
 i

Search-Based Software Engineering: A Search-

Based Approach for Testing from Extended

Finite State Machine (EFSM) Models

AbdulSalam Kalaji

A thesis submitted for the degree of Doctor of Philosophy

Brunel University

Department of Information Systems and Computing

July, 2010

 ii

Abstract

The extended finite state machine (EFSM) is a powerful modelling approach that

has been applied to represent a wide range of systems. Despite its popularity,

testing from an EFSM is a substantial problem for two main reasons: path

feasibility and path test case generation. The path feasibility problem concerns

generating transition paths through an EFSM that are feasible and satisfy a given

test criterion. In an EFSM, guards and assignments in a path‟s transitions may

cause some selected paths to be infeasible. The problem of path test case

generation is to find a sequence of inputs that can exercise the transitions in a

given feasible path. However, the transitions‟ guards and assignments in a given

path can impose difficulties when producing such data making the range of

acceptable inputs narrowed down to a possibly tiny range. While search-based

approaches have proven efficient in automating aspects of testing, these have

received little attention when testing from EFSMs. This thesis proposes an

integrated search-based approach to automatically test from an EFSM. The

proposed approach generates paths through an EFSM that are potentially feasible

and satisfy a test criterion. Then, it generates test cases that can exercise the

generated feasible paths. The approach is evaluated by being used to test from five

EFSM cases studies. The achieved experimental results demonstrate the value of

the proposed approach.

 iii

Table of Contents

Abstract .. ii

Table of Contents .. iii

List of Tables ... vii

List of Figures ... ix

Acknowledgements .. xiv

Related Publications ... xvi

Chapter 1: Introduction ... 1

1.1 OVERVIEW ... 1

1.2 CONFORMANCE TESTING ... 3

1.3 SEARCH-BASED TESTING ... 4

1.4 THE PROBLEM AREA .. 6

1.5 THE THESIS‟S AIMS AND OBJECTIVES .. 8

1.6 SUMMARY OF THE CONTRIBUTIONS ... 8

1.7 THE THESIS‟S STRUCTURE ... 9

1.7.1 Chapter 2: Literature Review ... 9

1.7.2 Chapter 3: Generating Feasible Transition Paths (FTPs) for Testing

from EFSM Models .. 10

1.7.3 Chapter 4: Automatic Test Cases Generation to Exercise Feasible

Transition Paths ... 10

1.7.4 Chapter 5: Generating Feasible Transition Paths for Testing from

EFSMs with Counter Problem .. 11

1.7.5 Chapter 6: Conclusions and Future Work .. 11

Chapter 2: Literature Review .. 12

2.1 INTRODUCTION... 12

2.2 WHY AUTOMATE TESTING? ... 13

2.3 SOFTWARE TESTING PREAMBLE ... 13

2.4 TESTING APPROACHES ... 14

2.4.1 Black-Box Testing ... 15

2.4.2 White-Box Testing ... 16

2.5 METHODS USED TO AUTOMATE TESTING .. 18

2.5.1 Symbolic Execution ... 18

 iv

2.5.2 Constraint Satisfaction ... 20

2.5.3 Search-Based Software Testing (SBST) .. 21

2.5.3.1 Random Search .. 25

2.5.3.2 Hill Climbing ... 25

2.5.3.3 Simulated Annealing ... 26

2.5.3.4 Evolutionary Algorithms (EAs) ... 28

2.5.3.5 Evolutionary Testing ... 31

2.5.3.6 Model Checkers ... 34

2.6 METHODS USED TO SUPPORT TESTING .. 35

2.6.1 Slicing .. 36

2.6.2 Testability Transformation ... 37

2.7 MODEL BASED TESTING .. 38

2.7.1 Finite State Machine (FSM) ... 39

2.7.1.1 Conformance Testing... 41

2.7.1.2 Testing From an FSM .. 41

2.7.2 Extended Finite State Machine (EFSM) .. 43

2.8 TESTING FROM EFSMS .. 45

2.8.1 Related Work of Testing from EFSMs .. 48

2.8.2 Motivation for Automatic Testing from an EFSM 50

2.9 CONCLUSION .. 51

Chapter 3: Generating Feasible Transition Paths (FTPs) for Testing from

EFSM Models .. 53

3.1 INTRODUCTION... 53

3.2 CASE STUDIES .. 54

3.3 PROBLEM AREA ... 62

3.4 THE PROPOSED APPROACH .. 66

3.4.1 Dependencies Representation and Penalties .. 69

3.4.2 The Fitness Metric.. 73

3.4.3 The GA Encoding .. 78

3.4.4 FTP Verification Method ... 79

3.5 EXPERIMENT .. 79

3.5.1 Experimental Design .. 80

3.5.2 Experimental Results ... 82

 v

3.5.2.1 Results of the Lift EFSM ... 83

3.5.2.2 Results of the In-Flight EFSM ... 85

3.5.2.3 Results of the ATM EFSM .. 88

3.5.2.4 Results of The Inres Initiator EFSM .. 91

3.5.2.5 Results of The Class 2 EFSM .. 94

3.5.2.6 Summary of Results ... 96

3.6 CONCLUSION .. 97

Chapter 4: Automatic Test Cases Generation to Exercise Feasible Transition

Paths ... 99

4.1 INTRODUCTION... 99

4.2 PROBLEM AREA ... 100

4.3 THE PROPOSED APPROACH .. 102

4.3.1 The Fitness Function .. 102

4.3.2 GA Encoding .. 107

4.3.3 Using Constraint Satisfaction to Trigger an FTP 107

4.4 EXPERIMENT .. 108

4.4.1 Design of the First Experiment .. 109

4.4.2 Experimental Results for the Three Search-Based FTPs Test Cases

Generators ... 110

4.4.2.1 Results Derived from the Lift EFSM ... 111

4.4.2.2 Results Derived from the In-Flight EFSM .. 113

4.4.2.3 Results Derived from the ATM EFSM .. 116

4.4.2.4 Results Derived from the Inres Initiator EFSM 119

4.4.2.5 Results Derived from the Class 2 EFSM ... 121

4.4.2.6 Summary of the Results ... 124

4.4.3 Design of the Second Experiment .. 126

4.4.4 Results of the Second Experiment ... 128

4.4.4.1 CBT Performance on Both Groups of FTPs .. 128

4.4.4.2 Correlation Study (Without FTP Clustering)... 129

4.4.4.3 Regression Analysis (Without FTP Clustering) 135

4.4.4.4 Correlation Study (Clustered FTPs) .. 138

4.4.4.5 Regression Analysis (Clustered FTPs) .. 140

4.5 CONCLUSION .. 143

 vi

Chapter 5: Generating Feasible Transition Paths for Testing from EFSMs

with Counter Problem .. 145

5.1 INTRODUCTION... 145

5.2 PROBLEM AREA ... 146

5.3 CASE STUDIES .. 148

5.4 THE PROPOSED APPROACH .. 149

5.4.1 Dependencies Representation .. 153

5.4.2 Finding the Required Sequence of Transitions 154

5.4.3 Determining the Length of TPs .. 161

5.5 EXPERIMENT .. 166

5.5.1 Experimental Design .. 167

5.5.2 Experimental Results ... 169

5.5.2.1 Results of the Inres Initiator EFSM ... 169

5.5.2.2 Results of the ATM EFSM .. 174

5.5.2.3 Summary of Results ... 180

5.6 CONCLUSION .. 181

Chapter 6: Conclusions and Future Work ... 183

6.1 CONCLUSION OF ACHIEVEMENTS ... 183

6.1.1 Problems Associated with Testing from EFSMs 183

6.1.2 Generating Feasible Transition Paths (FTPs) 185

6.1.3 Generating Test Cases to Trigger FTPs ... 186

6.1.4 By-Passing The Counter Problem When Generating FTPs 188

6.2 POINTS FOR FUTURE WORK ... 189

6.2.1 The Fitness Metric.. 190

6.2.2 FTPs Test Cases Generations ... 191

6.2.3 The Normalisation Function During FTPs Test Cases Generation 192

6.2.4 Complex FTPs‟ Test Cases Generation ... 192

6.2.5 Calibrating the TP Fitness Metric .. 193

6.2.6 An Iterative Approach .. 194

6.3 GENERAL CONCLUSION .. 195

References .. 196

 vii

List of Tables

Table ‎2.1: Tracey et al. fitness calculations for different types of guards. The

constant k, k > 0, is added when the guard is not satisfied. 32

Table ‎3.1: The transitions description of the In-Flight safety system 55

Table ‎3.2: The transitions description of the class 2 transport protocol 57

Table ‎3.3: The transitions description of the Lift system 59

Table ‎3.4: The suggested penalty values where INF is a large positive integer to

indicate that a given dependency represents an infeasible case. 71

Table ‎3.5: Assignment‟s types representation .. 72

Table ‎3.6: Lift EFSM GA & RA generated TPs .. 85

Table ‎3.7: The In-Flight EFSM GA & RA generated TPs 87

Table ‎3.8: ATM EFSM GA & RA generated TPs ... 89

Table ‎3.9: Inres initiator EFSM GA & RA generated TPs 93

Table ‎3.10: The Class 2 EFSM GA & RA generated TPs 96

Table ‎3.11: Summary of the results achieved by GA and random searches on

generating FTPs from five EFSM case studies. .. 97

Table ‎4.1: Tracey et al. fitness calculations for different types of guards. The

constant k, k > 0, is added when the guard is not satisfied. 103

Table ‎4.2: The performance of three test case generation methods on two groups

of subject TPs derived from the Lift EFSM. ... 113

Table ‎4.3: The performance of three test case generation methods on two groups

of subject TPs derived from the In-Flight EFSM. .. 116

Table ‎4.4: The performance of three test case generation methods on two groups

of subject TPs derived from the ATM EFSM. .. 118

Table ‎4.5: The performance of three test case generation methods on two groups

of subject TPs derived from the Inres initiator EFSM. 121

Table ‎4.6: The performance of three test case generation methods on two groups

of subject TPs derived from the Class 2 EFSM. ... 124

Table ‎4.7: The performance of the three test case generators on the five EFSM

case studies. ... 125

Table ‎4.8: GA group of FTPs (no clustering) - Correlation among FTPs‟ fitness

metric, GA average generations, GA average time and CBT average time. 130

 viii

Table ‎4.9: Random group of FTPs (no clustering) - Correlation among FTP

fitness metric, GA average generations, GA average time and CBT average time.

 ... 131

Table ‎4.10: Both groups of FTPs (no clustering) - Correlation among FTP fitness

metric, GA average generations, GA average time and CBT average time. 132

Table ‎4.11: FTPs (no clustering) - Correlation among FTP fitness metric, GA

average generations, GA average time, CBT average time, number of inequality

constraints and number of equality constraints. .. 133

Table ‎4.12: GA group of FTPs (clustered) - Correlation among FTPs‟ fitness

metric, GA average generations, GA average time and CBT average time. 139

Table ‎4.13: Random group of FTPs (clustered) - Correlation among FTP fitness

metric, GA average generations, GA average time and CBT average time. 139

Table ‎4.14: Both groups of FTPs (clustered) - Correlation among FTP fitness

metric, GA average generations, GA average time and CBT average time. 140

Table ‎5.1: Guards representation as integers .. 153

Table ‎5.2: Operations representation as integers .. 153

Table ‎5.3: Calculating the TP length for the Inres initiator and the ATM EFSMs.

 ... 166

Table ‎5.4: The Inres initiator EFSM generated TPs by the proposed approach

(GA-1) and by the previously defined TP fitness metric approach (GA-2). 172

Table ‎5.5: The ATM EFSM generated TPs by the proposed approach (GA-1) and

by the previously defined TP fitness metric approach (GA-2). 177

Table ‎5.6: Summary of the results achieved by the proposed approach (GA-1) and

the previously defined TP fitness metric approach (GA-2) on generating FTPs

from two EFSMs that suffer from the counter problem. 180

 ix

List of Figures

Figure 1.1: A fire alarm system represented as extended finite state machine, each

transition is given in the form of: [guards/operations]. ... 4

Figure 1.2: An example of local and global optima ... 5

Figure 2.1: A fire alarm system represented as a directed graph 15

Figure 2.2: The greatest common divisor and its CFG .. 16

Figure 2.3: Examples of two fitness functions landscapes................................... 23

Figure 2.4: Hill climbing algorithm for a maximisation optimisation problem with

an input domain D ... 26

Figure 2.5: Simulated annealing algorithm for a minimisation optimisation

problem with an input domain D .. 27

Figure 2.6: High level description of a basic genetic algorithm 30

Figure 2.7: An example of branch distance calculation by using Wegener et al.

approach. A Critical node has a false branch (shown in a dashed arrow) that

diverts the execution flow ... 33

Figure 2.8: An example program slicing. The original program was used to

produce a slice for variable x at node 4. .. 36

Figure 2.9: An FSM of a traffic light control system represented as a directed

graph. ... 38

Figure 2.10: Conformance testing approach .. 41

Figure 2.11: The Inres Initiator EFSM model .. 43

Figure 3.1: The EFSM model of In-Flight safety system 54

Figure 3.2: The EFSM model of core transitions of class 2 transport protocol

model ... 56

Figure 3.3: The EFSM model of the Lift system ... 58

Figure 3.4: The EFSM model of Inres Initiator ... 60

Figure 3.5: The EFSM model of the ATM System .. 61

Figure 3.6: An example of a tuple representation of the dependencies between an

affecting and affected-by transitions ... 73

Figure 3.7: The algorithm that calculates TP fitness metric 74

Figure 3.8: The recursive subroutine Check which traces back a transition‟s

dependencies. .. 75

 x

Figure 3.9: Lift EFSM TPs. The sets a & b have a TP length = 9, sets c & d have

a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e are GA

generated by using the TP fitness metric guidance. Sets b, d & f are the alternative

randomly generated sets plotted by using logarithmic scale. 84

Figure 3.10: In-Flight EFSM TPs. The sets a & b have a TP length = 9, sets c & d

have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e are GA

generated by using the TP fitness metric guidance. Sets b, d & f are the alternative

randomly generated sets plotted by using logarithmic scale. 86

Figure 3.11: ATM EFSM TPs. The sets a & b have a TP length = 9, sets c & d

have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e are GA

generated by using the TP fitness metric guidance. Sets b, d & f are the alternative

randomly generated sets plotted by using logarithmic scale. 90

Figure 3.12: Inres Initiator EFSM TPs. The sets a & b have a TP length = 9, sets

c & d have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e

are GA generated by using the TP fitness metric guidance. Sets b, d & f are the

alternative randomly generated sets plotted by using logarithmic scale. 92

Figure 3.13: Class 2 EFSM TPs. The sets a & b have a TP length = 9, sets c & d

have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e are GA

generated by using the TP fitness metric guidance. Sets b, d & f are the alternative

randomly generated sets plotted by using logarithmic scale. 95

Figure 4.1: The SDL representation of transitions t5, t8 and t15 of Inres initiator

EFSM where transition‟s guards are sequenced as nested IF statements 101

Figure 4.2: An example of fitness calculation by using Wegener et al. (2001)

approach. ... 105

Figure 4.3: An example of a path fitness calculation by using the proposed

approach. ... 106

Figure 4.4: Lift EFSM GA and random groups of subject TPs. Plots a & b show

the performance of the GA-1 approach on TPs in GA group and TPs in the

random group respectively. Similarly, Plots c & d and Plots e & f show the

performance of GA-2 and Rand approaches respectively. The fitness metric of

subject TPs in random group is plotted by using logarithmic scale. 112

 xi

Figure 4.5: In-Flight EFSM GA and random groups of subject TPs. Plots a & b

show the performance of the GA-1 approach on TPs in GA group and TPs in the

random group respectively. Similarly, Plots c & d and Plots e & f show the

performance of GA-2 and Rand approaches respectively. The fitness metric of

subject TPs in random group is plotted by using logarithmic scale. 114

Figure 4.6: ATM EFSM GA and random groups of subject TPs. Plots a & b show

the performance of the GA-1 approach on TPs in GA group and TPs in the

random group respectively. Similarly, Plots c & d and Plots e & f show the

performance of GA-2 and Rand approaches respectively. The fitness metric of

subject TPs in random group is plotted by using logarithmic scale. 117

Figure 4.7: Inres EFSM GA and random groups of subject TPs. Plots a & b show

the performance of the GA-1 approach on TPs in GA group and TPs in the

random group respectively. Similarly, Plots c & d and Plots e & f show the

performance of GA-2 and Rand approaches respectively. The fitness metric of

subject TPs in random group is plotted by using logarithmic scale. 120

Figure 4.8: Class II EFSM GA and random groups of subject TPs. Plots a & b

show the performance of the GA-1 approach on TPs in GA group and TPs in the

random group respectively. Similarly, Plots c & d and Plots e & f show the

performance of GA-2 and Rand approaches respectively. The fitness metric of

subject TPs in random group is plotted by using logarithmic scale. 122

Figure 4.9: The CBT performance on both groups of FTPs. Plot a shows the

performance on the GA group of FTPs while Plot b shows the performance on the

random group of FTPs. ... 129

Figure 4.10: Fitness line fit plots of regression analysis (without clustering). Plots

a, c & e are the prediction of GA time in seconds from FTPs in GA group,

random group and both groups respectively. Similarly, Plots b, d & f are the

prediction of CBT time in seconds from the same groups respectively. 136

Figure 4.11: Fitness line fit plots of regression analysis. Plots a, c & e are the

prediction of GA time in seconds from clustered FTPs in GA group, random

group and both groups respectively. Similarly, Plots b, d & f are the prediction of

CBT time in seconds from the same groups respectively. 141

 xii

Figure 5.1: Inres Initiator EFSM. Initialisers, updaters and target transitions are

coloured green, blue and red respectively. Transition t12 represents an „escape‟

transition and is represented by a dashed arrow. .. 149

Figure 5.2: The EFSM Model of the ATM System. Initialisers, updater and target

transitions are coloured green, blue and red respectively. Transition t' represents

an „escape‟ transition and is represented by a dashed arrow. 150

Figure 5.3: Example of affecting and affected-by (a counter) matrices for Inres

initiator EFSM ... 154

Figure 5.4: The algorithm which finds sequence of transitions 155

Figure 5.5: The Guard_Check routine.. 155

Figure 5.6: The algorithm which validates a given triple 157

Figure 5.7: The routine which verifies a tripe existence in a TP 159

Figure 5.8: The initial and first steps of Dijkstra‟s algorithm between states Sd &

Ss in Inres Initiator EFSM ... 163

Figure 5.9: The second and last steps of Dijkstra‟s algorithm between states Sd &

Ss in Inres Initiator EFSM ... 164

Figure 5.10: Inres EFSM TPs. The sets a & b have a TP length = 13, sets c & d

have a TP length = 14 and sets e & f have a TP length = 15. Sets a, c & e are

generated by using the proposed approach (GA-1). Sets b, d & f are the alternative

sets that are generated by using the previously defined TP fitness metric approach

(GA-2). .. 170

Figure 5.11: Inres initiator EFSM TPs. Each figure shows a TP fitness metric

value vs. the average number of generations in ten tries to trigger this TP. Figure a

plots all the generated TPs by using the proposed approach (GA-1). Figure b plots

all the generated TPs by using the previously defined TP fitness metric approach

(GA-2). For clarity, the horizontal axis is a logarithmic scale. 174

Figure 5.12: ATM EFSM TPs. The sets a & b have a TP length = 9, sets c & d

have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e are

generated by using the proposed approach (GA-1). Sets b, d & f are the alternative

sets that are generated by using the previously defined TP fitness metric approach

(GA-2). .. 175

 xiii

Figure 5.13: The prevalence of the „escape‟ transition t' in the three sets of subject

TPs derived from the ATM EFSM by using the proposed approach. 178

Figure 5.14: ATM EFSM TPs. Each figure shows a TP fitness metric value vs.

the average number of generations in ten tries to trigger this TP. Figure a plots all

the generated TPs by using the proposed approach (GA-1). Figure b plots all the

generated TPs by using the previously defined TP fitness metric approach (GA-2).

For clarity, the horizontal axis is a logarithmic scale.. 179

Figure 6.1: Two sets of nested guards that are assigned the same TP fitness metric

value. However, the second set is harder to be satisfied. 190

Figure 6.2: A counter problem and a TP fitness metric mechanism. 190

Figure 6.3: Calculating a path fitness by using only Wegener et al. approach .. 191

Figure 6.4: Calculating a path fitness by using „Program Stretching‟ approach

(Ghani and Clark, 2009b). ... 193

Figure 6.5: An iterative approach to calibrate the TP fitness metric.................. 194

Figure 6.6: An iterative search-based approach to test from an EFSM 195

 xiv

Acknowledgements

First and foremost, my words of thanks must go to my supervisor Prof. Robert

Mark Hierons who has been of great help to this work. Prof. Hierons has been a

constant source of support, guidance and encouragement throughout the periods of

my Master of Research and my PhD courses in Brunel University. I am sincerely

grateful for the professional supervision I have received together with the

insightful comments and advices that made the work on this thesis possible.

I would like also to thank Dr. Stephen Swift, my second supervisor during

my study in Brunel University, for the help he has provided and for reading my

thesis. Dr. Swift has provided important comments and advices which have been

of much help during the work on this thesis.

I am thankful to the staff in the Department of Information Systems and

Computing for the lovely research environment that they all have provided.

My thanks go also to my family for their endless care and support and to

my friends for being around me.

My sincere gratitude goes also to Aleppo University- Syria for sponsoring

my study in Brunel University.

 xv

Dedication

There are no words that can sufficiently describe the great man who

constantly worked hard to provide me with every possible support.

This thesis is dedicated to my father who passed away couple of

months ago.

 xvi

Related Publications

 Abdul Salam Kalaji, Robert Mark Hierons and Stephen Swift, "Generating

Feasible Transition Paths for Testing from an Extended Finite State

Machine (EFSM)," In ICST09: Proceeding of the 2
nd

 IEEE International

Conference on Software Testing Verification and Validation, pp.230-239,

Denver, USA, IEEE Press, April 2009.

 Abdul Salam Kalaji, Robert Mark Hierons, Stephen Swift, "A Testability

Transformation Approach for State-Based Programs," In SSBSE 09:

Proceeding of the 1
st
 International Symposium on Search Based Software

Engineering, pp.85-88, Windsor, UK, IEEE Press, May 2009.

 Abdul Salam Kalaji, Robert Mark Hierons, Stephen Swift, "A Search-

Based Approach for Automatic Test Generation from Extended Finite

State Machine (EFSM)," In TAIC-PART 09: Proceeding of the Testing:

Academic and Industrial Conference - Practice and Research Techniques,

pp.131-132, Windsor, UK, IEEE Press, September 2009.

 Abdul Salam Kalaji, Robert Mark Hierons and Stephen Swift, "Generating

Feasible Transition Paths for Testing from an Extended Finite State

Machine with the Counter Problem," In ICSTW10: Proceeding of the 3
rd

IEEE International Conference on Software Testing Verification and

Validation workshops, pp. 232-235, Paris, France, IEEE Press, April 2010.

 1

Chapter 1: Introduction

1.1 Overview

Software testing is a vital practice that is included in the software development

process to provide confidence in the software quality. Software testing can be seen

as a method that can detects errors by mimicking the real interactions with the

software and then monitoring how the software responds. This can be achieved by

deriving a set of test scenarios and then applying them to the software. Since there

can be a large number of possible test scenarios that can be derived for a given

system, a test criterion is required. Test criteria can be considered as properties

that the testing process should satisfy in order to be considered adequate.

Although software testing does not add any extra functionality to the

software, it is widely known that testing can cost up to 50% of the overall

software cost (Boehm, 1981, Hierons et al., 2009). Therefore, it is natural for the

software engineering community to try to develop methods to reduce the cost

associated with testing while enhancing the testing process. One important point

to be realised is the fact that manual testing is a poor method to achieve this goal.

Unfortunately, manual testing is known to be expensive, time consuming and

vulnerable to errors. Since such aspects are significant contributors to the cost and

validity of testing, automation is desirable.

In order for testing to be automated, there are various steps to be achieved

such as the automatic derivation of the test scenarios and the automatic

verification of the system responses to the applied test scenarios. Importantly, the

automatic derivation of test scenarios is a substantial task (Harman and McMinn,

 2

2009). There are various approaches that can be used, including search-based

testing techniques.

To conduct testing, there are two main approaches that can be used: white-

box testing and black-box testing. White box testing can be applied when a tester

has access to the internal software structure such as the code and algorithms. Such

access allows the tester to use the knowledge about the software to design the test

scenarios. In contrast, black-box testing does not use information about the

internal system structure and only two aspects are available to the tester: the

inputs and the outputs. Therefore, when designing the test scenarios, the tester

uses the system specification (usually represented as a model) to derive the test

scenarios. Then these scenarios are applied to the implementation under test (IUT)

and the resultant outputs are monitored. By comparing the produced outputs to

those stated in the specification, the tester can determine whether the IUT

conforms to the specification on that test case. Therefore, such testing is

commonly referred to as conformance testing. In order to apply conformance

testing, it is necessary to have a system specification, usually represented in terms

of a model.

Two common modelling approaches that can be used for this purpose are:

finite state machine (FSM) and extended finite state machine (EFSM) (Petrenko et

al., 2004). An FSM basically comprises a finite set of states and transitions among

the states. Each transition has a start state and an end state. Also, a transition

requires an input to be fired and if so it produces an output. The FSM is used to

model a system that has a control part, for example the basic telephone device.

However, if the system has, in addition to the control part, a data part, then an

extended FSM can be used. An EFSM can model both control and data parts since

it extends the FSM structure with a set of variables (memory). Therefore, in an

EFSM, a transition can have guards (preconditions) over the machine‟s variables

and also can have operations (assignments) to these variables.

Testing from an EFSM is conformance testing (black-box). Because of the

EFSM‟s structure (the combination of control and data parts) conformance testing

from an EFSM is generally a difficult task. However, search-based approaches

 3

can potentially ease such a process. In the subsequent sections, conformance

testing from an EFSM together with the search-based testing are highlighted.

