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Abstract

The nucleus of mammalian cells has been proven to be highly organised. A

recent study on interphase chromosome positioning has identified low serum

induced rapid chromosome repositioning. Chromosome 10 initially localised

at an intermediate position in normal proliferating human dermal fibroblasts

(HDF) was found to relocate to the nuclear periphery 15 minutes after the cells

have been incubated in low serum. Whereas chromosome X has remained in

a peripheral position. The relocation of chromosome 10 has been shown to

be dependant on both actin and myosin functions. In this project we have

further investigated the possible role of nuclear myosin I in chromosome 10

repositioning. Using siRNA to block the expression of the nuclear myosin I

(NMI) we were able to identify this nuclear myosin as necessary for the rapid

repositioning of chromosome 10. Furthermore, using image analysis software

we investigated the effect of the NMI knock down on the overall nuclear size

and shape. The analysis has revealed that while the nuclear size of normal

proliferating cells remained unchanged after the low serum incubation both

in cells expressing the NMI and NMI depleted cells, the knock down of the

NMI seems to have affected the nuclear shape when the cells were subjected

to the serum incubation. On the other hand, the analysis of the chromosome

territories area has revealed significant differences in the chromosome territories

sizes before and after the low serum incubation, in normal proliferating HDF

cells .
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Chapter 1

Introduction

1.1 Architecture of the nucleus

The eukaryotic cell nucleus, figure 1.1 houses most of the genetic material of

the cell. It accommodates all the materials and structures necessary for genome

replication and DNA repair, timely control of gene expression and processing

of transcripts. To perform these functions efficiently, the nucleus is extremely

well organised with several individual nuclear structures providing architecture

to maintain the nuclear integrity and participate in nuclear processes (Foster &

Bridger 2005).

1.1.1 Nuclear envelope

The nuclear envelope (NE) surrounds the nucleus, and consists of two sheets

of membrane with a lumen, with the inner and outer membranes connecting

only at the nuclear pores (Voeltz, et al., 2002). It serves in the transit of ma-

terials between the nucleus and cytoplasm (Stoffler, et al., 1999). The nuclear

pore complexes are highly complex structures that selectively regulate the tran-

sit of larger molecules in both directions, they allow the free passage of small

molecules, whereas, above 50 kilodaltons molecular weight, only ”nuclear” pro-

teins are allowed in the nucleus (Laskey, 1987).

1
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Figure 1.1: Cartoon showing the nuclear architecture
This cartoon representation of the nucleus shows some of the actin and myosin
identified locations and interactions, inluding; transcription machinery, nuclear

pore complex, nucleolus, emerin and nuclear lamina.

1.1.2 Chromatin and Chromosomes

Different patterns of interphase chromosome organization have been identified

in functionally distinct cell types (Manuelidis & Borden 1988). In the nucleus

of mammalian cell, the chromatin exists in the form of chromosome territo-

ries that can be visualized by fluorescence in situ hybridization (FISH) using

whole-chromosome DNA probes (Misteli & Spector 1998). In these chromo-

some territories, chromosomal sub-domains have been shown to occupy distinct

non random sub-nuclear localization depending on the cell’s cycle (Manuelidis,

1984). Chromosomes occupy distinct territories in the cell nucleus with pre-
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ferred nuclear locations (Cremer, et al., 2006). Using radial distance mea-

surements Cremer’s group has suggested that chromosomes have a probalistic

three-dimentional position (Bolzer, et al., 2005) rather than a determinate one

as previously concluded by Bickmore group in their studies on chromosome 18

and 19 positioning (Croft, et al., 1999). Cremer et al, found that small chro-

mosomes were distributed significantly closer to the center of the nucleus or

prometaphase rosette, while large chromosomes were located closer to the nu-

clear or rosette rim. This arrangement was confirmed in two cell types with flat-

ellipsoidal cell nuclei (human fibroblast and amniotic fluid cell nuclei). in the

same study Cremer’s group, had reported that gene-poor chromatin domains,

formed a layer beneath the nuclear envelope, while gene-enriched domain are

found in the nuclear interior (Bolzer, et al., 2005).

Measurements of the chromosome HSA18 and 19 territories, showed areas

of HSA18 signals were significantly smaller than those of chromosome 19 de-

spite that their DNA content being 85 Mb and 67 Mb respectively (Croft, et

al., 1999). To address whether the spatial organization of the genome affects

the gene expression, or whether it is just a reflection of it, Bikemore’s group in

2007, have actively induced the rearrangement of some chromosmes to the nu-

clear periphery by tethering them to the inner nuclear membrane (INM). The

repositioning of chromosome 4 and 11 to the nuclear periphery resulted in a

down- regulation of some of their active genes, but not all of them, with the

expression of genes closer to the tethering point being the most affected (Finlan,

et al., 2008).

Cremer, et al., (2000) have proposed a modular and dynamic model for chro-

mosome territory based on three nuclear compartments; an ”open” higher-order

chromatin compartment, a ”closed” chromatin compartment, and an interchro-

matin domain (ICD) compartment (Zirbel, et al., 1993). While the ”open”

chromatin compartments contain active genes , ”closed” chromatin compart-

ments comprise inactive genes, and the (ICD) includes macromolecular com-

plexes necessary for DNA replication, transcription, splicing, and repair. Only
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Genes in ”open” compartments would have access to transcription and splicing

complexes located in the ICD compartment (Cremer, et al., 2000)

1.1.3 Nuclear bodies

PML nuclear bodies (PML-NBs)

The promyelocytic leukaemia protein (PML) nuclear bodies (NBs), previously

known as nuclear domains-10, Kremer bodies and PML oncogenic domains are

punctate nuclear structures that are interspersed between chromatin (Melnick

& Licht 1999). PML-NBs are present in most mammalian cell nuclei as discrete

nuclear foci, 0.2-1.0 µm wide. Depending on the cell type, cell-cycle phase

and differentiation stage their number varies between 1 - 30 bodies per nucleus

(Dellaire & Bazett-Jones 2004). Despite their uniform appearance, PML-NBs

are structurally and functionally heterogeneous and are dynamic structures.

Although the main role of PML-NBs seems to be tumour-suppressive (Salomoni

& Pandolfi 2002), they have been implicated to have a role in regulating many

cellular functions, from inhibiting cell proliferation, to inducing apoptosis and

cellular senescence. Along with, maintaining genomic stability and antiviral

responses (reviewed by Bernardi & Pandolfi 2007).

Cajal bodies

Cajal bodies are dynamic nuclear bodies of 0.2-1.0 µm in diameter, previously

called coiled bodies thought to play a role in small nuclear ribonucleoprotein

(snRNP) biogenesis and in the trafficking of snRNPs and snoRNPs (Spector,

2001). The number of cajal bodies present in nuclei is variable during different

stages of the cell cycle (Zimber, et al., 2004). They have been shown to asso-

ciate with histone loci as well as U1, U2 and U3 gene clusters (Matera, 1999).

Adjacent to cajal bodies, are found Gems, (gemini of cajal bodies) (Spector,

2001) they are characterized by the presence of the survival of motor neurons

gene product (SMN) and an associated factor, Gemin2 (Matera, 1999).
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Nuclear speckles

Nuclear speckles consist of regions in which splicing factors are concentrated

(spector, 1993). By immunofluorescence microscopy using anti-splicing-factor

antibodies, speckles can be visualised as irregularly shaped nuclear domain.

They are dynamic structures and their shape, size and number is variable even

within the same cell type, their number depends on the levels of gene expression

and metabolic and environmental signals. In interphase mammalian nucleus the

number of speckles, usually varies between 25-50 (Lamond & Spector 2003).

Also known as splicing factor compartments (SFCs), by light microscopy, they

appear as irregularly shaped entities with a diameter of 1-2 µm and correspond

to interchromatin granule clusters (IGCs) under electron microscope (Vecerova,

et al., 2004).

Paraspeckles

Paraspeckles are a relatively newly identified subnuclear body between 0.5-1.0

µm in size. These foci were named paraspeckles because they were observed in

the interchromatin space near to, the nuclear speckles but distinct from them

(Fox, et al., 2002). They are restricted to mammalian nuclei and their numbers

vary both within cell populations and depending on cell type (Bond & Fox 2009).

Paraspeckles proteins are defined by their co-localisation with a member of the

mammalian DBHS (Drosophila melanogaster behavior human splicing) protein

family in a subnuclear foci. But recent studies have reported that they are

formed around a long nuclear noncoding RNA (ncRNA) and contain a small

number of proteins involved in transcription and/or RNA processing. They

have been suggested to have a role in controlling gene expression by trapping

adenosine to inosine (A to I) hyperedited RNA within the nucleus (reviewed by

Bond and Fox 2009).
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1.1.4 Nuclear matrix

The nuclear matrix was revealed (Rando, et al., 2000); after extracting most

the DNA and the histones, to comprise inner filaments organized in a three-

dimensional anastomosed network and bounded by the nuclear lamina con-

nected to the cytoskeletal framework. The filaments range in diameter from 3

to 22 nm. The proteins of the nuclear matrix are very different from those of

the cytoskeleton and chromatin. Although some researchers view the nuclear

matrix as a functionally defined organelle in the nucleus, many other researchers

prefer to refer to it as a biochemical fraction (Rando, et al., 2000). The matrix

is thought to function in some ways as a nuclear homologue of the cytoplasmic

cytoskeleton, providing an organisational scaffold upon which nuclear events

might take place.
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1.2 Nuclear motors

Introduction

Active transport in the cell is mostly driven by molecular motors. There are

three classes of molecular motors: the kinesin families that move toward the

plus-end of microtubules, the dynein families that move toward the minus-

end of microtubules, and the unconventional myosin motors that move along

actin filaments (reviewed by Mallik and Gross, 2004). While, the discovery in

the nucleus of actin (reviewed by Bettinger et al., 2004) and more recently of

a nuclear isoform of the myosin I (Nowak, et al., 1997) has opened a whole

new horizon of our understanding of some of the fundamental nuclear processes

involving this nuclear motor, more studies are needed to fully understand, many

of the functions allocated to the actin-myosin complex.

1.2.1 Nuclear actin

There are at least six actin genes in mammals encoding for six isoforms (α,

γ and β). These are alpha-skeletal (ACTA1), alpha-cardiac (ACTC1), alpha-

smooth muscle (ACTA2), gamma-smooth muscle (ACTG2), beta-cytoplasmic

(ACTB) and gamma-cytoplasmic isoactin (ACTG1) (Vandekerckhove & Weber

1987). The α actin isoforms are present in various muscle cells and are involved

in contractile structures, while γ actin and β actin isoforms are present in all

cell types (Bettinger, et al., 2004). β actin is a globular protein that is separated

into two lobes by a cleft that forms the ATP-binding site as illustrated in figure

1.2.

ATP-bound actin monomers (globular or G-actin) can assemble into fila-

ments (filamentous or F-actin), which results in the hydrolysis of ATP (Bet-

tinger, et al., 2004). Actin filaments are composed of two strands that twist

around one another to form a double right-handed helix as shown in figure 1.3.
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Figure 1.2: Cartoon representation of a globular actin molecule
In the cleft region, ATP binding is shown in red and Mg+ in yellow, the different

molecule regions are noted 1 to 4.

Figure 1.3: Double helix strand of F actin.
(Available at www.daviddarling.info/images/actin.filament.jpg). Light blue: G actin

molecule. Actin filaments are formed by the twist of two strands (blue and purple)

one another around to form a double right-handed helix.
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Actin in the nucleus

Actin was first revealed in the nucleus in the late sixties (lane, 1969), but

the low amounts of nuclear actin relative to cytoplasm, the inability to detect

nuclear actin using conventional staining methods, and the lack of a specific

function for actin in this compartment led to scepticism (reviewed by Pederson

& Aebi 2002 and Bettinger, et al., 2004). Gonsior, et al., (1999) presented

undisputed evidence of actin presence in the nucleus using a particular anti-

actin monoclonal antibody (2G2) directed against parts of the cleft region of

the actin molecule. Immunofluorescence studies revealed a distinctive focal

pattern of nuclear staining in differentiated myogenic cells, as well as a fibrillar

structures in nuclei of Xenopus oocytes (Gonsior, et al., 1999). At present,

although the presence of actin in the nucleus is undisputed, the molecular con-

formation and role in nuclear processes of this molecule is yet to be completely

uncovered (reviewed by Pederson & Aebi 2002, Bettinger, et al., 2004 and Var-

tiainen, 2008). McDonald, et al., (2006) reported that the actin pool in the

nucleus contains monomeric, oligomeric and polymeric populations that pre-

sented as both rapidly and slowly moving kinetic populations and that the only

significant difference between the cytoplasmic and nuclear actin is the bundling

of cytoplasmic actin that generates the stress fibers in the cytoplasm. They

also suggested that around 20% of the total nuclear actin pool has proper-

ties of polymeric actin that turns over rapidly. Moreover, Hu, et al., (2004)

have previously reported that beta actin is associated with and is necessary for

the function of the RNA polymerase III and it has been suggested that the

monomeric actin is the form of actin required for pol III transcription. On

the other hand, different studies have suggested that nuclear actin does not

form long F-actin filaments, but can undertake a shorter, potentially novel con-

formations that are distinct from those found in conventional actin filaments

in the cytoplasm (Pederson & Aebi 2002, 2005 and Jockusch, et al., 2006).

In the nucleoli of resting cells, actin was found to predominantly localised to

fibrillar centres (FCs). After transcriptional activation of phytohemagglutinin
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(PHA) stimulated human lymphocytes, actin was found to accumulate in the

dense fibrillar component (DFC) and in the granular component of the nucle-

olus, but FCs remained the main site of actin localisation. Moreover, in the

nucleoplasm of transcriptionally active cells, both actin and NMI colocalised

with nucleoplasmic transcription sites at the decondensed chromatin, after they

were mostly localised in condensed chromatin (Kysela, et al., 2005).

Actin transport into and out of the nucleus

Thanks to its small size, actin can easily enter the nucleus by diffusion, however

the low concentration of nuclear actin compared to the cytoplasm suggests

the involvement of an active form in actin transport through the nuclear pore

complex (NPC) (reviewed by Vartiainen, 2008). Wada, et al.,(1998) reported

that actin sequence contains two functional leucine-rich type nuclear export

signal (NES) sequences. The rapid export of injected monomeric actin into the

nucleus was prevented by leptomycin B (LMB), a specific inhibitor of NES-

dependent nuclear export and the disruption of these NES resulted in a nuclear

accumulation of the actin. This was supported by the fact that the export

receptor Exportin 6 (EXP6), was found to mediate nuclear export of profilin-

actin complexes. Profilin was found to highly enhance the primary actin contact

with the exportin 6, and was considered as a cofactor of actin export (Stuven, et

al., 2003). Furthermore, EXP6 was found to recognise and specifically remove

actin from the nucleus (Jockusch, et al., 2006). On the other hand there is

evidence that many proteins that binds actin such as cofilin (Lida, et al., 1992

and Pendleton, et al., 2003) CapG (De Corte, et al., 2004) and MAL (Vartiainen,

et al., 2007) contain a nuclear localization signal (NLS) and may transport actin

in a complex (’piggy-back’ it) into the nucleus (Jockusch, et al., 2006, Yahara,

et al., 1996 and reviewed by Vartiainen, 2008).
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Actin binding proteins

In the cell, the majority of actin molecules are bound to individual partners and

consequently locked in a specific conformation, these induced conformational

states eventually lead to distinct forms of monomeric, oligomeric or polymeric

actin but the exact conformation of the actin bound to these proteins is only

known in a few cases, since actin-binding proteins might trigger the formation of

different forms of actin. Many of the proteins reacting with conventional actin

forms in the cytoplasm are also found in the nucleus (Jockusch, et al., 2006),

these include F-actin-binding proteins such as gelsolin (Nishimura, et al., 2003),

CapG (De Corte, et al., 2004), myopodin (Weins, et al., 2001) and cofilin (Lida,

et al,. 1992), as well as the G-actin-binding proteins profilin (Skare, et al., 2003)

and thymosin β4 (Huff, et al., 2004).

A list of actin binding proteins shown to be present in the nucleus, as re-

ported by Pederson and Aebi, (2005) is shown in table 1.1, the original table has

been slightly modified by adding functions to some proteins (Profilin I, CapG)

initially listed as unknown in the original table , the respective references are

also provided.
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Protein Function Reference
Profilin I Monomer binding protein

that promotes nucleotide
exchange

(Skare, et al., 2003),
(Stuven et al., 2003)

Thymosinβ4 G-actin sequestering pep-
tide in the nucleus

(Huff, et al., 2004)

Myosin I RNA polymerase I tran-
scription

(Fomproix & Percipalle
2004), (Philimonenko,
et al., 2004), (Pestic-
Dragovich, et al., 2000)

Filamin Androgen receptor action Ozanne et al(2000)
Supervillin Androgen receptor action (Ting, et al., 2002)
Gelsolin Androgen receptor action (Nishimura, et al., 2003)
CapG Binds pointed ends of F-

actin
(De Corte, et al., 2004),
(Onoda, et al., 1993)

Emerin Cortical network at the in-
ner nuclear membrane

(Holaska, et al., 2004)

Band 4.1 Nuclear pore-attached fila-
ment association

(Kiseleva, et al., 2004)

Tropomodulin Unknown (Kong & Kedes 2004)
NUANCE Linkage to cytoplasmic

actin filaments
(Zhen, et al., 2002), (Li-
botte, et al., 2005)

hnRNP U RNA polymerase II tran-
scription

(Kukalev, et al., 2005)

DNA helicase
II/ RNA heli-
case A

RNA polymerase II tran-
scription and RNA process-
ing

(Zhang, et al., 2002)

Zyxin Promotes actin polymeriza-
tion

(Nix and Beckerle 1997),
(Fradeliziet, et al., 2001)

Myopodin Filamentous actin bundling
protein

(Weins, et al., 2001)

Nrf2 Forms a complex with actin
that translocates to the nu-
cleus upon oxidative stress

(Onoda, et al., 1993)

Lamin A nuclear lamina protein (Sasseville, et al., 1998),
(Shumaker, et al., 2003)

Table 1.1: Actin-binding proteins in the nucleus
(adapted from Pederson & Aebi 2005)
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Nuclear complexes that contain actin

Actin has been found to be a component in many nuclear complexes, hence

involved in many nuclear processes, a list of those complexes along with a brief

description of each complex as reported by Bettinger, et al., (2004) is provided

in table 1.2.

This plethora of actin binding proteins in the nucleus suggests that actin

is multifunctional in this compartment. Whether actin takes one or many un-

conventional forms in the nucleus, and which form for which job is yet to be

identified. One actin binding protein recently identified in the nucleus is the

nuclear myosin I (Pestic-Dragovich, et al., 2000) this molecule has been the

focus of our study as there are strong indications that it may be implicated in

chromosome repositioning.
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The complex Function
BAF complex Actin is required for the optimal ATPase activity

of the BAF (BRG-associated factor) complex, a
mammalian chromatin-remodelling complex that
is related to the yeast SWI/SNF complex

BAP complex Actin co-purifies with Brm, a SWI2/SNF2-related
helicase that functions as the catalytic subunit
of the BAP(Brm-associated protein) complex,
a Drosophila melanogaster chromatin-remodelling
complex

Ino80 complex Actin co-purifies with INO80, which is the ATPase
subunit of the Ino80 complex, a Saccharomyces
cerevisiae SWI/SNF-like complex that is involved
in transcription and DNA processing

NuA4 complex Actin co-purifies with the NuA4 (nucleosomal
acetyltransferase of H4) complex, that modifies hi-
stones H4 a structural component of the nucleo-
some and H2A

Nuclear
DNA helicase-
II(NDHII)

(NDHII) binds actin and hnRNP C24.it unwinds
double-stranded DNA and has been seen to stimu-
late translation and have a role in RNA transport

p400 complex Actin co-purifies with p400 complex the mam-
malian SWI/SNF-like ,which binds to the aden-
ovirus E1A oncoprotein, and is involved in the
oncogenic transformation of cells by E1A.The p400
is also found in the TIP60 complex

PBAF complex Actin co-purifies with BAF180, a protein that is
found in the PBAF(polybromo BRG1-associated
factors) complex which localizes to the kineto-
chores of mitotic chromosomes complex

Pre-mRNP parti-
cles

Actin binds to the heterogeneous nuclear ribonu-
cleoproteins (hnRNPs); hrp36, DBP40 and hrp65.
pre-mRNA molecules associate with the hnRNP to
form ribonucleoprotein complexes that are known
as pre-mRNP particles

TIP60 complex Actin co-purifies with Tat interactive protein
TIP60, a histone acetylase of the mammalian
TIP60 complex, which also has ATPase and DNA-
helicase activity

Table 1.2: Nuclear complexes that contain actin
(as described by Bettinger, et al.,2004)
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1.2.2 Nuclear Myosin I

Introduction

According to an analysis of the draft human genome conducted by Cheney

et al., (2001) the human genome includes around 40 myosin genes, This fam-

ily can be divided in two major families; the conventional myosins or Class

II myosins consisting of 15 genes, mainly involved in muscle contraction and

the unconventional myosins family which constitute around two thirds of the

human myosins genes. Myosin superfamily members are characterised by the

presence in their heavy chain of a conserved catalytic domain ( 80 KDa), that

is followed in most myosins, by one or more IQ (calmodulin-binding) motifs

in addition to a C-terminal tail and /or an N-terminal extension, these are

thought to confer class-specific properties such as kinase activity and mem-

brane binding. In spite of the high relative conservation of motor domains

among the myosin classes, significant differences are found in biochemical and

enzymatic properties of these motor domains. These differences confer to each

class of myosin specific characteristics, hence different roles (Cheney et al 2001).

