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Abstract 

In this article some analytic expressions for acoustic propagation in 3-D ducts of rectangular 

cross-section and with flexible walls are explored. Consideration is first given to the 

propagation of sound in an unlined 3-D duct formed by three rigid walls and closed by a thin 

elastic plate. An exact closed form expression for the fluid-structure coupled waves is 

presented. The effect of incorporating internal structures, such as a porous lining, into the duct 

is also discussed. Such configurations are directly relevant to the heating, ventilation and air-

conditioning industry. 

 

1 Introduction 

Heating, ventilation and air-conditioning (HVAC) ducts form an intrinsic feature of many 

buildings, aircraft and other engineering structures. The presence of such ducts is clearly 

beneficial, but they are also a channel for unwanted noise.  Sound from fans and/or motors can 

propagate for significant distances along ducting systems, and the issue of noise control has 

long been of interest to scientists and engineers.  There are two major mechanisms by which 

sound travels along ducts: by reflection from the internal walls and as vibration along the wall 

itself. Traditional analytic methods for modelling sound propagation in 3-D ducts have tended 

to neglect the latter, primarily because the exact form of the propagating waves was unknown. 

Recent research, [5],
 
has established both the analytic waveforms and many of their 

mathematical properties. This prepares the ground for the development of full hybrid 

analytic/numerical solutions to model problems directly related to the noise control issues 

described above. These recent advances are discussed in this paper. It is shown that the theory 

is applicable to a wide class of 3-D ducts, including configurations with both flexible walls and 

an internal layer of porous material.  
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A pre-requisite to formulating the waveforms for the unlined 3-D duct is an appreciation of 

wave propagation in the underlying 2-D duct, this is considered in section 2. The eigenfunctions 

for the 3-D case are stated in section 3. Of particular interest is the characteristic equation 

which defines the admissible wavenumbers. The properties of this equation and its roots are 

explored. An alternative representation for the 3-D eigenfunctions is given in section 4. In 

section 5 the theory is extended to other duct configurations, for example, those with a porous 

lining or internal membrane, [3]. Some concluding remarks are presented in section 6. 

Throughout harmonic time dependence, )exp( tiω− , is assumed.  The full velocity potential 

is, thus, expressed in terms of the reduced potential by )exp(),,(),,,( tizyxtzyx ωφ −=Φ . 

Furthermore, only symmetric waveforms are considered, that is, those for which 

),,(),,( zyxzyx φφ =− . For the sake of brevity, the boundary value problems are not explicitly 

formulated, but rather stated in words. It is assumed, however, that they are non-

dimensionalised with respect to time scale ω and length scale k where ck /ω=  and c is the 

fluid sound speed.   

    

2 The 2-D case 

Before considering the 3-D duct, it is necessary to review wave propagation in the 

underlying 2-D system. The appropriate 2-D duct lies in the region ,0 ay ≤≤  ∞<<∞− x  of a 

non-dimensional Cartesian frame reference. The upper boundary comprises an elastic plate 

whilst the base, lying along 0=y , is rigid. The velocity potential satisfies Helmhlotz’s 

equation and the elastic plate satisfies the usual thin plate equation, [6].  

 

 

 

 

 

 

 

Figure 1:  The 2-D duct comprising the xy -cross-section of the unlined 3-D case. 

 

The velocity potential representing fluid-structural waves propagating in the positive x -

direction has the form: 
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where )cosh()( yyY mm γ= , mA  is the modal amplitude, 12 += mm γζ  and is defined to be 

positive real or have positive imaginary part. The eigenvalues mγ ,  …,2,1,0=m  are the roots 

of 0)( =γK  where 
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Here µ is the in vacuo plate wavenumber and α a fluid loading parameter. Thus,  
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where E is Young's modulus, pρ  is the density of the plate, aρ  is the density of the 

compressible fluid and ν is Poisson's ratio.  The eigenfunctions )(yYm , …,2,1,0=m  are 

linearly dependent (a  feature that plays a key role in the construction of the 3-D duct modes) 

and satisfy the orthogonality relation 
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where the prime, here and throughout, indicates differentiation with respect to y, mjδ  is the 

usual Kronecker delta and mC  is given by 
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Full details of this eigen-system are given by Lawrie, [6]. 

