 

Frequency rangeⅢ 

[50 – 250 Hz] 

Low 

Tarmac 0.2 0.06 0.01 0.03 0.02 

Coarse Asphalt 0.4 0.1 0.02 0.06 0.02 

Concrete 0.8 0.12 0.02 0.07 0.03 

Slabs 1 0.18 0.04 0.11 0.03 

Cobblestone 1.3 0.28 0.03 0.20 0.05 

Low bump 1.6 0.32 0.08 0.19 0.05 

Medium 

Expansion joints 3.6 0.71 0.16 0.30 0.25 

Stone on road 3 0.67 0.17 0.37 0.13 

Noise 2.7 0.71 0.19 0.38 0.14 

Gravel 3.4 1.07 0.21 0.46 0.40 

Cats-eye 3.4 1.13 0.18 0.58 0.37 

Motorway 3.8 1.13 0.16 0.60 0.37 

Manhole cover 3.7 0.97 0.17 0.63 0.17 

High 

Bump 4.7 0.92 0.17 0.67 0.08 

Broken road 3.8 1.22 0.32 0.65 0.25 

Harsh 4.6 1.32 0.20 0.84 0.28 

UK city street 4.5 1.39 0.30 0.79 0.30 

Broken concrete 4.8 1.67 0.19 1.10 0.38 

Broken lane 5.2 1.86 0.33 0.98 0.55 

Service 5.9 1.99 0.27 1.32 0.40 

Country lane 6.3 1.98 0.31 1.33 0.34 

Mean [m/s2 r.m.s.]   0.16 0.56 0.22 

Standard deviation   0.1 0.4 0.16 

% energy   17% 60% 23% 

 

 

The 21 road surface stimuli were sorted by r.m.s. amplitude magnitude of the 

vibrational energy in the frequency range from 0 to 50 Hz, which was above the 

threshold of perception, as shown in Figure 9.2. The sorted stimuli were then subdivided 

into three amplitude groups which were low (below 0.46 m/s
2
 r.m.s.), medium (between 

0.46 and 0.8 m/s
2
 r.m.s.) and high (above 0.8 m/s

2
 r.m.s.) based on the semantic 

descriptor of the Borg CR10 scale of subjective perceived intensity as shown in Table 

9.7. 

 

Correlation analysis was performed between the weighted r.m.s. values of the 21 road 

surface stimuli and the subjective responses for each amplitude group, in order to 

determine the adequate frequency weighting filter. The filter was sought which 

produced the most accurate estimation, statistically, of the subjective response for each 

amplitude group. 
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Matlab software (Mathworks Inc., 2002) was implemented to establish the level of 

correlation between the two metrics. The coefficient of determination R
2
 and the 

residual mean square MSE were calculated at a 1% confidence level. Table 9.8 presents 

the correlation coefficient results. The results suggest: 

 the Wss1.5 and Wsr1.0 filters provided the best weightings for the low amplitude 

group of steering vibration signals, providing MSE values of 0.019 and 0.021 

respectively, and the same R
2
 value of 0.99, 

 the Wss2.0 and Wsr1.5 filters provided the best weightings for the medium 

amplitude group of steering vibration signals, providing MSE values of 0.03 and 

0.07 respectively, and R
2
 values of 0.92 and 0.84 respectively, 

 the Wss2.5 and Wsr2.0 filters provided the best weightings for the high amplitude 

group of steering vibration signals, providing MSE values of 0.119 and 0.13 

respectively, and R
2
 values of 0.91 and 0.90 respectively. 

 

[Table 9.8] The correlation coefficients results obtained between the weighted r.m.s. 

values of the road signals by both (a) the Wssn and (b) the Wsrn filters and the subjective 

responses for each amplitude level group. 

(a) Correlation coefficients results based on the Wssn frequency weightings 

Amplitude level 
Correlation coefficients (p<0.01) 

Wss0.5 Wss1 Wss1.5 Wss2 Wss2.5 Wss3 Wss4 Wss5 Wss6 Wss7 Wss8 

Low 
R2 0.98 0.98 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

MSE 0.022 0.02 0.019 0.02 0.02 0.02 0.02 0.02 0.021 0.021 0.022 

Medium 
R2 0.81 0.89 0.92 0.92 0.91 0.91 0.88 0.86 0.84 0.82 0.8 

MSE 0.07 0.04 0.033 0.03 0.034 0.04 0.05 0.06 0.06 0.07 0.08 

High 
R2 0.87 0.9 0.91 0.91 0.91 0.91 0.9 0.9 0.9 0.9 0.89 

MSE 0.16 0.14 0.13 0.123 0.119 0.124 0.13 0.13 0.13 0.13 0.14 
 

(b) Correlation coefficients results based on the Wsrn frequency weightings 

Amplitude level 
Correlation coefficients (p<0.01) 

Wsr0.5 Wsr1 Wsr1.5 Wsr2 Wsr2.5 Wsr3 Wsr4 Wsr5 Wsr6 Wsr7 Wsr8 

Low 
R2 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

MSE 0.023 0.021 0.022 0.022 0.023 0.024 0.03 0.03 0.03 0.03 0.03 

Medium 
R2 0.59 0.79 0.84 0.84 0.83 0.81 0.78 0.75 0.72 0.70 0.68 

MSE 0.13 0.09 0.07 0.08 0.09 0.10 0.12 0.13 0.14 0.15 0.15 

High 
R2 0.85 0.89 0.89 0.9 0.9 0.89 0.89 0.89 0.88 0.88 0.88 

MSE 0.21 0.15 0.14 0.13 0.14 0.14 0.15 0.15 0.16 0.16 0.16 

*R
2
: Coefficient of determination,   **MSE: Residual mean square. 

 

Inspection of Figure 9.2 suggests that the frequency weightings from Borg value 1 to 

2.5 have amplitude values which are similar to the mean amplitude values of the 21 
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road spectra used for the analysis. A possible explanation of the high correlation of these 

frequency weightings is therefore the fact that they were determined using test signals 

which had similar energy levels to the 21 steering wheel road vibration stimuli, thus 

leading to a similar degree of nonlinearity in the human psychophysical response. 