Nuclear myosin I is a member of the myosin I family (Pestic-Dragovich, et

al., 2000), members of this family was were first described by Pollard and Korn

in 1973 in Acanthamoeba. Single headed, the myosin I was first thought to be a

proteolytic form of the myosin II, figure 1.4. It was in 1987 that Hammer et al,

finally provided undoubted evidence of its individuality by cloning the myosin I

gene.

In mammalian cells, myosin I was found to be abundant in the brush border

where it may mediate membrane trafficking, it has an important role in function

of the hair cell, it has also been implicated in traction-mediated cytofission and

contractile vacuole function in Dictyostelium (Hoffman et al 2006). Another

role of myosin I as a molecular tension sensor has also recently been reported

(Laakso, et al., 2008).
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Figure 1.4: Cartoon of myosin I.
Schematic representation of the myosin I molecule with the different regions of the

molecule; Red: the head region or the motor domain, orange: the neck region

comprising the regulatory domain and green: the tail region or the binding domain.

The relatively recent discovery of new members of the unconventional myosin

I subfamily in human cells together with the fact that homologous in other

species have been given different but yet close similar names, has given rise to

much confusion in the literature. For this reason a group of leading scientists in

the field had come together in 2001 to recommend the adoption of a common

nomenclature based on the Human Genome Organization (HUGO) names sys-

tem. Names and corresponding coding genes for the myosin I family members

are shown in table 1.3.
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Human
gene

Human
synonyms

Mouse
gene

Mouse
synonyms

Rat
synonyms

MYO1A
Brush border

myosin I
(AF009961)
”myosin-IA”
(L29137)

Myo1a

MYO1B ”myosin IB”
(L29138)

Myo1b myosin I
(P46735),
MIHC L
(X69987)

myr 1
(X68199),MI-
130K

MYO1C
Nuclear myosin I Myo1c myosin-I

(X98507)
myr 2
(X74800);
MI-110K

MYO1D Myo1d myosin-I
(C45438)

myr 4
(X71997)

MYO1E
”myosin IC”
(U14391)

Myo1e myr 3
(X74815)

MYO1F ”myosin ID”
(U57053),”myosin-
IE” (X98411)

Myo1f myosin-If
(X97650)

MYO1G
Myo1g

MYO1H Myo1h

Table 1.3: Reconciliation of myosin I names in the literature
(adapted from Berg, et al., 2001)

The Nuclear Myosin I (NMI)

Since the mid-seventies, many studies have suggested the nuclear presence of

a myosin or a myosin-like protein but no conclusive evidence was provided

(Hofmann, et al., 2006 and references therein). It was in 1997, that pres-

ence of a myosin I isoform in the nucleus was first demonstrated (Nowak, et

al., 1997), then confirmed to be a myosin I b (Pestic-Dragovich et al., 2000).

Nuclear myosin I is a 120 kD monomeric single headed actin based motor

molecule pertaining to the Myosin-I subclass of the Myosin superfamily. Mem-

bers of this myosin class have a single globular motor domain, followed by a

neck region and a relatively short (30-40 kD) tail domain. This latter domain is

highly basic and binds to acidic phospholipids (Gillespie, et al., 2002). Like all
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biochemically characterized unconventional myosins, Myosin I binds calmodulin

in its light chain neck region (Barylko, et al., 1992). The human nuclear myosin

I (NMI) is encoded by the MYO1C gene, it is slightly shorter than its cyto-

plasmic homologue and contains a unique 16-amino acid N-terminal extension

that is necessary for its nuclear localisation. Although this extension was not

found to include a known nuclear localisation signal (NLS) sequence, removing

it resulted in retention of the NMI in the cytoplasm (Pestic-Dragovich, et al.,

2000). The localization of myosin I to the nucleus has been shown to predate

the origin of the vertebrates, as NMI has been present in the last common an-

cestor of vertebrates and tunicates. Thus, a functional role for NMI appears

to have been present at an early stage of animal evolution prior to the rise

of both the myosin IC isoform and the vertebrates (Hofmann, et al., 2009).

NMI has been found to be expressed in all mouse tissues with the exception of

terminal stages of spermiogenesis cell nuclei and has a minimum life span of 16

hours (Kahle at al., 2006). Despite its ubiquitous expression, the NMI level is

considerably variable in different tissues, suggesting a tissue specific roles for

this myosin. With the highest level in lung cell nuclei, higher levels of the NMI

have also been registered in cell nuclei of kidney, skin, small intestines, liver,

spleen, testis, and heart tissues. Whereas, lower levels have been detected in

brain, skeletal muscle and pancreas (Kahle, et al., 2007).

The level and distribution of NMI in the cell nucleus has been shown to be

dependent on the transcriptional state of the cell (Kysela, et al., 2005); tran-

scriptional activation in phytohemagglutinin (PHA) stimulated human lym-

phocytes was followed by an increase of NMI level and a redistribution of its

initial nuclear localization. While NMI was located mainly to the dense fibrillar

component (DFC) in nucleoli of resting cells a post-transcriptional activation

condensation of the NMI in the DFC and in the granular component of the nu-

cleolus was observed. Furthermore, in transcriptionally active cells, both actin

and NMI colocalized with nucleoplasmic transcription sites at the decondensed

chromatin, after they were mostly localized in condensed chromatin (Kysela,
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et al., 2005). Expression of NMI has also been found to be affected by serum

variations, with a lower expression level in serum starved cells that increases

after serum stimulation (Kahle, et al., 2007).

1.2.3 Other myosins in the nucleus

The discovery of the nuclear myosin I (Nowak et al 1997) has given rise to the

possibility of the presence of other members of the myosin superfamily in the

nucleus, effectively many studies have reported the presence of several other

myosins in the nucleus, figure1.5.

Myosin V

The phospho-ser1650 myosin Va , a myosin V paralog has been found to lo-

calise at the nucleus( Pranchevicius, et al., 2008); immunofluorescence studies

had shown the exclusive colocalization of the phospho-ser1650 myosin Va with

a splicing factor at the nuclear speckles(SC35). Inhibition of transcription in

HeLa cells by actinomycin D has resulted in a dissociation of a fraction of phos-

phoser1650 MVa from SC35 and a redistribution of the phospho-ser1650 MVa

to nucleoli, suggesting a novel role for myosin Va in nuclear compartmentaliza-

tion(Pranchevicius, et al., 2008).

Myosin VI

The myosin VI is the only identified myosin that moves toward the minus end

of actin filaments (wells, et al., 1999). Analysis of myosin VI sequence revealed

the presence of five putative monopartite nuclear localization signals (MNLS)

and one putative bipartite nuclear localization signal (BNLS), mainly localized

in the tail region. Moreover, an immunofluorescence study demonstrated the

nuclear localization of the myosin VI (Vreugde, et al., 2006). MyosinVI is a

processive moving myosin, it is present both as monomers and as dimers, the

processive walking of myosin VI on actin filaments has been shown to require

dimerization of the molecule, whereas the protein can also function as a nonpro-
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Figure 1.5: Identified nuclear myosins
(unrooted phylogenetic tree of the myosin superfamily in humans) solid lines
indicate myosins known from cDNA sequences and dashed lines indicate

putative myosins predicted from genomic sequence, myosins identified to be
present in the nucleus are highlighted in colored boxes.

(adapted from Berg at al 2001)
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cessive monomer (Ye, et al., 2009). Myosin VI has been reported to be highly

expressed in the nucleus of mammalian cells and modulates RNAPII-dependent

transcription; it has been found to be present in the RNAPII complex and to

specifically associates with RNAPII at active genes as well as colocalise with

nascent transcripts (Vreugd, et al., 2006).

Myosin XVIB

Myosin XVIB, is a founding member of the of the class XVI myosins which are

characterized by the presence six ankyrin repeats at the N-terminal that may

function as sites for protein-protein interaction (Berg, et al., 2001). The nuclear

transition of the myosin XVIB, is found to be dependent on the monopartite

nuclear localization signals located in the N-terminal portion of the Myo16b-

tail. Several leucine-rich nuclear export signals (NES) have been also identified

suggesting a controlled nuclear localization of the myosin16 b (Cameron, et al.,

2007). Myosin 16XVIB has been suggested to slow progression through S-phase

and its overexpression suppresses cell proliferation (Cameron, et al., 2007).
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1.2.4 Functions of the Actin- Nuclear Myosin I complex

The actin-NMI complex has been implicated in many nuclear processes from

transport to transcription, in some cases they have been shown to work in

concert, whereas in other occasions they have been shown to have distinct roles;

Chromatin remodeling

The WSTF (Williams Syndrome Transcription Factor)-SNF2h chromatin re-

modeling complex has been reported to interact with the NMI during active

transcription (Cavelln, et al., 2006) Purification of cellular NM1 showed that

a fraction of NM1 was associated with a 2-3 MDa complex, termed B-WICH,

containing WSTF, SNF2h which bound both Pol I and rDNA . Interaction of

NM1 with WSTF was suggested to recruit the WICH and WINAC complex to

active genes to modify chromatin and activate transcription (Percipalle, et al.,

2006).

Transcription

Both actin and NMI cooperate in Pol I transcription activation (Ye, et al.,

2008); antibodies to actin inhibit transcription in cell-free transcription assay

and both actin and NMI are required to rescue transcription in nuclear extract

treated with anti-actin antibody. While, the complex formed by(Pol I, TIF-IA,

actin, and NM1) remained preserved in the presence of ADP, the presence of

ATP, prevented the association of actin with the transcription machinery and

the association of NMI with Pol I was reduced indicateing that ATP binding

and hydrolysis lead to detachment of actin from the Pol I/TIF-IA complex

and dissociation of actin-NMI complex. Whilest, the actin-dependent motor

activity of NMI was identified to be required for transcription elongation and

not for the recruitment of Pol I to rDNA, the tail domain seems to have a

role in earlier steps of transcription (Ye, et al., 2008). Actin was shown to co-

localise with RNA polymerase II and to be recruited to the promoter region of

the interferon-gamma-inducible MHC2TA gene as well as the interferon-alpha-



1.2. Nuclear motors 23

inducible G1P3 gene. It was also established to be part of the pre-initiation

complexes of which the formation was prevented by the actin depletion, sug-

gesting that it plays a crucial role in the initiation of transcription by RNA

polymerase II (Hofmann et al 2004). Similarly, NMI has been found to co-

localise and co-immunoprecipitate with RNA polymerase II. NMI Antibodies

to its NH2-terminal extension inhibit transcription by RNA polymerase II in

HeLa nuclear extracts (Pestic-Dragovich, et al., 2000). Similar findings were re-

ported by Hofmann, et al., (2006) they showed that antibodies to NMI inhibit

transcription both in vitro and in vivo, and this inhibition was found to be in a

concentration dependent manner. Antibodies to NMI inhibited the production

of the first 15 nucleotides RNA indicating that NMI is involved at the initiation

or pre-initiation state of transcription by RNA polymerase II (Hofmann, et al.,

2006). Furthermore, transcriptional activation in human lymphocytes has been

found to induce a dramatic increase of cellular levels of NMI (the western blot

showed about 15 fold after 24 h and 28 fold after 48 h increase in NMI protein

levels), while the levels of actin remained unchanged (Kysel, et al., 2005). It ap-

pears that NMI is required for transcription initiation and for a post-initiation

steps; as NMI has been found to be part of a multiprotein complex containing

the chromatin remodeling complex WICH (Percipalle, et al., 2006). On the

other hand, beta actin also has a role in RNA polymerase III transcription (Hu,

et al., 2004); beta actin has been shown to associate with highly purified pol

III and is essential for basal transcription. In addition, actin was localized at

the promoter region of an active U6 gene. The dissociation of actin and the

polymerase III resulted in an inactive transcription (Hu, et al., 2004). Nuclear

myosin I was also found to be associated with the RNA polymerase III genes 5 S

rRNA genes and 7SL and was found in complex including WSTF-SNF2h-NMI

that is believed to form a platform in transcription while providing chromatin

remodeling (Cavelln, et al., 2006)
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Nuclear transport

A recent role of the nuclear myosin I and actin has been identified by Parcipalle’s

group; using Immunoelectron microscopy, they showed NM1 localization at the

NPC basket of Xenopus oocyte membrane, decorates pore-linked filaments rich

in actin. They also found that NMI coprecipitate with CRM1, and Nup153 as

well as same 18S and 28S rRNAs, suggesting a role of the NMI in preribosomal

subunits for maturation and their transport to the NPC (Obrdlik, et al., 2009).

Maintaining the nuclear shape and organisation

The co-localisation of nuclear actin spots and p80 coilin-positive cajal bodies

staining, that resisted nuclear extraction to reveal the nuclear matrix, and the

redistribution of actin to the nuclear periphery identified as a result of Aden-

ovirus 5 infection has led to the conclusion that actin may play an important

role in the organization or function of the cajal body (Gedge, et al., 2005). An-

other role of the nuclear myosin I-containing complexes in sensing and regulating

the mechanical tension at the nuclear envelope has been suggested by Holaska

and Wilson, (2007). They found that emerin scaffolds a variety of multipro-

tein complexes at the nuclear envelope that have distinct functions, including

nuclear myosin I-containing complexes, they proposed a model where emerin-

and-lamin A-anchored NMI might pull actin filaments towards, or along, the

nuclear envelope. Together with emerin-promoted actin polymerization at the

inner membrane, emerin-bound NMI has the potential to both sense and reg-

ulate the mechanical stiffness of the peripheral nuclear lamina network, hence

contribute to maintaining the nuclear shape and architecture (Holaska &Wilson

2007).

Chromatin reorganisation and chromosome movement

A fundamental role for the actin-myosin complex in chromatin movement was

identified by Chang, et al., (2006). They have demonstrated the migration of

a chromosome site from the nuclear periphery to the interior in cells during
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interphase, 1-2 hours after transcriptional activation of this site has been tar-

geted. This chromosomal repositioning has been identified to exist throughout

a large fraction of the cell cycle ( G1 /early S) and depends on NMI and actin

polymerization .

Using 4D imaging analysis, Dundr and colleagues, (2007) revealed rapid and

directed long-range chromosomal movements of U2 genes during interphase.

followed by a stable association between cajal bodies (CBs) and U2 genes.

The interaction of CBs and U2 genes was inhibited by the overexpression of

a nonpolymerisable actin mutant, which also inhibited the repositioning within

the chromosome 7 territory of the U2 locus (Dundr, et al., 2007)

A role of actin and NMI in nuclear reorganisation and interchromosomal in-

teraction has been also identified. Chromosome 21 and chromosome 2, initially

localized independently in the nucleus before 17β-estradiol (E2) treatment were

found to became intimately localised after The E2 treatment with interchromo-

somal kissing, this chromosomal rearrangement and kissing was abolished by

the inhibition of actin polymerization or the siRNA depletion of the NMI (Hu,

et al., 2008).
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1.3 Aims of the project

While other studies have reported a role of the nuclear myosin I in chromosome

movement, they have been focusing on a gene or a chromosome region. In

this project the role of the nuclear myosin I in the repositioning of a whole

chromosome territory has been investigated using chromosome positioning and

image analysis tools. This project is aiming to:

1. Confirm chromosome 10 repositioning to the nuclear periphery after the

cells were incubated in low serum, using IPlab spectrum software.

2. Design siRNA constructs to target the respective nuclear myosin I encod-

ing gene.

3. Repeat the chromosome positioning study using images of nuclei where the

nuclear myosin I gene has been silenced by siRNA in order to investigate

the effect of the NMI depletion on low serum induced chromosome 10

repositioning.

4. Conduct a comparative study of the nuclear shape and size before and

after the low serum incubation.

5. Repeat the comparison of the nuclear size and shape after the siRNA

knockdown of the NMI gene.

In order to achieve the above a number of laboratory techniques and image

analysis tools have been used, as detailed in the following chapter.



Chapter 2

Methods and Materials

In this chapter all methods and tools used during this project will be described;

They can be divided in two categories. The first set is laboratory based, and

the second is computer based. The laboratory based methods section will de-

scribe techniques used to prepare the cells for the study. Tissue culture permits

the generation of enough cells to carry out the experiments. The low serum

assay was used to induce the chromosome repositioning. Fluorescence in situ

hybridisation (FISH), enabled us to probe the chromosomes in order to study

their position in the nucleus before and after the low serum incubation of the

cells, pre and post siRNA knock-down of the nuclear myosin 1 gene. FISH

images, captured in each experiment are subsequently used in the second part

of this Chapter. The computer based methods section will illustrate all the

tools utilised to identify all known myosins in the nucleus, design siRNA con-

structs for the gene knockdown and carry out further analysis on the images

generated from the first part of the project. Among which, the IP-Lab pro-

gram has provided us with raw data relating to a chromosome’s position in the

nucleus; combined with the Microsoft Excel, these data was put into charts

for easy interpretation. Other image analysis tools, including Paint Shop Pro

XI and Scion Image were used to investigate eventual effects of the low serum

assay and the NMI gene silencing on the nuclear size and shape and the studied

chromosomes territories.

27
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2.1 Laboratory based methods

2.1.1 Tissue culture

Human dermal fibroblasts (HDFs) 2DD (Bridger, et al., 1993) have been cul-

tured in Dulbeco’s Modified Eagles Medium (DMEM) with the following ad-

ditives: 10% new born calf serum (NCS), 1% penicillin, 1 % streptomycin,

L-glutamine. The cells were cultured in 75 mm flasks and incubated in 5%

CO2 incubator at 37◦C temperature. They were harvested and passaged twice

weekly. To harvest cells, the media and the necessary reagents are pre-heated

to 37◦C in a water bath before use. In the sterile hood, first the old media was

removed and the flasks were washed with versene (0.197g of EDTA in 1 litre

of 1 X PBS). To facilitate the detachment of the cells from the bottom of the

flasks, the cells were incubated in 5 ml diluted solution of trypsin: versene (1:10,

v:v) for up to five minutes. Meanwhile the cells detachment was checked closely

using a microscope. As soon as all the cells were detached from the flask’s

bottom, the trypsin solution was neutralized by adding an equal amount of the

D-MEM medium to the flasks. The resulting suspension was then transferred to

centrifuge tubes and centrifuged at 1000 (rpm) for 5 minutes. The supernatant

was removed and the pellet of cells was re-suspended in a known volume of fresh

medium (5 to 10 ml). To determine the number of cells in the suspension, the

haemocytometer was used to count the cells in a drop of the suspension then

the total number of the cells in this was calculated using the following equation:

Number of cells counted on the haemocytometer (CC), divided by number of

haemocytometer’s large squares where the cells have been counted (SH), the

result is multiplied by the total volume of the suspension (V) then by 104 , the

final result equals the total number of the cells in the suspension (TC).