1.2 Conformance Testing

In conformance testing, there are two aspects: the system specification and the

actual system or the implementation under test (IUT). The tester has to check

whether the implementation conforms to the specification. In order to achieve this,

the system specification is usually represented in terms of a model (such as an

FSM or an EFSM). Because systems can be complex, a model can enhance the

understanding about such systems and allow better reasoning (Beizer, 1990). The

model is then used to derive test scenarios according to a test criterion. The test

scenarios are applied to the IUT and the responses of the IUT are compared to the

outputs stated in the specification to determine whether there has been a failure.

 When representing system specification, a modelling approach such as an

FSM or an EFSM can be used. The EFSM is one such modelling approach that is

capable of representing a wide range of systems.

 As aforementioned, when conducting testing, there can be vast number of

possible test scenarios and so a test criterion is required. Testing from an EFSM

can be based on coverage test criteria such as the transition coverage or the state

coverage (Tahat et al., 2001). Transition coverage, for example, requires test

scenarios that exercise each transition in the system at least once. Nevertheless, a

major task when testing from an EFSM is the derivation of the test scenarios

according to a given test criterion.

 Consider for example Figure 1.1 which shows the EFSM representation of

a fire alarm system. In this EFSM, there are two states: Safe and Warning, six

transitions and two variables: updated and smokeLevel. A transition t1 first checks

that a new reading of the smoke level has not been performed (guard:

updated_=_false) and if so it reads the current smoke level in the atmosphere

through the parameter SmokeInput. Then, the operations associated with t1 assign

this value to the smokeLevel variable and set the variable updated to true

 4

(indicating a new reading was performed). Now, another transition such as t2

checks that a new reading has been performed (guard: updated = true) and if so it

checks whether the current value of smokeLevel is less than a constant (guard:

smokeLevel < threshold). If this is true, t2 is fired, the associated operation

(updated := false) is executed and the machine state is Safe.

 For the transition coverage test criterion, test scenarios can consist of two

parts: transition paths and the paths test cases. A transition path specifies a

sequence of transitions such as t1t2 whereas a path test cases is given the inputs

that are required to execute the path (for the path t1t2, a test case can be a suitable

value of SmokeInput i.e. SmokeInput < threshold).

 Therefore, testing from an EFSM requires the generation of a set of

transition paths through the EFSM together with suitable inputs that can exercise

these paths.

1.3 Search-Based Testing

Search-based testing refers to the use of optimisation techniques to automatically

derive tests. Optimisation techniques such as genetic algorithms, simulated

annealing and hill climbing are frameworks that can be adapted to find solutions

to problems of interest. In white-box testing, a problem can be, for example,

Warning Safe

Figure ‎1.1: A fire alarm system represented as extended finite state machine,

each transition is given in the form of: [guards/operations].

t1 (SmokeInput) [updated

== False; / smokeLevel:=

SomkeInput;

updated := True;]

t2 [updated == True,

smokeLevel <

threshold / updated :=

False;]

t5 [updated == True,

smokeLevel >

threshold / updated :=

False;]

t4 (SmokeInput) [updated

== False; / smokeLevel:=

SomkeInput;

updated := True;]

t5

[updated == True, smokeLevel < threshold

/ updated := False;]

t6

[updated == True, smokeLevel > threshold

/ updated := False;]

 5

finding a set of inputs that can exercise a set of conditions. Usually, the search

space of such input values is large. However, the conditions may potentially

narrow down the range of the acceptable values to be just a small range.

Therefore, finding such input values can be difficult. Nevertheless, optimisation

techniques can efficiently explore the search space for solutions that can be

considered acceptable. In order to differentiate between potential solutions,

optimisation techniques use a fitness function and this is problem dependant. A

fitness function rewards every candidate solution with a value that states how

good this solution is in terms of the considered problem. Generally the quality of

potential solutions can range between global minima / maxima or local minima /

maxima to unacceptable solutions. A candidate solution in the search space is said

to be a global solution or global optimum if its fitness is the highest (for

maximisation) or lowest (for minimisation) of any candidate solution in the search

space. Often there is some notion of a neighbourhood and when this is the case a

candidate solution in the search space is a local solution or local optimum if none

of its neighbours have a better fitness.

 Consider for example the set of conditions shown in Figure 1.2a. The

function requires two inputs of type integer. The test target is to find values of

input a and input b so that the result is 0 (minimisation). If the input values are

given in the range [-30..30], then the search space can have the landscape shown

in Figure 1.1b. There is one global optimum (minimum) that touches the zero

surface (when both a and b are zero) and four local minima labelled L1, L2, L3

and L4.

Figure ‎1.2: An example of local and global optima

 Double fun1(int a, int b)

{

 if a == 0 && b == 0)

 result := 0; //Target achieved

 else if (abs(a)== 25 && abs(b) == 25)

 result := 10;

 else

 result := abs(a) + abs(b);

}

a. A function example b. The associated search space landscape

 6

When applying optimisation techniques to a given problem, the accepted solutions

are not necessarily global minima / maxima. There can also be solutions that can

be considered good or excellent. Consider for example the problem of minimising

the cost associated with manufacturing a mobile phone while increasing the

number of the preferred services (identified by users). For such a problem, there

can be a range of solutions that can be considered excellent or adequate.

 In order to apply optimisation techniques, the key step is to derive a fitness

function which can differentiate best, good and worse solutions and so acts as the

search guide. Consider for example the problem of maximising the following

function:

 Max(x
2
); where x [-1000..1000]

For such a problem, the fitness function can be derived from the function that

states the problem i.e. fitness(x) = | x | and so the greater x, the better the fitness.

The information returned by the fitness function informs the search to progress

towards its goal.

 The other important step in applying an optimisation technique is the

solution‟s representation which can also be based on the problem description. For

example, a possible solution representation of the problem above is to use the

integer representation.

 For software testing, the application of optimisation techniques is referred

to by search-based testing. Search-based testing has proven efficient and shown

considerable success in automating the process of white-box testing. Examples of

such works are reported in (Korel, 1990, Jones et al., 1998, Michael et al., 2001,

McMinn, 2004, Harman and McMinn, 2009). However, for black-box approach,

search-based testing has received little attention.

1.4 The Problem Area

An EFSM is a powerful modelling approach and has been widely used for the

purpose of modelling and testing (Dssouli et al., 1999, Duale et al., 1999, Ural et

al., 2000, Hierons et al., 2001, Petrenko et al., 2004, Keum et al., 2006, Sinha et

 7

al., 2007, Lorenzoli et al., 2008, Wong et al., 2009). While there are many testing

approaches to test from FSM (Lee and Yannakakis, 1996), testing from an EFSM

is more complex since an EFSM combines both control and data flows.

The combination between the control flow and data flow imposes difficulties

when testing from EFSMs. These difficulties concern path feasibility and path test

cases generation. The path feasibility problem arises when no sequence of inputs

can lead to the path being followed. Therefore, when a path is selected to cover

certain aspects (i.e. provides part of the transition coverage), this path can be

infeasible. If the path is infeasible, it cannot be executed and so the intended test

cannot be applied.

 For example, if the path t1t1t5 in the EFSM shown in Figure 1.1 is selected

to cover transition t5, this transition is not covered because the path is infeasible.

Since the first transition t1 sets the variable updated to true while the next

transition t1 requires updated to be false, the assignment of the first t1 falsifies the

guard of the next t1.

 The problem of the path feasibility in an EFSM is generally undecidable

(Dssouli et al., 1999, Hierons et al., 2009). Furthermore, the development of good

methods to overcome this issue is an open research problem (Duale et al., 1999,

Duale and Uyar, 2004).

 The problem of path test case generation concerns finding a sequence of

inputs that can exercise a given feasible path. For example, consider again the

machine in Figure 1.1. If a path t1t2t1t6 is selected, then two suitable inputs are

required to exercise such a path. Since transitions in a path can have guards and

assignments, the inputs should be selected to satisfy these guards so that the path

can be fired. Generally, finding a suitable set of test cases that can trigger a given

path is a substantial task (Ural and Yang, 1991). This is because the input domain

is usually large while the suitable values constitute just a small subset of the input

domain.

There are many studies that have applied search-based approaches to test

systems using the white-box approach. These studies have demonstrated the

capability of search-based testing to significantly ease the testing process.

Examples of such studies are reported in (McMinn, 2004). However, search-based

 8

approaches have received little attention when testing from an EFSM. Therefore,

the subject of this thesis is to investigate the application of search-based

approaches to test from EFSMs by considering the two main problems associated

with testing from EFSMs. The aim is then to develop a framework based on

search-based testing which can significantly enhance testing from EFSMs.

Such a framework can allow other EFSM testing approaches (Chanson and

Zhu, 1993, Derderian et al., 2005, Duale and Uyar, 2004, Duale et al., 1999,

Hierons et al., 2004, Koh and Liu, 1994, Lee and Yannakakis, 1996, Petrenko et

al., 2004, Ramalingom et al., 2003, Sarikaya et al., 1987, Wang and Liu, 1993) to

benefit from the flexibility and the efficiency of search based testing.

1.5 The‎Thesis’s‎Aims‎and‎Objectives

The thesis aims and objectives are the following:

1. To identify challenges associated with testing from extended finite state

machine (EFSM) models. Furthermore, highlighting limitations associated

with current EFSM testing approaches.

2. To determine barriers to the application of search-based approaches to

testing from EFSM models.

3. To propose an integrated search-based approach to automate the process of

testing from EFSM models.

1.6 Summary of the Contributions

The main contributions of this thesis are:

1. The description of a novel method to represent the dependencies among an

EFSM‟s transitions.

2. The definition of a new fitness metric that can be easily utilised by

heuristic search techniques such as a genetic algorithm (GA) to facilitate

 9

the automatic generation of feasible transition paths (FTPs) through

EFSMs for the purpose of testing.

3. The description of a search-based approach to generate test cases that can

trigger given FTPs through an EFSM model

4. The proposal of a fitness function that is suitable to guide the search for

test cases in the presence of function calls.

5. The investigation of the relationship between an FTP‟s fitness metric value

and the effort, in terms of time, required by a test cases generation

approach to trigger the FTP. Furthermore, the investigation of the TP

fitness metric capability to predict the effort required by test cases

generators to exercise FTPs.

6. The proposal of a method to bypass the counter problem by automatically

determining whether a transition‟s guard references a counter, which other

transitions are involved and how many times they have to be called.

7. The proposal of a method that suggests a suitable length of test cases to be

generated in the presence of the counter problem.

8. This thesis is the first to propose an integrated search-based approach to

automatically testing from EFSM models.

9. The empirical evaluation of the proposed search-based approach on five

EFSM cases studies.

1.7 The‎Thesis’s‎Structure

The next subsections provide overviews of the five subsequent chapters of this

thesis.

1.7.1 Chapter 2: Literature Review

This chapter highlights the importance of testing in general and particularly the

importance of automatic testing. The chapter also describes the main testing

 10

approaches: black-box testing and white box testing. Then, details are provided

about methods used in testing and methods used to support testing. Search-based

testing is also introduced together with the commonly used optimisation

algorithms that are utilised. Furthermore, the chapter describes the importance of

model-based testing and the two widely applied modelling approaches: finite state

machines (FSMs) and extended finite state machines (EFSMs). Finally, the

chapter reviews the approaches that are used to test from EFSMs, highlights the

main problems associated with testing from EFSMs and motivates the use of

search-based approaches to test from EFSMs.

1.7.2 Chapter 3: Generating Feasible Transition Paths

(FTPs) for Testing from EFSM Models

This chapter highlights the problem of generating feasible transition paths (FTPs)

and discuses the main limitations of the current EFSM testing approaches. Then,

the chapter progresses by describing a search-based approach that can be used to

generate FTPs from a given EFSM. The proposed approach uses new fitness

metric to guide a search towards transition paths that satisfy a given test criterion

and are likely to be feasible

1.7.3 Chapter 4: Automatic Test Cases Generation to

Exercise Feasible Transition Paths

The problem of generating test cases (test data) to follow given FTPs in an EFSM

is described. Then, the chapter presents a search-based approach to automatically

generating test cases that can trigger given FTPs. The chapter also presents a

statistical analysis of the relationship between the fitness metric of an FTP and the

time that is required to trigger the FTP. Finally, it investigates the possibility of

using the fitness metric to predict the time required by two test cases generators to

exercise an FTP.

 11

1.7.4 Chapter 5: Generating Feasible Transition Paths

for Testing from EFSMs with Counter Problem

In this chapter, the causes of path infeasibility problem are highlighted again with

the focus being on the counter problem, which can result in a transition path being

infeasible. An approach to detect the counter problem in a given TP is then

described together with the algorithm that achieves this. The proposed approach is

then used together with that proposed in Chapter 3 to solve the counter problem.

1.7.5 Chapter 6: Conclusions and Future Work

This chapter summarises the main achievements by highlighting the work

presented in each chapter. Then, the potential points for future work are proposed

and discussed.

 12

Chapter 2: Literature Review

2.1 Introduction

The advances in information technologies impact many aspects of life and the use

of software systems becomes necessary to ensure the provision of better services

if not the services themselves. The involvement of software systems varies from

performing ordinary tasks such as text editing to managing critical tasks such as

auto-piloting an aircraft. Since the reliance on software to perform some functions

is increased, it is important to verify, as much as possible, that a piece of software

correctly performs its intended tasks.

 Testing is one method for verifying whether a given system is capable of

correctly performing its defined tasks. However, testing is generally an expensive

manual process. According to the National Institute of Standards and Technology,

the estimated cost of software bugs and defects to the US economy is

approximately $59.5 billion annually. If an improved testing infrastructure was

used to try to remove software faults, this estimated cost could be reduced by at

least one third (NIST, 2002, Harman and McMinn, 2009). Although the practice

of software testing does not add extra functionalities to the final product, it

constitutes up to 50% of the total software cost (Boehm, 1981, Hierons et al.,

2009).

 13

2.2 Why Automate Testing?

Because errors in systems can have severe consequences, software testing plays a

vital role during the software development process. The testing phase is important

in order to deliver software with an acceptable level of reliability. Although the

process of testing cannot provide full confidence that the software is error-free

(Dijkstra, 1970), it is still essential to ensure that software can meet a certain level

of correctness.

Testing can be seen as a method to exercise the functions that the system is

designed to carry out. Generally, this can be manually conducted by a tester with a

set of scenarios that are designed according to some test criteria. This can give the

tester the chance to detect defects since these may arise when the test cases are

applied.

However, as software systems become more complex, manual testing

becomes increasingly a poor option. It seems that there is a general agreement in

the software engineering community that manual testing is imprecise, can be very

expensive and error prone. Thus the aim is to minimise the human intervention in

the testing phase in order to reduce the cost and enhance reliability (Korel, 1990,

Elfriede et al., 1999, Tracey et al., 1998a, Derderian et al., 2006, Hierons et al.,

2009).

Automating the practice of software testing is desirable and clearly this has

been a subject of interest to many researchers along the past two decades to

develop methods that can replace the conventional manual approach (Korel, 1990,

Tracey et al., 1998a, Michael et al., 2001, Myers, 2004, Bertolino, 2007, Harman

and McMinn, 2009, Ghani and Clark, 2009a).

2.3 Software Testing Preamble

In order to test a given system, there is a need to derive a set of test cases to

exercise the system‟s functionalities. A test case can be defined as a set of inputs

 14

that, if applied to the system under test, produces a set of outputs. The resultant

outputs can then be used to verify whether the system performs as intended.

A test case can be seen as a possible scenario which a system is known to

carry out. However, it is important to note that the number of possible scenarios

that a system may perform is generally very large and can be considered, in most

cases, to be infinite. For example, consider deriving test cases to exercise all the

possible scenarios of a program that adds two one-digit binary numbers. This test

can be achieved in practice since there are only four test cases to cover the entire

set of possible scenarios. Unfortunately, this is not generally the case with the vast

majority of systems. If the same program is performing, instead, the addition of

two double numbers, then the number of possible scenarios is prohibitively large.

This motivates the use of a test adequacy criterion, which is a property that

the test needs to satisfy in order to be considered adequate. Thus, given a system

and a test adequacy criterion, a central task of testing is to derive a finite set of test

cases that aims to satisfy the given test criterion. Such a finite set of test cases is

referred to as a test suite. An example of a test adequacy criterion is statement

coverage which requires that each statement of the program, to be tested, is

exercised at least once (Rapps and Weyuker, 1985). If the statement coverage test

criterion is considered for the program that adds two double numbers, then one

test case may be adequate to satisfy this test criterion.

2.4 Testing Approaches

Deriving test cases to exercise a given system with the intention to reveal errors

cannot be conducted arbitrarily. This is because usually there are a vast number of

possible test cases. As a result, it is important to decide about a test strategy which

can reduce the time and the cost associated with testing while providing

confidence about software correctness (Myers, 2004). For this purpose, there are

common approaches that are widely applied to conduct testing such as: black-box

testing and white-box-testing. These two approaches are described in the next

subsections.

 15

2.4.1 Black-Box Testing

Black-box testing (also called functional testing) is an approach in which the

tester has no knowledge about the internal system structure (the tester acts as an

external observer) and the system to be tested is seen as a “black-box”. In this

approach, the system specification is used as a reference to derive test cases

(usually by representing the specification in terms of a model) and to verify the

performance of the implementation under test (IUT). When conducting black-box

testing, there are only two aspects available to the tester: an input or a sequence of

inputs (which can be a valid or invalid input(s) given as a test case) and the

output(s) that the tester observes as the IUT responds to the input. The output is

then used to verify whether the IUT performed as intended by referring to the IUT

specification. Deriving test cases to conduct black-box testing of an IUT can be

based on many test adequacy criteria. Such test criteria, for example state

coverage, aim to cover aspects of the IUT. The state coverage criterion requires

every state in the specification to be visited at least once (Tahat et al., 2001). For

example, Figure 2.1 shows the specification of a fire alarm system where the

system has two states: Safe and Warning and four transitions among these two

states where each transition has a specific [input/ output]. Given an IUT of a fire

alarm system, to conduct the black-box testing with the state coverage test

criterion, a test case comprising the inputs ‹ aa › fires the transition sequence t1t2

that visits the system states. Thus, such a test case could be a candidate input to

satisfy the test criterion.

Warning

t1 [a / 0]

t2 [a / 1]

t3[b / 0]

t4 [b / 0]

Safe

Figure ‎2.1: A fire alarm system represented as a directed graph

 16

The black-box testing approach is effective in testing the behaviours from the

specification, however, black-box testing is poor at detecting extra behaviours that

are included in the IUT but not in the specification. Such behaviours can be

detected by using a white-box testing approach.

2.4.2 White-Box Testing

White-box testing (also called structural testing) is an approach in which the

internal system structure (such as the algorithms and code) is available to the

tester in order to derive test cases from the system. Particularly, a tester employs

this approach to inspect a specific part of the system, using the knowledge

regarding its internal structure to design test cases. White-box testing is thus an

effective approach to test the behaviours that are implemented in the IUT.

Nevertheless, the approach is poor at determining whether some behaviours have

been missed since it does not consider the specification. White-box testing is

usually based on the notions of program data flow and control flow.

A program control flow graph (CFG) is the 4-tuple (N, E, s, e) directed

graph where:

function gcd (a,b : integer): integer;

var g: integer;

s. begin

1.‎‎‎‎while‎(a‎≠‎0)‎do

 begin

2. g = a;

3. a = b mod g;

4. b = g;

 end;

5. result = b;

e. end;

true

Start

end

1

n

d 2

n

d

4

n

d

5

n

d

3

n

d

false

Figure ‎2.2: The greatest common divisor and its CFG

 17

 N is a finite set of nodes

 E is a finite set of edges

 s is the graph‟s entry node,

 e is the graph‟s exit node.

Each statement in the program P is represented as a node in the CFG.

Some statements such as IF, WHILE and FOR have one entry and two exits called

true and false branches. These nodes are referred to as branching statements since

they have a control decision through their true or false exits. A node which is

located on one of these two exits is control dependant on that branching node

(Ferrante et al., 1987). An edge between two nodes n1 and n2 represents a control

flow from n1 and n2. For example, Figure 2.2 shows the code of a Greatest

Common Divisor GCD program for two positive integers together with the

corresponding CFG. In this example, node 1 is a branching (While) node and thus

nodes 2, and 5 are control dependant on node 1.

Given a program and a variable x within this program, a statement at

which x appears can be an assignment to x or a use of x (or both). An assignment

statement defines or updates the value of x and so x is said to be defined at such a

statement. A use of x occurs when x is referenced in a predicate (a predicate use/p-

use) or x is referenced in a computation that either updates the value of a variable

or is produced as output (a computation use/c-use). Given a program path between

two statements n1 and n2, if x is not defined after n1 and before n2 then the path

from n1 to n2 is a definition clear path for x. If, in addition, n1 is a definition of x

and n2 is a use of x, then statements n1 and n2 form a definition-use (du) pair for x

and there is data flow dependence between n1 and n2 (Tai, 1984). For example, in

Figure 2.2, node 2 is a definition node for variable g while node 3 is a c-use of

variable g. Therefore, nodes 2 and 3 are a du pair for variable g.

In white-box testing, a test case is derived to cause a specific path of the

program to be executed. Naturally, the input values included in the test case are a

subset of values that the program can accept and thus belong to the program input

domain D (D is usually a set of subsets where each subset represents the input

domain for a given input). When paths are selected through a program, the

 18

selection of these paths has to serve the testing purpose and so test cases are

derived in accordance with this purpose. For example, when using statement

coverage (each statement must be executed at least once by some test case), test

cases should be derived so that specific paths are executed and the test criterion is

satisfied.

Deriving test cases for a given program can be based on the control flow

aspects such as branch coverage where all the branches have to be exercised at

least once. Also, it can be based on data flow information such as all du paths

where the paths that fall between a definition and a use of each variable have to be

executed at least once.

As mentioned earlier, the manual derivation of a set of test cases is an

undesirable practice. Instead, automating the test activities is generally preferred

while a fully automated testing remains the optimal goal for the testing

community (Bertolino, 2007).

2.5 Methods Used to Automate Testing

Automating some testing aspects can be performed by the means of using

algorithms that are designed to produce test cases so that the human intervention

during this phase can be either eliminated or kept minimal. The automation can

also be assisted by employing some techniques that aim to simplify the test

subject and consequently ease the testing process. The next subsections highlight

the commonly used algorithms and techniques that can serve or support the

purpose of automatic testing.

2.5.1 Symbolic Execution

Symbolic execution is an analysis approach which allows a program to be

executed using a set of symbolic inputs (King, 1976). The execution here is not

different from the normal program execution. However, the inputs are given in

 19

terms of symbols, and thus the outputs of the program are symbols and

expressions over these symbols. This is particularly useful to understand the

relation between a given input and its associated output. Compared to the normal

execution, the symbolic execution offers the possibility to trace back how each

output was formed (which and how inputs are involved in this output).

Nevertheless, the normal execution produces an output as a final value i.e. a

numerical value and does not keep information about how the related inputs

contribute to this output.

When generating program test cases using the symbolic execution, the

problem of test cases generation can be reformulated to the problem of solving a

set of algebraic expressions. These expressions are a result of symbolically

executing a set of selected paths. For example, consider the path <1, 2, 3, 4, 1, 5>

of the GCD program shown in Figure. 2.2. In order to execute this path

symbolically, two symbolic inputs (a0, b0) can be used and so (a = a0) and (b =

b0). Since this path requires running the statement at Node 1 two times, at the first

instance, the condition at Node 1 should be true and thus (a0 ≠ 0). At Nodes 2, 3

and 4 the assignment statements will assign (g = a0), (a = b0 mod a0) and (b = a0)

respectively. The condition at Node 1 should now be false so that the Node 5 can

be executed, thus ((b0 mod a0) == 0) and finally, at Node 5 the assignment

statement will be (result = a0). Executing this path symbolically by using the

inputs (a0, b0) results in two algebraic expressions:

 a0 ≠ 0 (1)

 (b0 mod a0) == 0 (2)

If these expressions can be solved, an actual test case that can exercise the path

<1, 2, 3, 4, 1, 5> is generated. For this example, a possible solution can be (a0 = 2,

b0 = 4). However, if the resultant algebraic expressions have no solution, then the

path is infeasible (i.e. there are no test cases that can execute it).

There are many approaches that employ the symbolic execution technique

to generate test cases for the purpose of program testing; examples of such work

are reported in (Clarke, 1976, Darringer and King, 1978, DeMillo and Offutt,

1991). However, symbolic execution has some known limitations that can restrict

its applicability in practice. One of these limitation concerns some code constructs

 20

such as pointers and arrays. For such code constructs, applying symbolic

execution is difficult. Although it is possible to use other code constructs to

replace pointers and arrays, it is generally impractical to restrict such coding

options. Furthermore, if a path contains a loop that is bounded by a variable

instead of a constant, symbolic execution may iterate infinitely and so the

execution time in this case is unknown (Michael et al., 2001). Even if the loop

iteration is bounded by a number, the resultant algebraic expressions can be

sometimes too complex to be handled.

2.5.2 Constraint Satisfaction

The constraint satisfaction problem (CSP) is the problem of finding suitable

values from a given input domain to a finite set of variables where the values that

these variables can accept, at the same time, are restricted by a set of constraints

(Tsang, 1993). Formally, the CSP is defined (Dechter and Pearl, 1989) by three

sets (V, D, C) where:

 V: is a finite set of variables

 D: is a finite set of input domains that represents the domain value of each

element of V

 C: is a finite set of constraints on V or on a subset of V and C can be empty

The set of variables V1..Vn  V is defined by their input domain D1..Dn  D while

a constraint Ci  C over a variable Vi1, .., Vij V is given as a subset of the

Cartesian product Di1 ×..× Dij which determines the values which the variables can

accept simultaneously. The CSP can have no, one or many solutions where any

solution is simply the values that should be assigned to V so that the constraints

hold.

 Employing CSP for the purpose of program testing is called constraint-

based testing (DeMillo and Offutt, 1991). In constraint-based testing (CBT), paths

are selected (according to the test criterion i.e. the statement coverage) through the

program under test, then these paths are executed symbolically and a set of

constraints are derived for each path. Solving the set of constraints for a given

path results in the required test case that can exercise this path.