 

9.5 Summary 

 

A psychophysical response test of 40 participants (20 light and 20 heavy participants) 

was performed using the Borg CR10 scale procedure consisting of the 21 road surface 

stimuli obtained from the road tests described in chapter 5. The test results suggested 

that the perceived intensity values were from a minimum of 0.2 Borg value for the 

tarmac road surface to a maximum of 6.3 Borg value for the country lane road surface. 

 

From the results the subjectively perceived intensity of the 21 road surfaces could be 

classified as falling into one of three semantic regions of the Borg CR10 scale: weak 

(2.0), moderate (3.0) and strong (5.0). It was hypothesised that each semantic region 

would benefit from the use of a different frequency weighting because the results 

presented in the previous experiments suggested that each equal sensation curve of the 

Borg CR10 scale had a significantly different shape in the frequency and amplitude 

plane. In practice, the three semantic segments can be associated with groups of road 

surfaces which are divided based on the steering wheel acceleration magnitude: low, 

medium and high. 

 

Frequency weightings were defined based on the results obtained from the 

psychophysical tests which used sinusoidal vibration and were labelled as the Wssn 

frequency weightings. Frequency weightings were also defined based on the results 

obtained from the psychophysical tests which used random vibration and were labelled 

as the Wsrn frequency weightings. The numeral suffixes 'n' in Wssn and Wsrn denote the 

Borg values of perceived intensity (n = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0). 

 

Numerical estimates of the human subjective response to the steering wheel stimuli 

were obtained by passing the 21 road surface stimuli through the Wh, Ws, Wssn and 

Wsrn frequency weightings. Both the Wssn and Wsrn weighted acceleration magnitudes 

for the test road surfaces were generally lower than the Wh weighted acceleration 
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magnitudes. This was due to the lower gains indicated by the Wh weighting at 

frequencies from approximately 6.3 to 25 Hz. The subjectively perceived intensity 

estimates obtained using the Wssn weightings were generally higher than those obtained 

using the Wsrn weightings due to the higher gain of the Wssn weightings from 

approximately 6.3 to 40 Hz. 

 

A method was proposed for selecting an adequate frequency weighting which was based 

on correlation analysis. The 21 road surface stimuli were split into three frequency 

segments based on the transition points (6.3 and 50 Hz) of the hand-arm system 

(Giacomin et al., 2004). The frequency range from 0 to 50 Hz was chosen for use in 

correlation analysis because the vibrational energy for most of the roads was lower than 

the human perception threshold above approximately 50 Hz. The 21 road surface 

stimuli were sorted by the amplitude magnitude in the frequency range from 0 to 50 Hz, 

and subdivided into three amplitude groups based on the semantic descriptor of the 

Borg CR10 scale of subjective perceived intensity which were the low (below 0.46 m/s
2
 

r.m.s.), medium (between 0.46 ~ 0.8 m/s
2
 r.m.s.) and high (above 0.8 m/s

2
 r.m.s.). 

 

The level of correlation was calculated between the Borg CR10 subjective responses 

obtained from the psychophysical experiment and the numerical estimates obtained 

using both the Wssn and the Wsrn frequency weightings when filtering each of the 21 

steering wheel stimuli. For the low amplitude group the Wss1.5 and the Wsr1.0 

weightings provided the highest correlation to the subjective responses while the Wss2.0 

and the Wsr1.5 weightings provided the highest correlation for the medium amplitude 

group and the Wss2.5 and the Wsr2.0 weightings provided the highest correlation for the 

high amplitude group. The possible explanation to support the correlation results is that 

the vibrational energy of the road surface stimuli was close, statistically, to the 

acceleration amplitude of the equal sensation curves in the frequency range from 0 to 50 

Hz. 
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Chapter 10 

 Conclusions and Recommendations for Future 

Research 

 

10.1 Summary of the Research Findings 

 

The experimental activities described from chapter 6 to chapter 9 of this thesis were 

performed in order to answer questions about the quantification of the human subjective 

response to automotive steering wheel vibration, and to use the findings to define a test 

method for automotive steering wheel hand-arm vibration. This chapter summarises the 

main findings and attempts to provide answers to the questions posed in chapter 1 in 

light of the experimental results.  

 

•  How do the subjective responses change when the frequency changes? 

 

In all of the tests which were performed the human subjective responses suggest that the 

human sensitivity decreases when the frequency increases, suggesting a lower perceived 

intensity at higher frequencies, as expected from psychophysical theory (Gescheider, 

1997) and from previous research (Miwa, 1967; Reynolds et al., 1977; Giacomin et al., 
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2004; Amman et al., 2005; Morioka and Griffin, 2006). The results also suggest that the 

equal sensation curves are characterised by a dip behaviour in the vicinity of 100 Hz, 

similar to the well known response of the Pacinian mechanoreceptors (Verrillo, 1966; 

Reynolds et al., 1977). 

 

•  How do the subjective responses change when the amplitude changes? 

 

In all of the tests which were performed the subjective response magnitude increased 

when the physical intensity of the vibration increased, which is consistent with the 

results from previous research (Verrillo et al., 1969). The shape of the equal sensation 

curves share some similarities with the behaviour of the well-known equal loudness 

contours for hearing (Zwicker and Fastl, 1990), with the curves becoming flatter and 

more linear with increases in the vibration amplitude. 

 

•  How nonlinear is the human response? 

 

The equal sensation curves obtained from the present research suggest a nonlinear 

dependency on both the frequency and the amplitude of the test stimulus. At low 

perceived intensities from 0.5 (just noticeable) to 1.0 (very weak) of Borg CR10 scale 

the equal sensation curves were found to resemble the general shape of the vibrotactile 

perception threshold curves of the hand. As the perceived intensity increased towards 

the maximum value of 8.0, the equal sensation curves assumed a more uniform shape, 

resembling the annoyance threshold for the hand-arm system defined by Reynolds et al. 

(1977). 

 

•  Is the subjective response dependent on the signal type? 

 

The results obtained in this research suggest that the subjective responses obtained from 

band-limited random vibration stimuli were generally steeper in the shape of the equal 

sensation curves than those obtained using sinusoidal vibration stimuli. This tendency in 

the shape of the equal sensation curves was similar to the behaviour noted by Reynolds 

et al. (1977). The results also suggest that the equal sensation curves obtained using 

random vibration produced deeper dips in the vicinity of 100 Hz than those obtained 
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using sinusoidal vibration at acceleration levels below approximately 1.0 m/s
2
 r.m.s.. 