(CC ÷ SH)× V × 104 = TC

The total volume of the cells suspension was then distributed in new flasks at

a density of 5×105 cells per flask. The volume in each flask was toped to 20 ml

using fresh media and the cells were incubated at 37◦C in the incubator.
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2.1.2 Low serum assay

Normal proliferating 2DD were incubated in a low serum medium (0.5% NCS

DMEM) for 15 min to induce the chromosome movement as follows: In the

sterile hood the old media was first removed and the cultures were washed

twice with serum free fresh media. 20 ml of low serum (0.5% NCS) medium

was added to each flask and the cells were replaced in the incubator for 15

minute then immediately harvested as described above (all the media and the

reagents used are preheated to 37◦C). After centrifugation the supernatant was

removed and the cells were fixed in a 3:1 methanol: acetic acid solution as

described below in the FISH section.

2.1.3 Immuno-fluorescence in situ hybridisation

(Immuno-FISH)

Fixation

Fixation was performed using the methanol: acetic acid solution. Firstly, the

cells were harvested using trypsin as described in the previous section, then

after centrifugation most of the supernatant was removed and the cells were

re-suspended in the remaining media. A hypotonic solution (0.075 M KCl) was

added to the cells at room temperature for 15 min. Then, the samples were

centrifuged for five at 800 (rpm) for 5 minutes, most of the supernatant was

removed and the cells re-suspended in the residual solution. A fixative mixture

of methanol:acetic acid (75%:25% respectively) was freshly prepared and put

on ice, then was added drop wise to the sample with constant taping of the

tube to prevent the cells from clumping. The sample was stored at 4◦C for at

least 1 hour or overnight. The sample was then centrifuged at 800 (rpm) for five

minutes, the supernatant was removed and the fixing procedure was repeated

four to five times. A drop of the sample was observed under the microscope to

check that most the cytoplasm has been eliminated.
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Slide preparation and denaturation

The fixed cells were centrifuged at 1000 (rpm) for 5 minutes, the supernatant

discarded and the pellet of cells re-suspended in a small volume of fresh ice cold

methanol:acetic acid (3:1) solution to obtain a milky suspension. The cells were

dropped from a height onto humid or damp slides. To age the slides they were

first air dried then baked at 70◦C for 1 hour or left at room temperature for 2

days. The slides were dehydrated trough in 70%, 90%, 100% ethanol for five

minutes in each solution at room temperature, then air dried on a hot plate.

Pre-warmed slides (70◦C for 5 minutes in oven) were incubated in a denaturing

solution (70% formamide : 2X Sodium Saline Citrate (Na3C6H5O7)(V:V),pH

7.0) for 2 minutes, then were immediately plunged in ice cold 70% ethanol for

5 minutes. Next they were run through another ethanol raw (90%, 100% five

minute in each) at room temperature. After being air dried on a hot plate, the

slides were ready for hybridisation.

Probe preparation and hybridization

In house biotin labelled probes were used (kindly provided by Dr Bridger and

Mehta). First the probe DNA was precipitated into a mixture of Cot DNA and

Herring or Salmon sperm; for each slide:

• 8 µl of the probe template (10 or X), 7 µl of Cot DNA, 3 µl of Herring

sperm DNA were mixed.

• Then, 1/10th of the volume (1.8 µl) of 3 M sodium acetate (pH 5.0) and

2 volumes (40 µl) of ice cold 100% ethanol were added to the mixture.

The mixture was incubated at -80◦C for at least 30 minutes. Next, it was

centrifuged at 300-400 (rpm) for 30 minutes at 4◦C. The excess liquid was

discarded and the residual white DNA pellet is then washed by adding 200µl

of ice cold 70% ethanol, and then centrifuged again for another 15 min at

4◦C. The supernatant was removed and the pellet was dried at about 40◦C

(37 to 50◦C) on the hot block. When the pallet turned transparent, 12µl of
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the hybridization mix (see blow) was added and the pellet was left to dissolve

for at least 2 hours (with gentle tapping every 15 min) or overnight at room

temperature. Next, probes are ready for denaturation by baking them at 70◦C

for 10 minutes and re-annealing by incubating them at 37◦C for at least 30 min.

The hybridization mix:

• 10% dextran sulphate (V = 2.4 µl),

• 10% 20 X Sodium Saline Citrate (SSC) (V =1.2 µl),

• 50% formamide (V = 6 µl),

• 1% Tween 20 (V = 0.12 µl),

• 29% double distilled water (V = 2.28 µl).

For hybridization, 12µl of the probe mixture was applied to each prepared slide,

then covered with a coverslip and sealed with rubber cement. Finally, the slides

were left to hybridise at 37◦C in a moist chamber for at least 18 hours.

2 D FISH washing and signal detection

After hybridization, coverslips were removed, the slides were washed in buffers

A and B as follows; first, slides were washed in the preheated to 45◦C Buffer A

(50% formamide: 2X SSC (v:v), pH 7) three times for five minutes and changing

the buffer each time. Then the same process is repeated with the buffer B (0.1X

SSC, pH 7, preheated to 60◦C). Next slides were allowed to cool down in a

solution of 4X SCC at room temperature. To detect the fluorescent signal, the

slides were first incubated with 50 to 100 µl of a blocking solution (4% bovine

serum albumin) at room temperature for 10 min. Then a similar amount of

(1:200) diluted Streptavidin-Cyanine 3 (Cy3) solution was added to each slide

and incubated in dark for 30 minute at 37◦C, or 1 hour at room temperature.

Next the slides were washed in a solution of 4X SSC with 0.05% Tween 20, at

42◦C three times for five minutes, changing the buffer each time. Finally the
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slides were mounted in Vectashield medium + 4, 6-diamidino-2-phenylindole

(DAPI) and were ready for observation by the fluorescence microscope.

pKi-67 Staining

To distinguish proliferating cells from non proliferating ones, the 2-D FISH was

combined with anti pKi-67 staining as follows.

2-D FISH slides were placed in a solution of 1X PBS to allow the coverslips

to detach from the slides, then they are incubated with 40 to 100µl of the pri-

mary antibody (1:1500 rabbit anti Ki-67, diluted in 1% NCS), for one hour at

room temperature. Slides were washed in 1X PBS for five minutes three times

to eliminate non bound antibody, then they were incubated with the similar

amount of the secondary secondary antibody conjugated to fluorescein isothio-

cynate (FITC) (1:30 diluted in 1% NCS, swine anti-rabbit polyclonal) for one

hour at room temperature. Excess antibody was eliminated by washing the

slides in 1X PBS for five minutes three times. Finally, slides were mounted in

counter-stain DAPI in vectashield mounting medium (Vector Laboratories).

2.1.4 Image acquisition

The Olympus BX41 fluorescence microscope has been used to inspect the slides;

the microscope is equipped with a Viewpoint digital camera (digital scientific).

The cells were examined using a 100X plan oil immersion lens, 50-80 images

of pKi-67 positive, randomly selected nuclei have been captured. The Smart

Capture 3 software was used to visualise a merged colour picture of the three

different staining (blue: DAPI, green: Cy3 and red: pKi-67). For each slide a

new film strip was opened and images saved were in PICT format.

2.1.5 Small interfering RNA (siRNA)

Although, both nuclear myosin I and unconventional myosin VI have been ini-

tially chosen as possible targets for the siRNA knock down, the literature review



2.1. Laboratory based methods 33

has shown that NMI was more likely to be involved in the chromosome repo-

sitioning as previous studies have identified a role of the NMI in chromatin

movement(see Chapter 1, section 1.3.4), the siRNA experiment was only car-

ried out for the nuclear myosin I. Despite our efforts to design a specific siRNA

construct against the nuclear isoform of the MYO1C gene, it was technically

impossible to generate functionally efficient siRNA constructs against the NMI

5’ UTR region of this gene which is the only specific region for the nuclear

myosin I isoform (details provided in section 2.3.3 of this chapter). For this

reason, it was more sensible to opt for ready made and tested constructs. ON-

TARGETplus SMARTpool siRNA (Thermo Fisher Scientific, Lafayette. CO;

Dharmacon Catalog -E-015121-00) has been used to target the nuclear myosin

I. The pool included four specificity-enhanced duplexes that targets different

regions of the MYO1C gene, other benefits of using a SMARTpool include min-

imum off site effects, since the concentration of each construct is kept very low.

Used sequences are as follows:

• 5’GCUCAAAGAAUCCCAUUAU3’

• 5’GCUGAAUUCUCGGUGAUAA3’

• 5’GCACUCGGCUUGGUACAGA3’

• 5’GUACAGCGUGCGGACAAUA3’

For negative control, the cells were transfected using ON-TARGETplus Non-

targeting Pool.
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2.2 Computer Based Methods

2.2.1 Web-based search

The aim of this search was to identify possible other nuclear myosin candi-

dates for the role of chromosome 10 rapid repositioning. First up-to-date data

about all known myosins in the nucleus were collected by searching the protein

databases on the following websites:

• The National Centre for Biotechnology Information: www.ncbi.nlm.nih.gov

• The European Bioinformatics Institute: www.ebi.ac.uk

• The Universal Protein Resource :www.uniprot.org

• Expert Protein Analysis System: www.expasy.org

Different key words and searching formulae have been used, in order to es-

tablish a comprehensive and yet specific data about the nuclear myosins. After

identifying all known myosins in the nucleus and respective split variants’ se-

quences and encoding genes, the sequences alignment tool ClustralW have been

used to align recognized nuclear myosins sequences with regard to determine

their similarities and align the sequences of splits variant of selected nuclear

myosins in order to identify possible targets for siRNA constructs.
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2.2.2 Sequence alignment tool

The ClustalW2 alignment tool on the European bioinformatics institute’s web-

site, figure 2.1, has been chosen to align recognised nuclear myosins sequences

with regard to determine their similarities. This program calculated the best

match for the selected sequences to produce biologically meaningful multiple

sequence alignments of divergent sequences, then lined them up so that the

identities, similarities and differences can be seen.

Figure 2.1: Alignment tools on the EBI website.
On the EBI website from the tool’s window, sequence analysis, then the ClustalW2

tool, which allows the alignment of multiple sequences, was chosen.
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Using ClustalW2, sequences of myosin I and myosin VI have respectively

been lined up together with the other the splits variants encoded by the same

respective gene. This program permits visualisation of peculiar segments of

the myosin I and myosin VI which can be targeted when designing siRNA

constructs.

To align the three transcripts variants of the MYO1C gene together their

respective RNA sequences in a FASTA format were obtained from the NCBI

website; NP-001074248.1 for isoform a, NP-001074419.1 for isoform b (NMI),

NP-203693.3 for isoform c. The three sequences were entered in the designated

space and the program was run using default setting as shown in figure 2.2.

Figure 2.2: ClustalW2 alignment tool settings.
Sequences of the transcript variants were entered in the designated space, the

default setting were selected to run the analysis.
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2.2.3 Design of siRNA constructs

Nuclear myosin I and unconventional myosin VI have been chosen as initial tar-

gets to be investigated for their possible role in the Chromosome 10 low serum

induced repositioning. To generate a list of candidates’ sequences for siRNA

targeting MYO1C and MYO6 genes respectively, the siRNA design tool; The

siDESIGN Center on the Dharmacon website (www.dharmacon.com/designcenter)

has been used. This tool allows to choose an identifier type (Accession Num-

ber, Gene ID, Nucleotide sequence, GI Number), to select desired region(s) for

siRNA design. Since, the nuclear myosin I is distinguished from other tran-

scripts variants encoded by the MYO1C only by its 5’UTR region, this section

has been initially selected as target region for siRNA design by using the NMI

accession number as identifier. Unfortunately, no siRNA candidates could be

built with these given inputs. The next step was to extend the target region

to include the ORF section and specify the transcript target to be the isoform

b of the MYO1C by entering the gene ID (4641). No siRNA candidates could

be built with these given inputs also, the reason why it was decided to use

commercially tried construct and ON-TARGET plus SMARTpool siRNA was

chosen for the MYO1C knock-down.
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2.2.4 Image analysis

Part of the images used in this analysis were kindly provided by Ishita Mehta,

a fellow PhD student, she also gratefully, provided me with the the FISH slides

from which another part of the images were taken. The image analysis was

carried out using a number of software, depending on the aim of the study.

Chromosome positioning

The erosion analysis in IPLab Spectrum software was used to determine the

position of chromosome 10 and X territories in cells at 0 and 15 min before and

after the NMI knock down. For each analysis at 45 to 90 images are used in

PICT format. The images were treated by data erosion program which divides

the nuclear surface into five concentric zones or shells, zone 1 being the most

peripheral and zone 5 the central. This program measures both the DAPI and

the Cy3 signal in each zone of the nucleus and the final results are then displayed

in a table. Which was then transferred to Microsoft spreadsheet and used to

for further data analysis; for every image, the chromosome territory signal in

each of the five shells was normalized to the DAPI signal of the same zone. The

means of the calculated ratios were then plotted into histograms to determine

the position of the chromosome territories; the t-test was used to evaluate the

significance of the results.
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Nucleus and chromosome territories analysis

This analysis has been carried out in three main steps, different software or data

analysis tools has been used in each step depending on the aim of the study.

1. Corel Paint Shop Pro XI: The images obtained from the fluorescent mi-

croscope were transformed from a PICT format to a Tiff uncompressed

format using a trial version of the ”Corel Paint Shop Pro XI”. Then each

image was split to the three channel colours RBG (Red Bleu Green) and

saved as Tiff to be used for the area analysis, as illustrated in figure 2.3.

Figure 2.3: Corel Paint Shop Pro XI (RGB Split channels)
A:immono-FISH original image before the split (nucleus in blue, chromosome 10

territories in green, nucleolus in red). B: red channel (only the red staining from the

original image is highlighted, corresponding to the FICT staining or the nucleolus).

C: blue channel (only the blue staining is selected corresponding to the DAPI

staining or nucleus). D: Green channel (only the green staining is selected

corresponding to the Cy3 staining or chromosome territories).
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2. Scion image analysis: The Scion image software was used for nuclear and

chromosome territories analysis; it carries out area measurement, as well

as details about contour/ perimeter, minor and major ellipse, mean den-

sity. This tool can only open grayscale images saved in uncompressed

TIFF format. When this software was opened, a bar menu, a tool and

LUT box, an Info and Map window appeared on the screen as illustrated

in figure 2.4.

Figure 2.4: Scion image analysis.
LUT: permits to set and change the gray scale intensity. Tool box: include image

treatment and measurement tools. Info window: displays details about the open

image. Map window: shows the colour distribution
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For nuclear analysis, the blue channel image of each colored nucleus image

was opened using ”import” command from the file menu, then the density

slice option was selected which highlights the area of interest in red figure 2.5

according to a gray scale threshold, this could be manipulated using the LUT

window depending on the clarity and the brightness of the picture.

Figure 2.5: Density slice on Scion image.
The LUT box permits to establish a grayscale threshold for the density slice, which

permits to highlight the region of interest.
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Next, on the menu bar the ”analyze” window was dropped and the options

command was selected to set the parameter desired to be measured. Figure 2.6.

Figure 2.6: Setting the measurements options.
A: bar menu the analyze drop window is opened and the option command is

selected. B: desired parameters to be measured are checked, including: area,

perimeter, minor ellipse and major ellipse.
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The following step consisted in setting the measurement scale from the anal-

yse command box, figure 2.7, the scale was set to 10.8 pixels per µm. this value

has been calculated using a graticule picture.

Figure 2.7: Setting the measurement scale to micrometers.
from the ”analyze” drop window, set the scale option was selected and the scale is

set to the desired value.

Microsoft Excel

The raw data obtained from the image analysis software, were transferred to a

Microsoft Excel worksheet for further statistical analysis.



Chapter 3

The role of Nuclear Myosin 1 in

interphase chromosomes

positioning

44



3.1. Chromosome 10 positioning 45

3.1 Chromosome 10 positioning

Images obtained from FISH slides performed as described in chapter 2, were run

through a simple erosion script using IP-Lab image analysis software, which di-

vided the nucleus into 5 equal concentric shells . The DAPI and Cy3 signals

were measured in each shell. The raw data was then transferred to an Excel

worksheet, the chromosome territory’s (Cy3) signal was normalised to the nu-

clear (DAPI) signal in each shell where the mean of the ratio (% of the cy3

signal / % of the DAPI signal) has been calculated for each shell, then plot-

ted in charts. The position of the chromosomes was then defined as periphery,

intermediate or interior. A chromosome territory was identified to locate at

the nuclear periphery, when after normalisation; the mean Cy3 signal was the

highest in shell 1 and 2; intermediate if the shells 2, 3 and 4 had higher probe

signal with shell 3 having the highest signal or all the three shells showed equal

amount of Cy3 signal. Finally, the chromosome position is defined as interior

when the highest probe signal is localised in shells 4 and 5. To identify the role

of nuclear myosin 1 in chromosome 10 repositioning , the low serum inuduced

relocation of chromosome 10 from an intermediate region in the nucleus to the

nuclear periphery was first confirmed by analysing chromosome 10 positions

before and after the low serum assay. Next the NMI expression has been sup-

pressed, and the low serum assay was repeated using the NMI depleted cells

and chromosome 10 positioning before and after the low serum incubation has

been analysed and compared to chromosome positioning in cells expressing the

NMI. For each experiment 45 to 60 images were analysed .

3.1.1 Chromosome 10 repositioning before and after the

low serum assay

To confirm the low serum induced Chromosome 10 relocation from an interme-

diate region of the nucleus to its periphery 15 minutes after the cells have been

incubated in low serum media, the low serum assay using normal proliferation
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HDF (as described in section 2.2.2 of chapter 2) has been repeated. FISH images

(figure 3.1) of nuclei from control cells (cells at 0 minute; that have not been

incubated in low serum media), and FISH images (figure 3.2) of nuclei after the

low serum assay at 15 minutes), were treated by a simple erosion analysis using

IPLab program as discribed in section 2.3.4 of chapter 2.

Figure 3.1: Sample of chromosome 10 FISH images at 0 minute.
Representative images displaying nuclei prepared for fluorescence in situ

hybridization (2D-FISH) before the low serum incubation. With whole-chromosome

10 painting probes (green), nuclear DNA was counterstained with DAPI (blue) and

indirect immunofluorescence with anti-pKi-67 antibodies (red staining) permitted

the selection of normal proliferating cells.
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Figure 3.2: Sample of chromosome 10 FISH images at 15 minutes.
Representative images displaying nuclei prepared for fluorescence in situ

hybridization (2D-FISH) after the cells have been subjected to the low serum assay.

With whole-chromosome 10 painting probes (green), nuclear DNA was

counterstained with DAPI (blue) and indirect immunofluorescence with anti-pKi-67

antibodies (red staining) permitted the selection of normal proliferating cells.

Chromosome 10 position at 0 minute in NMI(+) nuclei

Chromosome 10 in normal proliferating cells before the low serum assay (at 0

minute) has been confirmed to locate at an intermediate region of the nucleus

as the highest cy3 signals were localised in shells 2 and 3, as shown in figure

3.3. Calculated paired t test has confirmed the significant cy3 signal difference

between shells 2 and 3 and the other shells.
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Figure 3.3: Chromosome 10 positioning in nuclei of normal proliferat-
ing HDFs at 0 minute.
Displays the distribution of the chromosome 10 signal for 2D FISH before the low

serum incubation, as analyzed with erosion analysis. The percentage of chromosome

signal measured in each shell was divided by the percentage of DAPI signal in that

shell. Bars represent the mean normalised percentage of chromosome 10 signal in

each shell (1-5) with shell 5 being the most intern and 1 the most peripheral.

Chromosome 10 position at 15 minutes in NMI(+) nuclei

After the low serum incubation, Chromosome 10 in normal proliferating HDFs

nuclei is found to relocate to the periphery of the nucleus (figure 3.4), with the

highest chromosome signal (cy3) in shell 1 followed by shell 2, and considerably

lower signals in shells 3 and 4 and nearly null signal in shell 5. the paired t test

for means has confirmed the significantly diffrence between signals in shells 1

and 2 and the rest of the shells. p 6 0.005.
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Figure 3.4: Chromosome 10 positioning in nuclei of normal proliferat-
ing HDFs at 15 minutes.
Displays the distribution of the chromosome 10 signal for 2D FISH after the low

serum incubation, as analyzed with erosion analysis. The percentage of chromosome

signal measured in each shell was divided by the percentage of DAPI signal in that

shell. Bars represent the mean normalised percentage of chromosome 10 signal in

each shell (1-5) with shell 5 being the most intern and 1 the most peripheral.

