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Abstract 
An experimental investigation of the performance of thermosyphons charged with water as well as the 

dielectric heat transfer liquids FC-84, FC-77 and FC-3283 has been carried out. The copper 

thermosyphon was 200 mm long with an inner diameter of 6 mm, which can be considered quite small 

compared with the vast majority of thermosyphons reported in the open literature. The evaporator 

length was 40 mm and the condenser length was 60 mm which corresponds with what might be 

expected in compact heat exchangers. With water as the working fluid two fluid loadings were 

investigated, that being 0.6 ml and 1.8 ml, corresponding to approximately half filled and overfilled 

evaporator section in order to ensure combined pool boiling and thin film evaporation/boiling and 

pool boiling only conditions respectively. For the FlourinertTM liquids, only the higher fill volume was 

tested as the aim was to investigate pool boiling opposed to thin film evaporation. Generally, the water 

charged thermosyphon evaporator and condenser heat transfer characteristics compared well with 

available predictive correlations and theories. The thermal performance of the water charged 

thermosyphon also outperformed the other three working fluids in both the effective thermal 

resistance as well as maximum heat transport capabilities. Even so, FC-84, the lowest saturation 

temperature fluid tested, shows marginal improvement in the heat transfer at low operating 

temperatures. All of the tested FlourinertTM liquids offer the advantage of being dielectric fluids, 

which may be better suited for sensitive electronics cooling applications and were all found to provide 

adequate thermal performance up to approximately 30-50 W after which liquid entrainment 

compromised their performance. 

Nomenclature 
Symbol  
A  Surface area (m²) 

pC       Specific heat (J/kgK) 

D  Diameter (m) 
dd  Bubble departure (m) 

g  Gravitational acceleration (m/s²) 
h  Heat transfer coefficient (W/m²K) 

fgh  Latent heat of vaporisation (J/kg) 

I  Current (A) 
k  Thermal conductivity (W/mK) 
l  Length  (m) 
Lb bubble length scale (m) 
m  Mass flow rate  (kg/s) 
P Pressure (Pa)   
Q  Heat transfer rate (W) 
q Heat flux (W/m²) 
R  Thermal resistance (K/W) 
T  Temperature (°C) 
V  Voltage (V) 

 
Greek Symbols 
β  Contact angle (°) 
µ  Dynamic viscosity (N s/m²) 
ρ  Density (kg/m3) 
σ  Surface tension (N/m) 
Subscripts 
atm Atmospheric 
av Average value 
c  Condenser section 
cs  Cross section 
e  Evaporator section 
exp Experimental 
f Film 
l  Liquid  
Pred Predicted 
v  Vapour 
sat Saturation 

w Water



 

1. Introduction 

Thermosyphons are enclosed, passive two phase heat transfer devices. They make use 

of the highly efficient thermal transport process of evaporation and condensation to 

maximize the thermal conductance between a heat source and a heat sink. They are 

often referred to as thermal superconductors or thermal ‘short-circuits’ because they 

can transfer large amounts of heat over relatively large distances with small 

temperature differences between the heat input and heat output zones. The amount of 

heat that can be transported by these devices is normally several orders of magnitude 

greater than pure conduction through a solid metal [1;2]. They are proven to be very 

effective, low cost and reliable heat transfer devices for applications in many thermal 

management and heat recovery systems. Their usage is essential in the cooling of 

high-performance electronics components, heat exchangers in waste heat recovery 

applications and solar energy systems, to name a few [2]. 

 A cross section of a closed two-phase thermosyphon is illustrated in Fig. 1. 

The thermosyphon consists of an evacuated sealed tube that contains a small amount 

of liquid. The heat applied at the evaporator section is conducted across the pipe wall 

causing the liquid in the thermosyphon to boil in the liquid pool region and evaporate 

and/or boil in the film region [3]. In this way the working fluid absorbs the applied 

heat load converting it to latent heat.  The vapour in the evaporator zone is at a higher 

pressure than in the condenser section causing the vapour to flow upward. In the 

cooler condenser region the vapour condenses thus releasing the latent heat that was 

absorbed in the evaporator section. The heat then conducts across the thin liquid film 

and exits the thermosyphon through the tube wall and into the external environment. 