 21

There are techniques to solve the CSP such as the Constraint Logic Programming

(CLP) (Jaffar and Maher, 1994), however, applying constraint-based testing

requires applying symbolic execution to derive the constraints. Therefore the

applicability of CBT techniques inherits the same limitations of symbolic

execution applicability. Even if symbolic execution can be applied, the resultant

constraints can sometimes be non-linear and therefore difficult to solve. For

example, solving a set of non-linear constraints over integer variables is generally

an undecidable problem (Zhang, 2008).

2.5.3 Search-Based Software Testing (SBST)

In the field of software engineering, there are problems that have a complex

nature (such as testing) and conventional techniques such as linear and dynamic

programming can be inefficient (Harman and Jones, 2001). Reformulating

software engineering as a search problem (search-based software engineering) is

an approach which tries to represent software engineering problems as

optimisation problems (minimisation / maximisation). Then metaheuristic search

techniques such as hill climbing, simulated annealing and evolutionary algorithms

can be applied in order to find solutions that can be acceptable for the considered

problem (Clark et al., 2003).

Search-based software testing (SBST) is therefore an approach of testing

which reformulates software testing problems as optimisation problems. This

reformulation serves the purpose of automatically deriving test cases that can

satisfy a given test criterion. Reformulating the problem of testing as an

optimisation problem is particularly useful for many reasons (Clark et al., 2003):

1. Exhaustive testing is generally not always possible due to the complex

nature of the systems under test so that an alternative is required.

2. The input domain associated with testing is usually large and thus it is

desirable to have a method that can effectively explore the input domain.

3. There are many problems that do not have a known complete solution and

therefore approaching the problem by using search can provide new

insights.

 22

4. Generating candidate solutions can be made cheaper by using search.

Furthermore, evaluating candidates solutions may be straightforward since

there can be many standard metrics to be utilised to evaluate the potential

solutions.

In order to apply a search technique to test from a particular system, a

representation of the candidate solutions is required. Furthermore, it is essential to

have a method, a fitness function, which can evaluate the candidate solutions.

 The solution representation allows a search technique to manipulate

candidate solutions. Generally, there are many ways to represent candidate

solutions. If the candidate solutions are numbers, then it is possible to use binary

encoding. In binary encoding, each number is represented by its equivalent binary

value. For example, two inputs (7, 8) are represented in the form of binary as

(0111, 1000). However, some neighbour values, which are close in the decimal

form, are far in the binary form (e.g., 7 and 8). In order to avoid this problem, gray

encoding can be used where each two successors differ only in one bit (Whitley,

1999). For example (7, 8) are represented by gray encoding as (0100, 1100). Other

forms of encoding can also be used depending on the input domain of the

problem. For example, if the inputs are integers then integer valued representation

is possible. Similarly, real valued encoding is an option when inputs are double

numbers.

 In order to compare candidate solutions, a fitness function is required. The

fitness function is a property that measures how good each candidate solution is in

terms of the considered problem. The fitness function simply rewards each

candidate solution by a positive numerical value which specifies haw far it is from

being an acceptable solution. If the optimisation problem is a minimisation one,

then candidate solutions which receive lower fitness values are better and

acceptable solutions usually have a fitness value equal to zero. Similarly, for

maximisation optimisation problems, candidate solutions that have larger fitness

values are better.

 23

Deriving a fitness function for a given problem is a central task when applying a

search technique. For some problems, a fitness function can be derived directly.

For example, consider minimising the function f(x) = x
2
:

Min(x
2
); where x [0..1000]

For such a problem, a fitness function can be similar to the function which

describes the problem (i.e. fitness(x) = x
2
) or with a slight difference (i.e. fitness(x)

= x). However for some other problems, a fitness function can be derived from

metrics that are based on some information such as statistical or source code

information (Harman and Clark, 2004). For example, consider the metric that

measures the statement coverage of source code. This metric can be utilised as a

fitness function to measure the number of statements that are covered by a given

test case (candidate solution).

 Apart from its role in evaluating candidate solutions, the fitness function

can also reveal information about how easy it is for a search to progress towards

its goal. This is because the fitness function essentially acts as the search

guidance. The guidance of a given fitness function can be viewed by plotting the

fitness function landscape. If the landscape of a given fitness function is smooth

and sloped towards the target, then the search is expected to receive adequate

guidance and progress easily. However, fitness functions landscapes that have

plateaux or flat surfaces may not provide the search with the adequate information

to progress. Consequently the search may fail or become stuck in local optima.

 For example, Figure 2.3 shows two arbitrary fitness landscapes (2.3.a and

2.3.b). The first landscape has a smooth sloped surface which allows search to

progress easily towards its goal. However, the second landscape is mostly

Figure ‎2.3: Examples of two fitness functions landscapes

a. A desirable landscape b. An undesirable landscape

 24

dominated by a flat surface. In this case, many candidate solutions receive the

same fitness value and so the search cannot distinguish these candidate solutions.

In such a case, the search performance is likely to be similar to that of random

search (McMinn, 2004, Kalaji et al., 2009c).

 There are many works that study applying SBST technique to generate test

cases from programs by considering the fitness function landscape. The main idea

is to develop fitness calculations that are associated with desirable landscapes so

that the search can receive adequate guidance. Examples of such works are

reported in (Harman et al., 2004, McMinn et al., 2006, Kalaji et al., 2009c).

 Unfortunately, the fitness function landscape cannot be easily plotted

when the fitness function is related to more than two variables. This is because 3D

plotting is limited to two variables and their fitness value is the third dimension. A

function of more than two variables, n-dimensions, can be 3D-plotted by using

techniques such as principal component analysis. The problem is related to

mapping from n-dimensional space to 2D space by reducing the number of the

variables. Principal component analysis reduces the number of correlated

variables by transforming them to principle components that are uncorrelated

variables (Jolliffe, 2002). Nevertheless, in the absence of an easy plotting

technique when there are more than two variables, empirical evaluation can be

used. In empirical evaluation, more than one fitness function can be derived for a

given problem. Then, a search technique is applied to optimise the problem by

using each available fitness function. The performance exhibited by the search

technique on each fitness function can then be used to assess which fitness

function provides better guidance.

 When candidate solutions are represented and the fitness function is

defined, a search technique can be applied in order to optimise the problem. There

are many search techniques that can be used such as hill climbing, simulated

annealing and evolutionary algorithms. These search techniques are explained in

the next subsections.

 25

2.5.3.1 Random Search

The random search is the simplest search technique and it randomly generates an

input or a set of inputs from the specified input domain of the program. Then,

these inputs are evaluated to determine whether they satisfy the test criterion.

Generally, the random search is not affected by the fitness function landscape

since it is not a guided search. This is because random search does not „develop‟

candidate solutions but merely generates inputs that may be, by chance,

acceptable solutions. Nevertheless, random search has been widely applied since

it is considered as a baseline to compare the performance of other search

techniques (Michael et al., 2001).

2.5.3.2 Hill Climbing

Hill climbing is a simple local search technique which works at one candidate

solution at a time. The algorithm starts from a randomly generated point (a

candidate solution). Then neighbours of this point are evaluated by using the

fitness function. The fitness function determines whether one of these neighbours

is better than the current point. If a better neighbour is found, then this becomes

the current point and the algorithm iterates to search the neighbours of this current

point. However, if no better neighbour can be found then the algorithm stops and

returns the current point. Figure 2.4 shows a high level description of the hill

climbing algorithm.

 Hill climbing algorithm accepts only a neighbour which improves the

fitness. Thus, this algorithm behaves as a hill climber (when searching the

neighbours) on the fitness landscape. Because of this, hill climbing has a known

limitation of becoming stuck in a local optimum rather than finding a global

optimum. For example, consider a maximisation optimisation for a given problem

with fitness function landscape that has two peaks: small and large. If the starting

point was at the bottom of the small peak, the algorithm easily climbs the small

peak and reports the top of this as the best candidate solution. However, it will not

check the next peak because going downwards (from the current peak) will

 26

worsen the fitness of the current candidate solution and consequently the search is

stuck.

 Hill climbing, however, is simple, easy to implement and yields quick

results for some optimisation problems that are associated with smooth and sloped

fitness landscapes (Clark et al., 2003). Nevertheless, for fitness landscapes that

include flat surface, the algorithm cannot effectively explore the input domain and

is likely to report local optima.

2.5.3.3 Simulated Annealing

Simulated annealing (Kirkpatrick et al., 1983) is another well known local search

technique which searches an input domain for candidate solutions that improve

the fitness. However, it also has a feature that allows it to accept candidate

solutions that may worsen the fitness. This particularly allows the algorithm to

avoid being stuck in local optima (the problem found in hill climbing). The term

annealing refers to the process of rendering a material to a desired structure or

surface by heating it to a high temperature and then cooling it slowly. Similarly,

when searching candidate solutions, at the beginning, the temperature T is initially

high and almost any candidate solution can be accepted. This allows the search to

have relatively free movement in the input domain. Then, the temperature is

gradually decreased according to a cooling rate. At each temperature level a

certain number of moves are allowed. While the temperature decreases, the search

becomes more focused on accepting candidate solutions that improve the fitness.

However, the search may also accept a number of candidate solutions that worsen

Figure ‎2.4: Hill climbing algorithm for a maximisation optimisation problem

with an input domain D

1. Generate a random point x  input domain D

2. Repeat

3. From x neighbours, N(x), select x'  N(x) where fitness(x') ≥‎fitness(x)

4. x = x'

5. Until (a solution is found) OR (some stopping conditions are satisfied)

 27

the fitness (inferior solutions). The probability of accepting inferiors at a certain

temperature T is controlled by the parameter Paccept:

Paccept = e
-Δ/T

Where T is the temperature parameter; Δ is the difference between the fitness

value of the current candidate solution and the fitness value of the considered

inferior.

 The lower the temperature, the less likely an inferior can be accepted and

at freezing point, the algorithm behaves like a hill climbing and accepts only

better candidate solutions. The idea of simulated annealing is to accept at the early

search stages the candidates that worsen the fitness in a hope that these can lead to

better neighbours in the final search stages. Figure 2.5 shows a high level

description of the simulated annealing algorithm.

 When simulated annealing is applied, it is important to properly select the

initial temperature and the cooling procedure. The initial temperature should be

high so that the search can explore many points of the input domain. Furthermore,

Figure ‎2.5: Simulated annealing algorithm for a minimisation optimisation

problem with an input domain D

1. Initialise the temperature T = T0, the initial solution x = x0  input domain D

2. Repeat

3. Repeat

4. From x neighbours, N(x), select x'  N(x)

5. Δ = fitness(x') - fitness(x)

6. If (Δ‎<‎0) Then

7. x = x'

 Else

8. r = random(0,1)

9. If (r < e
-Δ/T

) Then

10. x = x'

 EndIf

EndIf

11. Until (the allowed number of moves at this temperature is reached)

12. Reduce the temperature T = αT' where‎α‎[0,1] is the cooling rate

13. Until (a solution is found) OR (some stopping conditions are satisfied)

 28

the cooling procedure should allow a slow temperature reduction so that inferiors

can still be considered (Clark et al., 2003). If the temperature is reduced quickly,

the search may not adequately consider the inferiors and mainly focuses on better

candidates. This may lead the search to perform like the hill climbing search and

so is likely to be trapped by local optima.

 Simulated annealing has been successfully applied to automatically

generate test cases for the purpose of structural testing. The aim was to overcome

some of the obstacles that are related to the local search. The work of Tracey et al.

(Tracey et al., 1998b, Tracey et al., 1998c) describes the approach of utilising

simulated annealing for the purpose of automatic test cases generation.

2.5.3.4 Evolutionary Algorithms (EAs)

Evolutionary algorithms are optimisation techniques that adapt the evolution

notion as a search mechanism. Genetic Algorithms (GAs) (Holland, 1975) are a

class of EA, and probably the most well known form of EAs, inspired by natural

selection principles and have been found to be powerful, simple, and sturdy.

 Similar to other search techniques, applying a GA to an optimisation

problem requires a solution representation (encoding). When solutions are

encoded, each is called a chromosome and consists of components that are called

genes. For example, let the initial set of solutions be integer values such as <7, 6,

8>. If binary encoding is performed, then <0111, 0110, 1000> represent the

chromosomes. Any bit of a chromosome represents a gene with a value of either 0

or 1.

 The GA cycle starts from an initial set of candidate solutions (referred to

as a population) that are randomly generated from the problem‟s input domain.

This allows sampling more points of the input domain and thus working on many

candidate solutions simultaneously. Then the fitness of each individual within the

population is evaluated to understand how „fit‟ this individual is. The fitness value

assigned to each individual influences its survival chance by being selected as a

parent.

 Then selection based on fitness is made to perform „breeding‟. There are

many selection methods that can be applied such as roulette wheel and ranking

 29

(Sadiq and Habib, 1999). Roulette wheel selection was originally used by

(Holland, 1975) and it mimics the natural selection principle in that it provides

better chance for fitter chromosomes to be selected as parents. In this method,

each individual is allocated a portion of the wheel where the portion size is related

to the fitness value of this individual. Then the wheel is spun and an individual xi

is selected according to the probability:

 Roulette wheel selection prioritises individuals which have higher fitness

and so may cause the search to narrow down too quickly to particular solutions

(super individuals). This, in turns, affects the population diversity and blocks the

algorithm from investigating different points in the search space. Consequently,

the search progress may be negatively impacted. Some studies argue that there

should be a constant selection pressure on all population individuals in order to

allow individuals with lower fitness to be selected. Therefore, the population

diversity can be maintained and the search can still explore new points in the

search space (Whitley, 1989). Linear ranking is a selection method that suits this

purpose. The method functions by sorting individuals in a rank depending on their

fitness values. In this rank, the least fit chromosome comes in the first position of

the rank (an index i = 1) while the fittest chromosome is placed at the last position

of the rank (an index i = m). Then, depending on a selection pressure SP value,

where 1 ≤ SP ≤ 2, the selection can be biased and an individual chance of being

selected is given by the probability:

Pselection= (2-SP)/m + 2i(SP-1)/m(m-1)

For example, if SP = 2, then fitter individuals are associated with better chance to

be selected. Similarly, if SP =1, then all individuals have equal chance of being

selected.

 After selection is made, breeding is performed between the selected

individuals to produce new individuals. This is accomplished by applying a

crossover operator that acts on two individuals to produce two new individuals.

There are several approaches to crossover (Sadiq and Habib, 1999) including one-

Pselection = fitness(xi) / 


m

j 1

fitness(xj)

Where m is the population size.

 30

point crossover. One-point crossover operates by choosing a random position on

the chromosome‟s bit string, and then the substrings before that position are kept

while the tails are swapped (Srinivas and Patnaik, 1994). For example, if the two

parents‟ chromosomes are P1 and P2 with crossover point at position 4, then C1

and C2 are the offspring chromosomes.

P1: 011|00 C1: 011|11

P2: 101|11 C2: 101|00

 In order to maintain population diversity, new characteristics are

occasionally injected by applying mutation. Mutation acts on one chromosome at

a time where it randomly changes the values of some of the chromosome‟s genes

(Srinivas and Patnaik, 1994). For example, the chromosomes C1 above might

become C1′ after mutating the bits on positions 1 and 5.

C1: 01111 C1′: 11110

Figure ‎2.6: High level description of a basic genetic algorithm

1. Initialise population size m = m0

2. Initialise population pool P and offspring pool F

3. Generate randomly m individuals  input domain D and insert them into P

4. Repeat

5. For i = 1 to m do

6. Calculate the fitness of individual P(i)

 endFor

7. While (size(F)<m) do

8. Select two individuals ind1, ind2 from P

9. Crossover(ind1, ind2) to produce two offspring ind1', ind2'

10. Insert the two offspring ind1', ind2' in the offspring pool F

 endWhile

11. Individuals from P and F are used to construct new pool P'

12. For i = 1 to m do

13. Mutate the pool P'

 endFor

14. P = P'

15. Reset(F)

16. Until (a solution is found) OR (some stopping conditions are satisfied)

 31

The GA cycle (evaluation, selection, breeding and mutation) yields new

individuals (offspring) and selection is used to obtain a new generation

(population) from the previous population and the offspring. The population

undergoes a number of updates until satisfying one of the stopping criteria such as

finding the solution or reaching a maximum number of generations. Figure 2.6

shows a high level description of a basic genetic algorithm.

2.5.3.5 Evolutionary Testing

Evolutionary testing (ET) is a technique that employs EA to automatically

generate test cases. Test case generation is represented as a minimisation problem

where the lower the fitness of a solution the better it is and the optimal solution(s)

will have a fitness equal to zero.

 When applying ET to generate test cases for a test target i.e. a program, a

fitness function is required that corresponds to the test adequacy criterion (a

property that a test must satisfy in order to be considered sufficient). Many test

adequacy criteria require that a set of structures in the code or model is covered in

testing. For example, consider a test purpose that requires all of the statements in

the code to be exercised (covered) in testing (statement coverage). If the test

purpose considers the branch coverage criterion, then all the branches in the

subject program need to be taken (covered). Test cases generation can involve a

sequence of phases where in each phase a single branch is considered. In this case,

a fitness function that depends on branch distance can be used in order to evaluate

a test case.

 Branch distance measures how close a particular input was to executing

the target branch that is missed. The work of (Korel, 1990) stated a set of rules to

measure the branch distance for each possible branch type. A guard (predicate)

between two inputs A and B can be generally expressed as (A gop B) where gop is

a guard operator such as {>, <, =}. For example, the approach of (Korel, 1990)

calculates the branch distance for the guard (A < B) as A – B. If (A – B < 0), then

the guard is satisfied. In Korel‟s method, it is necessary to check whether the

branch distance value is positive, negative and / or equal to zero according to a list

of predefined relations to understand whether the guard is satisfied. The work of

 32

(Tracey et al., 1998a, Tracey et al., 1998b) provides a remedy for this by

proposing a set of rules to calculate the branch distance. In Tracey et al. approach,

the branch distance is either positive when the guard is false or zero when the

guard is satisfied. This is achieved by adding a constant value k > 0 to the branch

distance whenever the guard is evaluated to false. For example, the branch

distance for the guard (A < B) is 0 if A – B < 0 otherwise it is (A – B) + k. In this

way, the lower the branch distance is the closer A is to B and the closer the test is

to taking the branch. The full list, proposed by (Tracey et al., 1998a, Tracey et al.,

1998b), for different types of guards and their branch distance computations is

provided in Table 2.1.

 Naturally, programs can have nested guards, for example an IF statement

could be contained in a loop. In this case, a fitness function which only employs

branch distance is not sufficient to detect which branch was not satisfied.

Consequently, the search does not receive adequate information to progress. In

order to identify which branch has caused the execution flow to divert, the fitness

function should include extra information. This is given in terms of approximation

level or approach level (Wegener et al., 2001).

 Approach level measures how close an input was to executing the structure

under test. A central notion to approach level calculation is a critical node which

is a branching node at which the execution flow may divert. Approach level is

calculated by subtracting 1 from the number of critical nodes away from the target

node at which the computation diverges (Equation 2.2).

Guard Fitness calculation

Boolean if TRUE then 0 else k

a = b if abs(a − b) = 0 then 0 else abs(a − b) + k

a ≠ b if abs(a − b) ≠ 0 then 0 else k

a < b if a − b < 0 then 0 else (a − b) + k

a ≤ b if a − b ≤ 0 then 0 else (a − b) + k

a > b if b − a < 0 then 0 else (b − a) + k

a ≥ b if b − a ≤ 0 then 0 else (b − a) + k

¬ a Negation is moved inwards and propagated over a

Table ‎2.1: Tracey et al. fitness calculations for different types of guards.

The constant k, k > 0, is added when the guard is not satisfied.

 33

Since it is necessary that the branch distance of the upper IF statement is always

greater (worse) than the ones in a lower level, the branch distance of each IF

statement is normalised, using the norm function, to a value in the range of [0..1]

(Equation 2.1). The normalised branch distance is then added to the approach

level of that branch to form the fitness value of the test case (Equation 2.3). As a

result, a test case that achieves more guards (longer path) will have a better

(lower) fitness than a test case that achieves fewer guards. For example, Figure

2.7 shows a function with three nested guards together with the CFG. In order to

test this function, three inputs are required. By using the Wegener et al. approach,

the fitness calculation should be performed at each critical node. The approach

level at the first critical node is 2, at the second node is 1 and at the third node is

0.

 There are many studies that employ SBST approaches to conduct testing.

These studies have demonstrated that SBST approaches are robust and effective in

test automation. Examples of these studies are reported in a survey by (McMinn,

2004) which focused on search-based test data generation.

norm (branch_distance) = 1 – 1.05
-(branch_distance)

approach level= NumOfCriticalNodesAwayFromTarget – 1

fitness = approach level + norm (branch_distance)

(2.1)

(2.2)

(2.3)

Figure ‎2.7: An example of branch distance calculation by using Wegener et

al. approach. A Critical node has a false branch (represented by a dashed

arrow) that diverts the execution flow.

int foo (int x, int y, int z)

1. { If (x > 10) Then

2. If (y < x) Then

3. If (z = x+ y) Then

4. Return 0; // Target

 }

x >10

y < x

z=x+y

Target missed

Fitness = norm (branch distance)

+ approach level

True

True

Target achieved

Fitness = 0

False

False

False

True

 34

2.5.3.6 Model Checkers

A model checker is a formal verification approach that can automatically verify

whether a system requirement conforms to the specification (Clarke, 2008). A

system requirements or a design of the system is used to describe a model of the

system. Then, a property that the system is known to perform is derived from the

system specification. Both the model and the property are the inputs to the model

checker which verifies whether the system has this property. If the property is

violated, the model checker provides a counterexample that illustrates why the

system does not satisfy this property. The counterexample is useful since it shows

how to detect and correct the faults which caused the property to be violated.

 The system requirements that are fed to the model checkers are the state

transition graph (Kripke structure) whereas the property to be verified is

represented as a temporal logic formula. A Kripke structure (Clarke, 2008) is a

representation of the system behaviour in terms of states and transitions among

these states. The temporal logic formula is to express the property in terms of a

scenario that can be true or false depending on the time. A model checker verifies

whether the Kripke structure has a path so that the temporal logic formula, the

property, is true. A path in Kripke structure represents a possible scenario of the

system. For example, all the values that a variable may have in a given system are

represented as states in Kripke structure.

 The application of model checkers to software testing can be seen by the

model checkers ability of providing counterexamples. Counterexamples describe

the fault cause and how it can be corrected and so they can be treated as test cases.

The main idea is to generate a counterexample that can be related to the intended

correct behaviour. This can be achieved by model-checking the system against a

negated temporal logic property that the system is known to satisfy (Hierons et al.,

2009). It is possible to express test adequacy criteria such as statement coverage in

terms of a temporal logic formula. Since the property is negated, the model

checker will produce a counterexample that shows where the error is. These

counterexamples are the desired test cases. However, these test cases have to be

mapped down to the actual system since they are derived at the model level

(Hierons et al., 2009).

 35

Although model checkers can effectively serve the testing purpose by producing

counterexamples, the problem is how these counterexamples can generally be

produced in a systematic way so that they are adequate to satisfy the test criterion

(Fraser et al., 2009). Furthermore, search-based testing may outperform the

performance of model checkers, for example, a study by (Nilsson et al., 2006)

found that when testing from dynamic systems, the search problem become more

difficult, however, the performance of a GA search outperformed the model

checker on the considered problem. Also, a recent study by (Wenzel et al., 2009)

states that using model checkers to generate test cases is expensive and it is more

expensive than using heuristic techniques. Moreover, since the underlying model,

which is an input to the model checker, is the state transition diagram, the problem

of state explosion cannot be ruled out. The state explosion problem concerns the

final number of states in the considered model. For a given program, the number

of states grows exponentially, being of O(V
N
), where N is the number of the

variables and V is the number of possible values that each variable can have. For

example, a program that has 10 integer variables in the range [-1000..1000] results

in 2000
10

 states. Actually, state explosion problem is one important obstacle in the

domain of model checker applications (Clarke, 2008). A recent survey about the

applications of model checkers to the domain of software testing is provided by

(Fraser et al., 2009).

2.6 Methods Used to Support Testing

Although the techniques highlighted in the previous sections are very useful to

automate many aspects of the testing process, test subjects can be complex. This

can impose difficulties when test generation techniques are applied in order to

derive test cases. For this purpose, it is desirable to simplify the test subject in

order to ease the testing process. For example, in order to apply symbolic

execution to a test subject that includes arrays, a transformation can be applied so

that the program is partially re-coded to replace arrays with other code constructs

(testability transformation). Similarly, if the test is focused on a particular variable

 36

or a path within a program, then other parts of the program that have no effect can

be removed so that testing considers a particular part of the program (slicing).

 Slicing and testability transformation are two commonly used approaches

to aid the testing process. These two approaches are described in the next

subsections.

2.6.1 Slicing

Program slicing is a technique to extract certain parts of a program which affect

the value of a set of variables V of interest at a specific program point n while

preserving the program syntax (Weiser, 1981). Any statement that does not affect

the value of variables in V at n can be deleted making the resultant program, the

slice, smaller.

 Slicing therefore simplifies the test subject by producing parts of the test

subject that are related to the test. For example, if a test considers the value of

variable x at the program node 4 in the program shown in Figure 2.8, then slicing

can be applied to remove other statements that do not affect the value of variable

x. Consequently, the test can focus on a slice of the program which is usually

smaller and thus easier to handle than the complete program.

 Slicing can be static or dynamic (Harman and Hierons, 2001). Also,

amorphous slicing (Harman and Danicic, 1997) is a method of slicing that does

not preserve a program syntax but it allows many forms of transformations, in

Figure ‎2.8: An example program slicing. The original program was used to

produce a slice for variable x at node 4.

1. Read (x, y , z);

2. z = x * y;

3. while (x < 100)

 {

4. x = x-1;

5. y = y + x;

6. z := z * x

 }

1. Read (x, y , z);

2.

3. while (x < 100)

 {

4. x = x-1;

5.

6.

 }

Original program A Slice of variable x at node 4

 37

addition to statement deletion, in order to produce much simpler and smaller

slices. A survey of program slicing and applications is provided by (Xu et al.,

2005).

2.6.2 Testability Transformation

A testability transformation (TeTra) (Harman et al., 2004, Harman et al., 2002) is

a source-to-source code transformation that intends to improve the efficiency of a

test case generation approach. The transformed test subject does not replace the

original test subject; it is only used to derive test cases which then can be applied

to the original test subject. In this way, the transformed test subject can be

discarded once the required test data are produced.