This tendency in the shape of the equal sensation curves was similar to the results of 

Miwa (1969). These differences may be due to the characteristics of random vibration 

which produced generally higher crest factors than the sinusoidal vibration because the 

crest factor values of band-limited random vibration used in the experiment were 

generally in the range from 2.4 to 8.4, which was similar to the values of the real road 

stimuli which were described in chapter 5. 

 

•  Is the subjectively perceived intensity for males and females the same when the 

steering wheel vibration is the same? 

 

From the results of the equal sensation curves obtained separately for each gender it can 

be seen that the females provided higher perceived intensity values than the males for 

the same physical stimulus at most frequencies. At frequencies above approximately 20 

Hz the equal sensation curves for the female test group are characterised by a flatter 

shape than those obtained for the male test group, whereas at frequencies below 

approximately 20 Hz a similar shape was found for both groups. Gender differences 

were more marked at acceleration amplitudes above approximately 1.0 m/s
2
 r.m.s.. 

These differences were expected from the previous research results of Verrillo (1979) 

who suggested that vibratory stimuli at suprathreshold levels are felt more intensely by 

females than by males, and by those of Neely and Burström (2006) who suggested that 

females report higher levels of physical intensity and discomfort than males. Similar 

indications can also be found in the study of steering wheel vibration induced fatigue 

performed by Giacomin and Abrahams (2000), which found that females reported 

greater arm region discomfort than males, and by the questionnaire-based investigation 

of Giacomin and Screti (2005) which found that female drivers reported higher 

discomfort responses than male drivers for the hand-arm region. However, it was not 

possible from the results to definitively establish whether the differences are sensory or, 

instead, biomechanical in nature, because the male test participants differed from the 

female participants in terms of their body mass (p<0.05). The equal sensation curves for 

steering wheel rotational vibration obtained separately for each body mass test group 

(light and heavy body mass groups) suggested that the possibility of the cause being due 

to physical body size rather than gender itself because the equal sensation curves of the 
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light participants resemble those of the female test participants while those of heavy 

participants resemble those of the male test participants. 

 

•  Is the subjectively perceived intensity for light and heavy individuals the same when 

the steering wheel vibration is the same? 

 

The results obtained from all the experiments which involved both the light (n = 20) and 

the heavy (n = 20) test participants suggest that the subjective responses of the light test 

participants were greater than those of the heavy test participants, especially in the 

frequency range from approximately 6.3 to 100 Hz (p<0.05). This tendency was found 

using the sinusoidal vibration which was reported in chapter 6 and also the band-limited 

random vibration which was reported in chapter 7. The differences between the light 

participants and the heavy participants are partially supported by the previous results of 

Giacomin and Abrahams (2000), who suggested that the light test subjects perceived 

greater discomfort than the heavy test subjects in their arms for the 4 and 8 Hz test 

frequencies. Another similar indication supporting the current result is that the size and 

mass of the subject‟s hand and arm greatly affect energy absorption (Burström and 

Lundström, 1994). From the results of all the experiments which are described in this 

thesis it can be suggested that the equal sensation curves for steering wheel rotational 

vibration differ mainly due to differences in body size, rather than differences of gender, 

and that the lighter individuals suffer greater subjective intensity for the same physical 

intensity of steering wheel vibration. 

 

•  How many frequency weightings are necessary for quantifying human perception of 

steering wheel hand-arm vibration? 

 

From the results obtained from the experiment which was described in chapter 9, the 

subjectively perceived intensity of the 21 road surfaces could be classified as falling 

into one of three semantic regions of the Borg CR10 scale. The three regions were: 

weak (2.0), moderate (3.0) and strong (5.0). It is hypothesised by the author that each 

semantic region would benefit from the use of a different frequency weighting because 

the results presented in the previous experiments suggested that each equal sensation 

curve of Borg CR10 scale produces significantly different shape in the frequency and 
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amplitude plane. In practice, the three semantic segments can be associated with groups 

of road surfaces which are divided based on the steering wheel acceleration magnitude: 

low, medium and high. For example, the weak segment of Borg CR10 scale may be 

associated with the low amplitude group while the moderate segment may be associated 

with the medium amplitude group and the strong segment may be associated with the 

high amplitude group. The hypothesis that different amplitude groups may require 

different frequency weightings is supported by previous studies (Morioka and Griffin, 

2006; Gnanasekaran et al., 2006; Ajovalasit and Giacomin, 2009) which have suggested 

that different frequency weightings are necessary to estimate the human perception at 

different vibration magnitudes. 

 

The 21 road surface stimuli were split into three frequency segments based on the 

transition points (6.3 and 50 Hz) of the hand-arm system (Giacomin et al., 2004). The 

frequency range from 0 to 50 Hz was chosen for use in the correlation analysis because 

the vibrational energy for most of the roads was lower than the human perception 

threshold above approximately 50 Hz. The 21 road surface stimuli were sorted by the 

amplitude magnitude in the frequency range from 0 to 50 Hz, and subdivided into three 

amplitude groups based on the semantic descriptor of the Borg CR10 scale of subjective 

perceived intensity which were the low (below 0.46 m/s
2
 r.m.s.), medium (between 0.46 

~ 0.8 m/s
2
 r.m.s.) and high (above 0.8 m/s

2
 r.m.s.). 

 

The level of correlation was calculated between the Borg CR10 subjective responses 

obtained from the psychophysical experiment and the numerical estimates obtained 

using both the Wssn and the Wsrn frequency weightings. For the low amplitude group 

the Wss1.5 and the Wsr1.0 weightings provided the highest correlation to the subjective 

responses, while the Wss2.0 and the Wsr1.5 weightings provided the highest correlation 

for the medium amplitude group and the Wss2.5 and the Wsr2.0 weightings provided the 

highest correlation for the high amplitude group. The possible explanation to support 

the correlation results is that the vibrational energy of the road surface stimuli was 

similar (close) to the acceleration amplitude of the equal sensation curves in the 

frequency range from 0 to 50 Hz for those Borg CR10 values. 