Within the tube, the flow circuit is completed by the liquid being forced by gravity 

back to the evaporator section in the form of a thin liquid film. As the thermosyphon 

relies on gravity to pump the liquid back to the evaporator section, it cannot operate at 

inclinations close to the horizontal position. 

The heat transfer within the thermosyphon depends on the complex phase 

change process in the evaporator and condenser regions, which can be complicated by 

the counter flow of the liquid and vapour phases. As outlined by El-Genk and Saber 

[3], the evaporator section is possibly the most complex and least well understood 

portion of the thermosyphon as it must incorporate the separate effects of pool boiling 

in the lower region as well as laminar convection and/or boiling within the continuous 



 

liquid film. To predict the heat transfer coefficients within the evaporator section 

empirical or semi-empirical correlations are generally applied. Liquid pool boiling 

correlations, such as those of Rohsenow [4], Kutateladze [5] and Shiraishi et al [6], 

among many others, have been used with varying degrees of success. In the liquid 

film, the heat transfer can be significantly higher than in the pool region and depends 

on the mode of heat transfer which can range from natural convection at low heat 

fluxes to nucleate boiling at high heat fluxes [3]. For the low enough heat fluxes, an 

extension of Nusselt’s falling film theory or simple modifications of it are  suggested 

[3;6]. For high heat fluxes where nucleate boiling occurs in the film,  El-Genk and 

Saber [3] have provided a useful correlation which have shown to predict heat transfer 

coefficients that are an order of magnitude higher that the predictions of the pool 

boiling correlation of Kutateladze [5]. For boiling in small diameter tubes where 

confinement will influence the boiling heat transfer, Chowdhury et al [6] have 

developed correlations for water, ethanol and R113. 

The heat transfer coefficient in the condenser region is generally predicted 

using Nusselt’s theory for filmwise condensation provided the film Reynolds number 

is sufficiently low [7;8]. For higher Reynolds numbers waviness and turbulence may 

enhance the heat transfer and correlations exist to predict these [8]. Even still, much 

of the empirical data is over predicted by Nusselt’s theory at low Reynolds numbers 

[8;9] which may partially be explained by the work of Hashimoto and Kaminaga [9] 

who proved that liquid entrainment can deteriorate the condensation heat transfer for 

low Reynolds numbers. 

Most of the published literature on the thermal-hydraulic behaviour of 

thermosyphons involves the use of rather large diameter units. This is likely because 

the target technologies, such as heat recovery systems, were large in scale demanding 

large heat exchangers. However, applications such as electronics thermal management 

and automotive heat recovery require much more compact heat exchangers 

demanding the implementation of smaller diameter and shorter thermosyphons. 

Further to this, some sensitive applications may require the use of working fluids 

other than water. In some instances, in particular low operating temperatures, it has 

even been shown that water gives less satisfactory heat transfer performance 

compared with low saturation temperature fluids [10].  

 Some publications exist concerning experimental work on the performance of 

thermosyphons with different working fluids. The most common thermosyphon 



 

working fluids is water due to its high figure of merit, availability, cost and non-toxic 

and environmentally neutral properties. Even still, earlier work also studied possible 

working fluids for low to intermediate operating temperatures including, but not 

limited to, R-11, R-12, R-22, R113 [6;7;10-15],  as well as ethanol [6;7]. Because of 

their negative environmental impact and/or toxicity, the early Freon range has on the 

most part been prohibited and replaced by more environmentally friendly and low to 

non-toxic fluids such as R134a and 3M FluorinertTM liquids. R134a has been tested as 

a thermosyphon working fluid by some researchers including Abou-Ziyan et al. [16] 

and Ong and Haider-E-Alahi [17]. The use of environmentally sound and non-toxic 

3M FluorinertTM heat transfer liquids has not been extensively reported in the open 

literature. The thermal performance of relatively large thermosyphons charged with 

FC-72 was reported by Park et al. [18;19] for the thermal management of high power 

semiconductors. However, for the range of FluorinertTM heat transfer liquids with 

varying boiling points there appears to be a lack of information in the open literature. 

In particular, there is no information regarding their use in compact, small diameter 

thermosyphons.  

In this paper, the thermal performance of copper thermosyphons charged with 

water as well as three FluorinertTM liquids, FC-77, FC-84 and FC-3283, is reported for 

a small thermosyphon (length=200 mm, inner diameter=6mm). The physical size of 

the instrumented thermosyphons is typical for compact heat exchanger devices such 

as those required for thermal management of electronics, for example. Fluorinert 

liquids were chosen for testing since they are dielectric and cover a range of 

thermophysical properties, in particular a boiling points in a range of 80ºC to 128ºC. 