In order to better visualise the chromosome 10 relocation to the periphery

after the low serum incubation, both charts of chromosome 10 position at 0 and

15 minutes have been aligned in figure 3.5, in blue is chromosome 10 position

before the low serum assay and in pink is chromosome 10 position after the low

serum assay.
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Figure 3.5: Chromosome 10 positioning in nuclei of normal proliferat-
ing HDFs before and after the low serum incubation.
Displays a juxtaposition of the chromosome 10 positioning graphs before and after

the low serum assay in normal proliferating HDFs. Blue: chromosome 10 signals at

0 minute. Pink: chromosome 10 signal at 15 minutes.

3.1.2 Chromosome 10 positioning before and after the

low serum assay in NMI depleted cells [NMI(−)]

Low serum assay has been repeated using cells where the expression of the NMI

has been suppressed using ON-TargetPlus NMI siRNA, then FISH images of

Chromosome 10 territories at 0 minute ; before the low serum incubation and at

15 minutes, figure 3.6, then after 15 minutes of low serum incubation, figure3.7

have been subjected to simple erosion using IPlab.
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Figure 3.6: Sample of chromosome 10 FISH images at 0 minute in NMI
depleted cells.

Representative images displaying nuclei prepared for fluorescence in situ

hybridization (2D-FISH) before the low serum incubation of NMI depleted cells.

With whole-chromosome 10 painting probes (green), nuclear DNA was

counterstained with DAPI (blue).

Chromosome 10 position at 0 minute in NMI(−) nuclei

The results obtained from the erosion analysis of chromosome 10 FISH images

at 0 minute (before the low serum assay), have been plotted in the chart below,

Chromosome 10 signals are found to be the highest in shell 3 followed by shell

2, indicating an intermediate position of the chromosome 10 territories in nuclei

where the expression of the NMI has been blocked using siRNA, figure 3.8.

Chromosome 10 position at 15 minutes in NMI(−) nuclei

The results obtained from the erosion analysis of chromosome 10 FISH images

at 15 minutes (after the low serum assay), have been plotted in the chart below.

this time also, Chromosome 10 signals are found to be the highest in shell 3 fol-

lowed by shell 2, and 4 indicating an intermediate position of the chromosome 10

territories in NMI(−) nuclei after the low serum incubation, as shown in figure

3.9.
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Figure 3.7: Sample of chromosome 10 FISH images at 15 minute in
NMI depleted cells.

Representative images displaying nuclei prepared for fluorescence in situ

hybridization (2D-FISH) after the low serum incubation of NMI depleted cells.

With whole-chromosome 10 painting probes (green), nuclear DNA was

counterstained with DAPI (blue).

Figure 3.8: Chromosome 10 positioning in NMI depleted nuclei before
the low serum assay.

Displays the distribution of the chromosome 10 signal for 2D FISH of NMI(−)

nuclei before the low serum incubation of NMI depleted cells analysed with simple

erosion analysis. The percentage of chromosome signal measured in each shell was

divided by the percentage of DAPI signal in that shell. Bars represent the mean

normalised percentage of chromosome 10 signal in each shell (1-5) with shell 5 being

the most intern and 1 the most peripheral.
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Figure 3.9: Chromosome 10 positioning in NMI depleted nuclei after
the low serum assay.

Displays the distribution of the chromosome 10 signal for 2D FISH of NMI(−)

nuclei after the low serum incubation of NMI depleted cells analysed with simple

erosion analysis. The percentage of chromosome signal measured in each shell was

divided by the percentage of DAPI signal in that shell. Bars represent the mean

normalised percentage of chromosome 10 signal in each shell (1-5) with shell 5 being

the most intern and 1 the most peripheral.
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3.2 Chromosome X positioning

Chromosome X position in the nucleus was studied in normal proliferating HDF

control, cells before the siRNA silencing of the nuclear myosin I; at 0 minute

(before the low serum assay) then at 15 minute (after incubation in low serum

medium for 15 minutes). The same study was repeated after the siRNA knock-

down of the NMI gene. The results obtained from the IP-lab analysis of pro

and post siRNA images of chromosome X before and after the low serum assay

are displayed in charts as follows:

Chromosome X position at 0 minute in NMI(+) nuclei

Chromosome X in normal proliferating cells before the low serum assay (at 0

minute) has been confirmed to locate at the nuclear periphery as the highest

cy3 signals were registered in shells 1 and 2, as shown in figure 3.10. the paired

t test has confirmed the significant cy3 signal difference between shells 1 and 2

and the other shells.

Figure 3.10: Chromosome X positioning in NMI expressing nuclei at 0
minute.
Displays the distribution of the chromosome X signal for 2D FISH before the low

serum incubation, as analysed with erosion analysis. The percentage of chromosome

X signal measured in each shell was divided by the percentage of DAPI signal in

that shell. Bars represent the mean normalised percentage of chromosome signal in

each shell (1-5) with shell 5 being the most intern and 1 the most peripheral.
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Chromosome X position at 15 minutes in NMI(+) nuclei

After the low serum incubation, Chromosome X in normal proliferating HDFs

nuclei is found to locate also to the periphery of the nucleus (figure 3.11),

with the highest chromosome signal (cy3) in shell 1 followed by shell 2, and

considerably lower signals in shells 3 and 4 and nearly null signal in shell 5.

the paired t test for means has confirmed the significantly difference between

signals in shells 1 and 2 and the rest of the shells.p 6 0.005

Figure 3.11: Chromosome X positioning in NMI expressing nuclei at
15 minutes.
Displays the distribution of the chromosome X signal for 2D FISH after the low

serum incubation, as analysed with erosion analysis. The percentage of chromosome

X signal measured in each shell was divided by the percentage of DAPI signal in

that shell. Bars represent the mean normalised percentage of chromosome signal in

each shell (1-5) with shell 5 being the most intern and 1 the most peripheral.

3.2.1 Chromosome X positioning before and after the

low serum assay in NMI depleted cells [NMI(−)]

Using NMI depleted cells, the low serum assay was repeated and FISH images

of chromosome X before (at 0 minute) and after the low serum assay (at 15

minutes) have been treated through the IPLab simple erosion program. the

chromosome signal (Cy3) in each shell was normalised to the DAPI signal and

the mean result in each shell has been plotted in the charts below.
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Chromosome X position at 0 minute in NMI(−) nuclei

It is evident from the distribution of the chromosome X signals, that this chro-

mosome has a peripheral position in nuclei of NMI depleted HDFs before the

low serum assay. with the highest Cy3 signal registered in shell 1 followed by

shell 2, figure 3.12.

Figure 3.12: Chromosome X positioning in NMI depleted cells at 0
minute.

Displays the distribution of the chromosome X signal for 2D FISH of NMI(−)

nuclei before the low serum incubation of NMI depleted cells, analysed with simple

erosion analysis. The percentage of chromosome signal measured in each shell was

divided by the percentage of DAPI signal in that shell. Bars represent the mean

normalised percentage of chromosome X signal in each shell (1-5) with shell 5 being

the most intern and 1 the most peripheral.

Chromosome X position at 15 minutes in NMI(−) nuclei

From the distribution of the Cy3 signals, this chromosome has also a peripheral

position in the nuclei of NMI depleted HDFs after the low serum incubation.

The highest Cy3 signal registered in shell 1 followed by shell 2, figure3.13.
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Figure 3.13: Chromosome X positioning in NMI depleted cells at 15
minutes.

Displays the distribution of the chromosome X signal for 2D FISH of NMI(−)

nuclei after the low serum incubation of NMI depleted cells, analysed with simple

erosion analysis. The percentage of chromosome signal measured in each shell was

divided by the percentage of DAPI signal in that shell. Bars represent the mean

normalised percentage of chromosome X signal in each shell (1-5) with shell 5 being

the most intern and 1 the most peripheral.

conclusion

The study of chromosome 10 positions before and after the low serum assay has

permitted the confirmation of the low serum induced chromosome 10 reposi-

tioning from an intermediate position to the periphery of the nucleus. In nuclei

where the expression of the NMI has been suppressed using siRNA, chromosome

10 position before and after the low serum assay did not seem to have changed

from the intermediate position. This indicates that the NMI is necessary for

the low serum induced relocation of the chromosome 10 from the intermediate

position to the peripheral location in interphase HDFs. On the other hand,

chromosome X positioning analysis showed no significant changes of its posi-

tion. Chromosome X was found to locate at nuclear periphery before and after

the low serum assay in both, NMI depleted and expressing cells.



Chapter 4

Results: Image Analysis

4.1 Analysis of nuclear size

Introduction

The raw data obtained from Scion analysis of the nuclei and the chromosome

territories were transferred to an Excel worksheet where data analysis tools have

been utilized to compare the resulting means of each studied parameter. To test

the statistical significance of any encountered differences, the T-test for unpaired

samples assuming unequal variances has been employed; as is convention any

tested difference is said to be statistically significant if the calculated t-Stat is

bigger than the given t-Critical for two samples and the value of P is smaller

than 0.05 at 95 % confidence intervals. Finally, results have been presented in

charts to aid interpretation .

4.1.1 Investigating the effects of the low serum assay on

the nuclear size

The aim of this study is to investigate any changes in nuclear size that may

have occurred as a result of subjecting the cells to the low serum assay. Since

we have already identified a strikingly rapid chromosome rearrangement as a

result to incubating the cells in low serum for just 15 minutes. It was important

58
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to these assay, to know whether this chromatin reorganization is accompanied

by any changes in the nuclear size. To achieve this the nuclear sizes of randomly

selected FISH images of normal proliferating HDF cells at 0 minute have been

compared with the nuclear sizes at 15 minutes. The 0 minute refers to samples

of FISH taken from cells before the low serum assay, while the 15 minutes refers

to FISH samples taken from cells after the low serum assay (after the cells have

been incubated in low serum for 15 minute). Only images of cells that had a

positive pKi-67 staining were analysed. Three sets of 40 to 50 images have been

analysed; the first set was of FISH images performed on cells at passage 12, the

second and third sets of images are derived from the control cells used for the

siRNA experiment, chromosome 10 and chromosome X images respectively.
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First data set

The analysis of the nuclear area before and after the low serum assay in normal

proliferating HDFs at passage 12 shows that the mean nuclear area of cells after

the low serum assay is smaller than that of control cells (before the low serum

assay), as displayed in figure 4.1. The two samples t-test assuming unequal

variances shows a calculated value of t Stat = 3.03 > t critical two tails = 1.99

and P = 0.003 suggesting that the difference observed between the nuclear size

at 0 and 15 minutes is statistically significant. Results are listed in table 4.1

Figure 4.1: First comparison of the means nuclear area before and after
the low serum assay.
Blue: nuclear area at 0 minute or before the low serum incubation, Red:nuclear area

at 15 minute after the low serum incubation, all measurements are shown in µm2
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t-Test: Two-Sample Assuming Unequal Variances
Nuclear area

at 0 min

Nuclear area

at 15 min

Mean 452.46 350.31
Variance 26898.77 18275.97
Observations 40 40
Hypothesized Mean Difference 0
df 75
t Stat 3.03951
p(T<=t) one-tail 0.001631
t Critical one-tail 1.665425
p(T<=t) two-tail 0.003262
t Critical two-tail 1.992102

Table 4.1: Significance test for the nuclear size difference before and after low
serum assay, data set 1.

Second data set

The analysis of the nuclear area before and after the low serum assay in normal

proliferating HDF was repeated using FISH images from cells at passage 10.

From the results of this analysis it seems that the nuclear area is also smaller

after the low serum treatments of the cells, as shown in figure 4.2.

The t-test this time shows that this difference is statistically insignificant

with a t Stat<t Critical two tails and p=0.13, results are displayed in table 4.2

t-Test: Two-Sample Assuming Unequal Variances
Nuclear area

at 0 min

Nuclear area

at 15 min

Mean 725.334 659.69
Variance 50240.29954 44060.4481
Observations 50 50
Hypothesized Mean Difference 0
df 98
t Stat 1.51155
p(T<=t) one-tail 0.066933
t Critical one-tail 1.660551
pT<= t two-tail 0.133866
t Critical two-tail 1.984467

Table 4.2: Significance test for the nuclear size difference before and after low
serum assay, data set 2.
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Figure 4.2: Second comparison of the means nuclear area before and
after the low serum assay.
Blue: nuclear area at 0 minute or before the low serum incubation, Red : nuclear

area at 15 minute after the low serum incubation, all measurements are shown in

µm2

Third data set

The analysis of the nuclear area before and after the low serum assay in normal

proliferating HDF has been repeated using a third set of FISH images from cells

from the same passage 10 as the previous one. From the results of this analysis

it seems that the mean nuclear area is bigger, after the low serum treatments

of the cells, figure 4.3, but the t-test this time shows that this difference is

statistically insignificant (t Stat < t Critical two tails and p = 0.14). The

results are displayed below in in the table 4.3.
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Figure 4.3: Third comparison of the means nuclear area before and
after the low serum assay.
Blue: nuclear area at 0 minute or before the low serum incubation, Red:nuclear area

at 15 minute after the low serum incubation, all measurements are shown in µm2.

t-Test: Two-Sample Assuming Unequal Variances
Nuclear area

at 0 min

Nuclear area

at 15 min

Mean 433.19 508.2881
Variance 62326.4 45818.15
Observations 42 42
Hypothesized Mean Difference 0
df 80
t Stat -1.47996
p(T<=t)one-tail 0.071405
t Critical one-tail 1.664125
p(T<=t) two-tail 0.14281
t Critical two-tail 1.990063

Table 4.3: Significance test for the nuclear size difference before and after low
serum assay, data set 3

Conclusion

There is no significant difference between the nuclear size of cells subjected to

the low serum assay and control cells. Initially, it seemed that the nuclear size

had become smaller after incubating the cells in low serum for 15 minutes when
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compared to the size of nuclei of control cells (data set 1 and 2). To test the

significance of this difference of mean nuclei areas between 0 and 15 minute,

a two samples t-test for unequal variances have been calculated. While, the

calculated t-test for the first set of data showed that the observed difference

between the nuclei sizes at 0 and 15 minutes was significant (t stat = 3.03 >

t critical two tails = 1.99; p = 0.003), the second t-test for data set 2 was

found to be insignificant (t stat = 1.51< t critical two tails = 1.98; p = 0.066

). In data set 3 a different trend was observed; it appeared that the nuclear

size increased after the low serum incubation of the cells, this time again the

t-test has indicated that this difference observed between the nuclei size at 0

and 15 minutes is statistically insignificant (t stat = 1.47 < t critical two tails

= 1.99 ; p= 0.07). It is evident that the differences observed in the nuclei size

between the cells that have been subjected to the low serum assay and those

that have not been, is statistically insignificant, therefore there are no notable

changes in the nuclei size when the cells have been incubated in low serum for

15 minutes. Thus, subjecting the cells to the low serum assay has not induced

any significant changes in the nuclear area.

4.1.2 Investigating effects of the siRNA- mediated sup-

pression of NMI on the nuclear size

The aim of this part of the study was to investigate whether the siRNA-mediated

knock down of nuclear myosin I protein resulted in any changes in the overall

nuclear size of the cells. This was achieved by conducting a series of comparisons

of the mean nuclear area of cells where the siRNA transfection have been used to

block the expression of the nuclear myosin I with control cells that have not been

transfected. Next the comparison of the nuclear size before and after the low

serum assay has been repeated in cells where the NMI gene has been silenced.

Then comparing the mean nuclear area of cells incubated in low serum for 15

minutes before and after the nuclear myosin I has been silenced, as follows.

Whenever, a significant difference between the NMI(+) nuclei and the NMI(−)
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had arisen, the results were compared to the negative control (cells transfected

using the same reagents as used for the NMI transfection but with no NMI

targeting constructs) to confirm that the observed difference has resulted from

the depletion of the NMI and not from the transfection itself.

1. Comparison of nuclear size before and after the siRNA-mediated knock

down of the NMI (comparing area of NMI(+) or control and area of

NMI(−) nuclei)

2. Repeat the low serum comparison in NMI silenced nuclei (comparing area

ofNMI(−)nuclei at 0 minute andNMI(−)nuclei at 15 minute of low serum

assay

3. Comparison of the nuclear area after the low serum incubation before and

after blocking the expression of the NMI (control nuclei(NMI(+)) at 15

minutes and (NMI(−)) at 15 minutes)

1. Comparison of nuclear size before and after the siRNA-mediated

knock down of the NMI

To investigate whether silencing the NMI gene has affected the overall nuclear

size, a comparison of nuclear size before and after the siRNA-mediated knock

down of the NMI has been done, at first nuclei expressing NMI(NMI(+)) seemed

to be smaller as compared to nuclei where the NMI expression has been blocked

[NMI(−)] as shown in figure 4.4 , but the the calculated two tails unpaired

t test has confirmed this difference to be statistically insignificant, P(T<=t)

two-tail = 0.31, as displayed in table 4.4
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Figure 4.4: Comparison of the means nuclear area before and after the
silencing of the NMI.
Blue: nuclear area at before the siRNA knock down of the NMI , Purple: nuclear

area after the siRNA knock down of the NMI, standard error bars have been

plotted, all measurements are shown in µm2

t-Test: Two-Sample Assuming Unequal Variances
Mean area of
NMI(+)

Mean area of
NMI(−) nuclei

Mean 452.3768 485.704
Variance 0.002179 0.003219
Observations 50 50
Hypothesized Mean Difference 0
df 93
t Stat -1.00804
P(T<=t) one-tail 0.157972
t Critical one-tail 1.660715
P(T<=t) two-tail 0.315943
t Critical two-tail 1.984723

Table 4.4: Significance test for the difference in nuclear area before and after
the silencing of the NMI.

2. Comparison of the nuclei size before and after the low serum assay

in NMI depleted nuclei(NMI(−))

The low serum assay has been repeated using cells where the expression of

the NMI has been blocked using siRNA (NMI(−)). To investigate whether
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subjecting NMI(−) cells to low serum assay has resulted in any significant

changes in the average nuclear size. Two sets of 40 to 50 randomly selected

FISH images of cells at passage 10 where the NMI gene (MYO1C ) has been

knocked down using siRNA have been analysed, as follows.

First set of data

At first instance it seemed that in nuclear myosin I depleted cells, the nuclei

were getting slightly smaller after the low serum assay (at 15 minutes) compared

to the initial size before the low serum incubation (at 0 minute), figure 4.5. To

test the significance of this difference of nuclear size at 0 and 15 minutes a

two-sample t-test assuming unequal variances has been performed which has

confirmed the non significance of this difference with p value = 0.61, as detailed

in table 4.5. This means that there is no statistically significant difference in

mean nuclear area before and after the low serum assay in cells after that the

expression of the NMI has been impaired.

Figure 4.5: Comparison of the means nuclear area before and after the
low serum incubation in NMI depleted cells, data set 1.
Blue: nuclear area at 0 minute (before the low serum assay) , pink : nuclear area at

15 minutes (after the low serum assay), standard error bars have been plotted, all

measurements are shown in µm2
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t-Test: Two-Sample Assuming Unequal Variances
NMI(−) nu-

clear area at

0 min

NMI(−) nu-

clear area at

15 min

Mean 498.3443 482.0804
Variance 28316.65 24757.53
Observations 51 51
Hypothesized Mean Difference 0
df 100
t Stat 0.50416
p(T<=t)one-tail 0.307629
t Critical one-tail 1.660234
p(T<=t) two-tail 0.615258
t Critical two-tail 1.983971

Table 4.5: Significance test for the nuclear size difference before and after low
serum assay, in NMI depleted nuclei. data set 1

Second set of data

The analysis of this second set of images revealed that the nuclear size at 15

minutes of the low serum assay is much bigger compared to the nuclear area at

0 minute figure 4.6. The calculated t-test has confirmed this to be statistically

significant, p value = 1.37×10−6, result displayed in table 4.6. It seems that

incubating NMI depleted cells in low serum for 15 minutes has resulted in an

increase in the mean nuclear area of these cells.
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Figure 4.6: Comparison of the means nuclear area before and after the
low serum incubation of NMI depleted cells, data set 2
Blue : nuclear area at 0 minute (before the low serum assay) , pink : nuclear area at

15 minutes (after the low serum assay), standard error bars have been plotted, all

measurements are shown in µm2

t-Test: Two-Sample Assuming Unequal Variances
NMI(−) nu-

clear area at

0 min

NMI(−) nu-

clear area at

15 min

Mean 535.8689 762.3461
Variance 24534.23 57182.38
Observations 44 44
Hypothesized Mean Difference 0
df 74
t Stat -5.25528
p(T<=t)one-tail 6.87×10−07

t Critical one-tail 1.665707
p(T<=t) two-tail 1.37×10−06

t Critical two-tail 1.992543

Table 4.6: Significance test for the nuclear size difference before and after low
serum assay, in NMI depleted nuclei. data set 2

In order to check whether the increase of the nuclear size in data set 2,

observed after incubating the NMI depleted cells in low serum for 15 minutes was

actually due to the absence of the NMI from the nucleus or was just reflecting
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a natural variation of the cells population; we repeated the same analysis in

negative control (NMI−c) cells (cells transfected using non targeting siRNA).