TeTra thus does not change the original program code which developers

have produced and maintained. The transformed program code is merely produced

by testers for the purpose of enhancing testing. The importance of the transformed

test subject is to help producing test cases that are difficult to be produced directly

from the original test subject.

 TeTra has been studied to enhance testing for both structured and

unstructured programs (Harman et al., 2004, Hierons et al., 2005). The

applications of TeTra are, particularly, the transformation of test subjects so that

the associated fitness function calculation is enhanced. This was mainly shown by

comparing the fitness function landscapes before and after TeTra was applied to a

given test subject. Examples of such works are (Baresel et al., 2004, McMinn et

al., 2009, Kalaji et al., 2009c). However, the limitation of TeTra is that it is

difficult to decide on a suitable set of steps to be applied. For example, TeTra can

involve a variety of steps to transform a test subject such as recoding, pushing

statements from many functions into one function and a decision on which steps

to be applied to a particular problem can be difficult.

 38

2.7 Model Based Testing

A model of a system can be viewed as an approach to capture the system aspects

which are of interest. Generally, systems tend to be too complex to be understood

and thus a model can help to simplify these aspects by providing some level of

abstraction by mathematically representing these aspects of a system (Beizer,

1990).

 For software, a model can be seen as a representation of the system

behaviours such as the input / output, data flow and control flow behaviours.

Model based testing is an approach that allows test cases to be derived from a

model that is generally constructed from a reference specification. Model based

testing has proven to enhance and simplify the testing process and thus reduce the

cost associated with testing (Apfelbaum and Doyle, 1997, Dalal et al., 1999,

Hierons et al., 2009).

 A system‟s behaviours can be modelled by many approaches (El-Far and

Whittaker, 2001) such as statecharts (David and Amnon, 1996), Unified

S2

Amber

t2 [a / 0]

t3 [b / 1]

t4 [a / 0]

t5 [b / 0]

t7 [b / 1]

t8 [a / 0]

t6 [a / 1]

t1 [b / 1]

Figure ‎2.9: An FSM of a traffic light control system represented as a directed

graph.

S4

Amber

S1

Green

S3

Red

 39

Modelling Language (UML) (OMG, 2002), Specification and Description

Language (SDL) (ITU-T, 1994), Estelle (Turner, 1993), Labelled Transition

System (Tretmans, 2008), Finite State Machine (FSM) and Extended Finite State

Machine (EFSM). Among these approaches, the finite state machine and extended

finite state machine are two modelling approaches that are commonly used for the

purpose of test cases derivation (Petrenko et al., 2004).

2.7.1 Finite State Machine (FSM)

A finite state machine (FSM) is a Mealy machine (or transducer such as Moore

machine) which has a finite set of states, finite set of inputs, and a finite set of

outputs. An output is produced upon state transition and this occurs when an input

is applied to the machine (Lee and Yannakakis, 1996). Formally, the finite state

machine is defined as a 6-tuple (S, s0, I, O, λ, δ) where:

 S is a finite set of the states that the machine can be in

 s0 is the machine initial state where s0  S

 I is a finite set of inputs

 O is a finite set of outputs

 λ is the output function

 δ is the transition function among the machine‟s states

When the machine is at a given state s  S, upon receiving an input i  I, a

transition t is fired, the machine moves to the state s' by using the transition

function δ(s, i) = s' and outputs o  O by using the output function λ(s, i) = o. A

transition t is defined by the 3-tuple (ss, se, i/o) where:

 ss  S is the transition start state

 se  S is the transition end state

 i/o where i  I is the input to be applied to the machine in order to fire the

transition and o  O is the output that is produced upon the state transition

An FSM can be represented by a directed graph G (V, E) where the graph vertices

V represent the machine states and the graph directed edges E represent the state

transitions (Aho et al., 1991). Each directed edge has a label that specifies the

name of the transition and the input / output associated with this transition.

 40

For example, Figure 2.9 shows an FSM state transition diagram for a traffic light

control system. In this figure, there are four nodes that represent the machine

states. Also, there are eight edges that represent the transitions among these states.

Each transition has a label that shows the input / output of this transition. If, for

example, the machine current state is s1 and it receives an input a then transition t2

is fired and the machine outputs ‹0› and moves to state s2.

For a given FSM, two states s1 and s2 are distinguishable when there is an

input sequence α that if applied, while the machine is at state s1, the output will be

different from that produced when α is applied while the machine is at state s2.

This can be formally stated as these exists α such that λ*(s1, α) ≠ λ*(s2, α).

However, when the outputs are the same for all α, then these two states are said to

be equivalent. Therefore, two FSMs M1 and M2 are said to be equivalent if their

initial states are equivalent.

An FSM is said to be:

 deterministic: if for any group of transitions leaving the same state,

applying an input i  I can fire only one transition of this group

 non-deterministic: if it is possible that more than one transition could be

fired by the same input at a given state

 completely specified: if for any state s  S, applying any input i  I to the

machine will fire a specific transition

 partially specified: if for any state s  S, not every input i  I can fire a

transition

 initially connected: if it is possible to visit any state s  S by starting from

the initial state s0 through applying an input sequence α

 strongly connected: if there is an input sequence α that can move the

machine between any two states s1, s2  S.

 minimal: if there is no equivalent FSM with fewer states

An FSM model can successfully capture the control behaviour of a system such as

a traffic light system and so the FSM has been widely used to model the control

part of systems such as sequential circuits, communication protocols and web

applications (Browne et al., 1986, Holzmann, 1991, Aho et al., 1991, Sidhu and

Leung, 1989, Lee and Yannakakis, 1996, Andrews et al., 2005).

 41

2.7.1.1 Conformance Testing

Conformance testing is an approach that aims to verify that the behaviours of an

implementation under test (IUT) conform to its reference specification.

Conformance testing considers an IUT as a black-box where the internal system

structure is unknown to the tester and only the input / output signals are

observable (see Figure 2.10).

 Therefore, when performing conformance testing, there is a need for a

reference specification of the IUT against which the IUT‟s behaviours can be

verified. Usually, this specification is represented in terms of a model. For

example, if the test concerns the control aspects of a system, then the reference

specification can be represented by an FSM model.

2.7.1.2 Testing From an FSM

Here the IUT is a black-box and the tester has a reference specification of the IUT

as an FSM. In conformance testing, the tester might exercise a specific transition t

(ss, se, i/o) of the implementation under test (IUT) and thus verify that the

behaviour of this transition conforms to the reference specification modelled as

FSM. This can be performed through three main steps:

Figure ‎2.10: Conformance testing approach

Specification

 Model

 Test Generation

Implementation

Under Test (IUT)

Test Criterion

 Test Cases

Does the implementation

conform to the specification?

Tester

 42

1. reaching the start state: so that the desired transition t to be tested can be

fired

2. firing a transition: by applying the specific input i and thus observing that

the expected output o is produced otherwise there is a fault

3. verifying the end state: so that the transition did not move the machine to a

different state (a wrong state) otherwise there is a fault.

For the first step, it is always possible to derive an input sequence which can

move the machine from the initial state to the desired one (Kohavi, 1978, Rivest

and Schapire, 1993). In order to make the testing process easier, it is useful to

have a reliable reset function that can bring the machine to its initial state every

time it is applied. Such a function can be simply seen as switching the machine off

and on (Hierons, 2004). This is particularly useful when applying conformance

testing since the process is naturally iterative.

 When the transition‟s start state is reached, the desired transition can be

fired by applying its specific input. If there is a fault, then the expected output o

will be different from the one stated in the reference specification. This kind of

fault is easy to detect since it is based on the observation. Finally, when the

transition is fired, it is important to verify that the transition‟s end state is actually

the correct one. This is known as the state identification which verifies that the

machine is at a specific state. State identification has been addressed by three well

known approaches:

1. Distinguishing Sequence (DS) (Gonenc, 1970)

2. W- method or the characterisation sequence (Chow, 1978)

3. Unique Input Output (UIO) (Sarikaya and Bochmann, 1984)

The distinguishing sequence DS is an input sequence that if applied to an FSM

while the machine is at a given state, the output will be different from all other

outputs produced by applying DS to the machine while it is at any other possible

state. Thus, this method can identify each state of an FSM, however, there may be

no DS for a given FSM.

 The W-method is a set (W-set) of inputs that can identify all the states of

an FSM by producing a different set of outputs at each state. Thus, W-method

 43

requires firing the same transition for every input sequence from W-set and this

may increase the test execution time.

 The Unique Input Output (UIO) method is a set of input sequences where

each input sequence can identify only one state of the machine by producing a

unique output. Thus, a UIO of a given state must produce an output that is

different from all other outputs that are produced when the same UIO is applied to

machine while it is at any other possible state.

 When testing from an FSM, the focus is on testing the control behaviours

of the system that is modelled by the FSM. However, when the subject system has

a data part in addition to the control part, the FSM model cannot represent the data

part, such behaviours can be represented by the Extended Finite State Machine

(EFSM) model.

2.7.2 Extended Finite State Machine (EFSM)

The Extended Finite State Machine (EFSM) can be considered as a solution to the

limitations found in the FSM model (FSM can capture only the control behaviours

of a system). An EFSM model can represent both the data and control parts of a

Figure ‎2.11: The Inres Initiator EFSM model

wait

(sw)

sending

(ss)

connect

(sc)

disconnect

(sd)

t2

t14

t5

t8

t10

t11

t15

t9

t3

t12 t0

 (s0, , , p:=5, sd)

(sd, (ICONreq,,),

counter:=0;!CR;T:=p, sw)

(sS, (AK,{num},

num<>number),

counter<4, undef T;

counter:=counter+1;

DT(number,olddata);

T:=p, sS)

(sS, (T_expired, ,),

counter < 4,

undef T;

counter:=counter+1;

DT(number,olddata);

T:=p, sS)

(sS, (T_expired, ,),

counter > 4, undef T;

!IDISind, sd)

(sS, (AK,{num},

num=number),

number=1, undef T;

number:=0

T:=p, sc)

(sS, (AK,{num},

num=number),

number=0,

undef T;

number:=1, sc)

(sS, (IDATreq,{data},), ,

counter=0, olddata:= data;

DT(number, data); T:=p, sS)

(sw, (DR,,), , undef T;

!IDISind, sd)

(sw, (T_expired,,),

counter < 4 , undef T;

!CR; counter:= counter+1;

T:= p, sw)

(sw, (T_expired,,),

counter > 4 , undef T;

!IDISind, sd)

(sd, (DR,,), , !IDISind, sd)

(sw, (CC,,), ,undef T;

numberi:=1;!CONconf, sC)

(sc, (DR,,), ,

!IDISind, sd)

(sS, (DR,,), ,

!IDISind, sd)

(sS, (AK,{num},

num<>number),

counter>4, undef T;

!IDISind, sd)

t1

t13 t4

t7

t6

 44

system since it has an internal store (memory) to represent the data aspects. In this

way, the EFSM machine is a Mealy machine extended with internal variables,

predicates, and operations.

 An EFSM can be defined as a 6-tuple (Ural and Yang, 1991) (S, s0, V, I, O,

T) where:

 S is the finite set of logical states

 s0  S is the initial state

 V is the finite set of internal variables

 I is the set of input declarations

 O is the set of output declarations

 T is the finite set of transitions

The transition t  T is represented by the 5-tuple (ss, i, g, op, se) in which:

 ss is the start state of t

 i is the input where i  I 

 g is the guard and is either Nil or is represented as a set of logical

expressions given in terms of variables in V
′
 where  V

′
V

 op is the sequential operation which consists of simple statements such as

output statements and assignment statements

 se is the end state of t

In an EFSM model, there is a set of variables. One variable in particular (this can

be a tuple of values) is used to represent the machine state and is called state or

major state in order to differentiate it from the other variables which are called

context variables. The state variable is used to represent the logical state, such as

Idle, Connect, Wait for connection and so on, whereas other machine data such as

port number, acknowledgement number and sequencing numbers are stored in

context variables.

 In the EFSM model, in order for a transition to be fired, there may be

some required input values and associated conditions on context variables to be

satisfied. According to this, EFSM transitions can be classified into two types:

spontaneous and non-spontaneous transitions. Spontaneous transitions do not

require input values in order to be taken; however, non-spontaneous transitions

depend on some input value(s) in order to be initiated. Both spontaneous and non-

Nil

 45

spontaneous transitions can be partitioned to conditional and unconditional

transitions depending on whether or not there exists one or more associated guards

to be satisfied before a state transition can occur.

 A state transition occurs when one of the machine‟s transitions is fired. If

the machine is at state ss then transition t = (ss, i, g, op, se) can be fired if the input

i is received and the guard g is satisfied. If this happens, the operations in op are

executed and the logical state becomes se. Both g and op can refer to input

parameters and context variables.

 An EFSM is a deterministic machine if for any group of transitions with

the same input that leave a state, it is not possible to satisfy the guards of more

than one transition in this group at the same time otherwise the machine is non-

deterministic (Shih et al., 2005). Figure 2.11 shows an EFSM example of Inres

initiator protocol. The work on this thesis considers EFSMs that are deterministic

without spontaneous transitions.

The EFSM is a powerful generic modelling approach that can capture

almost all the aspects of a system and has been commonly used for the purpose of

modelling and testing (Petrenko et al., 2004, Lorenzoli et al., 2008). It has been

used to testing UML Use Cases (Sinha et al., 2007), UML state-charts (Kim et al.,

1999, Shuhao et al., 2004), communication protocols (Dssouli et al., 1999), SDL

specification (Ural et al., 2000, Wong et al., 2009), Statecharts and Z

specifications (Hierons et al., 2001) and web services (Keum et al., 2006).

2.8 Testing From EFSMs

Generally, a test suite consists of either one or many test cases. In the first case, a

single test case is applied to the initial state of an IUT. However, in the second

case, a test suite contains more than one test case and the IUT is brought back to

its initial state every time a test sequence is applied (Petrenko et al., 1996).

Deriving a test suite for testing from an EFSM can be based on a model-based

testing criterion. There are four commonly used model-based testing criteria that

can be used when testing from an EFSM (Tahat et al., 2001):

 46

1. State coverage: A test suite contains test cases that allow visiting each

state in the model at least once.

2. Transition coverage: A test suite contains test cases that exercise each

transition in the model at least once.

3. Path coverage: a test suite contains test cases that exercise all the possible

paths in the given model at least once. Generally, this test criterion is

limited to the models that do not exhibits cyclic behaviours otherwise

there can be infinite number of paths which cannot be handled in practice.

4. Constrained path coverage: This criterion is a special case of the path

coverage criterion where each path in the model should be exercised at

least once. However, each transition in the model should not be fired more

than n times. The constraint n imposed over the number of allowed

executions of each transition avoids the problem of infinite number of

paths found on the path coverage criterion.

For any test criterion, a test suite that tests from an EFSM comprises a set of test

cases that is, in essence, a set of transition paths (TPs) through the considered

EFSM together with the transition inputs. Therefore, the problem of deriving a

test suite to test from an EFSM can be seen as the problem of finding a set of TPs

that achieves the test criterion.

 Because the EFSM model combines both the control and data aspects of a

system, the problem of deriving a set of TPs to achieve the test purpose is a

challenging task. Mainly there are two problems that make the process of

generating a set of TPs difficult.

 The first problem is related to the feasibility of a given TP. An EFSM

transitions have generally guards and actions over a set of context variables. The

actions of a given transition within a TP may assign values to some context

variables. A later transition within the same TP may have guards that require

different values of the previously set variables. Here a conflict may occur between

the assignments of the earlier transition and the guards of the later transition. This

conflict results in this TP being infeasible. An infeasible TP is not desired in a test

suite since it simply cannot be exercised and consequently the test does not

achieve its intended purpose. Nevertheless, determining if a given TP is feasible

 47

in advance is generally an undecidable problem (Dssouli et al., 1999, Hierons et

al., 2009). Furthermore, developing of good methods to approach the infeasibility

problem is an open research problem (Duale et al., 1999, Duale and Uyar, 2004).

The second problem is related to exercising a given set of feasible TPs

(FTPs) within a test suite. An FTP can require a sequence of inputs that are related

to the interaction parameters of each transition included in this FTP. Furthermore,

there may be guards over the inputs which must be satisfied so that the FTP can

be exercised. Therefore, a suitable set of test data is required to cause each FTP to

be taken. Generally, finding a suitable set of test data that can trigger a given FTP

is a substantial task (Ural and Yang, 1991) since the input domain is usually large

and the suitable values constitute just a small subset of the input domain.

 These two problems associated with EFSM testing can be eliminated if it

is possible to test an EFSM from an FSM point of view. Since testing from an

FSM model has been well studied with many approaches that are available, it is

useful if these techniques can be applied to EFSM as well. Generally, applying

FSM-based approaches to an EFSM requires converting an EFSM to an FSM.

There are two techniques to convert an EFSM to an FSM. The first technique

abstracts out the data from an EFSM so the resultant is an FSM. The second

approach expands an EFSM to become an FSM.

 If an EFSM‟s data part is abstracted (Hierons et al., 2001) then the

resultant is an FSM model. Clearly, the approach then considers only the control

aspect of an EFSM. In this way, a set of TPs can easily be derived from the

corresponding FSM since there is no feasibility problem in the FSM model.

However, when these TPs are mapped down to the original EFSM, the feasibility

problem may occur. Consequently, not all the TPs that are derived in this way are

feasible.

 When the data part of an EFSM is expanded (Hierons and Harman, 2004),

the EFSM is converted to an FSM. In this method all the TPs that are derived

from the corresponding FSM are feasible in the original EFSM. However, the

problem associated with this approach is the large number of states in the resultant

FSM which may easily lead to the state explosion problem.

 48

2.8.1 Related Work of Testing from EFSMs

Many test generation approaches for systems modelled as EFSMs appear in the

literature (Chanson and Zhu, 1993, Cheng and Krishnakumar, 1996, Dahbura et

al., 1990, Duale and Uyar, 2004, Duale et al., 1999, Hierons et al., 2004, Lefticaru

and Ipate, 2008, Petrenko et al., 1996, Ramalingom et al., 1996, Ramalingom et

al., 2003, Sarikaya et al., 1987, Ural and Yang, 1991, Derderian et al., 2005,

Bourhfir et al., 1996, Chanson and Jinsong, 1994, Derderian et al., 2010).

 An approach to generate a unified test sequence (UTS) for EFSM models

is presented in (Chanson and Zhu, 1993) based on two techniques: one to test the

control part (FSM) and the other to test the data part by using data flow analysis

technique. The resultant UTS is then checked for executability by using a

constraint satisfaction method. After the UTS was generated and verified feasible,

a later approach (Chanson and Jinsong, 1994) utilises symbolic execution together

with constraint satisfaction method to generate test data that can trigger the

considered UTS. However, the proposed approach imposes some assumptions

about the EFSM model (i.e. the existence of self-loop influencing: a loop that

modifies a global predicate variable) which restrict its applicability. Furthermore,

since the approach depends on symbolic execution, its applicability is restricted

by the same limitations found on symbolic execution applicability. Employing

symbolic execution and constraint satisfaction methods for testing from an EFSM

is also reported in (Koh and Liu, 1994, Bourhfir et al., 1996, Zhang et al., 2004).

 Generating test sequence from EFSMs by employing functional program

testing was studied in (Sarikaya et al., 1987). The approach converts the

specification written in Estelle (Budkowski and Dembinski, 1987) into a simpler

form in order to construct control and data flow graphs to be used in test cases

derivation. However, the approach does not consider the path feasibility problem.

Also, the approach operates in a manual fashion.

 Other methods that test from an EFSM using FSM-based test techniques

(Lee and Yannakakis, 1994, Cheng and Krishnakumar, 1996, Dahbura et al.,

1990, Petrenko et al., 1996) require an EFSM to be converted into an FSM. As

discussed earlier, there are two main approaches, the first being to expand the data

 49

in the EFSM. However, the number of states in the resultant FSM can easily

become prohibitively large (Hierons and Harman, 2004). The alternative is to

abstract the data from the EFSM to produce an FSM but paths taken from the

produced FSM to the original EFSM may not be necessarily feasible (Hierons et

al., 2001).

 A technique for generating unique state identification sequences for EFSM

models is presented in (Ramalingom et al., 1996, Ramalingom et al., 2003). The

technique is based on computing a new type of state identification for each state

called context independent unique sequence (CIUS). This requires that all the

paths that start from any state be context independent. That is, all the guards

included in any path can be interpreted symbolically and each state must have a

CIUS. This requirement appears to limit the applicability of the approach.

Furthermore, the study did not consider the problem of generating test inputs to

trigger the generated paths.

 An approach which employs software data flow testing to derive a test

sequence from EFSM models is presented in (Ural and Yang, 1991). The selection

of each test case depends on identifying all the associations between each output

and all the inputs that affect that output. However, as stated in (Bourhfir et al.,

1996), the approach might not always provide the intended coverage.

Furthermore, the approach did not investigate the path feasibility problem.

 Approaches that study the path feasibility problem are introduced in

(Duale and Uyar, 2004, Hierons et al., 2004). In (Duale and Uyar, 2004), a

method is given to convert EFSMs into other EFSMs in which all paths are

feasible but this requires guards and operations to be linear. In (Hierons et al.,

2004), the infeasible path problem was overcome through two steps. First, the

SDL (Specification and Description Language) model is rewritten in order to

derive a normal form-EFSM (NF-EFSM). Second, the resultant NF-EFSM is

extended to Expanded-EFSM (EEFSM) in order to aid testability. As a result, all

the paths present in the output EEFSM are feasible. However, these two

approaches (Duale and Uyar, 2004, Hierons et al., 2004) did not tackle the

problem of generating test inputs that trigger the resultant paths.

 50

Approaches that utilise search algorithms to test from EFSMs are introduced in

(Derderian et al., 2005, Derderian et al., 2010, Lefticaru and Ipate, 2008). The

approach proposed in (Lefticaru and Ipate, 2008) describes a fitness calculation

method to find a test sequence for a path. The considered fitness function applies

the Tracey et al. (Tracey et al., 1998c) technique to each transition in a path. The

path fitness is defined by considering each function in the path as a critical node.

The limitation of this study is the assumption that each function does not have an

internal path i.e. nested IF statements and thus the approach may not always

provide sufficient guidance as argued in (McMinn, 2004). Furthermore, the work

did not consider the problem of choosing a path that is likely to be feasible. In

(Derderian et al., 2005, Derderian et al., 2010), a GA approach to generate FTPs

from EFSM model was presented. This is the only previous work that utilises a

GA to generate FTPs from a given EFSM. The approach evaluated the feasibility

of a given TP according to the number and the types of guards found in that TP.

However, the dependences between transitions in a path were not considered.

Furthermore, the approach did not consider generating test inputs to trigger the

generated paths.

2.8.2 Motivation for Automatic Testing from an EFSM

Although the approaches that are reviewed in the previous subsection have made

considerable progress towards EFSM testing, these approaches have limitations

that may restrict their applicability and therefore automatic test generation from an

EFSM remains a substantial and challenging problem. Much of the previous work

can be categorised to three main categories:

1. Rewriting an EFSM to construct another form of EFSM which does not

suffer from the path infeasibility problem.

2. Converting an EFSM to an FSM so that FSM-based testing techniques can

be applied

3. Using symbolic execution and constraint satisfaction methods to check

path feasibility and to generate path test data.

 51

The first category imposes restrictions on the EFSMs that can be considered

(Duale and Uyar, 2004). Furthermore, automating the approaches that are based

on this notion is a difficult task (Hierons et al., 2004). Approaches based on the

second category can either lead to the state explosion problem or still suffer from

the path feasibility problem (Hierons and Harman, 2004). Finally, approaches

based on the last category are affected by the applicability limitations of both

symbolic execution and constraint satisfaction techniques (Michael et al., 2001,

Zhang, 2008).

There has been relatively little work towards investigating the application

of SBST approaches to the domain of EFSM testing. SBST approaches have

proven efficient and effective in automating the process of testing. Further, SBST

approaches are very promising when the considered problem is software testing

(Clark et al., 2003). Since easy and efficient testing approaches remain a

requirement, applying SBST approaches to test from an EFSM can potentially

provide new insights to this area.

 Many approaches that test from an EFSM require the generation of

transition paths through the considered models that are related to the test criterion.

Therefore, generating a set of feasible transition paths according to a given test

criterion is a basic requirement for these approaches. Furthermore, deriving test

inputs that enable traversing the feasible set of transition paths is the other basic

requirement to test from an EFSM. Since SBST approaches have been

successfully applied to white-box testing, they fit well in the scope of automating

the test generation from EFSM models.

2.9 Conclusion

Software testing is an important activity that aims to provide confidence in a

system‟s performance. Although testing can be conducted manually, automation is

desirable. Therefore, there have been many studies that aim to automate the

practice of testing in order to cut down the cost and enhance reliability. There are

several approaches to automating some aspects of testing. Among these

 52

approaches, search based software testing techniques are very promising and have

been shown to address many problems in the software testing domain.

 Model based testing is a robust approach that aims to ease the testing

process when testing from reference specifications. Models such as FSM and

EFSM that represent systems to allow an efficient testing process are widely used.

EFSM models, in particular, are powerful modelling approach that can capture

almost all aspects of a system. However, testing from an EFSM is hindered by

two main problems: path feasibility and path test cases generation.

Although they are efficient, SBST approaches have received little attention

when testing from EFSM models. The application of SBST approaches to the

domain of model-based testing is the main topic of this thesis.

 53

Chapter 3: Generating Feasible Transition

Paths (FTPs) for Testing from EFSM

Models

3.1 Introduction

This chapter proposes a search-based approach for generating a set of feasible

transition paths (FTPs) for testing from EFSM models. A classification of an

EFSM‟s transitions in terms of guards and actions is proposed. The classification

facilitates a novel representation of the dependencies among an EFSM‟s

transitions. The representation simplifies the process of detecting any possible

relation among the transitions of a given path and thus eases formulating the

problem as a search-based problem. A new fitness metric that is based on

transitions dependencies is then derived to act as a fitness function. The fitness

metric is then utilised by a GA search to facilitate FTP generation. The approach

is validated empirically on five EFSM case studies. A GA search that

implemented the proposed fitness metric is used to generate sets of transition

paths (test suites) from each considered EFSM to satisfy the transition coverage

test criterion. The results obtained from a GA search are compared to the results

of a random search.