Water tests are performed with two fluid loadings; with evaporator section overfilled 

to ensure pool boiling and; with the evaporator, approximately half filled to have a 

liquid pool and liquid film region. For the cases of the FluorinertTM working fluids, all 

tests were performed with the evaporator overfilled to ensure pool-boiling conditions. 

Various correlations for predicting the heat transfer in the evaporator and condenser 

sections are compared with the experimental measurements and the thermal 

performance characteristics of all four working fluids are compared. 

2. Experimental Apparatus 
Fig. 2 shows a schematic diagram of the experimental apparatus used in this 

investigation. The apparatus consists of the thermosyphon, heater, cooling water flow 



 

circuit and instrumentation.  The 6 mm inside diameter thermosyphon was 

manufactured by drilling a 200mm long hole in the centre of a solid copper rod with 

an outside diameter of 12mm. This facilitated sealing the bottom end of the device 

while at the same time allowing the top end to be machined with a 1/16
// NPT thread, 

which facilitated the Schrader valve for charging the thermosyphon with different 

fluids and different fluid loadings.  

 The fluids tested were water, FC-84, FC-77 and FC-3283. Water was chosen 

as a reference fluid with which other fluids can be compared. The Flourinert liquids 

were selected based on the range of thermophysical properties that they possess. 

Some of the more crucial properties are listed in Table 1. Of particular interest here is 

the range of boiling points which ranges from 80 ºC for FC-84 to128 ºC for FC-3283 

with FC-77 having a similar boiling point to water. 

The fluid loading was kept constant at 1.8 ml for all tests except one set of 

tests with water in which the loading was 0.6 ml. In non-operational mode 1.8 ml is 

sufficient volume to overfill the evaporator section. In operational mode, this volume 

provides enough liquid to wet the evaporator section while at the same time providing 

adequate liquid for the thin liquid film along the condenser and adiabatic sections.  

The condenser section of the thermosyphon was cooled by a flow of water 

through a 70 mm long plastic water jacket that was designed in a 3D CAD package 

and printed using an InVisionTM 3-D rapid-prototyper. To enhance the water-side 

convective heat transfer coefficient the water jacket was designed with hundreds of 

rectangular studs on the inside wall to create mixing of the water flow. Sealing was 

ensured using high temperature silicon sealant. Condenser water was supplied via a 

constant-head water tank device. This consisted of a tank, pump and control valves as 

illustrated in Fig. 2. A water feedback loop was installed to keep the water head 

constant. The flow rate of the cooling water was measured using an Omega FTB602 

(± 3% rdg) turbine flow meter and was kept constant at 0.08L/min. The temperature 

of the cold-water inlet was kept constant by a separate copper coil heat exchanger 

positioned within the water tank with chilled water running through it.  

Heat was applied to the thermosyphon at the evaporator end using a 300W 

electrical band heater. The heater was wrapped around an annular brass block 

enclosing the evaporator section of the thermosyphon. Thermal paste was used to 

ensure adequate thermal contact between the heater block and the thermosyphon. The 

heated and the adiabatic sections were wrapped with several layers of high-



 

temperature ceramic insulation to minimise heat losses to the ambient. The electrical 

power input to the heater was controlled using a variable voltage transformer (variac). 

The power supplied to the evaporator section was monitored by measuring the applied 

voltage and current to the band heater with two Metrix MX22 multimeters (0–

400VAC ± 1% rdg, 0–10 A ± 2.5% rdg).  

The temperature distribution along the thermosyphon was measured using six 

T-type thermocouples. Two thermocouples were also used to monitor the input and 

the output water temperatures from the water jacket. All of the thermocouple readings 

were monitored by Fluke 54II digital thermometers (±0.3 ºC). 