 

3 The unlined 3-D duct 

Consideration is now given to the propagation of sound in an unlined 3-D duct formed by 

three rigid walls, lying along 0=y , bzb ≤≤− , ∞<<∞− x  and bz ±= , ay ≤≤0 , 

∞<<∞− x  and closed by a thin elastic plate lying along bzbay ≤≤−= , , ∞<<∞− x . The 

elastic plate is assumed to be clamped to the rigid duct walls. That is, the plate displacement 

and gradient are both zero along the edges ∞<<∞−±== xbzay ,, .  

As in the 2-D case, it is assumed that the fluid-structure coupled waves propagate in the 

positive x  direction. Thus, the velocity potential has the form 
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where ),( zynψ , …,2,1,0=n   are an infinite set of non-separable eigenfunctions, ns  are the 

 

 

 

 

 

 

 

 

Figure 2:  The unlined 3-D duct and its cross-section in the yz -plane. 

 

admissible (non-dimensional) wavenumbers and nB the wave amplitudes. The exact, closed 

form expression for the symmetric eigenfunctions, [6], is stated here as 
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Here )(yYm  are the eigenfunctions for the underlying 2-D system discussed in section 2 and 

01 222 =−++ nmmn sγτ . The admissible wavenumbers, …,2,1,0, =nsn , for the 3-D duct are given 

by 0)( =sL  where 
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This characteristic equation is of an unusual form, being the sum over the eigenvalues for the 

underlying 2-D system, and it exhibits an infinite number of asymptotes. It is, however, a 

straightforward procedure to numerically solve (8).  The roots have the following properties: 

 (i) for every root, ns , there is another root, ns− ; 

 (ii) there is a finite number of real roots; 

 (iii) there is an infinite number of imaginary roots; 

 (iv) there is an infinite number of roots with  non-zero real and imaginary parts.  

In order that (6) represents only waves that travel in the positive x  direction and/or decay 

exponentially as ∞→x , the convention is adopted that the ns+  roots are either positive real or 

have positive imaginary part. They are ordered sequentially, real roots first and then by 

increasing imaginary part. Thus, 0s  is always the largest real root. For any complex root, say 



cs , lying in the upper half of the complex s-plane, then minus the complex conjugate, *
cs− , 

also lies in this half plane. Such pairs of roots are numbered according to the magnitude of their 

imaginary part, and in the order cs  followed by - *
cs . Finally, it is assumed that 0≠ns and that 

no root is repeated.  

The above features are demonstrated in figures 3 and 4. In order that a useful comparison 

can be made, the physical parameters are the same as those chosen by Martin et al, [9]. Thus, 

the dimensional ducts height and width are respectively 0.09m and 0.106m, whilst the elastic 

plate comprises a sheet of aluminium, of thickness 0.0006m.  

 

 

 

 

 

 

 

 

 

Figure 3: The dispersion relation for the unlined 3-D duct plotted for real and imaginary 

arguments at 600 Hz. 

 

Figure 3 shows )(sL  plotted for real and imaginary arguments.  The asymptotes are 

apparent and it can also be seen that the roots of 0)( =sL  often lie very close to an asymptote.  

The rapid change of gradient in the close proximity of the roots can present problems for root 

finding algorithms such as the Newton-Raphson method. This situation is, however, improved 

by seeking the roots of 0)( =sM  as opposed to 0)( =sL  where  
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Figure 4 shows the phase speeds for the frequency range 0-1500 Hz. This graph is in 

excellent agreement with that presented by Martin et al, [9],
 
who used the Rayleigh-Ritz 

method. Also shown in figure 4, is the location in the complex s-plane of the roots 0)( =sL at a 

frequency of 600Hz. There are two real roots, an infinite number of imaginary roots and also an 

infinite family of complex roots. The latter lie on curves that are reminiscent of the parabolic 



arcs seen for propagation in a 2-D elastic slab, [1]. The eigenfunction method, although 

employed on a small duct herein, works equally well for larger ducts, [6]. 

 

 

 

 

 

 

 

 

Figure 4: The phase speeds of the unattenuated waves plotted against frequency and the 

distribution of the roots in the complex s-plane at a frequency of 600Hz. 

 

4   An alternative form for the duct modes 

In section 3 the duct modes were expressed as a sum over the roots of the characteristic 

equation for the underlying 2-D eigensystem. Here an alternative representation is presented in 

which the 3-D duct modes are expressed as a Fourier cosine series in which the summation is 

over the values …,2,1,0,/ =mbmπ .  

There are two approaches by which this can be done. The first approach is the method 

outlined in Lawrie and Kirby, [8]. This relates the two series through an integral in which both 

families of eigenvalues occur as poles.  The appropriate integral is 
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 where ay ≤≤0 , bz ≤≤0 . The reader is referred to Lawrie and Kirby
8
 for further details.  