 

From the results of correlation analysis it was suggested that at least three frequency 

weightings may be necessary to estimate the subjective intensity for road surface stimuli. 
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10.2 Recommended Test Protocol for Evaluating Automotive Steering 

Wheel Rotational Vibration 

 

Current evaluation methods used to estimate the human subjective response to steering 

wheel rotational vibration in the automotive industry are based on the use of either the 

original (unweighted) acceleration signal, the ISO Wh frequency weighted acceleration 

signal or the Ws frequency weighted acceleration signal. Automobile steering system 

designers and noise, vibration and harshness (NVH) experts apply one of these 

frequency weightings to the acceleration data which they measure at the steering wheel. 

However, the estimation using any one of the current evaluation methods applies to all 

the vibrational data in the measurement regardless of the magnitude of the vibration. 

Further, it has been continuously suggested by researchers (Morioka and Griffin, 2006; 

Ajovalasit and Giacomin, 2009) that only one weighting is not optimal to estimate the 

human perception at all vibrational magnitudes. Therefore this section introduces the 

recommended test protocol for evaluating automotive steering wheel rotational 

vibration based on the research findings in the present study. 

 

Figure 10.1 presents the test method developed in the present research study. The 

steering wheel acceleration can be measured by means of a vibration level meter and an 

accelerometer. The measurement point is suggested to be on the surface of the steering 

wheel at the 60 position (two o‟clock position) with respect to top centre, which is a 

typical grip position of the driver‟s hand (Giacomin and Gnanasekaran, 2005). The 

accelerometer at the steering wheel measurement position should be fixed is such a way 

as to guarantee sufficient coupling stiffness across the complete frequency range of the 

intended vibration measurement. An aluminium clamp and mounting screws are often 

used for this purpose. The acceleration signals can be stored using the vibration level 

meter. The sampling rate for the acceleration measurements should be chosen to be at 

least twice the maximum frequency of interest. 
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[Figure 10.1] Test method for evaluating steerging wheel vibration in automobiles. 

 

 

Based on the r.m.s. value of the signal in the frequency range from 0 to 50 Hz the 

signals can be subdivided into three amplitude level groups. The weighted values of 

subjective response to steering wheel rotational vibration are obtained by passing the 

signals through either the Wss1.5 or the Wsr1.0 frequency weighting filters for the low, 

either the Wss2.0 or the Wsr1.5 frequency weighting filters for the medium and either 

Wss2.5 or the Wsr2.0 frequency weighting filters for the high amplitude group in the case 

of the present research study. 
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10.3 Suggested Future Research 

 

The test method proposed in the present research study was developed for the purpose 

of providing a more accurate estimation of the human subjective response to steering 

wheel hand-arm vibration, which changes nonlinearly according to vibrational intensity 

and frequency (Ajovalasit and Giacomin, 2009). Given the nonlinearity of the human 

subjective response, the frequency weightings developed in the present research study 

provide better estimations for the human subjective response to steering wheel hand-

arm rotational vibration than the existing frequency weightings Wh and Ws. 

 

However, as with all research, there are limitations which should be considered. The 

following is a summary of the main issues. 

 

The selection method for choosing the adequate frequency weighting was established 

based on the amplitude of the road signals rather than the frequency contents of the road 

signals, because of the hypothesis established in the present study that different 

amplitude groups may require different frequency weightings. However, the frequency 

contents of road signals can be different even if they have similar acceleration levels. 

Therefore further research appears necessary in order to clarify this point, while 

developing a sort of system which can recognise the frequency contents of the signals 

preferably in real time such as a pattern recogniser. By this it may be possible to select 

the more accurate frequency weighting to estimate human subjective response in real 

time than is possible with the current selection method because it may be possible to 

match a frequency weighting to an individual driving condition rather than a group of 

signals which have similar amplitude level. 

 

This study attempted to cover the widest possible test envelope in the frequency and 

amplitude plane. However, due to the physical limitations of the shaker displacement, 

low frequency signals below 3 Hz could not be achieved. The test apparatus should 

therefore be upgraded to the necessary specifications for the future research activity, for 

example, a low frequency shaker, so as to extend the subjective tests to frequencies 

below 3 Hz and above 400 Hz. 
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While this research tested some of the most common driving conditions, a limitation of 

the present study is that the evaluation of the human perception of steering wheel hand-

arm vibration was performed using steering wheel stimuli obtained only from European 

mid-sized passenger cars with four cylinder engines. Since the purpose of the research 

was to develop a general evaluation method for human perception of steering wheel 

hand-arm vibration, the limitation of using only four automobiles may be a factor which 

must be considered when assessing the results. 

 

Another recommendation concerns the variables which were not examined in the 

current study which might influence the research findings. With regard to the vibration 

variable, it is useful to investigate the effect of the vibration direction in order to 

observe the differences compared to the rotational direction. For example, laboratory 

experiments could be performed which steering wheel vibration in the lateral and for-aft 

direction. With regard to the subject variable, it would be useful to investigate the effect 

of driver experience. Experienced subjects have been found to produce higher 

subjective responses than inexperienced subjects (Wos et al., 1988a) but the current 

research study did not consider the effect of the experience of the test participants or 

how it might influence the shape of the equal sensation curves. 
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Appendix A 

 Technical Specifications of Equipment 

 

A.1 Technical Specifications of the equipment used in the 

measurement of the steering wheel vibration for the Uxbridge tests. 

 

The technical specifications of the SVAN 947 Sound and Vibration Level Meter and 

Analyser manufactured by SVANTEK Ltd. are presented in Figures A.1 and A.2. The 

technical specifications of the Low Impedance Voltage Mode (LIVT™) accelerometer 

3055B1 are presented in Figures A.3 and A.4. 
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[Figure A.1] SVAN 947 Sound and Vibration Level Meter and Analyser manufactured 

by SVANTEK Ltd. used for the experimental steering vibration measurements. 
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[Figure A.2] SVAN 947 Sound and Vibration Level Meter and Analyser manufactured 

by SVANTEK Ltd. used for the experimental steering vibration measurements. 
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[Figure A.3] Technical specifications for the LIVT™ accelerometer Series 3055B1 used 

for the experimental steering vibration measurements. 
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[Figure A.4] Technical specifications for the LIVT™ accelerometer Series 3055B1 used 

for the experimental steering vibration measurements. 
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A.2 Technical Specifications of the equipment used in the experimental 

laboratory test. 