 

3. Data Reduction and Experimental Uncertainty 

The effective overall thermal resistance of the thermosyphon was calculated by 

applying the electrical analogue in the form, 

Q
TTR ce −=exp       (1) 

Likewise, in the evaporator and condenser regions, the respective thermal resistances 

were determined with the following expressions, 

Q
TTR ve

e
−

=       (2) 

Q
TTR cv

c
−

=       (3) 

Here eT  and cT  are the average wall temperatures in the evaporator and condenser 

respectively and Tv is the saturated vapour temperature taken here as the adiabatic 

wall temperature. In a similar fashion, the average evaporator and condenser heat 

transfer coefficients are calculated using the expressions; 

)( vee
e TTDl

Qh
−

=
π

      (4) 

)( cvc
c TTDl

Qh
−

=
π

      (5) 

 An accurate experimental determination of the thermal performance of the 

thermosyphon requires accurate measurements of the evaporator and condenser 

temperatures as well as the power transferred along it. Characterizing the evaporator 

and condenser temperatures is a relatively straightforward task and is obtained by 



 

simply averaging the temperature measurements along the respective sections. As 

depicted in Fig. 3 for the water thermosyphon, the temperature distribution along the 

evaporator and condenser sections was relatively uniform so averaging the 

measurements is justified. Accurately characterizing the thermal power transfer, Q, is 

a somewhat more complicated task because it is difficult to accurately quantify the 

energy losses to the ambient surroundings. To provide confidence in the measured 

value of Q an energy balance was performed which was compared the electrical 

power supplied to the evaporator with the energy extracted by the cooling water at the 

condenser section. The input power was calculated using the supply voltage and 

current measurements from the multimeters such that,  

IVQin ⋅=       (6) 

The experimental uncertainty associated with this measurement was determined to be 

±3%.  The energy removed at the condenser section was determined by performing an 

energy balance across the condenser section such that, 

)( ,, inwoutwpout TTCmQ −=       (7) 

The experimental uncertainty associated with this measurement was primarily 

governed by the uncertainty in the temperature measurements and ranged between 

15% for low power settings and improved to less than 5% for the higher power 

settings.  The results of the energy balance were found to be within ±10% which is 

generally within the experimental uncertainty of the experiment. It thus seemed to be 

a conservative estimate to assume that the experimental uncertainty on the measured 

power was ±10% over the entire range of powers tested. The resulting uncertainty 

associated with the experimentally determined thermal resistances is summarized in 

Table 3 for increasing power levels.  

 

5. Water-Charged Thermosyphon 

5.1. Temperature Distribution 

The performance of the thermosyphon with 1.8 ml of water was initially examined in 

detail to develop an understanding of how the unit operates in pool boiling mode. The 

wall temperature distribution along the thermosyphon is shown in Fig. 3. As 

illustrated, the wall temperature of the evaporator and condenser sections were 

approximately uniform for each respective power level tested.  The temperature 



 

uniformity is expected considering the uniform temperature phase change process that 

was occurring within the respective section.  

 

5.2. Heat Transfer 

5.2.1. Evaporator Section 

 There is no correlation or set of correlations that is general enough to predict 

the nucleate pool boiling heat transfer coefficient in all thermosyphons [14]. It is 

general practice to choose one or more boiling correlation to compare with the 

experimental data. The most suitable correlation is then thought to best represent the 

specific thermal and hydrodynamic conditions for the experimental conditions 

investigated [1;14;19]. Some correlations, such as those by Imura et al [20], Shiraishi 

et al [7] and Chowdhury at al [6] were developed specifically for pool boiling in 

thermosyphons. Interestingly, the correlations developed by Chowdhury et al [6] 

included confinement effects as the characteristic departure diameters of a bubbles 

were comparable with the diameter of the tube. Other correlations, such as the well 

known Rohsenow [4] correlation, included an adjustable constant that depended upon 

the nature of the surface–fluid combination. Others such as the Kutateladze [5], 

Labuntsov [21]  and Kruzhilin [22] were developed with constants and powers for a 

wide variety of liquids and boiling conditions which make them more general at the 

expense of accuracy [23]. Possibly the most general set of pool boiling correlations 

was developed by Stephan and Abdulsalam [24] where regression analysis was 

applied to 5000 experimental data points to generate fluid specific heat transfer 

correlations. Here, the heater type ranged from flat plates, cylinders and wires, all of 

varying sizes and orientations. For tube diameters much larger than the bubble 

departure diameter the use of these types of correlations seems rational and often 

shows relatively good agreement with measurements [1;19;25]. 