The result obtained were similar to the previously observed difference in data

set 2 of the NMI knocked down cells with a nuclear area after the 15 minutes

low serum incubation much more bigger then the nuclear area at 0 minute (cells

that have not been incubated in low serum media). As shown in figure 4.7, the t

test in this case, showed that this difference is significant; p value =6.98×10−11

as displayed in table 4.7.

Figure 4.7: Comparison of the means nuclear area before and after the
low serum incubation of non NMI targeting siRNA transfected nuclei
1.
Blue: nuclear area at 0 minute (before the low serum assay), Pink: nuclear at 15

minutes(after the low serum assay), standard error bars have been plotted, all

measurements are shown in µm2
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t-Test: Two-Sample Assuming Unequal Variances
NMI(−C) nu-

clear area at 0

min

NMI(−C) nu-

clear area at

15 min

Mean 367.2568 550.99
Variance 8006.035 19832.3
Observations 47 47
Hypothesized Mean Difference 0
df 78
t Stat -7.54944
p(T<=t)one-tail 3.49×10−11

t Critical one-tail 1.664625
p(T<=t) two-tail 6.98×10−11

t Critical two-tail 1.990847

Table 4.7: Significance test for the nuclear size difference before and after low
serum assay, in negative control(NMI(−C))cells, 1.

Since the comparisons of nuclear size before and after the low serum assay in

this first set of siRNA negative control (NMI(−C)) cells showed a similar trend

compared to the data set 2 of the NMI depleted cells (bigger nuclei after the low

serum incubation) it became obvious that silencing the NMI could not justify

the difference in measured nuclei sizes before and after the low serum assay.

In order to test the probability that the transfection procedure is responsible

for this difference, the same analysis has been carried out using a second set

of siRNA negative control cells (cells transfected using non targeting siRNA

oligonucleotides ). This time, the mean nuclear area at 15 minutes seemed to

be just above the mean nuclear area at 0 minute, figure 4.8. the t test has

confirmed this difference to be insignificant with a p value = 0.76, as displayed

in table 4.8.
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Figure 4.8: Comparison of the means nuclear area before and after the
low serum incubation in non NMI targeting siRNA transfected nuclei
2.
Blue: nuclear area at 0 minute (before the low serum assay) , Pink: nuclear area at

15 minutes (after the low serum assay), standard error bars have been plotted, all

measurements are shown in µm2

t-Test: Two-Sample Assuming Unequal Variances
NMI(−C) nu-

clear area at 0

min

NMI(−C) nu-

clear area at

15 min

Mean 533.1143 545.14152
Variance 42010.3844 28953.94272
Observations 46 46
Hypothesized Mean Difference 0
df 87
t Stat 0.306212181
p(T<=t)one-tail 0.380087344
t Critical one-tail 1.66255735
p(T<=t) two-tail 0.760174687
t Critical two-tail 1.987608241

Table 4.8: Significance test for the nuclear size difference before and after low
serum assay, in siRNA NMI negative control(NMI(−C))nuclei, 2.

Conclusion

The comparison of the nuclear size at 0 and 15 minutes of the low serum assay

after the NMI depletion, has revealed a significant increase in nuclear size after
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the low serum incubation in one set of data while no significant change has

been registered in the other set. A comparable pattern has been identified

in negative control cells (cells that have been transfected using non targeting

siRNA) obtained from cells issued from the same culture as data set 2. In this

case also, a significantly larger mean nuclear area at 15 minutes compared to 0

minute was registered. Thus, we can conclude that even so there was significant

difference between nuclear areas before and after the low serum incubation in

NMI depleted nuclei, the observed difference could not have been caused by the

silencing of the NMI, since a comparable difference was also observed in negative

control cells where the NMI has not been targeted by the siRNA (negative

control 1). The probability that this difference could be have been due the

transfection procedure itself, has been eliminated because, a separately non

targeting siRNA transfected sample (negative control 2) showed no significant

difference in the nuclear size before and after the low serum assay. Thus, the

apparent increase in nuclear size after the low serum incubation observed in

only one cells sample could not have been induced by the siRNA transfection

nor by the NMI depletion, as other samples showed no significant difference in

nuclear size before and after the low serum incubation. Hence, this difference

was probably secondary to sample variations; repeating similar experiments in

the future should provide us with more conclusive evidence.
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4.2 Analysis of the nuclear shape

The aim of this study is to investigate if there are any changes in nuclear shape

that may have occurred as a result of silencing the nuclear myosin 1 gene by

siRNA, or that may be caused by the low serum assay before and/or after the

siRNA knockdown of the nuclear myosin I. We looked at the overall shape of nu-

clei by calculating the nuclear roundness or contour ratio (4Π area/perimeter2).

The contour ratio for a circle is 1 and this ratio approaches 0 as the nucleus

becomes more lobulated (Erikson et al 2004). The values of the area and nu-

clear perimeter were obtained using the Scion image program, the rest of the

calculations were performed on an excel worksheet, then the t-test was used to

determine the significance of the findings.
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4.2.1 Investigating the effect of the low serum assay on

nuclear shape

In order to identify whether the low serum assay has had any effects on the

nuclear shape, we compared the results of the calculated nuclear contour ratio

(4Π area/perimeter2) in normal proliferating cells before the low serum assay

(at 0 minute) with the nuclear contour ratio after the low serum incubation (at

15 minutes). All the compared cells were from same cultures at same passage,

and fixed using the same procedure described in section 2.2.3 of chapter 2. The

results of the calculated contour ratio at 0 minute and 15 minutes, were quite

similar at (0.38) and (0.37) respectively results. To evaluate how significant

these results , a t-test for two samples assuming unequal variances has been

calculated which confirmed that the difference between the contour ratio of

cells at 0 minute and 15 minutes is statistically insignificant with a value of

p = 0.68, details of the t-test are displayed in table 4.9. This suggested that

there is no significant difference between the nuclear shape before and after the

low serum assay, hence subjecting the cells to low serum for 15 minutes had no

significant effect on the nuclear shape.

t-Test: Two-Sample Assuming Unequal Variances
Nuclei contour

ratio at 0 min

Nuclei contour

ratio at 15 min

Mean 0.380799 0.377022
Variance 0.002185 0.002169
Observations 50 50
Hypothesized Mean Difference 0
df 98
t Stat 0.404686
P(T<=t) one-tail 0.343295
t Critical one-tail 1.660551
P(T<=t) two-tail 0.68659
t Critical two-tail 1.984467

Table 4.9: Significance test for the difference in nuclear contour ratio before and
after the low serum assay
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4.2.2 Investigating the effect of NMI silencing on nuclear

shape

To investigate whether the siRNA knock down of the nuclear myosin I has

resulted in any changes in the nuclear shape, a comparison of the calculated

nuclear contour ratio was performed. First, this ratio was compared between

cells transfected with non targeting control siRNA and cells transfected with

NMI-targeting siRNA. The calculated nuclear contour ratio was then compared

in cells after they were subjected to the low serum assay for 15 minutes. Next

the comparison of the nuclear roundness before and after the low serum assay

has been performed on cells where the NMI gene has been silenced. In addi-

tion, the nuclear shape comparison before and after the low serum assay has

been repeated in siRNA negative control cells (cells that have been transfected

with the same reagent used for the knockdown of the NMI but with no siRNA

sequences/oligonucleotides).

Comparison of the nuclear shape of NMI(+) and NMI(−) at 0 minute

Using the blue channel (DAPI channel) images obtained from colour split of

FISH images of NMI expressing nuclei (figure 4.9), and NMI depleted nuclei

(figure 4.10) on the Scion image analysis software, the area and the perimeter

of each nuclei have been measured.
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Figure 4.9: HDFs, NMI(+) nuclei at 0 minute.
displays the blue channel of the FISH images of nuclei expressing the NMI before

the low serum assay, were obtained by colour channels spliting using the Corel

software. the blue channel corresponds to the DAPI staining (nuclei).

Figure 4.10: HDFs, NMI(−) nuclei at 0 minute.
displays the blue channel of the FISH images NMI depleted nuclei before the low

serum assay, were obtained by colour channels spliting using the Corel software. the

blue channel corresponds to the DAPI staining (nuclei).
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First data set

Using area and perimeter measurements of cells at 0 minute (before the low

serum assay) of the control cells, and similar measurements of cells at 0 minute

of nuclear myosin I supressed cells, the contour ratio for each set of cells was

calculated and compared, the results were respectively (=0.38) and (=0.32) .

The t-test has confirmed that this difference between the nuclear contour at 0

minute before and after siRNA knockdown of the NMI, is statistically significant

(P= 1.49×10−7) as shown in table 4.10. In other words, nuclear shape of cells

at 0 minute is significantly different from the nuclei shape of similar cells after

that the NMI gene have been silenced with nuclei getting more lobulated after

the siRNA.

t-Test: Two-Sample Assuming Unequal Variances
Contour ratio of

NMI(+) nuclei

at 0 min

Contour ratio of

NMI(−) nuclei

at 0 min

Mean 0.380799 0.325588
Variance 0.002185 0.002562
Observations 50 50
Hypothesized Mean Difference 0
df 97
t Stat 5.666532
P(T<=t) one-tail 7.47E-08
t Critical one-tail 1.660715
P(T<=t) two-tail 1.49E-07
t Critical two-tail 1.984723

Table 4.10: Significance test for the difference in nuclear contour ratio before
and after the silencing of the NMI

Second data set

To verify whether these changes in nuclear lobulation followed a general trend,

a second set of images have been used to repeat the same study. It was evident

this time that this second set of data showed a different trend then what was

previously described in table 4.11. The nuclear contour ratio at 0 minutes before

the siRNA knock down of the NMI was found this time to be bigger after the
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NMI suppression. Despite fact that these findings are opposite to the results

obtained from the previous analysis , the calculated t-test has also confirmed

their significance, p = 0.02, as detailed in table 4.9.

t-Test: Two-Sample Assuming Unequal Variances
Contour ratio of

NMI(+) nuclei

at 0 min

Contour ratio of

NMI(−) nuclei

at 0 min

Mean 0.326362 0.360738
Variance 0.006204 0.002565
Observations 42 42
Hypothesized Mean Difference 0
df 70
t Stat -2.379
P(T<=t) one-tail 0.010045
t Critical one-tail 1.666914
P(T<=t) two-tail 0.020091
t Critical two-tail 1.994437

Table 4.11: Significance test for the difference in nuclear contour ratio before
and after the silencing of the NMI

While the the calculated contour ratio for the First data seemed to become

smaller for nuclei where the expression of the NMI has been blocked , the second

data set showed an opposite trend with a bigger nuclear contour ratio in NMI

depleted nuclei. Meanwhile, the t test has confirmed both differences to be

significant.

Comparison of the nuclear shape of NMI(+) and NMI(−) at 15 minute

To asses the possible effects of the low serum incubation on the nuclear shape

of NMI depleted cell (NMI(−)) , a comparison of the nuclear contour ratio has

been was established between normal proliferating cells (NMI(+)) that have

been incubated in low serum for 15 minutes (figure 4.11) and cells where the

NMI expression has been suppressed by the siRNA then incubated in low serum

(figure 4.12).
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Figure 4.11: HDFs, NMI(+) nuclei at 15 minutes
displays the blue channel of the FISH images of nuclei expressing the NMI after the

low serum assay, were obtained by colour channels spliting using the Corel software.

the blue channel corresponds to the DAPI staining (nuclei).

Figure 4.12: HDFs, NMI(−) nuclei at 15 minutes
displays the blue channel of the FISH images NMI depleted nuclei after the low

serum assay, were obtained by colour channels spliting using the Corel software. the

blue channel corresponds to the DAPI staining (nuclei).
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The results showed a smaller roundness ratio at 15 minutes for nuclei non

expressing the NMI suggesting that they are more lobulated than the nuclei

of cells expressing the NMI after the low serum incubation. The calculated t

test has confirmed this difference to be statistically significant with a p value =

0.015, as shown in table 4.12

t-Test: Two-Sample Assuming Unequal Variances
Contour ratio of

NMI(+) nuclei

at 15 min

Contour ratio of

NMI(−) nuclei

at 15 min

Mean 0.377861 0.352056
Variance 0.002179 0.003219
Observations 49 49
Hypothesized Mean Difference 0
df 93
t Stat 2.458648
P(T<=t) one-tail 0.007898
t Critical one-tail 1.661404
P(T<=t) two-tail 0.015797
t Critical two-tail 1.985802

Table 4.12: Significance test for the difference in nuclear contour ratio before
and after the silencing of the NMI at 15 minute of the low serum assay

In order to verify whether these changes in nuclear lobulation represent a

general trend, a second set of images have been used to repeat the same study.

This second set of data showed a similar trend, with a significantly smaller

nuclear contour ratio of NMI(−) at 15 minutes compared to NMI(+) at 15

minutes. The p value = 0.05, as shown in table 4.13.
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t-Test: Two-Sample Assuming Unequal Variances
Contour ratio of

NMI(+) nuclei

at 15 min

Contour ratio of

NMI(−) nuclei

at15 min

Mean 0.353302 0.376605
Variance 0.002744 0.003369
Observations 44 44
Hypothesized Mean Difference 0
df 85
t Stat -1.97708
P(T<=t) one-tail 0.025637
t Critical one-tail 1.662979
P(T<=t) two-tail 0.051274
t Critical two-tail 1.988268

Table 4.13: Significance test for the difference in nuclear contour ratio before
and after the silencing of the NMI at 15 minute of the low serum assay, 2

Conclusion

It has emerged from the previous analysis that there is no significant change in

the nuclear roundness ratio of nuclei after the the cells are subjected to the low

serum assay, meaning that incubating the cells in low serum assay for 15 minutes

had not affected the overall shape of the nuclei. On the other hand, the silencing

of the nuclear myosin I has resulted in a statistically significant difference of the

calculated nuclear contour ratio, between the NMI expressing cells and the NMI

depleted cells. The roundness ratio was found to significantly increase in one

of the analysed set of images, giving indication that the nuclei lacking the NMI

are significantly more lobulated compared to the cells expressing the NMI, it

has been also found to significantly decrease in the other set of images. In

addition, the comparison of the nuclear shape after the low serum assay in

cells expressing the NMI and in cells depleted of the NMI has revealed that,

subjecting the cells where the NMI expression has been suppressed to the serum

incubation, resulted in the nuclei to become more lobulated. Therefore more

comparison analysis needs to be carried out to determine whether other factors

beside the nuclear myosin I knock down determine the trend of these changes

and thus the nuclear shape.
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4.3 Image analysis of chromosome 10 and X

territories

Chromosome 10 and X territories have been chosen for the image analysis study

because of their distinct behavior towards the low serum incubation, while chro-

mosome 10 was found to relocate from an intermediate to a peripheral position

after the low serum incubation, chromosome X was found to remain at the

nuclear periphery, from this point it was important to know these two chromo-

somes territories exhibited any changes secondary to the low serum incubation.

Furthermore, the effect of the NMI suppression on these chromosome territories

have been investigated. the sizes chromosome 10 and X territories have been

measured using the Scion image analysis software. using the green channel of

the respective FISH images.

4.3.1 Image analysis of chromosome 10 territories

Using the green channel of the FISH images of chromosome 10 territories ob-

tained before (figure 4.13) and after (figure 4.19) the low serum assay; the size

of the chromosome territory has been measured by the Scion image analysis

program then the results we compared and unpaired two sample t test was cal-

culated to asses the significance of any resulting difference.The same analysis

has been repeated using images of cells where the NMI expression has been

blocked using siRNA.
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Figure 4.13: Green channel of FISH images of chromosome 10 at 0
minute.
displays the green channel of the FISH images of nuclei expressing the NMI before

the low serum assay, were obtained by colour channels spliting using the Corel

software. the green channel corresponds to the Cy3 staining (CT).

Figure 4.14: Green channel of FISH images of chromosome 10 at 15
minutes.
displays the green channel of the FISH images of nuclei expressing the NMI after

the low serum assay, were obtained by colour channels spliting using the Corel

software. the green channel corresponds to the cy3 staining (CT).
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4.3.2 Comparison of chromosome chromosome 10 terri-

tories before and after the low serum assay

The size of chromosome 10 territories measured in nuclei of HDFs before the

low serum assay ( at 0 minute) was compared to the size of chromosome 10

territories measured after the low serum assay ( at 15 minutes). It seemed

that the chromosome 10 territories were getting smaller after the low serum

incubation, as shown in figure 4.15, the t test has confirmed the statistical

significance of this difference; p = 3.19 × 10(−13).

Figure 4.15: Comparison of the size of chromosome 10 at 0 and 15
minutes.1

Purple: the mean size of chromosome 10 territories before the low serum
incubation, Orange: the mean size of chromosome 10 territories after the low

serum incubation
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In order to verify whether, smaller chromosome 10 territories after the low

serum incubation is a general trend , a second set of images have been analysed.

Similar trend have also been registered with chromosome 10 territories becoming

smaller after the low serum incubation (figure 4.16), p = 0.39.

Figure 4.16: Comparison of the size of chromosome 10 at 0 and 15
minutes.2

Purple: the mean size of chromosome 10 territories before the low serum
incubation, Orange: the mean size of chromosome 10 territories after the low

serum incubation
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4.3.3 Comparison of chromosome 10 territories before

and after the low serum assay of NMI depleted

cells

The assess the effect of the suppression of the NMI on chromosome territories

sizes, the low serum assay has been repeated on cells where the NMI expression

has been blocked using siRNA. Results have shown that the size of chromosome

10 territories was nearly the same before and after the low serum incubation

of NMI depleted cells (figure 4.15). the t test has confirmed that there is no

significant difference in chromosome 10 territories at 0 and 15 minutes in NMI

depleted nuclei; p = 0.47.

Figure 4.17: Comparison of the size of chromosome 10 of NMI depleted
nuclei before and after the low serum incubation.

Purple: the mean size of chromosome 10 territories before the low serum
incubation, Orange: the mean size of chromosome 10 territories after the low

serum incubation

Conclusion

The comparison of the size of chromosome 10 territories in normal proliferating

HDFs has revealed significant changes in the territory size after the cells have

been incubated in low serum assay for 15 minutes. Chromosome 10 territories
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seem to become smaller when the cells have been subjected to the low serum

assay. The same comparison have been repeated using cells where the expression

of the nuclear myosin I has been blocked by siRNA, in these cells, no significant

change in the chromosome 10 territories’ sizes has been identified. Chromosome

10 territories ahve similar sizes before and after incubating NMI depleted cells

in low serum for 15 minutes.
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4.3.4 Image analysis of chromosome X territories

Using the green channel of the FISH images of chromosome X territories ob-

tained before (figure 4.18) and after (figure??) the low serum assay; the size

of the chromosome territory has been measured by the Scion image analysis

program then the results we compared and unpaired two sample t test was cal-

culated to asses the significance of any resulting difference. The same analysis

has been repeated using images of cells where the NMI expression has been

blocked using siRNA.

Figure 4.18: Green channel of FISH images of chromosome X at 0
minute
displays the green channel of the FISH images of nuclei expressing the NMI before

the low serum assay, were obtained by colour channels spliting using the Corel

software. the green channel corresponds to the cy3 staining (CT).
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Figure 4.19: Green channel of FISH images of chromosome X at 15
minutes
displays the green channel of the FISH images of nuclei expressing the NMI after

the low serum assay, were obtained by colour channels spliting using the Corel

software. the green channel corresponds to the cy3 staining (CT).