 The chapter starts by describing five EFSM case studies in Section 3.2.

The presented case studies are used throughout the thesis to aid the description of

the proposed EFSM testing approaches. Then in Section 3.3, the problem of

generating FTPs for testing from an EFSM is described. The proposed approach is

explained in Section 3.4. The Subsections 3.4.1 and 3.4.2 describe the transitions

dependencies representation and the fitness metric together with the algorithm that

 54

calculates a TP fitness metric. In Subsection 3.4.3, a TP encoding method as a

sequence of integers is explained. The experiment is presented in Section 3.5

while concluding remarks are in Section 3.6.

3.2 Case Studies

This section introduces five EFSM case studies that are used throughout the thesis

as test subjects. Three of these EFSMs were chosen because they were previously

used in the literature to validate other EFSM testing approaches. These EFSMs

are: the Inres initiator; the core of the class 2 transport protocol; and an automated

teller machine (ATM). The other two case studies describe an in-flight safety

system and a lift system. The two synthesised EFSMs have many of their

transitions guards consisting of nested conditions and thus it is relatively difficult

to generate tests from these EFSMs. The size of the considered case studies in

terms of the number of states and transitions allows them to be used in experiment

with prototype tools and yet for test generation to be non-trivial. The following

describes each of these EFSMs:

1- In-Flight Safety System: A synthesised system that functions as a monitor of

the craft‟s cabin while the craft is in-flight. The system monitors the cabin safety

in terms of four factors: vibration, pressure, temperature and smoke. The system

Safe

t1, t2

Critical

Warning

t13 – t16

t22 – t26

t31

t7

t3 – t6

t17– t21

t8 – t12

t27 – t30

t0

Figure ‎3.1: The EFSM model of In-Flight safety system

 55

Trans. Input Guards Actions
t0 s0S1 reset Nil VarsRead= False;

!SetWarningLights(all, off);

!SwitchSounds(all,off);

t1 s1s1

t8 s2s2

t22 s3s3

?Read(Pvb, Ppr, Psm,

Ptm)

VarsRead == False Vb = Pvb; Pr = Ppr; Sm= Psm;

Tm = Ptm;

VarsRead = True;

t2 s1s1

t7 s2s1

t31 s3s1

?MainCheck1 () VarsRead == True & Vb ≥ 0 & Vb ≤10

Pr ≥ 86 & Pr ≤ 100 & Sm ≥0 & Sm ≤ 10

Tm ≥ 11 & Tm ≤ 35

VarsRead= False;

!SetWarningLights(all, off);

!SwitchSounds(all,off);

t3 s1s2

t9 s2s2

?CheckVb1() VarsRead == True & Vb ≥ 11 & Vb ≤25

VarsRead= False;

!SetLight(Seatbelt, on);

t4 s1s2

t10 s2s2

?CheckPr1() VarsRead == True & Pr ≥ 50 & Pr ≤ 85

VarsRead= False; Release(masks);

!SetLight(Seatbelt, on);

t5 s1s2

t11 s2s2

?CheckSm1() VarsRead == True & Sm ≥ 11 & Sm ≤ 25

VarsRead= False;

!SetSound(Sm, off);

t6 s1s2

t12 s2s2

?CheckTm1() VarsRead== True & (Tm ≥ 36 & Tm ≤ 46) V

(Tm ≥ 3 & Tm ≤ 10)

VarsRead= False;

!SetLight(Tm, on);

t13 s2s3

t23 s3s3

t27 s1s3

?CheckVb2() VarsRead == True & Vb >25

VarsRead= False;

!SetLight(Seatbelt, on);

t14 s2s3

t24 s3s3

t28 s1s3

?CheckPr2() VarsRead == True & Pr ≥ 0 & Pr ≤ 49

VarsRead= False;

!Release(masks);

!SetLight(Seatbelt,on);

!SetSound(Pr, off);

t15 s2s3

t25 s3s3

t29 s1s3

?CheckSm2() VarsRead == True & Sm > 25

VarsRead= False

!SetSound(Sm, off);

t16 s2s3

t26 s3s3

t30 s1s3

?CheckTm2() VarsRead= True & (Tm >46) V (Tm ≤2) VarsRead= False

!SetLight(Tm, on);

!SelLight(AC, on);

t17 s3s2 ?MainCheck2() VarsRead == True & Vb ≥ 11 & Vb ≤25 &

Pr ≥ 50 & Pr ≤ 85 & Sm ≥ 11 & Sm ≤ 25 &

(Tm ≥ 36 & Tm ≤ 46) V (Tm ≥ 3 & Tm ≤ 10)

VarsRead= False

!SetWarningLights(all, on);

!SetWarningSounds (all, off);

!Release(masks);

t18 s3s2 ?MainCheck2() VarsRead == True & Vb ≥ 11 & Vb ≤25 & Pr

≥ 86 & Pr ≤ 100 & Sm ≥0 & Sm ≤ 10 & Tm

≥ 11 &Tm ≤ 35

VarsRead= False;

!SetLight(Seatbelt, on);

t19 s3s2 ?MainCheck2() VarsRead == True & Vb ≥ 0 & Vb ≤10 & Pr ≥

50 & Pr ≤ 85 & Sm ≥0 & Sm ≤ 10 & Tm ≥ 11

&Tm ≤ 35

VarsRead= False;

!Release(masks);!SetLight(Seatbel

t, on); !SetSound(Pr, off);

t20 s3s2 ?MainCheck2() VarsRead == True & Vb ≥ 0 & Vb ≤10 &

Pr ≥ 86 & Pr ≤ 100 & Sm ≥ 11 & Sm ≤ 25 &

Tm ≥ 11 &Tm ≤ 35

VarsRead= False;

!SetSound(Sm, off);

t21 s3s2 ?MainCheck2() VarsRead == True & Vb ≥ 0 & Vb ≤10 &

Pr ≥ 86 & Pr ≤ 100 & Sm ≥0 & Sm ≤ 10 &

(Tm ≥ 36 & Tm ≤ 46) V (Tm ≥ 3 & Tm ≤ 10)

VarsRead= False

!SetLight(Tm, on);

!SelLight(AC, on);

Table ‎3.1: The transitions description of the In-Flight safety system

 56

comprises three states: Safe, Warning and Critical. At each state a new reading of

the four factors is performed and stored in four context variables. For each new

reading, a check on these four factors must be followed. This is controlled by

using a Boolean variable, VarsRead, which must be false before any new reading

can be performed and then is set to true after each new reading. Any checking

process requires this Boolean variable to be true and then resets it to false after the

check is performed. Therefore, the system does not allow two or more new

readings in a sequence without a check or two or more checks in a sequence

without a reading. The system remains in the Safe state whilst the values of these

four factors are within a set of pre-defined ranges. However, when the value of

one or more factors is within another set of pre-defined ranges, the system is in

the Warning state. Here the pilot should take one or more actions according to a

pre-defined list. Also, the system can respond with some necessary actions i.e.

when the air pressure is low, oxygen masks are released automatically. The

system moves to the Critical state when the value of one or more factors is in a

critical range. In this state, the pilot has to directly intervene. For example, if the

pressure cannot be brought back to normal, an emergency landing might take

place. The EFSM that represents the specifications has three states S = {Safe,

Figure ‎3.2: The EFSM model of core transitions of class 2 transport

protocol model

S1

t18

t7 – t15

t19, t20

t0
S2

S3

S5

S6

S4
t4

t1

t3

t6

t5

t2 t16

t17

 57

Trans. Input Guards Actions
t0 s1s2 U?TCONreq (dst_add,

prop_opt)

Nil opt = prop_opt; R_credit =0;

N!TrCR

t1 s1s3 N?TrCR (peer_add,

opt_ind, cr)

Nil opt= opt_ind; S_credit=cr;

R_credit=0; U!TCONind

t2 s2s4 N?TrCC (opt_ind, cr) opt_ind ≤ opt TRsq=0; TSsq=0; opt=opt_ind;

S_credit=cr; U!TCONconf

t3 s2s5 N?TrCC (opt_ind, cr) opt_ind > opt U!TDISind; N!TrDR

t4 s2s1 N?TrDR (disc_reason,

switch)

Nil U!TDISind; N!terminated

t5 s3s4 U?TCONresp(accpt_o

pt)

accpt_opt ≤ opt opt= accpt_opt; TRsq=0;

TSsq=0; N!TrCC

t6 s3s6 U?TDISreq () Nil N!TrDR

t7 s4s4 U?TDATAreq

(Udata, E0SDU)

S_credit > 0 S_credit= S_credit -1; TSsq =

(TSsq +1)mod128; N!TrDT

t8 s4s4 N?TrDT

(Send_sq,Ndata,

E0TSDU)

R_credit  0 & Send_sq= TRsq TRsq=(TRsq+1) mod128;

R_credit=R_credit -1;

U!DATAind; N!TrAK

t9 s4s4 N?TrDT (Send_sq,

Ndata, E0TSDU)

R_credit = 0 V Send_sq  TRsq U!error; N!error

t10 s4s4 U?U READY (cr) Nil R_credit= R_credit + cr;

N!TrAK

t11 s4s4 N?TrAK (XpSsq, cr) TSsq > XpSsq & cr + XpSsq – TSsq > 0

& cr +XpSsq – TSsq < 15

S_credit = cr + XpSsq – TSsq

t12 s4s4 N?TrAK (XpSsq, cr) TSsq > XpSsq & (cr + XpSsq – TSsq < 0

V cr +XpSsq – TSsq >0)

U!error; N!error

t13 s4s4 N?TrAK (XpSsq, cr) TSsq < XpSsq & cr + XpSsq – TSsq –

128 > 0 & cr + XpSsq – TSsq – 128 < 15

S_credit= cr+ XpSsq –TSsq –

128

t14 s4s4 N?TrAK (XpSsq, cr) TSsq < XpSsq & (cr + XpSsq – TSsq –

128 < 0 V cr + XpSsq – TSsq – 128 > 15)

U!error; N!error

t15 s4s4 N?Ready S_credit > 0 U!Ready

t16 s4s5 U?TDISreq Nil N!TrDR

t17 s4s6 N?TrDR (disc_reason,

switch)

Nil U!TDISind; N!TrDC

t18 s6s1 N?terminated Nil U!TDISconf

t19 s5s1 N?TrDC Nil N!terminated; U!TDISconf

t20 s5s1 N?TrDR (disc_reason,

switch)

Nil N!terminated

Table ‎3.2: The transitions description of the class 2 transport protocol

 58

Warning, Critical}, five context variables V = {VarsRead, Vb, Pr, Sm, Tm} and

31 transitions. Figure 3.1 shows the EFSM state transition diagram and Table 3.1

describes the transitions.

2- Class 2 Transport Protocol: This EFSM is a major model based on the access

point module (AP-module) of the simplified version of a class 2 transport

protocol. The EFSM model represents the core protocol transitions as described in

(Ramalingom et al., 2003) and (Bochmann, 1990). The system has two interaction

points: U for connecting to transport service access point and N for connecting to

a mapping module. The system is involved in connection establishment, data

transfer, end-to-end flow control and segmentation. The EFSM that represents the

specifications has seven states S = {s0, .. , s6}, five context variables V = {opt, R-

credit, S-credit, TRsq , TSsq} and 21 transitions. The state transition diagram of

this EFSM is shown in Figure 3.2 and the transitions are described in Table 3.2.

3- Lift System: A synthesised lift system for a building with three floors. The

system consists of four states: Floor-0, Floor-1, Floor-2 and Stop. The lift

provides five operations: Open, Close, Request, Service and Stop. The operations

Open and Close are used to handle the cabin‟s door when the lift is situated in the

Floor-0

t1, t2

Floor-2

Floor-1

t9, t12

t13, t14

t15, t18

t4, t6

t3, t5

t10, t11

t7, t8

t16, t17

t0

Stop t21

t22

t23
t24

t20

t19

Figure ‎3.3: The EFSM model of the Lift system

 59

Trans. Input Guards Actions

t0 s0 reset Nil Floor = 0; DrSt = 0; w = 0;

t1 s0s0 ?DrOp(Pos) DrSt == 0 & Pos ≥ 0 & Pos ≤15 DrSt = 1;

t2 s0s0 ?DrCl(Pos, Pw) DrSt == 1 & Pos ≥ 0 & Pos ≤15 DrSt = 0; w = Pw

t3 s0s1 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 1 & w ≥15 & w ≤ 250 & Ph ≥ 10

& Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 1;

!Display(Floor);

t4 s1s0 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w ≥15 & w ≤ 250 & Ph ≥ 10

& Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 0;

!Display(Floor);

t5 s0s1 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 1 & w =0 & Ph ≥ 10 & Ph ≤ 35 &

Ps ≥ 0 & Ps ≤25

Floor = 1;

!Display(Floor);

t6 s1s0 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w =0 & Ph ≥ 10 & Ph ≤ 35 &

Ps ≥ 0 & Ps ≤25

Floor = 0;

!Display(Floor);

t7 s1s1 ?DrOp(Pos) DrSt == 0 & Pos ≥ 0 & Pos ≤15 DrSt = 1;

t8 s1s1 ?DrCl(Pos, Pw) DrSt == 1 & Pos ≥ 0 & Pos ≤15 DrSt = 0; w = Pw

t9 s1s2 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 2 & w ≥15 & w ≤ 250 & Ph ≥ 10

& Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 2;

!Display(Floor);

t10 s2s1 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 1 & w ≥15 & w ≤ 250 & Ph ≥ 10

& Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 1;

!Display(Floor);

t11 s2s1 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf ==1 & w =0 & Ph ≥ 10 & Ph ≤ 35 &

Ps ≥ 0 & Ps ≤25

Floor = 1;

!Display(Floor);

t12 s1s2 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 2 & w =0 & Ph ≥ 10 & Ph ≤ 35 &

Ps ≥ 0 & Ps ≤25

Floor = 2;

!Display(Floor);

t13 s2s2 ?DrOp(Pos) DrSt == 0 & Pos ≥ 0 & Pos ≤15 DrSt = 1;

t14 s2s2 ?DrCl(Pos, Pw) DrSt == 1 & Pos ≥ 0 & Pos ≤15 DrSt = 0; w = Pw

t15 s2s0 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w ≥15 & w ≤ 250 & Ph ≥ 10

& Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 0;

!Display(Floor);

t16 s0s2 ?Srv(Pf, Ph, Ps) DrSt == 0 & Pf == 2 & w ≥15 & w ≤ 250 & Ph ≥ 10

& Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 2;

!Display(Floor);

t17 s0s2 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf ==2 & w =0 & Ph ≥ 10 & Ph ≤ 35 &

Ps ≥ 0 & Ps ≤25

Floor = 2;

!Display(Floor);

t18 s2s0 ?Req (Pf, Ph, Ps) DrSt == 0 & Pf == 0 & w =0 & Ph ≥ 10 & Ph ≤ 35 &

Ps ≥ 0 & Ps ≤25

Floor = 0;

!Display(Floor);

t19 s0ss ?Stp (Pf, Ph, Ps) DrSt == 0 & Pf == 100 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 100;

!Display(Floor);

t20 sss0 ?Srv(Pf) DrSt == 0 & Pf == 0 Floor = 0;

!Display(Floor);

t21 sss1 ?Srv(Pf) DrSt == 0 & Pf == 1 Floor = 1;

!Display(Floor);

t22 s1ss ?Stp (Pf, Ph, Ps) DrSt == 0 & Pf == 100 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 100;

!Display(Floor);

t23 s2ss ?Stp (Pf, Ph, Ps) DrSt == 0 & Pf == 100 & w ≥15 & w ≤ 250 & Ph ≥

10 & Ph ≤ 35 & Ps ≥ 0 & Ps ≤25

Floor = 100;

!Display(Floor);

t24 sss2 ?Srv(Pf) DrSt == 0 & Pf == 2 Floor = 2;

!Display(Floor);

Table ‎3.3: The transitions description of the Lift system

 60

specified position at each given floor. The door cannot be opened if it is already

opened and similarly for close. This is controlled through a Boolean variable that

is either true or false depending on the door situation. The Request operation

allows a user to order the lift from a specific floor whereas the Service operation

moves the lift from one floor to another floor. The stop operation facilitates an

unusual case when a user wants to immediately halt the current service and so the

lift will be situated at any given position. When the lift is in the Stop state, the

operations Open, Close and Request are not allowed. If the cabin door is requested

to be opened or closed, the system specification requires that the lift is situated at

the specified place, the door frame, within a margin that does not exceed 15%.

When the cabin door is closed, the cabin load‟s weight is read and stored in a

context variable. In order for the cabin to move (Service or Request) the door

should be closed. Furthermore, for safety purposes, the temperature and smoke

levels inside the cabin should be within pre-defined ranges. Also, the lift does not

provide a service if the weight of the cabin‟s load is less than or equal to 15 KG

and thus a small child cannot operate the lift alone. The lift EFSM has four states

S= {Floor0, Floor1, Floor2, Stop}, three context variables V= {Drst, w, Floor} and

24 transitions. The EFSM state transition diagram is shown in Figure. 3.3 whereas

the transitions are described in Table 3.3.

Figure ‎3.4: The EFSM model of Inres Initiator

wait

(sw)

sending

(ss)

connect

(sc)

disconnect

(sd)

t2

t14

t5

t8

t10

t11

t15

t9

t3

t12 t0

 (s0, , , p:=5, sd)

(sd, (ICONreq,,),

counter:=0;!CR;T:=p, sw)

(sS, (AK,{num},

num<>number),

counter<4, undef T;

counter:=counter+1;

DT(number,olddata);

T:=p, sS)

(sS, (T_expired, ,),

counter < 4,

undef T;

counter:=counter+1;

DT(number,olddata);

T:=p, sS)

(sS, (T_expired, ,),

counter > 4, undef T;

!IDISind, sd)

(sS, (AK,{num},

num=number),

number=1, undef T;

number:=0

T:=p, sc)

(sS, (AK,{num},

num=number),

number=0,

undef T;

number:=1, sc)

(sS, (IDATreq,{data},), ,

counter=0, olddata:= data;

DT(number, data); T:=p, sS)

(sw, (DR,,), , undef T;

!IDISind, sd)

(sw, (T_expired,,),

counter < 4 , undef T;

!CR; counter:= counter+1;

T:= p, sw)

(sw, (T_expired,,),

counter > 4 , undef T;

!IDISind, sd)

(sd, (DR,,), , !IDISind, sd)

(sw, (CC,,), ,undef T;

numberi:=1;!CONconf, sC)

(sc, (DR,,), ,

!IDISind, sd)

(sS, (DR,,), ,

!IDISind, sd)

(sS, (AK,{num},

num<>number),

counter>4, undef T;

!IDISind, sd)

t1

t13 t4

t7

t6

 61

F
ig

u
re

 ‎3
.5

:
T

h
e

E
F

S
M

 m
o
d

el
 o

f
th

e
A

T
M

 S
y
st

em

 S
0

P
IN

(p
),

 p
 !

=
 p

in
,

at
te

m
p
ts

 =
=

3
,

D
is

p
(”

W
ro

n
g
 P

IN
”)

;

S
el

ec
t(

id
),

 i
d
 =

=
2

D
is

p
(F

re
.
M

e
n
u
);

S
2

S

1

S
3

C
ar

d
(p

in
,

sb
,

cb
),

at
te

m
p
ts

:=
0
;

D
is

p
(”

E
n
te

r

P
IN

”)
;

P
IN

(p
),

 p
 !

=
 p

in
,

at
te

m
p
ts

<
3
,

D
is

p
(”

W
ro

n
g
 P

IN
,

R
e-

e
n
te

r”
);

 a
tt

em
p
ts

:=

at
te

m
p
ts

+
1
;

 at
te

m
p
ts

:=
0
;!

”E
n
te

r
P

IN
”
)

P
IN

(p
),

 p
 =

=
 p

in
,

at
te

m
p
ts

 ≤
3
,

D
is

p
(”

S
el

e
ct

L
an

g
.”

);

S
el

ec
t(

id
),

 i
d
 =

=
1

D
is

p
(E

n
g
.
M

e
n
u
);

 at
te

m
p
ts

:=
0
;!

”E
n
te

r
P

IN
”
)

S
8

S
6

C
u

rr
e
n
t

D
o
n
e

S
av

in
g

T
ra

n
sf

e
r

D
o
n
e

S
9

S
7

T
ra

n
s(

id
1

,i
d

2
,a

m
n

t)
,
id

1
 =

=
1
,

id
2

 =
=

2
,

am
n
t>

0
,

am
n
t<

cb
,

cb
=

cb
 –

 a
m

n
t;

 s
b

 =
 s

b
 +

 a
m

n
t;

T
ra

n
s(

id
1

,i
d

2
,a

m
n

t)
,
id

1
 =

=
2
,

id
2

 =
=

1
,

am
n
t>

0
,

am
n
t<

sb
,
sb

=

sb
 –

 a
m

n
t;

 c
b

 =
 c

b
 +

 a
m

n
t;

P
ri

n
t(

id
),

 i
d
 =

=
1
,

re
ce

ip
t(

E
n

g)
;

W
it

h
d

ra
w

al
 (

w
),

 w
>

0
,

w
<

=
2

0
0

,

w
<

sb
,
sb

=
 s

b
–

w
;

B
al

an
ce

(i
d
),

 i
d

=
=

1
,
D

is
p
(E

n
g,

 s
b
);

D

ep
o

si
t(

d
),

 d
>

0
,

sb
=

 s
b

+
d
;

B
al

an
ce

(i
d
),

 i
d

=
=

2
,
D

is
p
(F

re
,

sb
);

P

ri
n
t(

id
),

 i
d
 =

=
1
,

re
ce

ip
t(

E
n

g)
;

 P
ri

n
t(

id
),

 i
d
 =

=
2
,

re
ce

ip
t(

F
re

);

S
el

ec
t(

id
),

 i
d
 =

=
0

D
is

p
(“

C
an

ce
li

n
g
)”

;

E
je

ct
 c

ar
d
;

t7

t9

t4

t1

t3

t6

t5

t2

t8

t1
0

t2
3

t2
5

t2
0

t1

9

t2
2

t2

1

t2
4

t2
7

t2
6

t2
8

t1
7

t1

8

P
ri

n
t(

id
),

 i
d
 =

=
2
,

re
ce

ip
t(

F
re

);

t2
9

t3
0

S
4

D

o
n
e

S
5

P
ri

n
t(

id
),

 i
d
 =

=
1
,

re
ce

ip
t(

E
n

g)
;

W
it

h
d

ra
w

al
 (

w
),

 w
>

0
,

w
<

=
2

0
0

,
w

<
cb

,

cb
=

 c
b
–

w
;

D
ep

o
si

t(
d
),

 d
>

0
,

cb
=

 c
b

+
d
;

B
al

an
ce

(i
d
),

 i
d

=
=

1
,
D

is
p
(E

n
g,

 c
b
);

B
al

an
ce

(i
d
),

 i
d

=
=

2
,
D

is
p
(F

re
,

cb
);

t1
5

t1
4

t1
1

t1
3

t1

2

P
ri

n
t(

id
),

 i
d
 =

=
2
,

re
ce

ip
t(

F
re

);

t1

6

 62

4- Inres Initiator: The Inres (Hogrefe, 1991) protocol is connection-oriented and

comprises the initiator, which establishes a connection and sends data, and the

responder which receives data and terminates connections. The Inres protocol is

asymmetrical and offers many concepts from the OSI (Open Systems

Interconnection) standard. The protocol was designed to be similar to real

protocols and yet small enough to allow experiments to be conducted for research

purposes.

The Inres initiator has five states S = {s0, disconnect, wait, connect,

sending}, four context variables V = {counter, number, T, p} and 15 transitions.

Figure 3.4 shows the Inres initiator EFSM together with the transitions

description.

5- Automated Teller Machine (ATM): This represents an extension of the

machine described in (Korel et al., 2002). The machine offers the option of

English or French menu and provides three services: Deposit, Withdrawal and

Transfer between two accounts (Current and Saving). In order for any transaction

to occur, a user must provide a valid PIN within three tries otherwise the machine

will cancel the operation. A user may perform a Withdrawal operation if the

requested amount is less than or equal to £200 and the amount is available in the

account from which the fund will be deducted (Current or Saving). Similarly, a

user may transfer funds between the two accounts if the transferred amount is

available in the source account. The ATM EFSM that represents the specification

has ten states S= {s0, .. , s9}, four context variables V= {PIN, cb, sb, attempts} and

30 transitions. Figure 3.5 shows the EFSM state transition diagram together with

the transitions description.

3.3 Problem Area

The FSM model can only represent systems that have control aspect. Naturally

many systems have control and data aspects and thus the FSM cannot be applied.

An FSM extended with memory is an EFSM. By including both data and control

aspects, the EFSM has become a powerful modelling approach that can represent

 63

a wide range of systems. While this extension allows more capabilities, it brings a

new challenge that is not found in the FSM.

The challenge is mainly related to conduct testing from EFSM models.

One part of an EFSM testing problem can be expressed in terms of finding

suitable transition paths (TPs) through the EFSM that satisfy a given test criterion.

However, since the EFSM combines the control and data aspects of a system, not

every TP through a given EFSM is feasible. A transition in an EFSM can have

guards and actions over the machine context variables. The guards must be

satisfied in order for this transition to be fired. If this happens, the associated

actions are executed and thus the values of some or all the context variables are

updated. When considering a path through an EFSM, more than one transition

needs to be fired in a sequence. If an earlier transition in the path has an action

that sets the value of a context variable v whereas a later transition in the path has

a guard that requires the same context variable v to have a different value, then

there is an opposition between the actions and the guards and the considered path

is infeasible.

Consider, for example, the EFSM model of the In-Flight system shown in

Figure 3.1. If the TP t0t2t1 is selected to cover the transition t2, then this transition

is not exercised since this TP is infeasible. This is because the earlier transition t0

has an action that sets the value of the context variable VarsRead to be false (see

Table 3.1). However, the next transition t2 has a guard that requires VarsRead to

be true. In this case, the selected TP is infeasible and so cannot be triggered.