 The preponderance of the work in the literature has focused on what can be 

considered large diameter thermosyphons since the relevant technologies, such as 

those found in heat recovery and HVAC systems for example, demanded large heat 

exchangers and thus generally large tube diameters. However, much less is known 

about scaled-down systems such as those required for electronic cooling applications 

and compact heat exchangers. Thus, an attempt is made in this work to evaluate the 

boiling heat transfer in what can be considered a small diameter thermosyphon. The 

condition for the thermosyphon to be considered ‘small’ can loosely be defined as the 



 

condition whereby the expected bubble departure diameter is about the same size (or 

larger) as the radius of the tube, 

1~
)2/(D

dd       (8) 

The rationale behind this is that for the case where dd/(D/2)<<1 one would expect that 

bubbles located diametrically opposed to one another would not influence each 

other’s behaviour. However, for dd/(D/2)~1 or more, one would expect that bubbles 

facing one another would influence each other’s behaviour and subsequent  heat 

transfer. 

 The departure diameter in Eq. 8 can be roughly estimated from the 

conventional expression [6], 

βbd Ld 0204.0=       (9) 

where Lb=[σ/g(ρl-ρg)]1/2 is the bubble length scale and the contact angle for water has 

been chosen as β=45o [6;24]. For the range of water conditions tested, the departure 

diameter ranged between 0.22mm≤d d≤ 0.25mm such that 0.73≤ dd/(D/2)≤ 0.83mm so 

the thermosyphon in this work can be considered small. 

 The aim of this work is not to perform an exhaustive comparison of all 

nucleate pool boiling correlations. Instead, a cross section of the correlations available 

in the open literature, in particular those which appear frequently in thermosyphon 

publications, have been included to obtain a sense of their applicability for the 

situation under study. For ease of reference, the selected correlations are listed in 

Table 3. Fig. 4 shows the comparison between the predicted and measured thermal 

resistance values where the filled markers represent correlations developed 

specifically for nucleate boiling in thermosyphons. The thermal resistance is 

determined by calculating the heat transfer coefficient and then using the following 

expression; 

)(
1

ee
e Dlh

R
π

=       (10) 

 Generally the experiments and predictions show reasonable agreement with 

the majority of the points being within the ±30% band. For the thermosyphon-based 

correlations, the Imura et al [20] and Shiraishi et al [7] correlations are comparable 

and under-predict the measurements when the resistance is low i.e. for the highest 

heat flux cases. Agreement worsens as the thermal resistance gets larger i.e. lower 



 

heat flux levels. The correlation for confined boiling of Chowdhury et al [6] tends to 

over predict the measured values though agreement is still reasonable and consistent 

over the entire range tested.  

 Apart from the Kutateladze correlation the conventional pool boiling 

correlations tend to agree very well with the measurements for the low thermal 

resistance levels. A possible explanation for this is that these correspond with low 

levels of heat flux and thus it would be expected that bubble activity would be less 

rigorous. For higher heat fluxes, where a lower thermal resistance is expected due to 

increased bubble activity, the correlations of Rohsenow and Kruzhilin under predict 

the thermal resistance by approximately a factor of two. In the Rohsenhow correlation  

Cs,f=0.0147 and n=1 were used as suggested by Vachon  et al [26] for water and 

polished copper. Of all the correlations tested, the Labuntsov correlation performs 

best for this water-charged thermosyphon over the range of heat fluxes tested. Even 

still, the Kutateladze correlation shows the best agreement for the low thermal 

resistance levels i.e. for high heat fluxes. 

 For  the tests with a 0.6ml of water there will exist a region of approximately 

lp~½ le in which nucleate pool boiling is occurring as well a region of approximate 

length lp~½ le where  evaporation is occurring across a thin liquid film. Based on the 

above discussion the Labuntsov correlation (Table 3), can be applied for the pool 

boiling region with adequate accuracy. For the thin film region it is less clear as to 

how to model the heat transfer. For a first approximation and for a short thin film 

region it would seem reasonable to apply Nusselt’s theory, albeit for evaporation, for 

a constant film thickness equal to that of the thickness associated with the exit of the 

condenser section. This would result in a heat transfer coefficient predicted by the 

expression, 

4
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      (11) 

Referring to Fig. 5 it is evident that using Labuntsov correlation (Table 3) in the pool 

boiling region, Eq. 11 in the thin film region and considering the two to act thermally 

in parallel shows good agreement with the measurements. The correlation developed 

by El-Genk and Saber [3] which accounts for nucleate boiling in the thin film for high 

heat fluxes is also plotted in the figure showing a notable under prediction of the 

measurements, suggesting that, for the scenario here, nucleate boiling may not be 



 

occurring within the film. This correlation can be expressed as a ratio with the 

Kutateladze correlation, hKu, (Table 3) as, 
337.0
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It is unclear as to why this under prediction occurs though it may be due to the 

working fluid (water was not a working fluid used in the correlation development), 

heater surface morphology, confinement or other thermal-hydraulic effects that are 

not immediately obvious without proper visualization capabilities. 