 

The monoaxial accelerometer which was placed on the rotational steering wheel test rig 

is presented in Figure A.5. Technical specifications of the accelerometer are presented 

in Figure A.6, while its certificate of calibration is presented in Figure A.7 in which is 

described the properties of the single axis of measurement. The technical specification 

for the multi-channel signal conditioning MSC6 is presented in Figure A.8, while the 

technical specification for the power amplifier PA100E and the shaker V20 are 

presented in Figure A.9. 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure A.5] Accelerometer position at the rotational steering wheel test rig, located  

on the top left side of the wheel. 
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[Figure A.6] Technical specifications for the monoaxial EGAS accelerometer used  

for the experimental laboratory tests. 
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[Figure A.7] ENTRAN Certificate of calibration and specifications for the monoaxial 

EGAS accelerometer used to measure the steering wheel vibration test rig along the z-

axis. 
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[Figure A.8] Technical specification for the multi-channel signal conditioning MSC6. 
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[Figure A.9] Technical specification for the power amplifier PA100E and the shaker 

V20 used during the experimental laboratory tests. 
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Appendix B 

 Geometrical Dimensions of Clamp for Vibration 

Measurement 

 

The geometrical dimensions of the steering wheel clamp are presented in Figure B.1 to 

Figure B.3. 
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[Figure B.1] Ensemble drawing of the steering wheel clamp used to measure the 

steering wheel vibration for the Uxbridge test. 
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[Figure B.2] Geometrical dimensions of the upper part of the steering wheel clamp used 

to measure the steering wheel vibration for the Uxbridge test. 
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[Figure B.3] Geometrical dimensions of the lower part of the steering wheel clamp used 

to measure the steering wheel vibration for the Uxbridge test. 
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Appendix C 

 Laboratory Test Sheets 

 

Laboratory test sheets used in psychophysical experimental tests for the test participants 

are presented. A consent form is presented in Figure C.1, a test participant information 

form is presented in Figure C.2, a test instruction is presented in Figure C.3 and an 

example of the answer tables is presented in Figure C.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure C.1] A consent form used in the psychophysical laboratory tests for the test 

participants. 
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[Figure C.2] A test participant information form used in the psychophysical laboratory 

tests for the test participants. 
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[Figure C.3] An example of a test instruction for the test participants. 
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[Figure C.4] An example of the subjective response answer sheets. 
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Appendix D 

 Weighting Filters 

 

The LMS TMON (2002) software was applied to implement constructing the frequency 

weighting filters by means of the FIR multi window methods which uses the design 

technique known as frequency sampling (LMS International Inc., 2002). In the LMS 

TMON software system implementation, the exact shape of the frequency weighting 

filters is a function of the type of window, the number of taps, the number of grid points 

and the sampling frequency. The term grid points used in LMS TMON software refers 

the cut-off break points which specify the shape of the filter. These break points are 

interpolated onto a dense and evenly spaced grid. Since the FIR multi window filter is 

not one of the standard types presented in Figure 4.9 the shape of the filter is specified 

as a number of grid points. Figure D.1 shows the example of 512 grid points which use 

a value that is a power of 2 (LMS International Inc., 2002). 
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[Figure D.1] Grid points used in the FIR multi window filter (reproduced from LMS 

International Inc., 2002). 

 

A rectangular window was chosen since some transient input can be reduced the level 

by using other types of window. A 2048 taps and 30478 grid points were assigned which 

were sufficient to construct filters when comparing the typical suggestion values of 

LMS software (LMS International Inc., 2002) suggesting 200 taps and 512 grid points. 

The assigned sampling frequency of 8192 Hz was also sufficient to ensure that the 

maximum frequency of interest of 2000 Hz for hand-arm vibration (ISO 8041, 2005). 
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D.1 Wh weighting filter 

 

Figure D.2 presents the Wh frequency weighting for hand-arm vibration as described in 

the standards such as the International Organization for Standardization ISO 5349-1 

(2001) and the British Standards Institution BS 6842 (1987). The values of the 

frequency weightings and tolerances shown in Table D.1 were used to check the 

accuracy of the filter and whether the filtered signals were within the tolerance limits a 

Gaussian white noise signal was filtered by applying the Wh frequency weighting. 

Figure D.3 presents the random Wh filtered signal to be within the tolerance limits 

specified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure D.2] Magnitude of frequency weighting Wh for hand-arm vibration, all 

directions based on ISO 5349-1 (reproduced from ISO 8041, 2005). 
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[Table D.1] Frequency weighting Wh for hand-arm vibration, all directions (reproduced 

from ISO 8041, 2005). 
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[Figure D.3] Comparison the Wh frequency weighting filter with the Wh filtered 

Gaussian white noise signal implemented in LMS TMON software within the maximum 

and minimum tolerance limits. 
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D.2 Ws weighting filter 

 

Figure D.4 presents the asymptotic approximations of the Ws frequency weighting for 

steering wheel rotational vibration as proposed by Giacomin et al. (2004). The values of 

the frequency weighting shown in Table D.2 were used to construct the Ws filter 

digitally on LMS TMON software. To check the accuracy of the filter the Gaussian 

white noise signal was also filtered by applying the Ws frequency weighting. Figure D.5 

presents the comparison of random Ws filtered signal and the weighting filter 

implemented in LMS TMON software with the maximum and minimum tolerance 

limits. For consistency the tolerance limits similar to those required for Wh by ISO 

5349-1 and BS 6842 were adopted. 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure D.4] The asymptotic frequency weighting Ws for steering wheel hand-arm 

vibration (reproduced from Giacomin et al., 2004). 
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[Table D.2] Frequency weighting Ws for steering wheel rotational hand-arm vibration 

(adapted from Giacomin et al., 2004). 