4.3.5 Comparison of chromosome chromosome X terri-

tories before and after the low serum assay

The size of chromosome X territories measured in nuclei of normal proliferating

HDFs before the low serum assay (at 0 minute) was compared to the size of

chromosome X territories measured after the low serum assay (at 15 minutes).

It seemed that the chromosome X territories were bigger after the low serum

incubation, as shown in figure 4.20, the t test has confirmed the statistical

significance of this difference; p = 0.001.
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Figure 4.20: Comparison of the size of chromosome X at 0 and 15
minutes.

Green: the mean size of chromosome X territories before the low serum
incubation, Violet: the mean size of chromosome X territories after the low

serum incubation

4.3.6 Comparison of chromosome X territories before

and after the low serum assay of NMI depleted

cells

The assess the effect of the suppression of the NMI on chromosome territories

sizes, the low serum assay has been repeated on cells where the NMI expression

has been blocked using siRNA. Results have shown that the size of chromosome

X territories seemed to be bigger before the low serum incubation of NMI de-

pleted cells (at 0 minute) compared to the size of X territory at 15 minutes, as

shown in figure 4.21. despite the apparent difference in chromosome X territo-

ries at 0 and 15 minutes of NMI depleted cells, the t test has confirmed that

this difference was statistically insignificant, p = 0.39.
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Figure 4.21: Comparison of the size of chromosome X at 0 and 15
minutes of NMI depleted nuclei

Green: the mean size of chromosome X territories before the low serum
incubation, Violet: the mean size of chromosome X territories after the low

serum incubation

Conclusion

The image analysis of the chromosome X territories before and after the low

serum incubation has revealed significant changes in the size of these territories

before and after the low serum assay. It has emerged that chromosome X ter-

ritory becomes bigger after incubating normal proliferating cells in low serum

for 15 minutes. In NMI depleted cells, subjecting the cells to low serum incuba-

tion resulted in no significant difference in the size of chromosome X territories

before and after the low serum assay .



Chapter 5

Discussions

5.1 Role of the nuclear myosin I in chromo-

some positioning

In this study we have been able to confirm that the myosin responsible for the

rapid chromosome 10 repositioning as result to low serum incubation is the

nuclear myosin I. Low serum induced chromosome 10 repositioning from an in-

termediate position in the nucleus to the nuclear periphery has been previously

identified by our to be depending on the function of both actin myosin (Mehta

& Bridger unpublished), with several myosins identified in the nucleus (see sec-

tion 4.2 chapter 1), it was important to know which of these nuclear myosin is

actually responsible for the rapid chromosome 10 repositioning to the nuclear

periphery. In this study, using RNA interference techniques to block the expres-

sion of the NMI gene performed on similar cultures and using same procedures,

we provide evidence that this rapid chromosome 10 repositioning is dependent

on the presence of the nuclear myosin I in the nucleus. By comparing the chro-

mosome 10 positions at 0 and 15 minutes of the low serum assay in control cells

before the siRNA transfection, with the respective chromosome positions at 0

and 15 minute of the low serum incubation repeated on cells where the NMI

expression have been blocked, we have found that the relocation of chromosome

10 to the nuclear periphery after 15 minutes of the low serum incubation, pre-

93
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viously identified in normal proliferating control cells did not manifest in NMI

depleted nuclei. In nuclei where the NMI gene has been silenced using siRNA,

chromosome 10 have been found to occupy an intermediate position both at 0

and 15 minutes of the low serum assay. The role of nuclear myosin I in chro-

matin movements have been previously reported (Chang, et al., 2006, Dundr et

al., 2007, Hu, et al., 2008) but this is the first time where a whole chromosome

territory relocation have been shown to be dependant on the presence of the

NMI in the nucleus. While these finding confirm a model where the interphase

chromatin is highly dynamic with NMI dependant active chromosome domains

repositioning.

5.2 Role of the nuclear myosin I in maintaining

nuclear shape

The image analysis of the nuclear shape before and after the siRNA silencing of

the nuclear myosin gene, has revealed significant changes in the shape of nuclei

after the low serum incubation NMI depleted nuclei compared to nuclei of cells

where the expression of the NMI has not been affected, the nuclei where the

NMI expression has been blocked were found to become more lobulated after

the cells were subjected to the low serum assay. The low serum incubation of

cells expressing the NMI did not seem to have significant effect on the shape

or the size of the nuclei. A role of NMI in maintaining the nuclear shape has

recently been suggested by Holaska and Wilson, (2007); NMI bound to emerin

can act as a sencor and a regulator of the peripheral nuclear lamina network.

In this study further evidence of the involvement of the nuclear myosin I in

maintaining the nuclear shape is provided.
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5.3 Effect of the nuclear myosin I on chromo-

some territories size

The analysis of chromosome 10 and X territories has revealed significant changes

of the size of chromosome territories after the cells have been incubated in low

serum for 15 minutes. while the size of chromosome 10 territories seemed to

have shrunk after the low serum assay, the chromosome X territories seemed

to have expanded. These changes in chromosome territories’ sizes are found

to be dependent on the presence of the nuclear myosin I in the nucleus, since

no significant changes in both chromosome 10 and X territory size have been

registered when the NMI depleted cells have been subjected to the low serum

assay.
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5.4 Conclusion

The newly uncovered role of the NMI in chromosome repositioning brings to

mind the case of senescent cells where a study by Mehta, et al, (2010) has shown,

absence of the low serum induced chromosome repositioning initially observed

in normal proliferating cells. It is tempting to speculate that the abolishment of

the chromosomal repositioning in this case is comparable to the one observed in

this study when the NMI depleted cells were subjected to the low serum assay.

Thus, the absence of the low serum induced chromosome repositioning in senes-

cent cell, could reflect or result from impairment in the function of the NMI.

In favour of this idea, is the striking difference in the distribution of the NMI

in senescent cells compared to normal proliferating cells, observed by indirect-

immunofluorescence (Mehta, et al ., 2010). Further studies are required to verify

this hypothesis, which could result in a breakthrough in the field of progeria re-

search where a comparable pattern has been also observed (Mehta, et al., 2010).

The study of chromosome territories has also revealed that chromosome ter-

ritories (CT) are affected differently by the low serum assay (while chromosome

10 territories seem to have shrunk in size, chromosome X territories have ex-

panded). It would be interesting to know whether these changes in CT sizes are

correlating with the transcriptional status of these chromosomes and how the

serum deprivation affects the CT sizes. Interestingly, the siRNA knockdown of

the NMI resulted in the absence of the low serum induced changes in CT sizes.

More studies are needed to investigate how the NMI is affecting the CT in serum

deprived cultures.

The results of this study have provided new insights into the importance of

the nuclear myosin I in nuclear organisation and architecture, this multi func-

tional motor has been found necessary for chromosome movements, maintaining

the nuclear shape, and affecting the chromosome territories sizes. The mecha-

nism by which the NMI is maintaining these functions and whether the NMI



5.4. Conclusion 97

has been acting directly or indirectly (in a complex or as regulator), needs to

be further investigated.
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Abstract
Rapid interphase chromosome territory repositioning appears to function through the action of nuclear
myosin and actin, in a nuclear motor complex. We have found that chromosome repositioning when cells
leave the cell cycle is not apparent in cells that have mutant lamin A or that are lacking emerin. We discuss
the possibility that there is a functional intranuclear complex comprising four proteins: nuclear actin, lamin
A, emerin and nuclear myosin. If any of the components are lacking or aberrant, then the nuclear motor
complex involved in moving chromosomes or genes will be dysfunctional, leading to an inability to move
chromosomes in response to signalling events.

Interphase chromosome positioning
and repositioning
Chromosomes are positioned non-randomly in interphase
nuclei. In primary proliferating fibroblasts, chromosomes
are positioned according to their gene density, with gene-
poor chromosomes at the nuclear periphery and gene-rich
chromosomes towards the nuclear interior [1,2]. The gene-
density-correlated positioning of chromosomes found in
different cell types gave credence to the idea that positioning
of genes and regulatory elements at specific regions of the
nucleus would have an impact on the regulation of gene
expression or silencing. Some interphase chromosome pos-
itions alter with differentiation, whereas others remain
in the same nuclear location (reviewed in [3,4]), adding
further weight to the argument that interphase positioning
is relevant in genome function. On the other hand, we
have found that, when cells leave the proliferative cell cycle,
to become either quiescent or senescent, chromosomes are
still positioned non-randomly, but now according to size,
with large chromosomes at the nuclear periphery and small
chromosomes in the nuclear interior (I.S. Mehta, M. Figgitt,
L.S. Elcock, K.J. Meaburn, G. Bonne, I.R. Kill and J.M.
Bridger, unpublished work). Whether this change in location
influences changes in transcription profiles has yet to be
determined.

We found that, as fibroblasts became quiescent or sene-
scent, a number of chromosomes would change position and
some would remain at the same nuclear location. Quite a
few chromosomes, such as chromosomes 13 and 18, change
nuclear position as fibroblasts become non-proliferating and

Key words: chromosome movement, emerin, nuclear actin, nuclear lamin, nuclear motor,

nuclear myosin.

Abbreviations used: EDMD, Emery–Dreifuss muscular dystrophy; HGPS, Hutchinson–Gilford

progeria syndrome; NMI, nuclear myosin I.
1To whom correspondence should be addressed (email Joanna.Bridger@brunel.ac.uk).

relocate to same nuclear compartment regardless of whether
cells are quiescent or senescent (Figure 1). Others relocate,
but are found in different nuclear compartments in both
quiescent and senescent fibroblasts (I.S. Mehta, M. Figgitt,
L.S. Elcock, K.J. Meaburn, G. Bonne, I.R. Kill and J.M.
Bridger, unpublished work). Chromosome 10 is the most
interesting chromosome, since it is found in an intermediate
nuclear position in proliferating fibroblast nuclei (Figure 1A),
at the nuclear periphery in quiescent fibroblasts (Figure 1B)
and within the nuclear interior in senescent fibroblasts
(Figure 1C). Indeed, it is one of two chromosomes that are
located at three different nuclear locations in these cell states.
From these analyses, we have to conclude that chromosome
territories move, changing their nuclear location as cells
become senescent or quiescent (Figure 1). But whether this
was immediate, over a number of hours, or whether cells
are required to traverse mitosis for chromosomes to become
repositioned was not clear, and not trivial to study in
senescent cells. However, using serum removal, we were
able to show that chromosome territories are relocated very
rapidly, after 15 min. This repositioning is an active process
requiring energy, since inhibitors of ATPase and GTPase
block the relocation of chromosomes (I.S. Mehta, L.S. Elcock,
G. Bonne, I.R. Kill and J.M. Bridger, unpublished work).
Rapid repositioning has been observed for individual genetic
loci [5,6]. In order to understand how this rapid movement
is elicited, we are looking at nuclear motors.

Nuclear motors
Molecular motors of the cell cytoplasm have been studied
for many years. Over the years, there have been on/off
discussions as to whether there are molecular motors within
the nuclei of cells. The discussions started in the 1970s [7,8],
with a role for nuclear actin and myosin being suggested in
heterochromatin formation [9]. In the 1980s, evidence was
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Figure 1 Chromosomes occupy differential locations in normal proliferating, quiescent and senescent primary fibroblasts

(A) In a young proliferating fibroblast nucleus, chromosome 10 occupies an intermediate location, whereas chromosomes

13, 18 and X localize at the nuclear periphery. (B) In a young quiescent fibroblast nucleus, this position of chromosomes is

altered and chromosome 10 localizes at the nuclear periphery, whereas territories for chromosomes 13 and 18 are positioned

in the nuclear interior. Chromosome X remains at the nuclear periphery. (C) In senescent cells, whereas chromosomes 13

and 18 are still localized in the nuclear interior, chromosome 10 is also observed to be positioned in the nuclear interior.

Chromosome X remains at the nuclear periphery.

provided that nuclear actin and myosin were involved in
nucleocytoplasmic transport [10], and, in the 1990s, more
ultrastructural studies were performed, localizing actin and
myosin in the nucleus [11,12]. Within the last 10 years,
scientists have uncovered several isoforms of myosin that are
found in nuclei, including NMI (nuclear myosin I) (reviewed
in [13]), myosin VI [14], myosin 16b [15] and myosin Va
[16]. In the 1970s, actin was also shown to be a nuclear
protein [17,18]. However, it is still an unresolved question
as to whether this actin in the nucleus is a polymerized or an
unpolymerized form [19].

Using microinjection of antibodies, actin [20,21], and actin
and myosin together [22], were shown to be involved in
RNA polymerase II transcription, which has been confirmed
further using drugs and mutant cell lines not only for nuclear
actin and NMI [13,23], but also for myosin VI [14]. These
acto–myosin motors also appear to be involved in RNA
polymerase I transcription [23–25].

Both nuclear actin and NMI have also been found
to associate with chromatin-remodelling complexes. Actin
binds to SWI/SWF-like BAF (barrier to autointegration
factor) remodelling complexes, whereas NMI associates
with components of the WICH (WSTF–SNF2h complex)
chromatin-remodelling complex [13].

However, the involvement of nuclear motors in transcrip-
tion and chromatin remodelling appears not to be their only
nuclear function. There is an increasing body of evidence
that they are also involved in movement of chromatin around
nuclei [5,26].

We have found that the rapid relocation of chromosomes
in interphase is blocked by drugs preventing polymerization
of actin and myosin (I.S. Mehta, L.S. Elcock, G. Bonne, I.R.
Kill and J.M. Bridger, unpublished work).

It is interesting to note that Hozak and colleagues found
that both nuclear actin and NMI are distributed quite
differently in resting non-stimulated lymphocytes compared
with PHA (phytohaemagglutinin)-stimulated lymphocytes
[27] and Riddle et al. [28] demonstrated that nuclear actin
was decreased in quiescent fibroblasts. We have stained
proliferating and senescent fibroblasts with a commercial
anti-NMI antibody and have seen quite different distribu-
tions of NMI in senescent cells compared with proliferating
fibroblasts; it could be described as disorganized (I.S. Mehta,
L.S. Elcock, M. Amira, I.R. Kill and J.M. Bridger, unpublished
work).

From our studies, we know that, when quiescent cells
are re-stimulated with serum, chromosomes do not relocate
to a proliferating gene-density distribution until after cells
have traversed mitosis with a breakdown and rebuilding
of the nucleus [29]. Thus we suggest that not only do
quiescent cells have a compromised nuclear motor for moving
chromatin, but also the same is true for senescent cells,
since we have not visualized any chromosome repositioning
in senescent cells after removal of serum. This may
indicate that nuclear motors containing actin and myosin
do not function in the same manner in non-proliferating
cells with respect to dynamic chromatin/chromosome
movement.

C©The Authors Journal compilation C©2008 Biochemical Society
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A-type lamins and emerin
The nuclear lamina is described as a meshwork [30] or a
uniparallel array [31] of interconnecting filaments underlying
the inner nuclear envelope. This structure, together with the
nuclear envelope and nuclear envelope proteins, is important
for organizing the structure of the entire nucleus and the
chromatin within it [32].

In most vertebrate cells, two major types of nuclear lamin
are found: A and B. A-type lamins are encoded by LMNA
which undergoes alternative splicing to form lamins A, delta
A, C and C2, whereas B-type lamins are encoded by two
separate genes LMNB1 and LMNB2 to form lamins B1, B2
and B3 (reviewed in [33]).

A-type lamin proteins not only are located at the nuclear
periphery, but also are probably part of the nuclear matrix
[34,35]. Further lamin proteins have been observed within
the nuclear interior [36,37] with sites of replication [38],
transcription factories [39] and splicing speckles [40]. Nuclear
A-type lamins seem to be involved in many nuclear functions
such as nuclear structural integrity, DNA replication,
transcription, splicing, cell signalling, DNA repair, cellular
proliferation, transit of mitosis, organization and stability
of the genome, differentiation, normal aging, apoptosis and
epigenetic control of chromatin (reviewed in [41]).

A-type lamins have a number of binding partners, and this
might well explain their multifaceted roles and importance
within the nucleus, but this also adds another level of
complexity in assigning roles to particular complexes
of proteins containing A-type lamins. One of the binding
partners of nuclear A-type lamins is emerin (reviewed in
[32]). The lamin–emerin interaction has been implicated
to be important in maintaining the structural integrity of
the nucleus, in correct localization of the complex and in
efficient progression of the cell through the cell cycle [42].
The importance of this complex is emphasized by both
proteins causing similar diseases when the respective genes
are mutated, i.e. EDMD (Emery–Dreifuss muscular dys-
trophy). HGPS (Hutchinson–Gilford progeria syndrome) is
a premature aging syndrome caused by a base substitution in
the LMNA gene encoding a G608G mutation [43] resulting
in the formation of a truncated lamin A protein termed
progerin, which acts in a dominant-negative way [44]. Studies
on patients suffering from HGPS have revealed that lamins
are important in the maintenance of nuclear structure and
shape as well as in heterochromatin formation, chromatin
modification and gene expression [45]. Studies using emerin-
null cells derived from patients suffering from X-linked
EDMD have revealed that emerin may also influence gene
expression, heterochromatin organization and be involved in
maintaining the structural integrity of the nuclear envelope
(reviewed in [32]).

A-type lamins and emerin: are they
integral to the function of a nuclear motor?
If lamins A and C and emerin are involved in the function of a
nuclear motor comprising nuclear actin and nuclear myosins,
then there should be evidence that they bind one another in

Figure 2 Model showing the interactions between the nuclear

actin–myosin and the nuclear lamin–emerin complexes for

efficient functioning of the nuclear motor

Nuclear lamins are known to bind to nuclear actin and nuclear eme-

rin. Nuclear emerin binds nuclear actin, nuclear myosin and nuclear

actin. Nuclear myosins are known to bind to DNA, whereas nu-

clear actin, emerin and lamins are known to interact with the nuclear

matrix. Thus chromosome territories are bound by nuclear myosins

which binds emerin which bind both nuclear actin and lamins. Thus

this four-protein complex, with the support of the nuclear matrix, may

function to move the chromosome territories within the nuclear space.

such a way as to form a complex. Indeed, in vitro studies
have demonstrated the binding of actin to the C-terminus
of lamin A [46]. In addition, the tail region of lamin A has
an additional site with affinity for actin [47]. Emerin binds
to both actin [F- (filamentous) and G- (globular) actin] and
NMI, revealed by proteomic studies [32]. Thus we know that
emerin binds lamin A that can bind to actin, which can bind
to both emerin and NMI which can bind emerin. This makes
an interesting hypothetical complex (Figure 2) and, although
it has been discussed as being present at the nuclear envelope
[48], could it also be present and functional throughout the
nucleus?

If this complex exists, does it function to move chro-
matin/chromosomes around the nucleus? We have started to
address this question by performing chromosome positioning
assays [two- and three-dimensional FISH (fluorescence in situ
hybridization)] in proliferating fibroblasts of patients that
have mutations in either LMNA or EMD genes (Figure 3B
and 3D) [49] and comparing chromosome positioning when
these cells have become senescent. Intriguingly, in HGPS cells
that have become senescent, the chromosomes do not alter
their nuclear location as they would do in normal control cells
(Figure 3C). This implies that the nuclear motor function,
which would have been involved in chromosome movement
during transition from a proliferating to a senescent state, is
not functional. Indeed, anti-NMI antibody staining reveals
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Figure 3 Chromosome 10 localizes at the nuclear periphery in proliferating HGPS and EDMD fibroblasts, and the position of chromosome

10 does not change once the cell is senescent

In senescent cells that are quiescent, the territories of chromosome 10 are in the nuclear interior (A). In primary proliferating

fibroblasts derived from patients suffering from HGPS or EDMD, chromosome 10 territories are at the nuclear periphery

(B and D respectively), and this localization of chromosome 10 does not change when these HGPS cells become

senescent (C).

the same disorganized distribution of NMI as in senescent
cells (I.S. Mehta, L.S. Elcock, M. Amira, I.R. Kill and J.M.
Bridger, unpublished work).

If emerin is functionally involved in this complex, then
chromosomes would also not be relocated in EDMD cells
that became senescent. Unfortunately, we have only looked at
chromosomes 13 and 18 (Figure 3D) so far, and they are found
in the nuclear interior in both proliferating and senescent
EDMD cells [49].