 

5.2.1. Condenser Section 

 Various aspects of condensation heat transfer have been studied both 

experimentally and theoretically. Although definitions vary, the condensation heat 

transfer can be characterized by a relation between Nusselt number, Nu, and the film 

Reynolds number, Ref. For this study these are defined respectively as, 

µπ fg
f Dh

Q4Re =      (13) 

and, 

l

cc

k
lhNu =                (14) 

Within the laminar regime it is very common to use the area averaged version of 

Nusselt’s theory for filmwise condensation on a horizontal flat plate [7;8]. The 

average heat transfer coefficient for this model is, 
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In other cases simple empirical modifications of this theory are also implemented 

[9;27]. As outlined by Gross [8], agreement between measurements and Nusselt’s 

theory is not assured with it often over predicting the measurements at low heat fluxes 

(low Ref) whilst under predicting at higher heat fluxes (high Ref). Correlations that 

account for the improved heat transfer due to waviness of the surface or turbulence 

can improve the agreement between the correlations and the measurements for a 

broad range of working fluids in the higher Ref range.  Correlations to account for the 

notable discrepancy at lower Ref is not provided in [8], though Hashimoto and 



 

Kaminaga [9], more recently, proved that this degradation in the heat transfer is due to 

fluid entrainment. Taking into account the fact that at lower heat fluxes the film 

thickness is smaller, combined with the knowledge that the amount of entrainment 

increases as the density ratio increases, Hashimoto and Kaminaga [9] proposed the 

following correlation, 
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Eq. 16 is ostensibly a modification factor multiplied with the Nusselt equation 

expressed in Eq. 15. 

 Fig. 6 shows the agreement with the present experimentally determined heat 

transfer coefficients with that of the above two relations. Consistent with the 

measurements of Hashimoto and Kaminaga [9], the Nusselt equation notably over 

predicts the measurements at low Ref. For high Ref the agreement with Nusselt’s 

theory is quite good. From the figure it is also evident that the experimental 

measurements follow very closely the Nu versus Ref dependency of the Hashimoto 

and Kaminaga correlation. In particular, there is a notable change in the power law 

dependency of Nu on Ref at low and high Reynolds numbers indicating a change in 

the mechanism(s) of heat transfer. A regression analysis using the same form as Eq. 

16 was performed on these measurements producing the following correlation for the 

condenser heat transfer coefficient; 
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This correlation is also plotted in Fig. 6 showing very good agreement with the 

measurements. It should be noted that only one term in the argument of the 

exponential term showed any significant change compared with Eq. 16 indicating the 

possibility that that this term may be rig/thermosyphon dependent whilst the others 

are more general in nature although more experiments need to be performed to 

confirm this.  

 

 

 



 

5.2.1. Overall Thermal Resistance 

 The net thermal resistance of the thermosyphon is determined by adding the 

thermal resistances of each the evaporator and condenser sections since they are 

thermally in series. This gives. 

ce RRR +=       (18) 

The experimental results and predicted results using the Labuntsov correlation, Table 

3, and Eq. 17 are plotted in Fig. 7 for the fill volume of 1.8 ml with similar agreement 

being observed with the 0.6 fill volume (not shown). Evidently the measured and 

predicted thermal resistance curves agree very well. It is also apparent that the thermal 

resistance depends strongly on the imposed power varying between R=1.1 oC/W at 

Q=21 W to R=0.14  oC/W at Q=260 W. Also plotted in the figure is the predicted 

contribution of both the evaporator and condenser thermal resistances. It is clear that 

the steep increase in the net thermal resistance with decreasing heat flux is a 

compound influence of both Re and Rc increasing, which has not been reported in 

previous investigations. For the evaporator section this is due to less rigorous nucleate 

boiling whereas in the condenser section this is a very likely due to liquid entrainment 

which deteriorates the heat transfer. 