Frequency Ws weighting Tolerance 

Hz Factor dB dB 

0 0 -32.01 +1/-1 

1 0.126 -18 +1/-1 

2 0.501 -6 +1/-1 

2.5 0.9 -0.915 +1/-1 

3 1 0 +1/-1 

3.5 1 0 +1/-1 

4 1 0 +1/-1 

5 1 0 +1/-1 

6 1 0 +1/-1 

8 0.751 -2.482 +1/-1 

10 0.602 -4.41 +1/-1 

12.5 0.482 -6.34 +1/-1 

16 0.377 -8.478 +1/-1 

20 0.302 -10.41 +1/-1 

25 0.241 -12.34 +1/-1 

31.5 0.192 -14.35 +1/-1 

40 0.151 -16.42 +1/-1 

50 0.119 -18.47 +1/-1 

63 0.119 -18.47 +1/-1 

80 0.119 -18.47 +1/-1 

100 0.119 -18.47 +1/-1 

125 0.119 -18.47 +1/-1 

160 0.105 -19.62 +1/-1 

200 0.078 -22.12 +1/-1 

250 0.053 -25.5 +1/-1 

315 0.033 -29.6 +1/-1 

400 0.02 -34 +1/-1 

500 0.012 -38.42 +1/-1 

630 0.008 -42.5 +1/-1 

800 0.005 -46.02 +1/-1 

1000 0.003 -50.46 +2/-2 

1250 0.002 -53.98 +2/-2 

2000 0.001 -60 +2/-2 
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[Figure D.5] Comparison the Ws frequency weighting filter with the Ws filtered 

Gaussian white noise signal implemented in LMS TMON software within the maximum 

and minimum tolerance limits. 
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D.3 Wssn weighting filters 

 

Figure D.6 presents the Wssn frequency weightings for steering wheel rotational 

vibration as developed from the equal sensation curves using sinusoidal vibration in the 

present research study. The numeral suffixes 'n' next to the letter Wss represents the 

Borg values of perceived intensity (n = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0). 

The values of the frequency weightings shown in Table D.3 were used to construct the 

Wssn filters digitally also on LMS TMON Software. The accuracy of the filters was also 

checked by filtering the Gaussian white noise signal by means of each Wssn frequency 

weighting. Figure D.7 presents the comparisons of the Wss0.5 filtered signals and the 

Wss0.5 weighting filters with the maximum and minimum tolerance limits which also 

adopted to those required for the Wh weighting while Figure D.8 presents the same 

comparisons of all the Wssn filtered signals and all the Wssn weighting filters with their 

maximum and minimum tolerance limits. 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure D.6] The Wssn frequency weightings obtained from equal sensation curves 

using band-limited random steering wheel rotational vibration. 
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[Figure D.7] Comparison the Wss0.5 frequency weighting filter with the Wss0.5 filtered 

Gaussian white noise signals implemented in LMS TMON software within the 

maximum and minimum tolerance limits 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure D.8] Comparison the Wssn frequency weighting filters with the Wssn filtered 

Gaussian white noise signals implemented in LMS TMON software within the 

maximum and minimum tolerance limits 
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D.4 Wsrn weighting filters 

 

Figure D.9 presents the Wsrn frequency weightings for steering wheel rotational 

vibration as developed from the equal sensation curves using band-limited random 

vibration in the present research study. The values of the frequency weightings shown in 

Table D.4 were used to construct the Wsrn filters digitally also on LMS TMON 

Software. The accuracy of the filters was also checked by filtering the Gaussian white 

noise signal by means of each Wsrn frequency weighting. Figure D.10 presents the 

comparisons of the Wsr0.5 filtered signals and the Wsr0.5 weighting filters with the 

maximum and minimum tolerance limits which also adopted to those required for the 

Wh weighting while Figure D.11 presents the same comparisons of all the Wsrn filtered 

signals and all the Wsrn weighting filters with their maximum and minimum tolerance 

limits. 

 

 

 

[Figure D.9] The Wsrn frequency weightings obtained from equal sensation curves 

using band-limited random steering wheel rotational vibration. 
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[Figure D.10] Comparison the Wsr0.5 frequency weighting filters with the Wsr0.5 filtered 

Gaussian white noise signals implemented in LMS TMON software within the 

maximum and minimum tolerance limits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure D.11] Comparison the Wsrn frequency weighting filters with the Wsrn filtered 

Gaussian white noise signals implemented in LMS TMON software within the 

maximum and minimum tolerance limits. 
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[Table D.3] Frequency weightings Wssn for steering wheel rotational hand-arm vibration. 

Frequency 
Wssn weightings 

Tolerance 
Wss0.5 Wss1 Wss1.5 Wss2 Wss2.5 Wss3 Wss4 Wss5 Wss6 Wss7 Wss8 

Hz Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB dB 

0 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 +1/-1 

1 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 +1/-1 

2 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 +1/-1 

2.5 0.9 -0.915 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 +1/-1 

3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 +1/-1 

4 1 0 0.889 -1.02 0.917 -0.75 0.928 -0.65 0.923 -0.69 0.925 -0.68 0.922 -0.71 0.918 -0.74 0.914 -0.78 0.909 -0.83 0.905 -0.87 +1/-1 

5 0.975 -0.218 0.811 -1.82 0.837 -1.55 0.851 -1.4 0.851 -1.4 0.854 -1.37 0.847 -1.44 0.84 -1.51 0.833 -1.59 0.825 -1.67 0.818 -1.74 +1/-1 

6.3 0.937 -0.562 0.737 -2.65 0.755 -2.44 0.77 -2.28 0.773 -2.23 0.77 -2.27 0.761 -2.38 0.75 -2.49 0.74 -2.62 0.73 -2.73 0.721 -2.84 +1/-1 

8 0.885 -1.059 0.668 -3.51 0.675 -3.41 0.687 -3.26 0.681 -3.34 0.678 -3.38 0.665 -3.54 0.652 -3.72 0.639 -3.89 0.628 -4.05 0.617 -4.19 +1/-1 

10 0.830 -1.616 0.607 -4.34 0.603 -4.4 0.603 -4.39 0.597 -4.48 0.591 -4.56 0.575 -4.81 0.559 -5.05 0.545 -5.27 0.533 -5.46 0.523 -5.64 +1/-1 

12.5 0.784 -2.113 0.533 -5.47 0.528 -5.55 0.526 -5.58 0.516 -5.75 0.507 -5.9 0.488 -6.24 0.471 -6.54 0.456 -6.81 0.444 -7.05 0.434 -7.26 +1/-1 

16 0.732 -2.711 0.466 -6.62 0.457 -6.8 0.446 -7 0.432 -7.29 0.42 -7.53 0.398 -8 0.381 -8.39 0.366 -8.73 0.354 -9.01 0.344 -9.26 +1/-1 

20 0.687 -3.263 0.419 -7.55 0.396 -8.05 0.381 -8.39 0.363 -8.79 0.35 -9.13 0.326 -9.73 0.308 -10.2 0.295 -10.6 0.284 -10.9 0.275 -11.2 +1/-1 