Thus, for efficient movement of whole chromosome
territories, the formation and functionality of this protein
complex including nuclear actin, myosin, lamin and emerin
(Figure 2) may be vital. It has also been shown that, in normal
senescent cells, there is an accumulation of the mutant form of
lamin A [50,51]. This may well explain why, in senescent cells,
chromosome 10 is not repositioned when senescent cells are
placed in low serum (Figure 3A), indicating that the nuclear
motor controlling chromosome movement in senescent cells
is dysfunctional.

In order to test these hypotheses and the functionality
of nuclear motors in non-proliferating and diseased cells,
we need to perform a number of experiments. These would
include interfering with the complex in normal cells as well
as rebuilding it in cells where this complex is dysfunctional
or missing; these studies are on-going in our laboratory.
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motor activity in response to serum removal in 
primary human fibroblasts
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Chromosome positioning dynamicsNuclear myosin 1β-dependent repositioning of chromosome territories occurs within 15 min-utes of serum starvation in human cells.
Abstract
Background: Radial chromosome positioning in interphase nuclei is nonrandom and can alter according to 
developmental, differentiation, proliferation, or disease status. However, it is not yet clear when and how chromosome 
repositioning is elicited.

Results: By investigating the positioning of all human chromosomes in primary fibroblasts that have left the 
proliferative cell cycle, we have demonstrated that in cells made quiescent by reversible growth arrest, chromosome 
positioning is altered considerably. We found that with the removal of serum from the culture medium, chromosome 
repositioning took less than 15 minutes, required energy and was inhibited by drugs affecting the polymerization of 
myosin and actin. We also observed that when cells became quiescent, the nuclear distribution of nuclear myosin 1β 
was dramatically different from that in proliferating cells. If we suppressed the expression of nuclear myosin 1β by using 
RNA-interference procedures, the movement of chromosomes after 15 minutes in low serum was inhibited. When high 
serum was restored to the serum-starved cultures, chromosome repositioning was evident only after 24 to 36 hours, 
and this coincided with a return to a proliferating distribution of nuclear myosin 1β.

Conclusions: These findings demonstrate that genome organization in interphase nuclei is altered considerably when 
cells leave the proliferative cell cycle and that repositioning of chromosomes relies on efficient functioning of an active 
nuclear motor complex that contains nuclear myosin 1β.

Background
Within interphase nuclei, individual chromosomes are
organized within their own nuclear space, known as
chromosome territories [1,2]. These interphase chromo-
some territories are organized in a nonrandom manner in
the nuclei of human cells and cells from other species [3].
Chromosomes in different species are positioned radially,
according to either their gene density [4-9] or their size
[10-12] or both [11,13-16]. The nuclear microenviron-
ment within which a chromosome is located could affect
its gene regulation, and it has been proposed that whole
chromosomes or regions of chromosomes are shifted
around the nucleus to control gene expression [17,18].
Active genes appear to come together in a common
nuclear space, possibly to be co-transcribed [19-21]. This

fits with the increasing number of observations made of
chromosome loops, containing active areas of the
genome, coming away from the main body of the chro-
mosome territory, such as regions containing FLNA on
the X chromosome [22]; major histocompatibility com-
plex (MHC) genes [23], specific genes on chromosome 11
[24]; β- globin-like genes [25], epidermal differentiation
complex genes [26], specific genes within the Hox B clus-
ter [27,28], and genes inducing porcine stem cell differen-
tiation into adipocytes [29]. Chromatin looping is
apparently associated with gene expression, because inhi-
bition of RNA polymerase II transcription affects the out-
ward movement of these chromosome loops [30].

Repositioning of whole chromosome territories has
been observed in erythroid differentiation [25], adipo-
genesis [31], T-cell differentiation [32], porcine sper-
matogenesis [33], and after hormonal stimulus [34]. Even
more studies revealed genomic loci being repositioned
during differentiation (see [35], for comprehensive
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review). We demonstrated previously that interphase
chromosomes occupy alternative nuclear positions when
proliferating cells become quiescent or senescent [5,7,9].
For example, chromosomes 13 and 18 move from a
peripheral nuclear location to an internal nuclear loca-
tion in serum-starved or senescent fibroblast cells [5,9].
From these early studies, it was not clear how other chro-
mosomes behaved after induction of growth arrest, and
so we have now positioned all human chromosomes in
cells made quiescent by serum starvation. We found that
just less than half of the chromosomes alter their nuclear
location. The ability to control, temporally, the entry of
cells to quiescence through serum starvation allows the
determination of a response time of nuclear architecture
to the change in environment. In this study, we demon-
strate that chromosome repositioning in interphase
nuclei occurs within 15 minutes.

The presence of actin [36] and myosin [37-41] have
been reported in nuclei, and an increasing body of evi-
dence suggests that they cooperate to form a nuclear
myosin-actin motor [42]. Actin and myosin have been
shown to be involved in the intranuclear movement of
chromosomal regions [43,44] and whole chromosomes
[34]. Further, nuclear actin and myosin are involved in
RNA polymerase I transcription [37,40], RNA poly-
merase II transcription [37-41], and RNA polymerase III
transcription [45]. In a model put forward by Hoffman
and colleagues [42], myosin I could bind through its tail
to the nuclear entity that requires movement, with actin
binding to the globular head of the nuclear myosin I mol-
ecule. This nuclear motor would then translocate the
nuclear entity along highly dynamic tracks of nuclear
actin [42]. In this study, we demonstrated that the rapid
movement of chromosome territories in response to
serum deprivation is dependent on the function of both
actin and myosin, probably nuclear myosin 1β.

Results
Interphase chromosome positioning in proliferating and 
nonproliferating cells
To determine the nuclear location of specific chromo-
somes, human dermal fibroblasts (HDFs) were harvested
and fixed for standard 2D-fluorescence in situ hybridiza-
tion (FISH). Representative images of chromosome terri-
tories in proliferating cells are displayed in Figure 1a-d.
Digital images were subjected to erosion analysis [4-
6,8,9], whereby the images of 4',6-diamidino-2-phenylin-
dole (DAPI)-stained flattened nuclei are divided into five
concentric shells of equal area, and the intensity of the
DAPI signal and probe signal is measured in each shell.
The chromosome signal is then normalized by dividing it
by the percentage of DAPI signal. The data for each chro-
mosome are then plotted as a histogram with error bars,
with the x-axis displaying the nuclear shells from 1 to 5,

representing the nuclear periphery to the nuclear interior,
respectively (Figure 1e-h).

In young proliferating fibroblasts, interphase chromo-
somes are positioned nonrandomly in a radial pattern
within nuclei [3]. In our 2D studies, we consistently found
gene-poor chromosomes, such as chromosomes X, 13,
and 18, located at the nuclear periphery [5,9], which fits
with their having more lamina-associated domains than
gene-poor chromosomes (see [46]). In this study, we
recapitulated the interphase chromosome positioning
with our present cultures and demonstrated that these
chromosomes are located at the nuclear periphery in
young proliferating cells (Figure 1b-d, f-h). Proliferating
cells within the primary cultures were identified by using
the proliferative marker, anti-pKi-67, which is distributed
in a number of different patterns within proliferating
human fibroblasts [47]. Its distribution is mainly nucleo-
lar and is shown in red (Figure 1a-d). Figure 1a and e
demonstrate the nuclear location of chromosome 10,
unlike chromosomes 13, 18, and X it is found in an inter-
mediate position in proliferating fibroblasts. The relative
interphase positions of chromosomes 10 and X have been
confirmed in 3D-FISH analyses (Figure 1i-k), whereby
HDFs were fixed to preserve their three-dimensionality
with 4% paraformaldehyde and subjected to 3D-FISH
[48]. Measurements in micrometers from the geometric
center the chromosome territories to the nearest nuclear
periphery, as determined by the DAPI staining, were
taken in at least 20 nuclei. The data were not normalized
for size measurements, so that actual measurements in
micrometers can be seen. However, all data were normal-
ized by a size measurement, and this not does alter the
relative positioning of the chromosomes.

We have evidence from prior studies that chromo-
somes such as chromosomes 13 [9] and 18 [5,9] alter their
nuclear position when primary fibroblasts exit the prolif-
erative cell cycle and that chromosome X remains at the
nuclear periphery [9]. However, this is only two chromo-
somes of 24, and so to determine which other chromo-
somes reposition after cell-cycle exit into quiescence
(G0), elicited through serum removal, we positioned all
human chromosomes in G0 cells (Figures 2 and 3).

To make cells quiescent, young, HDFs were grown in
10% NCS for 48 hours, and then the cells were washed
twice with serum-free medium and placed in 0.5% NCS
medium for 168 hours (7 days). However, when the posi-
tioning analysis was performed on the quiescent nuclei,
we found that certain chromosomes were in very differ-
ent positions from those in which they were found in pro-
liferating nuclei, that is, chromosomes 1, 6, 8, 10, 11, 12,
13, 15, 18, and 20 (Table 1).

The data demonstrated in Figure 3 and Table 1 reveal
that a number of chromosomes alter their nuclear posi-
tions when cells become quiescent; as shown before, both
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Chromosome positioning in proliferating interphase nuclei
Figure 1 Chromosome positioning in proliferating interphase nuclei. Proliferating human dermal fibroblasts (HDFs) cultures were subjected to 
2D- or 3D-fluorescence in situ hybridization (FISH) to delineate and analyze the nuclear location of chromosomes 10, 13, 18, and X. In panels (a-d), the 
chromosome territories are revealed in green with a single chromosome territory for chromosome X, because the HDFs are male in origin. The red 
antibody staining is the nuclear distribution of the proliferative marker anti-pKi-67, the presence of which denotes a cell in the proliferative cell cycle. 
DAPI (4',6-diamidino-2-phenylindole) in blue is a DNA intercalator dye and reveals the nuclear DNA. Scale bar = 10 μm. The histograms in panels (e-
h) display the distribution of the chromosome signal in 50 to 70 nuclei for each chromosome for 2D FISH, as analyzed with erosion analysis. This anal-
ysis divides each nucleus into five concentric shells of equal area, with shell 1 being the most peripheral shell, and shell 5 being the most interior shell 
[4-6,9]. The percentage of chromosome signal measured in each shell was divided by the percentage of DAPI signal in that shell. Bars represent the 
mean normalized proportion (percentage) of chromosome signal for each human chromosome. Error bars represent the standard error of the mean 
(SEM). Panels i and j display 3D projections of 0.2-μm optical sections through 3D preserved nuclei subjected to 3D-FISH and imaged with confocal 
laser scanning microscopy. The chromosome territories are displayed in red, and proliferating cells also were selected with positive anti-pKi-67 stain-
ing (not shown in reconstruction). Scale bar = 10 μm. The line graph in panel (k) displays a frequency distribution of micrometers from the geometric 
center of the chromosome territories to the nearest nuclear periphery, as defined by DAPI staining. Images for 20 nuclei were analyzed.

Chromosome 10 Chromosome 13 Chromosome 18 Chromosome X
(a) (b) (c) (d)

(h)

(i)

3D FISH
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chromosomes 13 and 18 move from a peripheral nuclear
location to an interior location (Figure 3m and r). Chro-
mosome 10 is one of a number of chromosomes that
move from an intermediate nuclear location to the
nuclear periphery (Figure 3j, Table 1), whereas chromo-
some X does not change its location at the nuclear
periphery (Figure 3w), and chromosomes such as 17 and
19 do not change their interior location (Figure 3q and s,
respectively).

It certainly appears that the chromosome positioning in
quiescent G0 cells is correlated with size. However, it is
not clear why a repositioning of chromosomes occurs
after serum removal and when and how it is elicited.

The movement of chromosomes when normal fibroblasts 
exit the cell cycle is rapid, active, and requires myosin and 
actin
To determine when the genome is reorganized on exit
from the cell cycle and the speed of the response to the
removal of growth factors, we took actively proliferating

young cultures of primary HDFs and replaced 10% NCS
medium with 0.5% NCS medium. Samples were taken at
0, 5, 10, 15, and 30 minutes after serum starvation for fix-
ation, and chromosome position in interphase was deter-
mined with 2D-FISH and erosion analysis (Figure 4 and
Additional file 1). Chromosomes 13 and 18 relocated
from the nuclear periphery to the nuclear interior within
15 minutes (Figure 4h and l), with an intermediate-type
nuclear positioning visible in the intervening time points
(5 and 10 minutes; Figure 4f, g, j, and k). In addition,
chromosome 10 moved from an intermediate location to
a peripheral location in the same time window (15 min-
utes; Figure 4d). Chromosome X did not relocalize at all,
as was reported previously [9] (Figure 4m-o), apart from
some slight difference at 15 minutes (Figure 4p).

In a previous study, we demonstrated that relocation of
chromosome 18 from the nuclear interior in G0 cells to
the nuclear periphery in serum-restimulated cells took
30+ hours and appeared to require cells to rebuild their
nuclear architecture after a mitotic division [5]. We

Chromosome positioning in quiescent interphase nuclei
Figure 2 Chromosome positioning in quiescent interphase nuclei. Representative images displaying nuclei prepared for fluorescence in situ hy-
bridization (2D-FISH), with whole-chromosome painting probes (green), and nuclear DNA is counterstained with 4',6-diamidino-2-phenylindole (DA-
PI) (blue). The cells were subjected to indirect immunofluorescence with anti-pKi-67 antibodies, and negative cells were selected. Cells were placed 
in low serum (0.5%) for 7 days, before fixation with methanol:acetic acid (3:1). The numbers (or letters) on the left side of each panel indicate the chro-
mosome that has been hybridized. Scale bar = 10 μm.
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Analysis of radial chromosome positioning in quiescent cell nuclei
Figure 3 Analysis of radial chromosome positioning in quiescent cell nuclei. Histograms displaying chromosome positions in primary human 
quiescent fibroblast nuclei. The 50 to 70 nuclei per chromosome were subjected to erosion analysis, which divides each nucleus into five concentric 
shells of equal area, with shell 1 being the most peripheral shell, and shell 5 being the most interior shell [4-6,9]. The percentage of chromosome signal 
measured in each shell was divided by the percentage of 4',6-diamidino-2-phenylindole (DAPI) signal in that shell. Bars represent the mean normalized 
proportion (percentage) of chromosome signal for each human chromosome. Error bars represent the standard error of mean (SEM).
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showed here that the same is true for chromosome 10,
with a return to an intermediate nuclear location 24 to 36
hours after restimulation of G0 cells with 10% NCS (Fig-
ure 5d-f). We again showed that chromosome 18 requires
similar times to return to the nuclear periphery (that is,
36 hours; Figure 5l). Although chromosome X remains at
the nuclear periphery, a slight change in the distribution
of chromosome X occurs at 32 to 36 hours (Figure 5q-r).
From these data, it seems that a rapid response to the
removal of growth factors reorganizes the whole genome
within the interphase nucleus, and this reorganization is
corrected in proliferating cells only after 24+ hours in
high serum, presumably after the cells have passed

through mitosis, as indicated by the peak of mitotic cells
at 24 to 36 hours after serum restimulation (0 hours,
none; 8 hours, none; 24 hours, 0.3%; 32 hours, 2.6%; and
36 hours, 1.2%).

Such rapid movement of large regions of the genome in
response to low serum implies an active process, perhaps
requiring ATP/GTP. When inhibitors of ATPase and/or
GTPase, ouabain, and AG10, were incubated with prolif-
erating cell cultures in combination with low serum,
chromosome 10 did not change nuclear location (Figure
6a-d, and see Additional file 3). The relocation to the
nuclear interior of chromosome 18 territories after incu-
bation of cells in low serum also was perturbed by these

Table 1: The position of all chromosome territories in primary human dermal fibroblasts as determined by 2D FISH, image 

acquisition, and erosion analysis

Chromosome by size Proliferating
HDFs

Quiescent
HDFs

1 IMb P

2 Pb P

3 Pd P

4 Pcd Pc

5 IMd IM

6 IMb P

7 P^ P

X Pab Pc

8 IMb P

9 Pd P

10 IMd P

11 IMd P

12 Pb I

13 Pa Ic

14 Ib I

15 Pb I

16 Ib I

17 Ib I

18 Pac Iac

19 Ia Ia

20 Id IM

22 Ib I

21 Ib I

Y I^ I

This table summarizes the locations of all the chromosomes in quiescent and proliferating nuclei of human dermal fibroblasts (HDFs). The 
positions of chromosomes shown without a symbol have been determined for this study. aData derived from [5]. bData derived from [4]. cData 
derived from [9]. dData derived from [7].
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inhibitors (Figure 6a-d). The control chromosome, chro-
mosome X, remained at the nuclear periphery (Figure 6
and Additional file 3). Because other studies suggest that
nuclear motors move genomic regions around the
nucleus by actin and/or myosin [42,44] we decided to use
inhibitors of actin and myosin polymerization to attempt
to block any chromosome movement elicited by these
nuclear motors when serum was removed. Latrunculin A,

an inhibitor of actin polymerization, inhibited the move-
ment of both chromosomes 10 and 18 when cells were
placed in low serum (Figure 7a and Additional file 3). In
contrast, phalloidin oleate, another inhibitor of actin
polymerization did not prevent relocalization of either
chromosome 10 or 18, when cells were placed in low
serum (Figure 7b and Additional file 3). However, two
inhibitors of myosin polymerization (BDM) and function

Rapid repositioning of chromosomes after removal of serum
Figure 4 Rapid repositioning of chromosomes after removal of serum. Chromosomes move rapidly in proliferating cells placed in low serum. 
The nuclear locations of human chromosomes 10 (a-d), 13 (e-h), 18 (i-l), and X (m-p) were analyzed in normal fibroblast cell nuclei fixed for 2D-FISH 
(fluorescence in situ hybridization) after incubation in medium containing low serum (0.5%) for 0, 5, 10, and 15 minutes. The filled-in squares indicate 
significance difference (P < 0.05) when compared with control proliferating fibroblast cell nuclei.
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Restoration of proliferative chromosome position after restimulation of G0 cells
Figure 5 Restoration of proliferative chromosome position after restimulation of G0 cells. The relocation of chromosomes to their proliferative 
nuclear location takes 24+ hours for chromosome 10 and 36 hours for chromosome 18. Proliferating cells (a, g, m) were placed in low serum (0.5%) 
for 7 days (b, h, n) and then restimulated to enter the proliferative cell cycle with the readdition of high serum. Samples were taken at 8 hours (c, i, o), 
24 hours (d, j, p), 32 hours (e, k, q), and 36 hours (f, l, r) after restimulation. The graphs display the normalized distribution of chromosome signal in 
each of the five shells. Shell 1 is the nuclear periphery, and shell 5 is the innermost region of the nucleus. The solid squares represent a significant 
difference (P < 0.05) for that shell when compared with the equivalent shell for the time 0 data (G0 data) for the erosion analysis.
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(Jasplakinolide; also affects actin polymerization) did
inhibit movements of both these chromosomes upon
serum removal (Figure 7c, d, and Additional file 3). Figure
7e provides a comparison for the rapid change in chro-
mosome position when no inhibitors are used. These data
imply that rapid chromosome movement observed in
cells as they respond to removal of growth factors is due
to an energy-driven process involving a nuclear
actin:myosin motor function.

Nuclear myosin 1β is required for chromosome territory 
repositioning in HDFs placed in low serum
In an effort to elucidate which myosin isoform was
involved in chromosome movement after serum removal
in culture, we used suppression by RNA interference with
small interfering RNAs (siRNAs). An siRNA pool for the
gene MYO1C was selected because it encodes for a cyto-
plasmic myosin 1C and the nuclear isoform nuclear myo-
sin 1β, a major candidate myosin for chromatin
relocation [39,49]. mRNA analysis had revealed insuffi-
cient differences in sequence for suppression of myosin
1β alone (data not shown). With a double transfection of
the siRNA, we observed 93% of cells displaying no

nuclear myosin staining at all (Figure 8k, q, and s) but still
with some cytoplasmic staining, whereas in the control
cells and the cells transfected with the control construct,
>95% of cells displayed a nuclear distribution of anti-
nuclear myosin 1β, which was distributed in proliferating
cells as accumulations at the inner nuclear envelope, the
nucleoli, and throughout the cytoplasm (Figure 8g-j, m-
p). These numbers did not change significantly after
serum removal for 15 minutes, as per the chromosome-
movement assay (data not shown).