 

5.2 FC-77, FC-84 and FC-3284 Charged Thermosyphons 
 As mentioned earlier, some sensitive applications may require that liquids 

other than water be used as working fluids in thermosyphons. Further to this, the 

different thermophysical properties may in some cases be favourable; in particular 

there is some evidence to suggest that at low temperatures water gives less 

satisfactory heat transfer performance compared with low boiling point refrigerants 

[10]. 

 Fig. 8 illustrates the temperature distribution along the FC-84 charged 

thermosyphon for varying applied power loads. The trends observed for this fluid are, 

on the most part, very similar to those of the FC-77 and FC-3284 charged units. At the 

lower power settings (<40 W) the temperature distributions are comparable with the 

water charged thermosyphon with the same fluid loading signifying similar thermal 

performance below 40 W. However, beyond approximately 40W the rate at which the 

evaporator temperature rises with applied power is significantly higher than the water 

charged unit. To a lesser extent, the opposite is true for the condenser temperatures 



 

signifying that the boiling dynamics of the FlourinertTM liquids is affected more than 

the condensing dynamics. Even still, the net effect is an increase in the temperature 

differential between the evaporator and condenser sections for a given power level 

which results in an increase in the net thermal resistance of the FlourinertTM charged 

thermosyphons compared with water. This is illustrated more clearly in Fig. 9 where 

Re (Fig. 9a), Rc (Fig. 9b), and Rexp (Fig. 9c), are plotted for all for fluids tested.  

 From Fig. 9c it is immediately apparent that for the lower power settings these 

thermosyphons show the same qualitative trends with an increase in the total thermal 

resistance with decreasing power due to the boiling and condensation dynamics as 

discussed earlier. With regards to the overall thermal performance, the FC-84 charged 

thermosyphon, the lowest boiling point fluid tested, outperforms all of the other 

working fluids, including water, for power levels below approximately 30W. Figs 8a 

and 8c show that this is a consequence of improved heat transfer in both the 

evaporator and condenser sections. The other two FlourinertTM liquids with boiling 

points near or above the boiling point of water tend to perform worse than water in 

this region. Overall, the highest boiling point fluid, FC-2383 performs worst.  

Compared with water, the thermal performances of the FC-84, FC-77 and FC-

3283 thermosyphons were found to degrade significantly for power levels exceeding 

approximately 30W-40W. This was determined to be a result of the thermosyphons 

reaching the counter-flow entrainment limit. This limit can be predicted using the 

expression [28], 

              ( ) ( )[ ] 25.05.0
max vlvfgcs gKuhAQ ρρσρ −=    (19) 

where Ku is the Kutateladze number [28]. Utilizing Eq. 19 the entrainment limit for 

the FC-84, and FC-77 were determined to be 38.4 W and 44W, respectively. 

Referring to Fig.8a and 8c, these predicted entrainment limits are in good agreement 

with the experiments, which reached a local minimum at approximately 30 W and 

40W for FC-84 and FC-77 respectively. Insufficient thermophysical property 

information is available to perform this calculation for FC-3283. When the 

entrainment limit is reached and exceeded the liquid flow back to the evaporator is 

impeded causing deterioration in the heat transfer and the observed elevation in the 

evaporator wall temperature for the FlourinertTM fluids. For the condenser, a more 

conventional asymptotic decrease in the thermal resistance values is observed for the 

FlourinertTM fluids. It should be noted that the counter-flow entrainment limit for the 



 

water-charged thermosyphon was above 400W which explains why the water-charged 

thermosyphon did not fail before the maximum 300 W capacity of this experimental 

apparatus. 

 

6. Conclusions 
A small diameter and compact thermosyphon was tested experimentally with four 

different working fluids: water, FC-84, FC-77 and FC-3283. For the water charged 

unit, the available pool boiling and combined pool boiling-thin film evaporation 

expressions showed good predictions for the evaporator section whilst the Nusselt 

theory for filmwise condensation over-predicted the measured condensation heat 

transfer data at low powers, though this improved with increasing power levels. In the 

condenser section, the measured data followed very closely the trend of the 

Hashimoto and Kaminaga correlation [9] suggesting that liquid entrainment affects 

the condensation heat transfer for low power levels. A simple modification of this 

theory shows excellent quantitative agreement with the measurements of this study.  