The alternative approach is to solve the full boundary value problem for the 3-D duct 

modes using a Fourier cosine series formulation. Note, however, that if this method is adopted 

it is necessary to modify the usual thin plate equation by equating it to a Delta function, 

)( bz −δ .  

It is found that 
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where 2=mε  if  m=0 and 1 otherwise. The characteristic function likewise can be expressed as 
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Both representations for ),( zynψ  and )(sL  converge well, but expressions (11) and (12) have 

the advantage that the summation takes place across eigenvalues which can be stated explicitly.  

 

5   Extension of the method  

In sections 2-4 analytic representations for the travelling waves in a 3-D duct with one 

flexible wall have been constructed and discussed.  Two representations have been presented, 

both of which take the form of an infinite sum but across different sets of eigenvalues.  In 

section 3 the eigenmodes are constructed as a summation over mγ ,  …,2,1,0=m  , that is, the 

roots of the dispersion relation for the 2-D duct shown in figure 1, and must be found 

numerically. In section 4 the waveforms are recast in a form whereby the summation is over 

…,2,1,0,/ =mbmπ . The latter formulation is attractive in that the summation occurs over 

integer values.  Although computationally more cumbersome, the formulation given in section 

3 does, however, offer an advantage. Because it is expressed in terms of the eigenfunctions for 

xy -crossectional sub-system, it is a straightforward procedure to extend the theory to other 3-D 

duct configurations. In fact, the correct eigenfunction and characteristic equation for a wide 

class of 3-D ducts can be obtained from (7) and (8) simply by replacing )(yYm  and mC  with 

new expressions that are appropriate for the underlying 2-D system. 

 

 

 

 

 

 

 

 

Figure 5:  The xy -cross-sections for the lined 3-D duct and the 3-D drumlike silencer. 

 

Consider, for example, the situation whereby a porous lining is inserted into the 3-D duct 

described in section 3. Suppose that the lining occupies the region ayd ≤≤ , bzb ≤≤− , 

∞<<∞− x  where d<a, then the xy- cross-section of the duct is shown in figure 5. The porous 



material is modelled as a fluid with complex density, �ρ  , and propagation coefficient , Γ . 

These complex quantities are evaluated using the empirical formulae: 
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where σρξ /fa=  in which f  is the frequency, σ  is the flow resistivity and 81 aa −  are 

constants the values of which  depend on the porous material, [2,5]. Clearly, the unlined duct is 

retrieved on setting 1==Γ β .  

The eigenfunctions for this class of 2-D sub-system, [4], are given by: 
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with 2/122 )1( Γ−+= nn γλ . Note that )()( 21 dYdY mm ′=′  implying continuity of normal velocity 

at the interface between the compressible fluid and the porous material. Likewise, 

)()( 21 dYdY mm β=  ensuring continuity of pressure, and  0)0(1 =′mY  which is consistent with 

the rigid base of the 2-D duct at y=0.  

For the case in hand, mγ ,  …,2,1,0=m  are defined to be the roots of 0)( =γQ  where 
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Note also that )(yYm ,  …,2,1,0=m  are linearly dependent and satisfy the orthogonality relation 
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where mC  is defined by 
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The correct eigenfunctions and characteristic equation for the lined 3-D duct with one flexible 

wall are now given by equations (7) and (8) in conjunction with (14) and (19). 

Other 3-D ducts can be handled in the same way.  For example, equations (7) and (8) 

together with the 2-D eigenfunctions discussed by Lawrie and Guled, [4], yield the waveforms 



and characteristic equation for a 3-D duct with an internal membrane lying along dy = , 

∞<<∞−≤≤− xbzb , , where ad <  (see figure 5 for the xy -cross-section). In this case, 

since the flexible surface lies along dy = , the derivatives )(dYm′  will occur in (7) and (8) as 

opposed to )(aYm′ . This latter duct is an important component of the drumlike silencer, [3]. 

 

6  Conclusions 

 The eigenfunctions for 3-D ducts with rectangular cross-section and one flexible wall have 

been explored, and the analysis of Lawrie, [6], extended to include porous linings and other 

internal structures. This class of problem has direct relevance to the HVAC industry, in which 

ducting systems are commonly constructed using sections of unlined duct together with 

silencing components. The 3-D eigenfunctions considered herein satisfy orthogonality relations 

equivalent to equations (4) and (18). Thus, the analytic tools are in place to construct mode-

matching solutions to benchmark problems that closely model real ducting systems.  
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