25 0.623 -4.106 0.376 -8.5 0.344 -9.26 0.323 -9.82 0.303 -10.4 0.288 -10.8 0.263 -11.6 0.246 -12.2 0.234 -12.6 0.224 -13 0.216 -13.3 +1/-1 

31.5 0.576 -4.787 0.34 -9.38 0.299 -10.5 0.272 -11.3 0.249 -12.1 0.233 -12.7 0.209 -13.6 0.193 -14.3 0.181 -14.8 0.172 -15.3 0.165 -15.6 +1/-1 

40 0.544 -5.288 0.315 -10 0.261 -11.7 0.227 -12.9 0.203 -13.9 0.188 -14.5 0.162 -15.8 0.148 -16.6 0.138 -17.2 0.13 -17.7 0.125 -18.1 +1/-1 

50 0.530 -5.513 0.304 -10.4 0.234 -12.6 0.194 -14.2 0.168 -15.5 0.155 -16.2 0.128 -17.9 0.115 -18.8 0.106 -19.5 0.1 -20 0.095 -20.5 +1/-1 

63 0.532 -5.488 0.304 -10.3 0.213 -13.4 0.167 -15.6 0.139 -17.2 0.121 -18.3 0.1 -20 0.09 -20.9 0.081 -21.8 0.076 -22.4 0.073 -22.7 +1/-1 

80 0.550 -5.186 0.32 -9.9 0.201 -13.9 0.145 -16.7 0.115 -18.8 0.101 -19.9 0.079 -22.1 0.068 -23.3 0.062 -24.2 0.058 -24.7 0.056 -25.1 +1/-1 

100 0.576 -4.787 0.348 -9.16 0.197 -14.1 0.131 -17.6 0.099 -20.1 0.083 -21.6 0.063 -24 0.054 -25.3 0.05 -26 0.045 -27 0.043 -27.3 +1/-1 

125 0.590 -4.584 0.379 -8.42 0.196 -14.1 0.121 -18.3 0.087 -21.2 0.07 -23.1 0.052 -25.6 0.044 -27.2 0.04 -27.9 0.035 -29.2 0.035 -29.1 +1/-1 

160 0.550 -5.199 0.377 -8.47 0.193 -14.3 0.113 -19 0.078 -22.2 0.061 -24.4 0.044 -27.2 0.036 -28.9 0.033 -29.5 0.027 -31.4 0.027 -31.5 +1/-1 

200 0.453 -6.877 0.322 -9.85 0.176 -15.1 0.104 -19.6 0.071 -22.9 0.055 -25.2 0.039 -28.2 0.03 -30.5 0.028 -31 0.021 -33.5 0.021 -33.4 +1/-1 

250 0.320 -9.891 0.235 -12.6 0.144 -16.8 0.092 -20.7 0.065 -23.8 0.05 -26 0.035 -29.1 0.025 -31.89 0.023 -32.60 0.017 -35.50 0.017 -35.43 +1/-1 

315 0.201 -13.95 0.145 -16.8 0.104 -19.7 0.075 -22.5 0.057 -24.9 0.046 -26.8 0.033 -29.7 0.021 -33.39 0.019 -34.30 0.013 -37.44 0.013 -37.73 +1/-1 

400 0.115 -18.80 0.081 -21.9 0.068 -23.4 0.057 -24.9 0.047 -26.5 0.04 -27.9 0.031 -30.2 0.018 -34.84 0.016 -36.12 0.011 -39.49 0.010 -39.71 +1/-1 

500 0.068 -23.35 0.044 -27.20 0.041 -27.82 0.036 -28.81 0.032 -29.91 0.033 -29.58 0.027 -31.35 0.014 -36.78 0.012 -38.25 0.009 -41.15 0.008 -41.45 +1/-1 

630 0.036 -28.97 0.022 -33.10 0.022 -33.09 0.017 -35.26 0.018 -35.08 0.024 -32.50 0.022 -33.29 0.010 -39.89 0.009 -41.23 0.007 -43.46 0.006 -43.75 +1/-1 

800 0.017 -35.59 0.009 -41.18 0.010 -39.86 0.007 -42.79 0.007 -42.73 0.015 -36.76 0.013 -37.94 0.006 -44.05 0.006 -45.00 0.004 -46.98 0.005 -46.93 +1/-1 

1000 0.006 -44.80 0.003 -50.39 0.003 -48.38 0.003 -50.40 0.003 -50.93 0.007 -42.78 0.005 -45.33 0.004 -48.48 0.003 -49.50 0.003 -50.17 0.003 -51.08 +2/-2 

2000 0.000 -70.48 0.000 -82.09 0.000 -86.62 0.000 -74.83 0.000 -77.87 0.000 -69.16 0.000 -70.52 0.000 -66.55 0.000 -66.58 0.001 -63.46 0.001 -65.06 +2/-2 
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[Table D.4] Frequency weightings Wsrn for steering wheel rotational hand-arm vibration. 

Frequency 
Wsrn weightings 

Tolerance 
Wsr0.5 Wsr1 Wsr1.5 Wsr2 Wsr2.5 Wsr3 Wsr4 Wsr5 Wsr6 Wsr7 Wsr8 

Hz Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB Factor dB dB 

0 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 0 -32 +1/-1 

1 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 0.126 -18 +1/-1 

2 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 0.501 -6 +1/-1 

2.5 0.9 -0.915 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 0.9 -0.92 +1/-1 

3 1 0 0.962 -0.339 0.961 -0.347 0.967 -0.294 0.976 -0.209 0.984 -0.141 1 0 1 0 1 0 1 0 1 0 +1/-1 

4 0.873 -1.182 1 0 1 0 1 0 1 0 1 0 1 0 0.986 -0.120 0.975 -0.216 0.966 -0.297 0.959 -0.366 +1/-1 

5 0.8 -1.938 0.994 -0.048 1 0 0.997 -0.028 0.991 -0.076 0.985 -0.133 0.974 -0.226 0.952 -0.423 0.935 -0.585 0.920 -0.721 0.908 -0.837 +1/-1 

6.3 0.727 -2.766 0.963 -0.326 0.980 -0.177 0.975 -0.222 0.955 -0.399 0.955 -0.399 0.925 -0.676 0.897 -0.944 0.884 -1.069 0.856 -1.349 0.841 -1.508 +1/-1 