 For power levels below approximately 30-40W, the thermosyphon charged 

with the lowest boiling point liquid, FC-84, was the only FlourinertTM liquid tested 

that was measured to outperformed the water charged unit for the same fluid loading, 

possibly due to its lower boiling temperatures. Generally, water outperformed the 

FlourinertTM liquids, in particular above approximately 40 W where the liquid 

entrainment limit compromises the performance of the FlourinertTM charged 

thermosyphons. Even still, the FlourinertTM liquids FC-84 and FC-77 offer adequate 

thermal performance below 40 W and offer the added benefit of being dielectric, 

which may be beneficial in some circumstances. 
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Figure 1: Two-phase closed thermosyphon 

Figure 2: Schematic diagram of thermosyphon test rig 

Figure 3:  Temperature distribution along water-filled thermosyphon for varying 

power loads for V=1.8 ml working fluid. 

Figure 4: Predicted and experimentally determined thermal resistance values for the 

evaporator section for full pool boiling mode with V=1.8 ml water (filled 

markers indicate correlations developed specifically for thermosyphons). 

Figure 5:  Predicted and experimentally determined thermal resistance values for the 

evaporator section of the thermosyphon for V=0.6 ml working fluid. 

Figure 6:  Predicted and experimentally determined thermal resistance values for the 

condenser section of the thermosyphon. 

Figure 7:  Predicted and experimentally determined thermal resistance values for the 

condenser section of the thermosyphon. 

Figure 8:  Temperature distribution along FC84-filled thermosyphon for varying 

power loads. 

Figure 9:  Thermal resistance versus power throughput for water, FC-84, FC-77 and 

FC-3283 filled thermosyphons. 

 

 

 



 

 

Table 1: Thermophysical properties of test liquids at 25ºC 

Table 2: Experimental uncertainty of thermal resistance for increasing power level 

Table 3: Nucleate pool boiling heat transfer correlations 

 

 



 
 

Figure 1: Two-phase closed thermosyphon 
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Figure 1: Schematic diagram of thermosyphon test rig 
 



 
Figure 1:  Temperature distribution along water-filled thermosyphon for varying power loads for 

V=1.8 ml working fluid. 
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Figure 1: Predicted and experimentally determined thermal resistance values for the evaporator 
section for full pool boiling mode with V=1.8 ml water (filled markers indicate correlations 
developed specifically for thermosyphons). 
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Figure 1:  Predicted and experimentally determined thermal resistance values for the evaporator 

section of the thermosyphon for V=0.6 ml working fluid. 
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Figure 1:  Predicted and experimentally determined dimensionless heat transfer coefficient 

values for the condenser section of the thermosyphon. 
 
 

1

10

100

1000

10000

1 10 100

N
u

Ref

Experimental

Nusselt

Hashimoto

Eq. 17



 

 
 

Figure 1:  Overall thermal resistance values for the for the 1.8 ml water filled thermosyphon. 
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Figure 1:  Temperature distribution along FC84-filled thermosyphon for varying power loads. 
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Figure 1:  Thermal resistance versus power throughput for water, FC-84, FC-77 and FC-3283 
filled thermosyphons. 
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Table 1: Thermophysical properties of test liquids at 25ºC 
Fluid Molecular 

Formula 
Boiling 
point  

(1 atm) 

Liquid 
Density 
(kg/m3) 

Latent Heat 
(J/g) 

Thermal 
Conductivity 

(W/mºC) 

Surface Tension 
(N/m) 

Viscosity 
(Ns/m2) 

Water H2O 100 ºC 997 2455 0.607 0.0727 9.6 x 10-4 

FC-84 C7 F16 80 ºC 1730 90 0.060 0.012 9.1 x 10-4 
FC-77 Blend of 50% 

C8 F18 and  
50% C8 F16 O 

97 ºC 1780 89 0.063 0.013 13 x 10-4 

FC-
3283 

(C3F7)3N 128 ºC 1820 78 0.066 -- 14 x 10-4 

 
 



Table 2: Experimental uncertainty of thermal resistance for increasing power level 
Power, Q 23.5 W 60 W 120W 200W 
Uncertainty in Rexp 16% 14% 12% 12% 

 



Table 3: Nucleate pool boiling heat transfer correlations 
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