Similarly, any generated TP that contains this subsequence of transition (t0t2) is

also infeasible.

This demonstrates that testing from EFSMs is generally complicated by

the presence of infeasible paths (Hierons et al., 2004). Infeasible TPs included in a

test suite may be expensive since any attempt to trigger these TPs will be

unsuccessful. Generally, an infeasible TP is not desired in a test suite since it

simply cannot be exercised and consequently the test suite may not satisfy the

associated test criterion. Nevertheless, determining in advance whether a given TP

is feasible is generally an undecidable problem (Dssouli et al., 1999, Hierons et

al., 2009). Furthermore, developing good methods to approach the infeasibility

 64

problem is an open research problem (Duale et al., 1999, Duale and Uyar, 2004).

Previous studies in this area have mainly approached the path feasibility

problem by:

1- Rewriting an EFSM to construct another form of EFSM which does not

suffer from the path infeasibility problem (Duale and Uyar, 2004, Hierons

et al., 2004). However, these approaches are either not automated or can

only be applied to certain types of EFSM.

2- Converting an EFSM to an FSM so that FSM-based testing techniques can

be applied (Lee and Yannakakis, 1994, Cheng and Krishnakumar, 1996,

Dahbura et al., 1990, Petrenko et al., 1996). Such approaches may lead to

the state explosion problem.

3- Using symbolic execution and constraint satisfaction methods to check

path feasibility after TPs were generated (Chanson and Jinsong, 1994,

Bourhfir et al., 1996). However, symbolic execution and constraint

satisfaction methods are not always applicable i.e. it is difficult to apply a

symbolic execution to test subjects with arrays. Furthermore, for some

types of constraints, the problem of solving them may be an undecidable

problem (Zhang, 2008).

Although a precise assessment of TP feasibility is not always possible, it may

include an attempt to execute the TP in order to determine whether it is feasible.

However, executing a TP to understand its feasibility may encounter two

problems. The first problem is related to finding a suitable test case to trigger a

given TP. If the selected TP is not triggered, then another TP should be selected to

be tried out. However, there can be a large number of alternative TPs that can be

formed depending on the test criterion. Thus, the other problem is the possibility

of trying to execute a large number of alternative TPs until one of them is

triggered. The problem of trying to choose one of these alternative TPs based on

the execution possibility can be an expensive approach.

This shows that deriving a set of TPs to satisfy a test criterion by merely

considering the test criterion is insufficient and extra information is required to try

to help choose TPs that satisfy the test criterion and also likely to be feasible. The

argument here is that the problem of generating FTPs from an EFSM can be

 65

approached by having a metric that estimates TPs feasibility. Importantly, this can

be included in the TP generation. This aim fits well in the scope of search-based

testing because:

1- The problem of generating FTPs from an EFSM has generally an

undecidable nature and using search-based approaches can provide new

insights.

2- There is a large number of TPs that can be formed from a given EFSM and

a fitness metric can potentially direct search towards TPs that satisfy the

test criterion and are likely to be feasible.

One motivation for the work described in this chapter is the observation that there

has been relatively little research related to applying search-based testing to the

problem of testing from EFSM models. Furthermore, when generating a set of

paths to satisfy a test criterion there are many alternative choices and it is

desirable to produce a set that contains paths that are feasible. Thus, the approach

presented here aims to produce a fitness metric that can be computed quickly and

that can be used as part of an overall fitness function. In particular, if it is possible

to have a fitness function that directs search towards paths that satisfy a current

test objective (part of a test criterion) then the problem of producing an

appropriate path can be seen as a multi-objective search problem. Ultimately, the

approach has the potential to be incorporated into the search when using any

available testing technique that require the generation of a set of feasible paths

through an EFSM model to satisfy a particular test criterion (Chanson and Zhu,

1993, Derderian et al., 2005, Duale and Uyar, 2004, Duale et al., 1999, Hierons et

al., 2004, Koh and Liu, 1994, Petrenko et al., 2004, Ramalingom et al., 2003,

Sarikaya et al., 1987, Wang and Liu, 1993, Ural and Yang, 1991). The approach

presented in this chapter aims to form part of the solution to the following

problem:

Given: an EFSM model and a test adequacy criterion

Problem: generate a set of TPs that are feasible and satisfy the test criterion by

using a search-based approach. The primary contributions of this chapter are the

following:

 66

1. The chapter describes a novel method to represent the dependencies found

among an EFSM transitions.

2. The chapter defines a new fitness metric that can be easily utilised by

heuristic search techniques such as a GA to facilitate the automatic

generation of (FTPs) through EFSMs for the purpose of testing.

3. The chapter empirically validates the efficiency of the proposed approach by

using it with five EFSM case studies.

3.4 The Proposed Approach

This Section describes the proposed search-based FTPs generation approach.

Before providing a detailed description, the following definitions are introduced:

Definition 3.4.1: A transition path (TP) of length n through an EFSM is a

sequence of n consecutive transitions t1, t2, .., tn.

Definition 3.4.2: A TP is feasible (an FTP) if it is possible to trigger each

transition ti, where 1 < i < n, in the order that it appears in this TP.

Any path from the initial state of an EFSM defines a TP but only some of

these paths may be FTPs. For example, for the In-Flight EFSM shown in Figure

3.1, the TP t0t1t2 is an FTP but the TP t0t1t1 is not since t1 sets the value of the

context variable VarsRead to true and then the next t1 requires VarsRead to be

false.

Based on the definition of an EFSM transition that is given in Chapter 2,

any transition can generally have guards and operations. A transition‟s guard has

the form of (e gop e′) where e and e′ are expressions and gop  {>, <, ≥, ≤, =, ≠}

is the guard operator.

Given an expression e, let Ref(e) denote the set of variables that appear in

e. According to e and e′ a transition‟s guard can be classified into the following

types:

 67

1. g
pv

: a comparison involving a parameter and one or more context variables

where Ref(e)  Ref(e′) contains a parameter and also context variables.

An example is the transition t2 in the ATM, shown in Figure 3.5, since it

inputs a PIN p and then compares this with the correct PIN.

2. g
vv

: a comparison among context variables‟ values where every element of

Ref(e)  Ref(e′) is a context variable and both e and e′ are not constant.

3. g
vc

: a comparison between a constant and an expression involving context

variables; all elements of Ref(e)  Ref(e′) are context variables and either

e or e′ is a constant. An example is the transition t3 in the Inres initiator

(Figure 3.4) since its guard references a context variable counter,

compares it to a constant and does not reference an input parameter.

4. g
pc

: a comparison between a constant and an expression involving a

parameter; there exists a parameter p  Ref(e)  Ref(e′) and either e or e′

is a constant. Transition t5 in the ATM (Figure 3.5) is an example since it

compares the input id to a constant.

5. g
pp

: a comparison between expressions involving parameters; there exists a

parameter p  Ref(e)  Ref(e′) and both e and e′ are not constant.

An assignment that occurs in a transition t has the form of v = e, where v is a

context variable and e is an expression. An assignment to a context variable v can

be classified as one of the following types:

1. op
vp

: it assigns to v a value that depends on the parameter and so there is a

parameter p  Ref(e). An example is the transition t2 in the Lift system

(Figure 3.3) since it inputs the weight of a cabin‟s load pw and updates the

value of the context variable w on the basis of this.

2. op
vv

: it assigns to v a value that depends on the context variable(s) and so

some the elements of Ref(e) are not parameters. An example is the

transition t2 in the ATM (Figure 3.5) since it updates the value of the

context variable attempts by using the value of the context variable

attempts.

3. op
vc

: it assigns to v a constant value and so e is a constant. An example is

the transition t1 in the Inres initiator (Figure 3.4) since it defines the value

of the context variable counter to be a constant.

 68

Based on the classifications of guards and assignments, two types of transitions

can be distinguished: affecting and affected-by transitions.

Definition 3.4.3: In a TP t1, t2, .., tn, ti is an affecting transition if ti has an

assignment op op
vp

, op
vc

, op
vv

} to v and there exists a guarded transition tj

TP, where 1 < i < j < n, tj has a guard g  g
pv
g

vv
g

vc
over v and a path from

ti to tj is definition clear for v. tj is also said to be an affected-by transition.

For example, in the In-Flight EFSM (Figure 3.1), the transition t1 assigns a

value to the context variable VarsRead and the guard of t2 references this variable.

Furthermore, there is a definition clear path, t1t2, from t1 to t2 and so for the

subsequence t1t2 the transition t1 is an affecting one whereas t2 is an affected-by

transition.

Definition 3.4.4: For variable v, assignment op of type op
vc

 is opposed to guard g

of type g
vc

 when the path from op to g is definition clear for v and either the

constants that appear in op
vc

 and g
vc

 are the same and gop {<, >, } or are

different and gop {=}.

Consider again the In-Flight EFSM, the assignment to VarsRead in

transition t2 is opposed to the guard in t3 since t2 sets VarsRead to false and t3

requires VarsRead to be true. As a result, any path that contains the subsequence

t2t3 must be infeasible.

Definition 3.4.5: For variable v, guards g1 and g2 of type g
vc

 are opposed when the

path from g1 to g2 is definition clear for v and one of the following hold:

1. The constants that appear in g1
vc

 and g2
vc

 are the same and (one gop {,

>, <} and the other gop {=} or one gop {>, ≥} and the other

gop{<} or one gop{<, ≤} and the other gop{>}).

2. The constants are different and both gops {=}.

 For example, in the Lift system (Figure 3.3), the guard of transition t16

requires the weight of the cabin‟s load, w, to be equal to or greater than 15

whereas transition t18 requires w to be 0. A subsequence t16t18 is a definition clear

 69

path for w and therefore a TP that includes this subsequence is infeasible. By

Definitions 3.4.3, 3.4.4 and 3.4.5, two cases can be defined where a TP is clearly

infeasible:

Definition 3.4.6: A TP t1, t2, .., tn with length n >1 is definitely infeasible if one of

the following hold:

1. There exists a variable v and a pair of transitions (ti, tj) where < i < j < n,

ti is an affecting transition of type op
vc

, tj is an affected-by transition of

type g
vc

 and op
vc

 opposes g
vc

.

2. There exists a variable v and a pair of transitions (ti, tj) where gi and gj are

of type g
vc

 and gi opposes gj.

An Example of the first case is the transition sequence t1t4 in the Inres

initiator (Figure 3.4). Since t1 has an operation that assigns 0 to the counter while

t4 has a guard that requires counter > 4. An example of the second case is the

transition subsequence t4t5 in the Lift system (Figure 3.3). Transition t4 requires

the value of the variable w to be in [15.. 250] while t5 requires the value of w to be

0 and also the path t4t5 is definition clear for w. Thus any path that contains the

subsequence t4t5 must be infeasible.

3.4.1 Dependencies Representation and Penalties

This subsection describes the TP fitness metric which aims to estimate the

„feasibility‟ of a given TP without executing it. In order to estimate the feasibility

of a TP, all dependencies among the affecting and affected-by transitions in this

TP are found. The aim is to have a fitness metric that can be used in search and so

there is a need to have the fitness metric to be computationally simple. The TP

fitness metric is therefore based on a set of approximate penalty values (Kalaji et

al., 2009b) that are determined in advance.

 The penalty value is a numerical estimation of how easily a given guard

can be satisfied. Since a guard can be affected by a previous operation, there are

three factors that have to be considered when assigning a penalty value to a pair of

 70

(affecting, affected-by). The first factor is related to the guard type. For example,

a guard of type g
vc

 can be classified as the hardest since the option of selecting the

values of either c or v is not available. In contrast, a guard of the type g
pv

 is

typically easier to satisfy since it is possible to choose the value of the parameter.

The second factor concerns the guard operator. For example, the operator = is

normally the most difficult to satisfy and  is the easiest. Finally, the third factor

is related to the operation type of an affecting transition. For example, an

operation of type op
vp

 is potentially useful since the parameter provides an

opportunity to try to select a suitable value for v while op
vc

 is the worst since it is

not possible to select the value of c. In addition to the penalty between a pair of

(affecting, affected-by), it is possible to have a guard that is not affected by any

operation (e.g. g
pc

) and for such a case, only the first two factors are considered

when assigning a penalty value.

Table 3.4 shows the suggested penalty values for all possible combinations

among affecting and affected-by transitions. For cases where there are no

affecting transitions, the symbol „–‟ is used to indicate that the choices op
vp

, op
vv

and op
vc

 are irrelevant. In the case where a TP is definitely infeasible, INF
1

represents a large positive integer to help the search to avoid TPs with such

dependencies.

A guard can be given using nested IFs or predicates linked by AND and

OR. For guards that are represented as nested IFs or linked by AND, the sum of

penalties is applied, however, the minimum penalty is considered when an OR

operator is present (Tracey et al., 1998c).

The dependency between affecting and affected-by transitions can occur

on the basis of one or more context variables and an affected-by transition can be

affected by one or more transitions in a given TP. Therefore, each dependency

between a pair of (affecting, affected-by) transitions is recorded together with the

1
INF represents a large positive integer to indicate that a given path is infeasible. In all

experiments INF was set to be 1 × 10
4
 since the penalty values associated with transitions

dependencies (see Table 3.4) cannot lead to a given TP being assigned a penalty value ≥ 10
4
 unless

this TP is infeasible. However, other large positive integers can also be used.

 71

context variable at which the dependency occurs. There are three types of

assignments and each type is represented by an integer. The integers -2 and -1

mean an assignment of a constant value (op
vc

) and an assignment of a parameter

value (op
vp

) respectively. However, an assignment that references a context

variable (op
vv

) is represented by a positive integer in [1.. m] (m context variables).

A number in [1..m] represents the corresponding context variable appearing on the

right-hand side of the assignment. If an assignment of type (op
vv

) references more

than one context variable, the calculation is simplified by using only one of these.

The observation here is that if it is possible to easily set (choose) the value of one

of these context variables then it may be less important whether it is possible to

set the values of the others. Consider, for example, the problem of

Guard &

Operator

Assignments

(nop) (op
vp

) (op
vv

) (op
vc

)

g
pv

(=) 4 8 16 24

g
pv

(<, >) 3 6 12 18

g
pv

(< , >) 2 4 8 12

g
pv

() 1 2 4 6

g
vv

(=) 16 20 40 60

g
vv

(<, >) 12 16 32 48

g
vv

(< , >) 8 12 24 36

g
vv

() 4 8 16 24

g
vc

(=) 40 30 60 INF if False and 0 otherwise

g
vc

(<, >) 32 24 48 INF if False and 0 otherwise

g
vc

(< , >) 24 18 36 INF if False and 0 otherwise

g
vc

() 16 12 24 INF if False and 0 otherwise

g
pc

(=) 12 - - -

g
pc

(<, >) 8 - - -

g
pc

(< , >) 4 - - -

g
pc

() 1 - - -

g
pp

(=) 6 - - -

g
pp

(<, >) 4 - - -

g
pp

(< , >) 2 - - -

g
pp

() 1 - - -

gi opposes gj INF - - -

Table ‎3.4: The suggested penalty values where INF is a large positive integer

to indicate that a given dependency represents an infeasible case.

 72

satisfying a guard v=v′ for context variables v and v′. If the value of v can easily

be set by using a parameter p, then it may be possible to choose values for the

other parameters, note the value of v′ and then decide the value of p. As a result,

the referenced variable vj is chosen by considering its assignment in the previous

transition as the following preference: (1) the assignment (to vj) references a

parameter, (2) the assignment references a constant and (3) the assignment

references context variables. Having chosen the vj, the value is computed as

shown in Table 3.4. It is possible that there is no assignment (nop) and so no

dependency between the transitions, or there is an open-ended dependency (a

variable references another variable which is not defined). Such cases are

represented by 0. Table 3.5 lists the dependency types and their integer

representation.

For example, the In-Flight EFSM (Figure 3.1) has five context variables

VarsRead, Vb, Pr, Sm, Tm which will be referred to by v1, v2, v3, v4, v5

respectively. Consider transitions t1 and t2, from Table 3.1 transition t2 is an

affected-by of type g
vc

 and t1 is an affecting transition of type op
vc

 at v1 and of

type op
vp

 at v2, v3, v4 and v5. From Table 3.4, the penalty value for each

dependency is 0, 18, 18, 18 and 18 respectively. Dependencies between t1 and t2

occur at all context variables so the dependencies can be represented as a tuple

with seven fields as shown in Figure 3.6. The first five fields record the

dependency and penalty which occur at each context variable and the sixth, gp,

records the sum of penalties of guards that do not involve context variables. The

last field is a Boolean and used to record whether there is a penalty between the

two considered transitions. The first five fields have two parts: the dependency

type and the associated penalty value. The information in the mentioned tuple

(Figure 3.6) can be read by the help of Table 3.4 and Table 3.5 as: there is a

op Representation Meaning

op
vp

 -1
An assignment to v that references a parameter and no

context variables

op
vc

 -2 An assignment of a constant to v.

op
vv

 v1..vn An assignment to v that references context variables

nop 0
There is no assignment and so no dependency or open

ended dependency

Table ‎3.5: Assignment’s‎types‎representation

 73

dependency between transitions t1 and t2 at v1 where the dependency is an

assignment of a constant value and the associated penalty is 0. Similarly there are

dependencies at v2, v3, v4 and v5 that end (when working backwards) with an

assignment that references parameter values and the penalty is 18 points for each.

Also, all guards of t2 involve context variables and so the gp field has the value of

0.

The tuples of information are stored in a matrix, a relation matrix, to

represent the dependencies and penalties among all the transitions in a given

EFSM. The matrix has size n x n where n is the number of transitions in the

considered EFSM. Affected-by transitions are rows whereas columns represent

affecting transitions. Each cell in this matrix has a similar form of the tuple shown

in Figure 3.6

3.4.2 The Fitness Metric

Figure 3.7 and Figure 3.8 show a high-level description of the algorithm that

calculates the TP fitness metric. The inputs are the transition relation matrix and a

TP with length n > 1. The algorithm first considers the penalty of any guards that

do not involve context variables (Line 10). It then treats the last transition as a

potential affected-by transition and determines which previous transitions are

affecting (Line 13). If the current pair of transitions (tn-1, tn) forms a pair of

(affecting, affected-by) then a loop is entered (Line 16) to decide at which context

variables there is a dependency or a penalty (to be incurred). There are two cases:

(1) The dependency type is in [-2..0], the related variable is set to be checked

(Line 20) and if the corresponding penalty is greater than 0 (Line 21), this is

accumulated. (2) The dependency type is greater than 0 which means that the

dependency may continue by an assignment referencing context variables, the

t1

t2 v1= -2 | 0 v2 = -1 | 18 v3 = -1 | 18 v4 = -1 | 18

Dependency? gp: g
pc&pp

Assignment type | Penalty

v5 = -1 | 18 0 True

Figure ‎3.6: An example of a tuple representation of the dependencies

between an affecting and affected-by transitions

 74

Figure ‎3.7: The algorithm that calculates TP fitness metric

A TP Fitness Metric

1. input: TP of length n, EFSM relation matrix

2. output: non negative integer value

3. goal: evaluate a TP complexity

4. initialise: result := 0; bool array [1..vk] // k is the number of context Vars.

5. begin

6. for i := n downto first_transition // start from the last Trans in the TP

7. begin

8. bool array [1..vk]:= false; // reset the array so there is currently no

 // recorded dependency at any Var.

9. j:= i;

10. result := result + [ti,tj].gp; // get the penalty of guards that do not have context Vars.

11. while (j > first_transition) do

12. begin

13. j := j -1; // get the id of the previous transition

14. if [ti,tj].dependency == true then // if there is a dependency between the pair

15. begin

16. for vs := v1 to vk do // scan all the context Vars. to check

17 begin // at which Var. the dependency occurs

18. if ([ti,tj].vs(type) ≤‎0)‎and‎(not‎bool[vs]) then // the dependency may end by a

19. begin // Param., Const., or no dependency

20. bool[vs] := true; //don’t check at this Var next time

21. If [ti,tj].vs(penalty) > 0 Then //there is a dependency at Var. vs

22. result := result + [ti,tj].vs(penalty) //collect the penalty

23. end;

24. if ([ti,tj].vs(type) > 0) and (not bool[vs]) then // the dependency may continue by

25. begin // referencing a context Var.

26. bool[vs] := true; // don’t check at this Var next time

27. If [ti,tj].vs(penalty) > 0 Then // the dependency continues at Var. vs

28. result := result + [ti,tj].vs(penalty) + check(ti,tj,vs); // call Check function

 // to trace back the dependencies that propagated at the Var. vs

29. end;

30. end;

31. end;

32. end;

33. end;

34. return result;

35. end.

 75

related variable is set to be checked (Line 26), and if the corresponding penalty is

greater than 0, then the dependency continues. Thus, the penalty is accumulated

and a call is made to a subroutine check to detect all the previous assignments that

are propagated to the current context variable (Line 28).

The recursive check subroutine performs data dependency analysis by

starting from both the context variable and affecting transition which are passed to

the call and then working backwards to find all previous transitions that may

affect the value of the context variable (Line A10). If an earlier transition tp is

found to affect the context variable, then the subroutine finds the type of the

Function check all of a transition dependencies

A1. input: TP, ti,tj,vs

A2. output: non negative integer value

A3. goal: trace back a flow dependence on variable vs

A4. initialise: result := 0; found := false;

A5. begin

A6. p := j + 1;

A7. while (p > first_transtion) and (not found) do

A8. begin

A9. p := p – 1;

A10. if [ti,tp].vs(type)  0 then // check if there is a dependency

A11. begin

A12 case [ti,tp].vs(type) of // check the type of dependency

A13. -2 : result := result + 60; // Assignment to a constant

A14. -1 : result := result + 20; // Assignment to a Param.

A15. 1..k : result := result + 40 + check(tp, tp-1, v1..k); // Assignment to

 // a context Var. recall check function to trace back

 // the dependency propagated at this context Var.

A16. end;

A17. found := true; // a dependency is found, break the loop

A18. end;

A19. end;

A20. if found then

A21. return result

A22. else return result + 60; // the dependency is left open ended

A23. end.

Figure ‎3.8: The recursive subroutine Check which‎traces‎back‎a‎transition’s‎

dependencies.

 76

assignment (Line A12). If the assignment type is found to be less than 0 then the

context variable is assigned either a constant or a parameter value. Then the

subroutine penalises referencing to a constant with 60 points and to a parameter

with 20 points and stops (no earlier assignments affect this assignment). If the

assignment type is greater than 0, the assignment references a context variable v′.

Here, the subroutine penalises this referencing by 40 points and repeats the

process by calling check with tp and v′ (Line A15). If the dependency is open

ended (depends on an undefined initial value of a variable) then 60 points are

added (Line A22). When the subroutine stops (Line A21 or A22) it returns the

sum of penalties. After the current pair of transitions (tn-1, tn) is scanned, another

cycle starts to detect any possible relation and penalty between the next pair (tn-2,

tn) (Line 13) and so forth.

 The proposed algorithm that calculates the TP fitness metric has a

polynomial running time T(n) = O(n
5

 × s) where n is length of the TP and s is the

number of context variables. It seems likely that this complexity can be

significantly reduced but it was not found to be problematic in the experiments.

 Let‟s consider for example the fitness metric calculation of a TP that

consists of four arbitrary transitions t1t2t3t4 where the transitions details are:

 t1 (guards: [p1 == 1, p2 > p1], operations: [v1:= p1; v2:= p2])

 t2 (guards: [no guards], operations: [v3 := 10])

 t3 (guards: [v3 > 0], operations: [v1:= v2 + v3; v3:= v2])

 t4 (guards: [v1 > v2], operations: [nop])

For the considered path, the following part of the relation matrix is required:

Pairs

(aff-by, aff)

Dependency at v1 Dependency at v2 Dependency at v3
gp

Dependency

? Type Penalty Type Penalty Type Penalty

t1 affected-by t1 -1 0 -1 0 0 0 16 False

t2 affected-by t1 -1 0 -1 0 0 0 0 False

t3 affected-by t1 -1 0 -1 0 0 0 0 False

t4 affected-by t1 -1 16 -1 16 0 0 0 True

t3 affected-by t2 0 0 0 0 -2 0 0 True

t4 affected-by t2 0 0 0 0 -2 0 0 False

t4 affected-by t3 2 32 0 0 2 0 0 True

 77

The TP fitness metric algorithm starts from transition t4 and checks whether it has

guards that do not involve variables (gp field see Figure 3.6). However, t4 does

not have such guards, so the algorithm tests whether t3 affects t4. Since t4 has a

guard that references v1, and t3 has an assignment to v1, there is a dependency

between (t3 (op
vv

), t4 (g
vv

)) at v1. Since the dependency type is 2, the dependency

continues through v2. Here, the algorithm collects the penalty (32) (see Row 6,

Column 4 in Table 3.4) and calls the function check(t4,t3,v1) to detect earlier

transitions that affect the value of v1 through v2. The function check penalises this

by 40 points and computes check(t3,t2,v2) to determine earlier transitions that

affect v2. From the relations matrix, t2 does not affect the value of v2, thus the

function considers a possible earlier assignment and so it performs check(t3,t1,v2).

From the relation matrix, t1 assigns a parameter value to v2 (assignment type = -1).

Thus the function check penalises this by 20 points and returns the total penalty to

the main algorithm. The main algorithm continues to determine whether the pair

(t4, t3) has dependencies on the remaining context variables v2 and v3. Since there

are no such dependencies, the algorithm proceeds to the next pair (t4, t2) in the

given path. Since t2 does not affect t4, the next pair of transition is checked (t4, t1).

For this pair, there are two dependencies at v1 and v2 where both dependencies end

by an assignment of a parameter value. However, the dependency at v1 was

previously detected, thus only the dependency at v2 is considered and the penalty

(16) is collected (see Row 6, Column 3 in Table 3.4). Since t1 is the first

transition, the algorithm has completed testing all the relations between t4 and

earlier transitions. Now, the algorithm proceeds to determine the dependencies

between t3 and the earlier transitions.