After siRNA suppression of nuclear myosin, the chro-
mosome-movement assay was repeated by placing the
double-transfected cells into low serum for 15 minutes.
The graphs in Figure 9 show that chromosomes 10, 18,
and X behave as expected after removal of serum in the
control cells (Figure 9a-f) and in the cells transfected with
the control construct (Figure 9g-l), with chromosome 10
becoming more peripheral, chromosome 18 becoming
more interior, and chromosome X remaining at the
nuclear periphery. However, in the cells that had been
transfected with MYO1C-targeting siRNA, chromosome
movement was much less dramatic, with the chromo-

Chromosome repositioning requires energy
Figure 6 Chromosome repositioning requires energy. The relocation of human chromosomes 10 and 18 after incubation in low serum is energy 
dependent. The nuclear location of human chromosomes 10, 18, and X in were determined in normal human proliferating cell nuclei treated with 
ouabain (ATPase inhibitor) (a), AG10 (GTPase inhibitor) (b), or a combination of both (c) before and during incubation in low serum for 15 minutes. 
Normal control analysis data without any treatment is displayed in (d). The error bars show the standard error of the mean. The stars indicate a signif-
icant difference (P < 0.05) from cells treated only with the inhibitor.
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somes still residing in similar nuclear compartments
before and after the serum removal (Figure 9m-r).

The distribution of the nuclear myosin 1β is very inter-
esting in these cells, because it gives a nuclear envelope
distribution, a nucleolar distribution, and a nucleoplas-
mic distribution (Figure 10a-c). These distributions,
although revealing, are not so surprising, because nuclear
myosin has a binding affinity for the integral nuclear
membrane protein emerin [50] and is involved in RNA
polymerase I transcription [37,40,51]. The distribution in
quiescent cells is quite different, with large aggregates of
NM1β within the nucleoplasm and is missing from the
nuclear envelope and nucleoli. This distribution is similar
to that observed in senescent human dermal fibroblasts
(Mehta, Kill, and Bridger, unpublished data). With

respect to chromosome movement back to a proliferating
position after incubation in low serum, we showed that it
does not occur until 24 to 36 hours after repeated addi-
tion of serum to a quiescent culture (Figure 5) [5]. Corre-
lating with this is the rebuilding of daughter nuclei after
mitosis and the return of a proliferating distribution of
NM1β to the nuclear envelope, nucleoli, and nucleoplasm
(Figure 10g, j, p).

Discussion
This study completes the nuclear positioning of all 24
chromosomes in quiescent (serum-starved) normal pri-
mary HDFs, as assessed with 2D-FISH and erosion analy-
sis, with a number of chromosomal positions confirmed
in 3D-preserved nuclei. This study, which was performed

Chromosome repositioning requires nuclear myosin and actin
Figure 7 Chromosome repositioning requires nuclear myosin and actin. The relocation of human chromosomes 10 and 18 after incubation in 
low serum is myosin and actin dependent. The nuclear locations of chromosomes 10, 18, and X were determined in normal human proliferating cell 
nuclei treated with latrunculin A and phalloidin oleate (inhibitors of actin polymerisation) (a, b) and BDM and jasplakinolide (inhibitors of myosin po-
lymerization) (c, d) before and during incubation in low serum for 15 minutes. The error bars show the standard error of the mean. The stars indicate 
a significant difference (P < 0.05) from cells treated only with the inhibitor. Normal control analysis data without any treatment is displayed in (e).
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on similar cell cultures and in the same way as previous
studies, highlighted that some considerable difference
exists in chromosomal nuclear locations between prolif-
erating and quiescent cells. This difference cannot be due
to change in nuclear size or shape, because some chromo-
somes move toward the nuclear interior, some, to the
nuclear periphery, and some do not alter their location at
all; no significant difference is found between nuclear
shape and size before and after 15 minutes in low serum
(data not shown). Some suggestion exists of a size-corre-
lated distribution in quiescent cells (Table 1), with large
chromosomes toward the nuclear periphery, and small
chromosomes toward the nuclear interior. These results
also confirm the data previously presented, whereby
small chromosomes 13 and 18 had differential nuclear
locations with respect to proliferating and nonproliferat-
ing cells [5,9].

How and when the alterations to chromosome posi-
tioning occur are two fundamental questions in under-
standing the role of genome organization in cell cycle-
related events. The genome is probably anchored and
influenced through a number of interactions with nuclear
architecture [52,53], and so any signalled alterations/
modifications to these structures could enable a reorgani-
zation of the position of chromosome territories. We
know that when cells are made quiescent (for 7 days) and
are restimulated to enter the cell cycle by the repeated
addition of serum, chromosome 18 is not relocated back
to the nuclear periphery until the cells have been through
mitosis [5].

The question remained open as to when chromosomes
were repositioned after serum removal. We found that
repositioning of chromosomes was very rapid and com-
plete by 15 minutes. The types of repositioning (a) requir-
ing a rebuilding of the nucleus after mitosis, and (b) the
rapid response without a nuclear envelope breakdown,
imply that these processes follow different pathways and
mechanisms, and the latter is consistent with an energy-
dependent mechanism. This rapid movement of chromo-
somes after growth factor removal may be elicited
through a nuclear motor such as the actin/myosin motor-
complex, containing nuclear actin and nuclear myosin I,
previously shown to be involved in intranuclear move-
ments of chromatin [42-44]. This hypothesis was sup-
ported by experiments using inhibitors of ATPase and
GTPase, as well as inhibitors of actin and myosin polym-
erization. The actin polymerization inhibitor phalloidin
oleate did not inhibit chromosome movement on
removal of high serum. This is important because phal-
loidin has been shown not to bind to nuclear actin unless
the cells are treated with DMSO [54], which we had not
done.

These data support other literature describing nuclear
motors being involved in chromatin behavior [44]. These
drugs have an effect on a broad range of myosins, and so
we wanted to assess whether specific myosins were
involved; thus we used an siRNA sequence that success-
fully suppressed the levels of nuclear myosin 1β, as shown
by indirect immunofluorescence. This is the only nuclear
myosin that would have been affected, but we cannot rule

Suppression of nuclear myosin expression by short interference RNAs (siRNAs)
Figure 8 Suppression of nuclear myosin expression by short interference RNAs (siRNAs). Normal human dermal fibroblasts (HDFs) were trans-
fected with negative control or MYO1C targeting siRNA (double transfection) and samples for immunofluorescence staining and 2D-FISH (fluores-
cence in situ hybridization) were fixed 48 hours after the final transfection. Representative images of nuclei stained for anti-NMIβ (red) in control (g, h, 
m, n) cells transfected with negative control siRNA (i, j, o, p) and in cells transfected with MYO1C siRNA (k, l, q, r) after 0 and 15 minutes of serum 
starvation are displayed. The percentage of nuclei that are positive for NM1β in controls, in cells transfected with negative control siRNA, and in cells 
transfected with MYO1C siRNA are displayed in the adjacent table (s).

(b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Immunofluoroscence staining for nuclear myosin1 beta
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out that other myosins located within the cytoplasm
(such as myosin 1A and 1C), which may be suppressed as
well, could have a long-range interaction with chromatin,
through the nuclear envelope, possibly through nesprins
and SUN domain proteins [55,56].

However, the distribution of nuclear myosin 1β that we
observe in proliferating cells correlates with its properties
and functions, as described in the literature, and impli-
cates the nuclear envelope in chromosome/chromatin
movement. In previous studies, we analyzed chromo-
some position in cells that have defects of the nuclear
lamina, through mutations in nuclear lamin A or emerin,
both nuclear envelope proteins. These cells displayed a
nonproliferating distribution of chromosomes even
though they were proliferating [9,57]. The behavior of
nuclear motor proteins in these cells must be addressed.

Further, the distribution of NM1β from aggregates in qui-
escent cells to the nuclear envelope, nucleoli, and nucleo-
plasm is not observed until more than 24 hours after
serum readdition, which correlated with when specific
chromosomes become relocated from their quiescent
position to their proliferating location.

Conclusions
We demonstrated that some chromosomes occupy differ-
ent nuclear compartments in proliferating and serum-
starved quiescent cells. Most interestingly, this reposi-
tioning of chromosomes is very rapid, taking less than 15
minutes, and requires energy and active actin and myosin
function. The myosin involved could be nuclear myosin
1β, which has dramatically different distribution in quies-
cent nuclei as compared with proliferating cell nuclei.

Chromosome repositioning is inhibited by short interference RNA (siRNA) that suppresses nuclear myosin1β
Figure 9 Chromosome repositioning is inhibited by short interference RNA (siRNA) that suppresses nuclear myosin1β. Chromosome posi-
tioning was determined with 2D-FISH (fluorescence in situ hybridization) and erosion analysis, and the normalized position data plotted as histograms 
in control cells, in cells transfected with the negative control, and in cells transfected with the MYO1C siRNA construct. In control human dermal fibro-
blasts (HDFs) and in HDFs transfected with negative control, siRNA chromosome 10 is repositioned from an intermediate nuclear location (a and g, 
respectively) to the nuclear periphery (d, j) after 15 minutes of incubation in low serum. Chromosome 18 territories, conversely, are repositioned 
from the nuclear periphery (b, h) to the nuclear interior (e, k) after 15 minutes of incubation in low serum in control HDFs and in HDFs transfected 
with negative control siRNA. In HDFs transfected with the MYO1C siRNA construct, chromosomes 10 (m, p) and 18 (n, q) do not show repositioning 
after 15 minutes of incubation in low serum. Chromosome X remains at the nuclear periphery at all times (c, f, i, l, o, r). Unpaired, unequal variances 
two-tailed Students t tests were performed to assess statistical differences. The solid squares indicate a significant difference (P < 0.05) from cells not 
incubated in, and the solid circles indicate a significant difference (P < 0.05) from control HDFs.
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Materials and methods
Cell culture
Human dermal fibroblasts (HDFs), 2DD [58] were grown
in Dulbecco's Modified Eagles Medium (DMEM) con-
taining 10% newborn calf serum (vol/vol NCS), glu-
tamine, and antibiotics, at 37°C. Cells were passaged
twice a week and seeded at a density of 3 × 103/cm2. Cells
were made quiescent by incubation in 10% NCS DMEM
for 2 days, washing in serum-free medium, followed by
incubation in DMEM containing 0.5% NCS (vol/vol) for 7
days.

Inhibitors of ATPase, GTPase, myosin, and actin 
polymerization
To inhibit the activity of ATPase or GTPase, cells were
treated with 100 μmol/L ouabain (Calbiochem-Novabio-
chem, Beeston, Nottingham, UK) for 30 minutes [59] or
with 100 μmol/L AG10 (Calbiochem) for 20 or 30 min-
utes before serum withdrawal [60,61], respectively. To
inhibit the polymerization of actin, cells were treated
with 1 μmol/L either Latrunculin A (Calbiochem) [62,63]
or phalloidin oleate (Calbiochem) [64] for 30 minutes.
Myosin polymerization was inhibited by treating cells

Anti-nuclear myosin 1b (NM1β) staining patterns in proliferating cells, quiescent cells, and after restimulation
Figure 10 Anti-nuclear myosin 1b (NM1β) staining patterns in proliferating cells, quiescent cells, and after restimulation. Normal 2DD hu-
man dermal fibroblasts (HDFs) were serum starved for 7 days to induce quiescence. The cells were then restimulated with fresh serum, and samples 
were collected at 0, 24, 36 and 48 hours after serum restoration. Samples were also collected before serum withdrawal (proliferating cells). The samples 
were then fixed with methanol/acetone (1:1), and the distribution of NMIβ was assessed by performing an indirect immunofluorescence assay for 
NMIβ. Images in (a, c) display the distribution of NMIβ in proliferating cells, whereas those in (d and f) show the distribution of NMIβ after 0, 24, 36 and 
48 hours after restimulation of quiescent fibroblasts. The table (p) displays the percentage of cells displaying various patterns of NMIβ staining after 
restimulation. Error is indicated by standard deviation. Scale bar = 10 μm.
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either with 10 mmol/L 2,3-butanedione 2-monoxime
(Calbiochem) for 15 minutes [65-67] or 1 μmol/L Jas-
plakinolide (Calbiochem) for 60 minutes [68]. See Addi-
tional file 5.

Fluorescence in situ hybridization
For the two-dimensional FISH assay, fibroblasts were har-
vested and placed in hypotonic buffer (0.075 mol/L KCl,
wt/vol) for 15 minutes at room temperature. After cen-
trifugation at 400 g, cells were fixed in 3:1 (vol/vol) meth-
anol/acetic acid (vol/vol) for 1 hour on ice. The fixation
step was repeated between 5 and 7 times before cells were
dropped onto humidified glass microscope slides. The
slides were aged at room temperature for 2 days or for an
hour at 70°C before being subjected to dehydration
through an ethanol series of 70%, 90%, and 100%, for 5
minutes each. The cells were denatured in 70% forma-
mide, 2 × sodium saline citrate buffer (SSC), pH 7, at 70°C
for 2 minutes. After denaturation, the slides were imme-
diately plunged into ice-cold 70% ethanol for 5 minutes
and then taken through the ethanol series and air-dried.

For three-dimensional FISH assay, fibroblasts were
washed in 1 × PBS and then fixed in 4% paraformalde-
hyde (wt/vol) in 1 × PBS for 10 minutes. The cells were
then permeabilized with 0.5% Triton-X100 (vol/vol) and
0.5% saponin (wt/vol) in 1 × PBS solution for 20 minutes.
The cells were then incubated in 20% glycerol, 1 × PBS
solution for at least 30 minutes before being snap-frozen
in liquid nitrogen. The cells were repeatedly frozen and
thawed for up to 5 times. After the freeze/thaw cycles, the
cells were then washed in 1 × PBS for at least 30 minutes
and then incubated in 0.1 N HCl for 10 minutes for
depurination. The cells were then washed in 2 × SSC for
15 minutes, with three changes of the buffer, and incu-
bated in 50% formamide, 2 × SSC, at pH 7.0, overnight.
For denaturation, cells were incubated at 73°C to 76°C in
70% formamide, 2 × SSC, pH 7 solution for 3 minutes and
then were immediately transferred to 50% formamide, 2 ×
SSC, pH 7 solution for 1 minute at the same temperature.
Chromosome paints for HSA 10, 13, 18, and X were
amplified from flow-sorted whole-chromosome tem-
plates and labelled with biotin-dUTP by DOP-PCR [69].
The 200- to 400-μg chromosome paints, 7 μg of C0t-1
DNA, and 3 μg of herring sperm were used per slide. All
other chromosome territories were delineated with
directly labelled whole human chromosome paints
(Qbiogene, Cambridge, UK). Probes were denatured at
70°C for 10 minutes with reannealing of repetitive
sequences at 37°C for 30 to 120 minutes. Hybridization
was performed in a humified chamber for 18 to 24 hours
at 37°C. The slides were washed in three changes of 50%
formamide, 2 × SSC, pH 7, at 45°C over a 15-minute
period, followed by three changes of 0.1 × SSC pre-
warmed to 60°C over a 15-minute period at 45°C.

The slides were then transferred to 4 × SSC at room
temperature. Slides hybridized with the in-house biotin-
labelled probes were then incubated with a blocking solu-
tion of 4% bovine serum albumin (BSA; Sigma Aldrich) of
4 × SSC followed by detection with streptavidin-cyanine
3 (Amersham Life Science Ltd; 1:200 dilution in 0.1%
BSA/4 × SSC). The slides were washed in three changes
of 4 × SSC/0.05% Tween 20 (vol/vol) for 5 minutes each.

Suppressing the expression of nuclear myosin 1β by 
interference RNA
To suppress nuclear myosin 1β expression, young prolif-
erating HDFs were seeded at 1 × 104 cells per well in a 12-
well plate. Transfection efficiency was previously deter-
mined with siGLO-labelled siRNA to be more than 95%.
The siRNA transfection was carried out with 2 μl Dhar-
mafect 1 and 50 μl of either negative control (2 μmol/L
ON-TARGETplus Non-targeting Pool; Thermo Scien-
tific) or myosin-targeting siRNA (2 μmol/L ON-TAR-
GETplus SMART pool, human MYO1C; Thermo
Scientific Cat number L-015121-00) in 200 μl serum-free
medium. Complete medium was added to the transfec-
tion mix to ensure that transfections were carried out in
serum-containing medium with a final siRNA concentra-
tion of 100 nmol/L per well/dish. Six hours after transfec-
tion, the medium in the well was replaced with normal
growth medium. At 24 hours after the first transfection, a
second identical transfection was performed to increase
the amount of suppression. Samples were collected at 48
hours after final transfection and fixed for 2D FISH and
indirect immunofluorescence.

Indirect immunofluorescence
Diluted rabbit anti-Ki-67 antibody (Dako; 1:1,500 dilu-
tion in PBS/1% NCS), 40 μl, was placed on the slides after
FISH for 1 hour at 37°C. Slides were washed in PBS for 15
minutes, with three changes. The slides were incubated
with 40 μl of swine anti-rabbit secondary antibody conju-
gated either to fluorescein isothiocynate (FITC, Dako) or
to tetrarhodamine isothiocynate (TRITC, Dako) (1:30
dilution in 1% NCS/PBS) for 1 hour at 37°C.

For anti-nuclear myosin 1β staining, cells were grown
on glass coverslips and fixed in 1:1 (vol/vol) methanol/
acetone for 10 minutes on ice. Rabbit anti-NM1β (Sigma-
Aldrich) was diluted in PBS/1% NCS (1:200) and incu-
bated with the fixed cells at room temperature for 1 hour
after washing thrice in PBS swine anti-rabbit conjugated
to tetrarhodamine isothiocyanate was incubated for 1
hour at room temperature.

Thereafter the slides were washed in PBS with three
changes over a 15-minute period and mounted in self-
sealing Vectashield mounting medium (Vector Laborato-
ries) containing the counterstain 4, 6-diamidino-2-phe-
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nylindole (DAPI).

Image capture and analysis
Two-dimensional FISH
Digital grey-scale images of random nuclei were captured
by using a Photometrics cooled charged-coupled device
(CCD) camera, pseudocolored, and merged by using Dig-
ital Scientific software, the Quips Pathvysion, Smart Cap-
ture VP V1.4, a Leica fluorescence microscope (Leitz
DMRB) with Plan Fluotar 100 × oil-immersion lens. The
images were run through a simple erosion script in IPLab
spectrum software, as described in [4]. The DAPI image
of the nucleus is outlined and divided into five concentric
shells of equal area, the first shell being most peripheral,
and the innermost denoting the interior of the nucleus.
The script measures the pixel intensity of DAPI and the
chromosome probe in these five shells. The probe signal
was normalized by dividing the percentage of the probe
by the percentage of DAPI signal in each shell. Histo-
grams were plotted with standard error bars representing
the standard error of the mean (± SEM). Simple statistical
analyses were performed by using the unpaired two-
tailed Student's t test with Microsoft Excel.

Three-dimensional FISH
The images of nuclei prepared by three-dimensional
FISH were captured by using a Nikon confocal laser scan-
ning microscope (TE2000-S) equipped with a 60 ×/1.49
Nikon Apo oil-immersion objective. The microscope was
controlled by Nikon confocal microscope C1 (EZ-C1)
software, version 3.00. Stacks of optical sections with an
axial distance of 0.2 μm were collected from 20 random
nuclei. Stacks of eight-bit grey-scale 2D images were
obtained with a pixel dwell of 4.56, and eight averages
were taken for each optical image. The positioning of
chromosomes in relation to the nuclear periphery was
assessed by performing measurements with Imaris Soft-
ware (Bitplane Scientific Solutions), whereby the distance
in micrometers between the geometric center of each
chromosome territory and the nearest nuclear periphery,
as determined with DAPI staining, in three dimensions.
These data were not normalized for size, but when the
data were normalized by dividing by the length of the
major axis + the length of the minor axis divided by 2, or
the length of the major axis alone, the relative positions of
the individual chromosomes in frequency distributions
did not change.

Frequency distribution curves were plotted with the
distance between the geometric center of chromosome
territory and the nearest nuclear periphery on the x-axis
in actual micrometers, and the frequency, on the y-axis.
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