8 0.649 -3.76 0.910 -0.823 0.919 -0.735 0.907 -0.847 0.895 -0.968 0.881 -1.104 0.855 -1.357 0.823 -1.692 0.797 -1.968 0.776 -2.202 0.758 -2.402 +1/-1 

10 0.585 -4.651 0.848 -1.436 0.856 -1.348 0.838 -1.534 0.822 -1.699 0.806 -1.877 0.776 -2.199 0.742 -2.588 0.715 -2.910 0.693 -3.183 0.675 -3.417 +1/-1 

12.5 0.521 -5.66 0.782 -2.139 0.777 -2.186 0.758 -2.407 0.741 -2.609 0.722 -2.832 0.690 -3.217 0.656 -3.658 0.629 -4.023 0.607 -4.331 0.589 -4.598 +1/-1 

16 0.469 -6.573 0.709 -2.987 0.689 -3.234 0.666 -3.533 0.645 -3.808 0.626 -4.074 0.593 -4.535 0.560 -5.035 0.534 -5.446 0.513 -5.796 0.496 -6.098 +1/-1 

20 0.432 -7.282 0.632 -3.986 0.610 -4.287 0.584 -4.673 0.561 -5.015 0.541 -5.335 0.508 -5.874 0.477 -6.430 0.453 -6.888 0.433 -7.276 0.416 -7.612 +1/-1 

25 0.411 -7.731 0.567 -4.921 0.539 -5.370 0.507 -5.902 0.483 -6.323 0.462 -6.703 0.430 -7.331 0.400 -7.952 0.377 -8.462 0.359 -8.897 0.344 -9.273 +1/-1 

31.5 0.397 -8.031 0.512 -5.807 0.470 -6.552 0.436 -7.215 0.410 -7.739 0.389 -8.197 0.357 -8.939 0.329 -9.644 0.308 -10.22 0.291 -10.71 0.277 -11.14 +1/-1 

40 0.395 -8.06 0.460 -6.746 0.411 -7.732 0.372 -8.581 0.345 -9.237 0.324 -9.795 0.292 -10.68 0.266 -11.50 0.246 -12.17 0.231 -12.74 0.218 -13.23 +1/-1 

50 0.409 -7.769 0.425 -7.436 0.365 -8.758 0.323 -9.820 0.294 -10.63 0.272 -11.30 0.241 -12.37 0.216 -13.33 0.197 -14.10 0.183 -14.77 0.171 -15.35 +1/-1 

63 0.442 -7.084 0.399 -7.971 0.327 -9.700 0.281 -11.03 0.250 -12.03 0.228 -12.86 0.196 -14.16 0.172 -15.29 0.154 -16.23 0.141 -17.03 0.134 -17.45 +1/-1 

80 0.503 -5.966 0.382 -8.360 0.298 -10.52 0.247 -12.16 0.214 -13.40 0.190 -14.43 0.158 -16.05 0.134 -17.44 0.118 -18.59 0.105 -19.55 0.101 -19.95 +1/-1 

100 0.577 -4.778 0.373 -8.571 0.278 -11.13 0.222 -13.09 0.186 -14.60 0.161 -15.85 0.128 -17.86 0.105 -19.57 0.089 -21.00 0.079 -22.02 0.075 -22.55 +1/-1 

125 0.627 -4.048 0.363 -8.797 0.261 -11.66 0.201 -13.92 0.164 -15.72 0.137 -17.24 0.103 -19.75 0.080 -21.91 0.064 -23.85 0.059 -24.57 0.055 -25.17 +1/-1 

160 0.583 -4.683 0.340 -9.363 0.242 -12.33 0.182 -14.81 0.143 -16.91 0.115 -18.78 0.079 -22.03 0.057 -24.92 0.044 -27.20 0.041 -27.81 0.038 -28.33 +1/-1 

200 0.468 -6.598 0.297 -10.54 0.218 -13.23 0.163 -15.73 0.125 -18.06 0.097 -20.28 0.060 -24.45 0.040 -27.97 0.031 -30.12 0.029 -30.85 0.027 -31.43 +1/-1 

250 0.332 -9.579 0.237 -12.51 0.185 -14.66 0.141 -16.99 0.107 -19.44 0.079 -22.05 0.041 -27.66 0.028 -31.18 0.021 -33.64 0.019 -34.23 0.019 -34.55 +1/-1 

315 0.188 -14.54 0.169 -15.42 0.143 -16.88 0.114 -18.90 0.085 -21.42 0.059 -24.55 0.026 -31.63 0.018 -34.96 0.013 -37.83 0.012 -38.38 0.012 -38.27 +1/-1 

400 0.091 -20.78 0.109 -19.26 0.099 -20.07 0.081 -21.79 0.060 -24.51 0.036 -28.91 0.017 -35.59 0.011 -39.30 0.008 -42.16 0.008 -42.46 0.007 -42.55 +1/-1 

500 0.048 -26.38 0.070 -23.12 0.066 -23.65 0.056 -25.11 0.040 -28.07 0.023 -32.86 0.010 -39.59 0.006 -43.86 0.005 -46.26 0.005 -46.38 0.005 -46.62 +1/-1 

630 0.023 -32.82 0.038 -28.38 0.040 -27.97 0.034 -29.39 0.024 -32.35 0.013 -37.63 0.006 -44.38 0.004 -48.93 0.003 -51.06 0.003 -51.71 0.002 -52.15 +1/-1 

800 0.010 -40.35 0.018 -34.92 0.021 -33.37 0.019 -34.65 0.014 -37.34 0.007 -43.65 0.003 -50.13 0.002 -55.34 0.001 -56.52 0.001 -57.36 0.001 -59.58 +1/-1 

1000 0.004 -48.65 0.007 -42.87 0.011 -39.40 0.010 -40.13 0.007 -43.36 0.003 -49.67 0.002 -56.02 0.001 -62.28 0.001 -62.54 0.001 -64.10 0.001 -64.44 +2/-2 

2000 0.000 -74.33 0.000 -87.56 0.001 -65.86 0.001 -61.18 0.000 -68.07 0.000 -70.59 0.000 -69.57 0.000 -70.24 0.000 -68.56 0.000 -68.19 0.000 -67.54 +2/-2 
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