 From the relation matrix, only t2 affects t3 at v3, and the dependency ends

by assigning a constant to v3. The algorithm collects the penalty (0) (see Row 10,

Column 5 in Table 3.4) and continues to test (t3, t1). Again, t1 is the first transition

and the algorithm has completed checking all the relations between t3 and earlier

transitions. Now, the algorithm proceeds to determine the dependencies between

t2 and the earlier transitions. Since t2 does not have guard, this is not affected by

any transition and so no penalty is incurred.

 78

Finally, when the algorithm reaches t1 to determine its relationships with earlier

transitions, it detects that t1 has guards that involve only parameters and constants,

thus the value of gp field (16) is added. Since there is no earlier transition, the

total penalty (124) of the path t1t2t3t4 is reported.

3.4.3 The GA Encoding

The proposed FTPs generation approach uses the encoding technique from

(Derderian et al., 2005, Derderian et al., 2010) in which a TP is represented by a

sequence of integers where each number defines a transition. Given an EFSM

with k states, let n1, n2.. nk be the number of transitions leaving each state. Then,

the method calculates the lowest common multiplier LCM of n1, n2.. nk. The last

step is to define the ranges r1, r2.. rk for each state as ri = LCM / ni. A

chromosome is a sequence of integers i1, i2..in, each in the range [1..LCM]. Each

number ii is divided by the corresponding rj to determine the transition it defines.

By using this method of encoding, every sequence defines a TP.

For example, the In-Flight EFSM shown in Figure 3.1 has k = 3 states, n1

= 10, n2 = 10 and n3 = 11. Thus LCM = 110 and r1 = 11, r2 = 11 and r3 = 10. If a

sequence of integer is generated in the range [1..110] i.e. <5, 55 , 99> then by

starting from the first state, the first number represents t1. Since t1 ends at the same

state, then r1 has to be used and so the second integer represents t5. Similarly, t5

ends at the second state and so by using r2 the last number represents t15. The final

TP is therefore: t1t5t15.

The alternative way is to directly use the transition label number to map

down a sequence of integers to a possible TP. For example, if an EFSM has 15

transitions, then a sequence of integers can be generated in the range [1..15] to

define a potential TP. However, this approach has the problem that not every

sequence of integers defines a TP which is syntactically correct. Therefore, there

can be a large number of generated TPs which are redundant, limiting the search

capability from exploring other correct TPs that may potentially achieve the

search goal.

 79

3.4.4 FTP Verification Method

In order to decide whether a given TP is an FTP, a method is required to follow

the generated TP. However, a TP may require a set of input parameters to be

applied to its interaction parameter fields so that its guards are satisfied.

Therefore, a method that generates test cases is required during the verification

process.

 A random test cases generator is one method that can be used to check

whether a TP is an FTP. Naturally, a random test cases generator may not be

successful in triggering all the generated FTPs. Nevertheless, a random test cases

generator can estimate how easily a given FTP can be triggered and thus can be

used to explain the relation between the fitness metric values and how easy the

associated FTPs can be triggered. The random test cases generator is used in the

next chapter in which the problem of test cases generation to follow given FTPs is

studied.

Since a random test cases generator cannot always be effective, another

method is required to determine whether a TP is an FTP. This was the main

motivation for the work described in Chapter 4 where a search-based approach

that facilitates the automatic test cases generation to follow a given FTP was

proposed. The approach proposed in Chapter 4 is used in the experiment as a

method to verify whether a TP is an FTP. This method is referred to as a GA test

cases generator.

3.5 Experiment

This section provides an empirical evaluation of the proposed fitness metric on

five EFSM case studies. Also, it describes how the experiment was designed and

reports the experimental results that were achieved by a GA search that

implemented the proposed fitness metric and a random search for the FTPs

generation problem.

 80

3.5.1 Experimental Design

In designing the experiment, the aim was to evaluate the effectiveness of the

proposed TP fitness metric in guiding a GA search towards TPs that are likely to

be feasible. In order to achieve this, there are three factors to be considered.

The first factor is related to the length of TPs used (the number of

transitions included in each TP). Naturally, a short TP is likely to have a low

fitness metric value and be easy to trigger since it has few transitions and thus few

guards and operations. Therefore, the experiment considered TPs that are

relatively long. That is, since the EFSM case studies consist of [15..31]

transitions, TP lengths of 9, 12 and 15 transitions were considered sufficient to

avoid the impact of the length factor on the results.

The second factor is related to each EFSM‟s structure, it may happen that

a given EFSM is simple (i.e. its transitions have no guards or very few guards and

operations) and so arbitrary generated TPs derived from such an EFSM can be

simple and feasible. As a result, for each EFSM, three sets of subject TPs were

generated by using a GA search that implemented the proposed TP fitness metric.

Each set consisted of a number of TPs equal to the number of transitions in the

considered EFSM. A set of TPs was generated through a sequence of search

iterations where each iteration produced one TP that covered a particular

transition and thus each set of TPs provided a transition coverage test suite for the

considered EFSM. The first set had TPs of length 9 whereas the second and third

sets had TPs of length 12 and 15 respectively. Furthermore, to understand whether

a given machine is simple, three alternative sets of subject TPs were randomly

generated. Each randomly generated set of subject TPs is similar to the one that

was generated by a GA search in terms of the length of subject TPs and of

providing a transition coverage test suite for the considered EFSM. For the

purpose of comparison, the fitness metric values were measured for all subject

TPs.

The third factor relates to whether a generated TP is an FTP. To verify

this, a GA test cases generator, described in the next chapter, was used to verify

whether a given subject TP is an FTP. Furthermore, if a TP was not triggered, this

 81

was manually inspected to check whether it was an FTP (determining if there is a

dynamic opposition among the transitions).

All search techniques were implemented in the publicly available Genetic

and Evolutionary Algorithm Toolbox GEATbx (Pohlheim, 1994-2010). A

detailed description of each of the GEATbx parameters is provided at the

GEATbx website (Pohlheim, 1994-2010) and the values of these parameter that

were used are recorded here to allow the experiment to be replicated.

An integer valued encoding was used to represent individuals which will

form TPs through each considered machine. The population size was 100

individuals. The selection method was linear-ranking with selective pressure set to

1.8. Discrete recombination was used to recombine individuals whereas mutate

integer method was used for mutation. GEATbx allows the use of standard

random approach by setting the recombination and mutation methods to „recnone‟

and „mutrandint‟ respectively.

For each EFSM, three sets of subject TPs were generated by using a GA

search which implemented the proposed fitness metric and another three

alternative sets of subject TPs were randomly generated. Both searches (GA and

random) were first applied to each machine to derive two sets of subject TPs with

length of 9 and thus individuals were consisted of 9 integers. Similarly,

individuals consisted of 12 and 15 variables when deriving subject TPs with

length of 12 and 15 respectively.

The range of values allowed for each variable varied according to each

subject EFSM as described in Subsection 3.4.3. For In-Flight EFSM, variables

within each individual had values in the range [1..110]. For Class 2 EFSM,

individuals‟ variables were allowed to take values in the range [1..66]. Values in

the range [1..21] were allowed for individuals‟ variables associated with Lift

EFSM. Individuals‟ variables for Inres initiator EFSM were associated with

values in the range [1..28] whereas individuals‟ variables for ATM EFSM were

allowed values in the range [1..60]. Both searches (GA and random) were given

1000 generations before search was terminated.

For each generated subject TP, a GA test cases generator was applied ten

times to try to trigger this TP. Any TP is an FTP if it was successfully triggered at

 82

least once. If a TP was associated with a TP fitness metric value that is less than

INF and was not triggered, a close examination was performed to check whether

this was an FTP.

3.5.2 Experimental Results

A GA search that implemented the proposed TP fitness metric was applied to each

EFSM case study to generate three sets of subject TPs of length 9, 12 and 15.

Each generated set of subject TPs provided a set of paths that include every

transition for the considered EFSM. Similarly, a random path generator was

applied to each EFSM case study to generate three alternative sets of subject TPs

of length 9, 12 and 15 for comparison.

In the experiment, the penalty value INF was selected to be equal to 1 10
4

and so any subject TP with instances of infeasible TP cases was penalised with

10
4
 points for each such instance. Any TP that is associated with fitness metric

value ≥ 10
4
 is definitely an infeasible TP, since (for all the considered TP lengths)

the penalty values associated with transitions dependencies (see Table 3.4) cannot

lead to a given TP being assigned a penalty value ≥ 10
4
. Based on this, the results

can be categorised into two cases:

1. Case 1: TPs that are potentially feasible. This category includes any TP

that is associated with a fitness metric value less than 10
4
. Such TPs were

determined feasible by trying to generate test cases to trigger them. When

necessary a manual inspection is used to check whether a TP is an FTP.

2. Case 2: TPs that are infeasible. This category includes any TP that is

associated with fitness metric value ≥ 10
4
.

The next subsections describe the results for each EFSM and for each derived set

of subject TPs. The sets that were generated by GA search are denoted by (a) for

TP length = 9, (c) for TP length = 12 and (e) for TP length = 15. Similarly,

randomly generated sets are denoted by (b) for TP length = 9, (d) for TP length =

12 and (f) for TP length = 15.

 83

3.5.2.1 Results of the Lift EFSM

For this case study, a GA search generated three sets of subject TPs with length 9,

12 and 15 transitions. Each set had 24 TPs that provided the transition coverage.

Similarly three sets were generated by a random search. Each part of Figure 3.9

plots one set of subject TPs in terms of a TP ID
2
 against its fitness metric value.

For TPs of length 9, Figure 3.9a shows the TPs that were generated by a

GA search where all feasible. However, the alternative randomly generated TPs

shown in Figure 3.9b were infeasible. Furthermore, for set (a) the best achieved

fitness metric value (the lowest) is 64 and the worst fitness metric value is 140.

For the randomly generated set, (b), fitness metric values were generally ≥ 10
4
.

 For TPs of length 12, Figure 3.9c shows that the GA generated TPs were

all feasible. However, the alternative randomly generated TPs were all infeasible.

The best achieved fitness metric value in set (c) is 88 and this value is greater than

that observed in set (a) which is 64. Furthermore, the worst fitness metric value in

set (c) is 168 and this value is also greater than that observed in set (a) which is

140. This indicates that in this EFSM, as expected, longer TPs incur worse fitness

metric values and thus they can be more complex. This trend is also exhibited by

the random search, though TPs were infeasible, longer TPs were associated with

higher fitness metric values.

 Figure 3.9e and Figure 3.9f shows that GA generated TPs, set (e), were all

feasible while the alternative randomly generated TPs, set (f), were all infeasible.

From Figure 3.9e, the best achieved fitness metric value is 112 and this value is

greater than previous values observed in sets (a) and (c). Similarly, the largest

fitness metric value observed in set (e) is 188 and this is also larger than the

previous values found in sets (a) and (c). The same observation is also shown by

the randomly generated set (f) where the fitness metric values were larger than

that observed in the previous randomly generated sets (b) and (d). This

emphasises that for the considered machine, shorter TPs are associated with better

(lower) fitness metric values and thus less complex than longer TPs.

2
 An ID of a TP corresponds to the number of the transition which this TP covers.

 84

 a- GA generated TPs (length= 9 transitions) b- RA generated TPs (length= 9 transitions)

 c- GA generated TPs (length= 12 transitions) d- RA generated TPs (length= 12 transitions)

 e- GA generated TPs (length= 15 transitions) f- RA generated TPs (length= 15 transitions)

 Figure ‎3.9: Lift EFSM TPs. The sets a & b have a TP length = 9, sets c & d

have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e are

GA generated by using the TP fitness metric guidance. Sets b, d & f are the

alternative randomly generated sets plotted by using logarithmic scale.

 85

Table 3.6 provides a summary of the results achieved from the Lift system EFSM.

From this Table, the GA search that implemented the proposed fitness metric was

successful in generating TPs that are FTPs and had a success rate of 100%. In

contrast, the random search did not generate any FTP and so had a success rate of

0%. This indicates that the proposed fitness metric was effective in guiding a GA

search towards TPs that are feasible. Furthermore, the average fitness metric value

for each set of TPs, according to TP‟s length, increased when TP‟s length

increased. This trend, which is observed for both GA and random search, shows

that for the considered machine, a longer TP is more complex than a shorter one.

By referring to Table 3.3, which includes the transitions‟ details, an extra

transition in a TP will increase the total number of guards and therefore will incur

additional penalty. Similarly, the Boolean variables (i.e. door opened and door

closed) included in this machine seem to increase the instances of infeasible TP

cases when TPs are longer and the search is random. For example, if a transition

that opens a door is followed by itself, then the TP penalty is increased by 10
4
. It

seems that the chance of such conflicts is increased when the search is random

with longer TP length.

3.5.2.2 Results of the In-Flight EFSM

The GA search was applied to derive three sets of TPs of length 9, 12 and 15

where each set contained 31 TPs that provided transition coverage for this EFSM.

A random search was also applied to derive three alternative sets of subject TPs.

Method TP Length Feasible Infeasible Avg. Fitness ≈

GA
9

24 0 101

RA 0 24 35466

GA
12

24 0 131

RA 0 24 36341

GA
15

24 0 150

RA 0 24 49256

Total GA 9, 12, 15 72 0 127

Total RA 9, 12, 15 0 72 40355

Table ‎3.6: Lift EFSM GA & RA generated TPs

 86

 a- GA generated TPs (length= 9 transitions) b- RA generated TPs (length= 9 transitions)

 c- GA generated TPs (length= 12 transitions) d- RA generated TPs (length= 12 transitions)

 e- GA generated TPs (length= 15 transitions) f- RA generated TPs (length= 15 transitions)

 Figure ‎3.10: In-Flight EFSM TPs. The sets a & b have a TP length = 9, sets c

& d have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e

are GA generated by using the TP fitness metric guidance. Sets b, d & f are

the alternative randomly generated sets plotted by using logarithmic scale.

 87

Figure 3.10a shows that the first set of GA generated TPs was entirely feasible,

however, the alternative randomly generated TPs shown in Figure 3.10b were

infeasible. The best achieved fitness metric value in set (a) was 72 while the worst

fitness metric value was 126. The randomly generated TPs, set (b), are generally

associated with large penalty due to being infeasible.

 For TPs of length 12, the GA generated set (c), shown in Figure 3.10c, was

entirely feasible. Nevertheless, the alternative randomly generated set (d), shown

in Figure 3.10d, was infeasible. The best and worst achieved fitness metric values

by GA search were 90 and 144 respectively. Compared to the previously GA

generated set (a), these values are larger than that obtained from set (a). This

shows that for this machine, longer TPs seem to be associated with larger fitness

metric values. For the randomly generated TPs in set (d), the same trend can also

be observed where TPs are also associated with greater fitness metric values than

that observed in set (b).

 For the last set of TPs of length 15, similar results are also observed. The

TPs generated by a GA search were all FTPs while those that were randomly

generated were all infeasible. Figure 3.10e shows that the best and worst achieved

fitness metric values (126 and 180 respectively) produced using the GA search

were greater than that observed in sets (a) and (c). This highlights that for the

considered EFSM, longer TPs are generally associated with greater fitness metric

values and thus can be more complex. This tendency can also be noticed with

random search.

 Table 3.7 summaries the results derived from this EFSM. The GA search

was generally effective and successfully produced three sets of FTPs and thus it

Method TP Length Feasible Infeasible Avg. Fitness ≈

GA
9

31 0 87

RA 0 31 26602

GA
12

31 0 107

RA 0 31 35051

GA
15

31 0 144

RA 0 31 43507

Total GA 9, 12, 15 93 0 113

Total RA 9, 12, 15 0 93 35053

Table ‎3.7: The In-Flight EFSM GA & RA generated TPs

 88

had a success rate of 100%. However, a random search did not produce any FTP

and had a success rate of 0%. Furthermore, the fitness metric values increased

when the TP length increased. This tendency was observed for both GA and

random searches. Since all of the machine‟s transitions are guarded (see Table

3.1), any extra transition in a TP is likely to increase the TP penalty and so the GA

search on longer TPs produced greater fitness metric values than that on shorter

TPs. Although the random search did not yield any FTP, longer TPs seem to

increase the TP chance to include more instances of infeasible TP cases.

Particularly, the Boolean variables (i.e. any transition which performs a reading

must be followed by a transition that checks the read values) require specific

sequence of transitions otherwise an infeasible TP case occurs.

3.5.2.3 Results of the ATM EFSM

For the ATM EFSM, each GA generated set contained 30 TPs which provided

transition coverage for the ATM EFSM. Similarly, three sets of subject TPs where

randomly generated.

 Figure 3.11a shows the GA generated set of TPs with length 9 and Figure

3.11b shows the alternative randomly generated set. From set (a), 29 TPs were

FTPs and one TP was infeasible. From set (b), 20 TPs were FTPs and 10 TPs

were infeasible. The best fitness metric value in set (a) was 36 while the worst one

was 208. For the randomly generated set (b), the best fitness metric value was 48

and the worst one was greater than 10
4
.

 For TP with length 12, all but one of the GA generated TPs, plotted in

Figure 3.11c, were feasible. Importantly, the infeasible TP in this set had the same

ID of the infeasible TP in the previous set (a) and associated with the same fitness

metric value (208). The alternative randomly generated set of TPs, plotted in

Figure 3.11d, had 15 FTPs and 15 infeasible TPs. This shows a decrease in the

number of randomly generated FTPs when compared to set (b). The best and

worst fitness metric values observed in set (c) were 36 and 208 respectively.

Interestingly, these values were the same as that noticed in the previous set (a).

For set (d), the best and worst fitness metric values were 96 and >10
4
 respectively.

Compared to the previous set (b), the best fitness metric value in set (d) was

 89

greater than that in set (b) which is 48. This may suggest that for the considered

machine, longer randomly generated TPs may be associated with greater fitness

metric values.

 For the last set of TPs of length 15, similar results can also be observed.

All but one of the GA generated TPs, shown in Figure 3.11e, were all FTPs. The

infeasible TP generated by the GA search had also the same ID which previously

observed on sets (a) and (c) and the same fitness metric value (208). The

randomly generated set of TPs, shown in Figure 3.11f, had 14 FTPs and 16

infeasible TPs. For GA search, the best and worst fitness metric values were 36

and 208 respectively. These values are the same as the ones achieved by the GA

search on the previous TP lengths. For a random search, the best and worst

achieved fitness metric values were 128 and >10
4

 respectively. The best fitness

metric value in set (f) was also greater than that observed in the previous

randomly generated sets (b) and (d). This can support the claim that for this

machine, longer randomly generated TPs associated with higher fitness metric

values.

 Table 3.8 shows that the GA search had a success rate of 96.6% whereas

the random search had a success rate of 54.4%. Furthermore, the GA search

performed relatively similarly regardless of the TP length. In each GA generated

set, there was one TP that was infeasible and this was associated with the same

fitness metric value (208). The average fitness metric values achieved from the

three GA generated sets were relatively very similar. This indicates that the length

factor was not important for the considered machine when the search was a GA

search.

Method TP Length Feasible Infeasible Avg. Fitness ≈

GA
9

29 1 59

RA 20 10 2894

GA
12

29 1 62

RA 15 15 3603

GA
15

29 1 60

RA 14 16 5323

Total GA 9, 12, 15 87 3 60

Total RA 9, 12, 15 49 41 3940

Table ‎3.8: ATM EFSM GA & RA generated TPs

 90

 a- GA generated TPs (length=9 transitions) b- RA generated TPs (length= 9 transitions)

 c- GA generated TPs (length= 12 transitions) d- RA generated TPs (length= 12 transitions)

 e- GA generated TPs (length= 15 transitions) f- RA generated TPs (length= 15 transitions)

 Figure ‎3.11: ATM EFSM TPs. The sets a & b have a TP length = 9, sets c & d

have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e are

GA generated by using the TP fitness metric guidance. Sets b, d & f are the

alternative randomly generated sets plotted by using logarithmic scale.

 91

The results achieved from ATM EFSM raised two questions. The first is related to

the infeasible TP reported in each GA generated set (the fitness metric value (208)

suggests that the TP is an FTP but it is not). The second concerns the similarity of

the average fitness metric values that are exhibited by GA search on the three sets

of subject TPs although the length was different on each set.

By referring to Figure 3.5 which details the ATM‟s transitions, there is one

transition, t3, whose guard references the variable (attempt =3) and this guard

cannot be satisfied unless transition t2 has previously occurred three times. Such

dynamic behaviour cannot be easily estimated (by penalty values) and so any TP

that included t3 is likely to be infeasible. The GA search reported one TP in each

set which was infeasible and these TPs included t3 without sufficient occurrences

of t2. By examining all the randomly generated infeasible TPs, all had at least one

instance of t3. This explains why there is an infeasible TP in each GA generated

set with the same ID.

 For the second point, by considering again the ATM‟s transitions details,

there are some transitions such as t7, t8, t9, t10 that can be called „escape‟

transitions since they do not have guards and operations. Any subsequence formed

from such transitions (for example t7, t9, t7, t9, t7, t9), and regardless of its length,

has a penalty value of zero. Thus, when TPs are longer, GA search targeted such

subsequences since it does not worsen the fitness metric value. This explains why

longer TPs were not penalised more than the shorter ones. Thus, when an EFSM

contains „escape‟ transitions, the length factor may not play an important role in

worsening the penalty of longer TPs generated by a GA search.

3.5.2.4 Results of The Inres Initiator EFSM

For the Inres Initiator EFSM, the GA search produced three sets of subject TPs

where each set consists of 15 TPs providing transition coverage. Also, a random

search was applied to generate three alternative sets of subject TPs.

Figures 3.12a, 3.12c and 3.12e show that the GA search performed

similarly on different TP lengths. Each of the three GA generated sets (a), (c) and

(e) consisted of 12 FTPs and 3 infeasible TPs. Furthermore, for all of these sets,

the best and worst achieved fitness metric values were 0 and 142 respectively.

 92

 a- GA generated TPs (length= 9 transitions) b- RA generated TPs (length= 9 transitions)

 c- GA generated TPs (length= 12 transitions) d- RA generated TPs (length= 12 transitions)

 e- GA generated TPs (length= 15 transitions) f- RA generated TPs (length= 15 transitions)

Figure ‎3.12: Inres Initiator EFSM TPs. The sets a & b have a TP length = 9,

sets c & d have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c

& e are GA generated by using the TP fitness metric guidance. Sets b, d & f

are the alternative randomly generated sets plotted by using logarithmic

scale.

 93

This shows that for this EFSM, the factor of TP length did not affect the fitness

metric values of the generated TPs.

For the random search, the number of FTPs was different for each

different length. The first randomly generated set, shown in Figure 3.12b,

consisted of 5 FTPs and 10 infeasible TPs. The second randomly generated set

(Figure 3.12d) consisted of 15 infeasible TPs whereas the third randomly

generated set (Figure 3.12f) consisted of 2 FTPs and 13 infeasible TPs.

 Table 3.9 shows that the average fitness metric values achieved by GA

search for different TP lengths were the same. However, this was not the case for

the random search where the largest average fitness metric value was observed on

TPs of length 12 transitions. From Table 3.9, the GA search generated FTPs with

a success rate of 80%. However, the random search generated FTPs with a success

rate of 15.5%.

The results achieved by GA search on the Inres initiator EFSM raised the

same questions that were raised by the results derived from ATM EFSM. The first

question related to the fact that for each GA generated set there were three TPs

that are associated with fitness metric values that imply these TPs are FTPs,

however, they were infeasible TPs. The second question related to the fact that for

the GA search longer TPs did not incur greater fitness metric values.

 By considering the Inres initiator details shown in Figure 3.4, there are

three transitions t4, t9 and t12 which have guards (counter ≥ 4) that reference a

counter variable. Any subject TP that includes one of these transitions requires

other transitions to previously occur and for a certain number of times so that the

guard is satisfied. For example, transition t3 must occur exactly four times before

Method TP Length Feasible Infeasible Avg. Fitness ≈

GA
9

12 3 33

RA 5 10 6724

GA
12

12 3 33

RA 0 15 11445

GA
15

12 3 33

RA 2 13 9472

Total GA 9, 12, 15 36 9 33

Total RA 9, 12, 15 7 38 9214

Table ‎3.9: Inres initiator EFSM GA & RA generated TPs

 94

the transition t4 can be called. Similar to the ATM case study, TPs that included

one of transitions t4, t9 or t12 were infeasible. This explains why there were three

TPs in each GA generated set that were infeasible.

 Similar to the ATM EFSM, the Inres initiator includes „escape‟ transitions

such as t12, t13, t14 and t15 which do not incur any penalty. Therefore, the GA

search targeted these transitions to „complete‟ the longer TPs. Thus, longer TPs

did not receive larger fitness metric values.

3.5.2.5 Results of The Class 2 EFSM

For this EFSM, each set of subject TPs comprised 21 TPs where three sets were

GA generated and three alternative sets were randomly generated.

For all the considered TP lengths, Figures 3.13a, 3.13c and 3.13e show

that all the GA generated sets of subject TPs were feasible. Furthermore, in all

three sets, the best and worst achieved fitness metric values were 0 and 46

respectively. Similar to the previous case study, longer TP length did not play an

important role in worsening the fitness metric values.

 For all the considered lengths, the random search performed relatively

similar and the number of randomly generated FTPs was 13 FTPs on the first set

(Figure 3.13b) and 12 FTPs on the second and third sets (Figures 3.13d and

3.13f). The best achieved fitness metric values were 0, 4 and 18 respectively

whereas the worst achieved fitness metric values were > 10
4
. This shows that for

the considered EFSM, the random search was capable of producing FTPs with

low fitness metric values.

 Table 3.10 shows the summary of the results derived from the Class 2

EFSM. From this Table, the GA search was effective and all the generated TPs

were FTPs. This gave the GA search a success rate of 100%. However, for the

random search, not all the produced TPs were FTPs and the success rate was

58.7%. Again longer TPs did not have greater fitness metric values when using a

GA search. By examining the transitions details, this EFSM consists also from

some „escape‟ transitions (i.e. t18, t19, t20) that do not incur penalty and are

repeated when TPs were longer.

 95

 a- GA generated TPs (length= 9 transitions) b- RA generated TPs (length= 9 transitions)

 c- GA generated TPs (length= 12 transitions) d- RA generated TPs (length= 12 transitions)

 e- GA generated TPs (length= 15 transitions) f- RA generated TPs (length= 15 transitions)

 Figure ‎3.13: Class 2 EFSM TPs. The sets a & b have a TP length = 9, sets c &

d have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e are

GA generated by using the TP fitness metric guidance. Sets b, d & f are the

alternative randomly generated sets plotted by using logarithmic scale.

 96

3.5.2.6 Summary of Results

Table 3.11 shows the summary of the results achieved using a GA and random

search for the five EFSM case studies. For the GA search, the Lift EFSM is

associated with the largest average fitness metric value while the Class 2 EFSM is

associated with the smallest average fitness metric value. This observation might

explain the performance of the random search on these two EFSMs where the

random search was the best on the Class 2 EFSM (success rate = 58.7%) while it

was the worst on the Lift EFSM (success rate = 0%).

 However, the previous observation seemed to be valid when the GA

search had a success rate of 100%. For example, this observation does not apply

to ATM and Inres initiator EFSMs. The average fitness metric value achieved by

GA search on Inres initiator EFSM was 33 while it was 60 on ATM EFSM.

However, the random search performance was poorer on Inres than that on ATM.

By considering the GA search on these two EFSMs, it is also clear that the GA

search performance was poorer on Inres than that observed on ATM. This can be

explained by considering these EFSMs structures. The ATM EFSM has only one

transition, t3, whose guard references a counter variable (attempt) and so there was

always one infeasible TP in each GA generated set of TPs (a TP that intends to

cover t3). However, for Inres initiator EFSM, there are three transitions (t4, t9 and

t11) that reference a counter variable (counter) and so there were always three

infeasible TPs in each GA generated set of TPs. This shows that the results

achieved from these two EFSMs were affected by the counter problem.

Method TP Length Feasible Infeasible Avg. Fitness ≈

GA
9

21 0 14

RA 13 8 3877

GA
12

21 0 14

RA 12 9 4428

GA
15

21 0 14

RA 12 9 5006

Total GA 9, 12, 15 63 0 14

Total RA 9, 12, 15 37 26 4437

Table ‎3.10: The Class 2 EFSM GA & RA generated TPs

 97

The GA search that implemented the proposed fitness metric was generally

effective and produced TPs that were entirely FTPs when the considered EFSMs

did not suffer from a counter problem. However, the GA search performed

relatively worse on EFSMs with the counter problem. This shows that the counter

behaviour is an important problem which reduces the efficiency of the proposed

fitness metric approach. These results were the motivation for further

investigation into the counter problem and so the study described in Chapter 5

where a novel approach is proposed to bypass the counter problem.

 The overall results of the random search show that the problem of

generating FTPs from the considered case studies is not an easy task. The success

rate associated with random search was relatively small (25.6%). Nevertheless

the GA search which implemented the proposed fitness metric performed

effectively with a success rate of 96.6%.

3.6 Conclusion

Generating feasible transition paths for testing from an EFSM is a challenging

task. In order to estimate TP feasibility, a classification of guards and operations

EFSM Method Total TPs FTPs Avg. Fitness ≈ Success

Rate

Lift
GA

72
72 127 100%

RA 0 40355 0%

Flight
GA

93
93 113 100%

RA 0 35053 0%

ATM
GA

90
87 60 96.6%

RA 49 3940 54.4%

Inres
GA

45
36 33 80%

RA 7 9214 15.5%

Class 2
GA

63
63 14 100%

RA 37 4437 58.7%

All
GA

363
351 Not applicable 96.6%

RA 93 Not applicable 25.6%

Table ‎3.11: Summary of the results achieved by GA and random searches

on generating FTPs from five EFSM case studies.

 98

for an EFSM transition was proposed. The classification helped to statically

identify all dependencies among a TP‟s transitions. Each dependency was given a

weight (penalty) that estimates its complexity. These weights can be then used by

a fitness metric algorithm to form an overall TP fitness metric value.

 The proposed approach therefore formulated the FTPs generation as a

search-based problem. In order to validate the approach, an experiment was

conducted on five EFSM case studies. From each EFSM, three sets of subject TPs

were generated by using a GA search that implemented the proposed fitness

metric. Furthermore, a random search was also applied to generate similar

alternative sets of subject TPs for comparison purposes.

 Experimental results showed that generating FTPs from these EFSMs by

the means of random search was not effective and therefore the considered task is

not easy. Nevertheless, the proposed TP fitness metric effectively guided the

search towards TPs that were feasible and associated with low fitness metric

values. The overall success rate of FTPs generation was 96.9% for GA search

while it was 25.6% for random search.

 The results achieved from the experiment highlighted the importance of

the counter problem for which the proposed fitness metric could not by-pass.

Furthermore, the results suggest that the used penalty values were effective in

estimating the TP feasibility. However, these values are by no means definite and

future work could calibrate them further.

 99

Chapter 4: Automatic Test Cases Generation

to Exercise Feasible Transition Paths

4.1 Introduction

The extended finite state machine is a powerful modelling approach that has been

widely applied to represent various systems. Testing from an EFSM can be

performed by generating a set of transition paths (TPs) through the considered

machine to satisfy a given test criterion. The next step is to generate test cases to

fire the generated paths. However, achieving these two steps is a challenging task

for two reasons. First, when generating TPs from an EFSM, these should be

chosen to be feasible (FTPs) so that they can be triggered. Nevertheless,

generating FTPs from an EFSM is a substantial problem. Second, when TPs are

generated, there is a need to fire them so that the intended test is applied.

However, a given FTP can require a sequence of inputs so that it can be fired.

Automated test cases generation through search based testing is a topic of interest

to the software engineering community. While there are many search-based

techniques for automatically generating test cases for structural testing, the

problem of generating test cases from an extended finite state machine (EFSMs)

has received little attention. This chapter describes a novel approach that

addresses the problem of generating a test case that triggers a given FTP by

employing search-based testing. The proposed approach expresses the problem as

a search for input parameters to be applied to functions to be called in a sequence.

In order to apply a search-based technique, a new fitness function is introduced

and the approach is evaluated empirically by using a GA search with the proposed

 100

fitness function. The FTPs used were previously generated from five EFSM case

studies by using the TP fitness metric approach described in the previous chapter.

 The chapter starts by outlining the problem area. Then Section 4.3 defines

the fitness function that can guide a GA search towards test cases that can trigger

a given FTP. Furthermore, the section describes the GA encoding method used.

Then, a constraint-based testing approach for FTPs test cases generation is

described. Section 4.4 describes the experimental design and reports the

experimental results. Concluding remarks and future work are given in Section

4.5.

4.2 Problem Area

An EFSM transition can have guards and actions over a set of the machine‟s

context variables. Also, a transition can require some input values to be applied

before the transition can be fired. Some of these inputs may update the value of

some of the machine‟s context variables which, in turn, can be referenced by the

guards of other machine‟s transitions.

Consider, for example, Figure 4.1 which shows the SDL specifications

(ITU-T, 1994) for transition t8 of the Inres initiator EFSM shown in Figure 3.4. In

order for this transition to be triggered, a suitable value of the input parameter

num must be provided so that the first guard (num ≠ Number) is satisfied. Also,

the next nested guard (counter < 4) over the machine‟s context variable, Number,

must then hold so that the transition is fired and the associated operations are

executed. However, for a given FTP, there is more than one transition and each

transition can require a suitable set of input values. Since an EFSM‟s transitions

share the same set of context variables, the problem of executing the transitions in

a path cannot always be handled separately (i.e. triggering each transition

separately). Instead, the problem of triggering a given FTP requires executing the

FTP‟s transitions in a sequence. Consider for example two transitions t and t'

where t requires an input (p1> 0) to update the value of context variable x as (x :=

p1) and t' requires an input (p2 > x) in order to update x as (x := 0). If a given FTP

 101

starts with transition t followed by transition t', there is a need to consider

transition t before attempting to find input to trigger transition t' since a suitable

value of p2 cannot be determined before the value of x is determined (through

calling transition t).

The motivation of the approach presented in this chapter is the observation

that there are many EFSM testing techniques that function by producing a set of

paths through EFSM models, for example (Chanson and Zhu, 1993, Duale and

Uyar, 2004, Hierons et al., 2004, Kalaji et al., 2009a, Derderian et al., 2010).

Thus, an approach to trigger the generated paths can be potentially incorporated

with such techniques.

Since the approach presented in the previous chapter considers the FTPs

generation problem by using search, a search-based approach to trigger the

generated FTPs can form an integrated search-based approach to testing from

EFSM models. To this end, the approach presented in this chapter aims to address

the problem described as:

Given: a feasible path in an EFSM model

Figure ‎4.1: The SDL representation of transitions t5, t8 and t15 of Inres

initiator‎ EFSM‎ where‎ transition’s‎ guards‎ are‎ sequenced‎ as‎ nested‎ IF‎

statements

Sending

Connect

AK(num)

False

counter
<4

Num =
Number

True

Number :=0

Sending

True

False

Undef T

counter :=
counter +1

DT(number,

olddata)

T := p

DR

IDISind

Disconnect

T5 T8 T15

AK(num)

 Logical State Symbol

 Decision Symbol

 Input Symbol

 Output Symbol

 Task Symbol

 102

Problem: find test cases that can cause this path to be traversed.

The main contributions of this chapter are the following:

1. It proposes a search-based approach to generate test cases that can trigger

given FTPs through an EFSM model

2. It proposes a fitness function that is suitable to guide the search for test

cases in the presence of function calls

3. The chapter empirically validates the efficiency of the proposed approach

by applying it to a set of FTPs derived from five EFSM case studies

4. The chapter also studies the relationship between an FTP‟s fitness metric

value and the effort, in terms of time, required by the proposed GA test

cases generator to trigger the FTP. Furthermore, an investigation of the TP

fitness metric capability to predict the effort required by test cases

generators is also studied.

4.3 The Proposed Approach

The proposed approach utilises a GA search to find test cases to trigger a given

FTP in an EFSM model. The basic part of the proposed approach is the definition

of a fitness function that can guide a GA search towards suitable test cases.

4.3.1 The Fitness Function

In order to use an optimisation technique to generate a test case that executes the

test target, a fitness function is required to guide the search. If a given path, within

a program, consists merely of assignment statements, there is no need to derive a

test case for such a path. This is because these assignments form a single path

from which the execution flow cannot divert. Problems arise when a program‟s

path contains conditional statements such as (IF, FOR and WHILE) for which the

execution flow may divert away from the test target. The work of (Tracey et al.,

1998a, Tracey et al., 1998b) proposed a fitness calculation method in the presence

 103

of conditional statements (see Table 4.1). This method is widely applied when

generating test cases to satisfy a given condition (predicate) in a program‟s path.

Consider for example a predicate (x < y), for which the search should locate

suitable values for both x and y. By referring to Table 4.1, the fitness value (also

called a branch distance) is 0 when (x –y < 0) which states that the current values

of x and y are suitable to satisfy the given predicate. However, if the branch

distance is not zero, it reflects how close were the selected values to achieving the

predicate (branch distance = x – y + k). Thus, the smaller the branch distance is

the closer were the selected values to achieving the predicate.

Naturally programs can have nested predicates. For such a case, the fitness

function should reward a test case that achieves more predicates with a fitness

value that is less than that associated with a test case that achieves fewer

predicates. For such a case, using only the branch distance to guide the search can

be insufficient and extra information is required to guide the search. This is given

in terms of approach level or approximation level proposed by (Wegener et al.,

2001). The approach of (Wegener et al., 2001) defined the critical node as a

conditional statement at which the execution flow may divert. Then, the approach

level measures how close a given test case was to executing the target statement

by subtracting one from the number of critical nodes away from the target

(Equation 4.2). Since more achieved predicates should result in a smaller fitness

value, the branch distance is normalised to a value in the range [0..1] (Equation

4.1).

Guard Fitness calculation

Boolean if TRUE then 0 else k

a = b if abs(a − b) = 0 then 0 else abs(a − b) + k

a ≠ b if abs(a − b) ≠ 0 then 0 else k

a < b if a − b < 0 then 0 else (a − b) + k

a ≤ b if a − b ≤ 0 then 0 else (a − b) + k

a > b if b − a < 0 then 0 else (b − a) + k

a ≥ b if b − a ≤ 0 then 0 else (b − a) + k

¬ a Negation is moved inwards and propagated over a

Table ‎4.1: Tracey et al. fitness calculations for different types of guards.

The constant k, k > 0, is added when the guard is not satisfied.

 104

Consider for example, a function, fun1, shown in Figure 4.2a which requires two

integer inputs to satisfy four nested predicates. By applying the fitness calculation

method proposed by (Wegener et al., 2001), the associated fitness function

landscape (shown in Figure 4.2b) has a smooth sloped surface. Such a landscape

provides the search with an adequate guidance to progress towards its goal.

The fitness calculation method proposed by (Wegener et al., 2001) is

effective in structural testing where the test target is represented as a single node

in the main body of the function or the program. However, this technique is not

designed to cope with the case when the test subject involves a sequence of calls

to transitions. In this case, the main test target comprises of a set of sub-targets

(each transition in an FTP) that have to be achieved in order to attain the main test

target i.e. triggering the last transition in a path.

For example, in functional testing it is necessary to trigger a path in order

to reach a specific state in the machine. In this scenario, the first transition in the

path must be triggered first in order to try to trigger the next transition and so

forth. Since a transition in an EFSM can be considered to be a function with input

parameters and conditions (Kalaji et al., 2009b), the problem of generating test

cases to trigger a given FTP can be seen as finding suitable input parameter values

to be applied to each transition (function) in that FTP and in a sequential order.

In order to describe the proposed fitness calculation method, consider

again the function, fun1, shown in Figure 4.2a which requires two suitable input

values to achieve a set of four nested IF statements. For a given path comprising

the transition sequence fun1(a,b)fun1(c,d), the search should first locate suitable

input values (a,b) that successfully trigger the first transition and then progress to

find the next suitable input values (c,d) that trigger the next transition in the path.

The manipulation of a path in this way is similar to the structure of nested

IF statements where each IF statement compares the associated function‟s return

norm (branch_distance) = 1 – 1.05
-(branch_distance)

 (4.1)

approach level= NumOfCriticalNodesAwayFromTarget – 1 (4.2)

fitness = approach level + norm (branch_distance) (4.3)

 105

value with 0. By applying (Wegener et al., 2001) fitness calculation to each

function in a path, if a function is successfully triggered then its return value is 0

otherwise the return value reflects the fitness of the input values in respect only to

this particular function. Let‟s refer to the return value of a function by a function

distance. In this way, the first transition in the path can be considered as the upper

IF statement and then functions which come next are treated as nested IF

statements. Therefore, the fitness function for a given path can be derived in a

similar way to the fitness calculation method proposed by (Wegener et al., 2001)

for a set of nested predicates. That is, given an FTP that consists of a sequence of

transitions, the function distance is calculated for each guarded transition by

applying the Wegener et al. approach (Equation 4.4). Then, any transition which

has guard(s) is considered a critical transition and so the function approach level

is derived by subtracting 1 from the number of critical transitions away from the

target transition (Equation 4.5). Finally, the path fitness is the sum of the function

approach level and the normalised value of function distance at the transition

where the execution flow was diverted (Equation 4.6).

Let‟s consider the path fun1(a,b)fun1(c,d) shown in Figure 4.3a. By

applying the proposed fitness calculation, the associated fitness function

landscape (Figure 4.3b) appears to have a smooth and sloped surface which can

provide a search with a sufficient guidance towards its goal.

function distance = norm (branch distance) + approach level

transition approach level = NumOfCrticalTransAwayFromTarget – 1

path fitness = norm (function distance) + transition approach level

(4.4)

(4.5)

(4.6)

Figure ‎4.2: An example of fitness calculation by using Wegener et al. (2001)

approach.

 Double fun1(int a, int b)

 {if a >= 10

 if a <= 20

 if b >= 0

 if b <= 10

 result = 0 //Target achieved

 else result = Norm(abs(b - 10))

 else result = Norm(abs(b - 0)) + 1

 else result – Norm(abs(a - 20))+ 2

 else result = Norm(abs(a -10)) + 3

 }

a. A function fitness calculation b. The associated fitness landscape

 106

In an EFSM, transitions‟ guards can be sequenced as nested IF statements

(as shown in Figure 1.4) or linked by logical operators AND and OR. In order to

apply the proposed fitness metric, guards linked by AND operators are

represented as nested IF statements. Generally, it is always possible to represent

guards that are linked by AND as nested IF statements, however, the reverse is not

always valid. Thus, one advantage of the proposed fitness calculation is that it

considers the general case.

If guards are linked by OR, a transition is split into a number of transitions

equal to the number of OR operators + 1. One benefit of doing so is that the test

considers satisfying each predicate/condition in a guard. However, the alternative

would be to use the minimum fitness value for a set of conditions linked by OR

operator as proposed by (Tracey et al., 1998c).

A similar notion of manipulating a path to calculate the fitness is

introduced in (Lefticaru and Ipate, 2008). However, the study does not consider

the problem when the path includes transitions that have nested guards and so the

study considers only the branch distance when calculating the function distance.

As argued in (McMinn, 2004), in the presence of nested guards, the branch

distance cannot always provide a sufficient guidance. Therefore, the proposed

approach in this chapter can provide a search with better guidance for the

considered FTP‟s test case generation problem (Kalaji et al., 2009b). Later in this

chapter, an experiment is used to compare the performance of the proposed

approach with that described in (Lefticaru and Ipate, 2008).

Figure ‎4.3: An example of a path fitness calculation by using the proposed

approach.

 double Path(int a, int b, int c, int d)

 {if fun1 (a, b) = 0

 if fun1 (c, d) = 0

 result = 0 //Target achieved

 else result = Norm(fun1(a,b))

 else result = Norm(fun1(c,d)) + 1

 }

a. A Path fitness calculation

b. The associated fitness landscape

 107

4.3.2 GA Encoding

When using a GA search to generate FTP‟s test cases, an encoding is required and

this can be selected on the basis of the machine input parameter types. It is

possible to use binary or integer encoding when all of the considered machine

input parameters are of integer data type. However, if some of the input

parameters are of double data type, then real valued encoding can be used. A

candidate solution that represents a test case consists of components where each

component represents one input parameter. For example, a possible solution

encoding of the path shown in Figure 4.3a consists of four components of type

integer <C0, C1, C2, C3 >.

 Naturally, FTPs can require different numbers of input parameters. A

possible way to cope with this problem is to have an individual that consists of

relatively a large number of components. Such a number can be determined from

the maximum number of inputs required by a given FTP in a considered EFSM.

In this way, when an FTP requires fewer inputs, the extra inputs included in the

generated test case are simply ignored.

4.3.3 Using Constraint Satisfaction to Trigger an FTP

The constraint satisfaction method expresses the problem of test case generation

in terms of solving a set of constraints. These constraints are derived by

symbolically executing a given path. In symbolic executions, the inputs are

represented by symbols, and thus the outputs of the program are symbols and

expressions over these symbols. This leads to a general representation of the

relation between a given input and its associated output. The aim of applying

symbolic execution is to express the values of all the variables in a given path in

terms of input parameters and / or constants. If a path is symbolically executed,

the resultant constraints can be of two types: equality constraints and inequality

constraints. Let e and e' be expressions:

1. An equality constraint can be given as e = e' where both e and e' are

constants, or e contains input parameters and e' is a constant.

 108

2. An inequality constraint can be given as e ≤ 0 where either e is a constant

or e contains input parameters.

Given a set of equality and inequality constraints, a solver can be applied to try to

find values of the parameters for which all the constraints hold.

 As mentioned previously, an FTP can be seen as functions to be called in a

sequence. Given this description, a set of constraints from a given path can be

derived through the following steps:

1. For all the transitions in the path, rename the input parameters for each

transition so that all the input parameters have unique names.

2. By starting from the first transition, for each transition, then for each

assignment statement, replace the context variable by the expression that is

assigned to it using the input parameters and current values of context

variables. If the transition contains guards, then for each guard that

involves a context variable, replace this variable by its current value in

terms of parameters and constants.

3. If there is a transition that still has guards that reference context variables,

the given path cannot be executed since the values of these variables are

not yet defined. Otherwise, the resultant list of guards is a set of

constraints that reference only input parameters and constants.

The set of constraints then can be fed to a solver in order to try to find suitable

values for the input parameters included in the constraints so that all the

constraints hold. If the set of constraints is solved, the values returned by the

solver comprise a test case that can exercise the considered FTP.

4.4 Experiment

This section describes two experiments and reports their results. The first

experiment applied three search-based test cases generators to sets of subject TPs

derived from five EFSM case studies. The second experiment studied the

relationship between the FTP‟s fitness metric value and the effort, in terms of

time, that is required by a test cases generator to trigger the FTP. It also

 109

investigated the capability of the TP fitness metric to predict the required effort by

a test cases generator to trigger an FTP.

4.4.1 Design of the First Experiment

In designing the first experiment, the aim was to evaluate the efficiency of the

proposed fitness function in guiding a GA search for test cases that can trigger

two groups of subject TPs that were derived from the five EFSM case studies. To

achieve this, there are two factors to be considered.

The first factor is related to the method by which a subject TP was

generated. That is, subject TPs that were generated by using the TP fitness metric

approach were potentially associated with the least possible fitness metric values.

This may lead to such TPs being relatively easy to trigger. However, subject TPs

that were randomly generated can have any possible TP fitness metric value.

Thus, the performance of the proposed test cases generation approach on these

two types of subject TPs might reveal whether the proposed approach is generally

applicable or limited to a certain type of path. Therefore, for each considered

EFSM, the proposed approach is applied to two groups of subject TPs. The first

group was generated by using the TP fitness metric approach whereas the second

group was randomly generated. Each group consists of three sets of subject TPs

where each set has a different TP length. These sets were previously generated

and reported on Chapter 3.

The second factor is related to comparing the performance of the proposed

test cases generation approach with an alternative approach that is reported on the

literature (Lefticaru and Ipate, 2008). This can show which approach is capable to

trigger more FTPs and thus is more effective than the other.

The third factor is to understand how the proposed approach performs

compared to a random test cases generator. Furthermore, the use of a random test

cases generator can help to determine how easy it is to trigger a generated TP.

That is, if it is possible to quickly randomly find a test case that can trigger a

given FTP, then it is possible to state that such an FTP is easy to trigger.

 110

Therefore, in the experiment, three test cases generators were applied to each

subject TP. The first one is the proposed approach and will be denoted by (GA-1).

The second one is the alternative approach taken from the literature (described at

the end of Subsection 4.3.1) and will be denoted by (GA-2). Finally the third

approach is a random test cases generator and is denoted by (Rand).

 The three test cases generators were implemented by using the publicly

available Genetic and Evolutionary Algorithm Toolbox GEATbx (Pohlheim,

1994-2010). A detailed description of each of the GEATbx parameters is provided

at the tool‟s website and the values used in the experiment are recorded here to

allow a replication of the experiment. An integer valued encoding was use to

represent the input parameters. The population size was 100 individuals where

each individual consists of 25 integer variables which represent the maximum

number of input parameters required by any considered subject TP. The range of

values allowed for each variable was [0..1000]. The selection method was linear-

ranking with a selective pressure set to 1.8. Discrete recombination was used to

recombine individuals whereas the mutate integer method was used for mutation.

GEATbx allows the use of a standard random approach by setting the

recombination and mutation methods to „recnone‟ and „mutrandint‟ respectively.

The three test cases generators were given 1000 generations before search was

terminated. Finally, the search was repeated with each technique 10 times for each

subject TP.

4.4.2 Experimental Results for the Three Search-Based

FTPs Test Cases Generators

For each EFSM case study, three sets of subject TPs were generated by using the

TP fitness metric approach (described in Chapter 3). Each set potentially provides

a transition coverage test suite for the considered EFSM. However, each set has a

different TP length which is 9 transitions in the first set, 12 transitions in the

second set and 15 transitions in the third set. Also, three similar alternative sets

were randomly generated. All of these sets were previously reported in Chapter 3.

The three sets that were generated by the TP fitness metric approach were grouped

 111

together and are referred to by a GA group. Similarly, the three sets of alternative

randomly generated TPs were grouped together and are referred to by random

group. Then each of the three test cases generators (GA-1, GA-2, Rand) was

applied ten times to each subject TP in each group.

4.4.2.1 Results Derived from the Lift EFSM

For this EFSM, each group of subject TPs (GA or random group) contains 72 TPs.

Figure 4.4 comprises of three rows, the first row shows two figures (4.4a and

4.4b) which plot the performance of GA-1 approach on the GA group of TPs and

the random group of TPs respectively. Similarly, the second and third rows show

the performances of GA-2 and Rand approaches respectively. Each plot shows the

fitness metric value of each subject TP plotted against the average number of

generations required in ten tries to trigger this TP.

 From Figure 4.4a, the proposed test cases generator, GA-1, was successful

in triggering the entire subject TPs included in the GA group. This states that the

entire subject TPs in the GA group are feasible. Furthermore, GA-1 approach

always required more than 600 generations in order to trigger subject TPs in the

GA group. However, for the subject TPs in the random group, Figure 4.4b shows

that none of these TPs was successfully triggered by GA-1. This is because all of

the randomly generated TPs are infeasible where each of them includes at least

one instance of the infeasible TP cases (guards opposition or guard and

assignment opposition).

 Figure 4.4c shows that the GA-2 approach was capable to trigger just a

subset of the subject TPs in the GA group. However, the GA-2 method was able

to perform faster than the GA-1 on some subject TPs. Furthermore, all the TPs

that were triggered by GA-2 are associated with TP fitness metric values that did

not exceed 112. However, there are TPs that are associated with lower TP fitness

metric values but were not triggered. This shows that for this EFSM, the proposed

approach, GA-1, outperformed the alternative approach, GA-2. For the subject

TPs that are included in the random group, Figure 4.4d shows that GA-2 did not

trigger any of them since all of these TPs are infeasible.

 112

 a- GA-1 to trigger GA generated TPs b- GA-1 to trigger randomly generated TPs

 c- GA-2 to trigger GA generated TPs d- GA-2 to trigger randomly generated TPs

 e- Rand to trigger GA generated TPs f- Rand to trigger randomly generated TPs

 Figure ‎4.4: Lift EFSM GA and random groups of subject TPs. Plots a & b

show the performance of the GA-1 approach on TPs in GA group and TPs in

the random group respectively. Similarly, Plots c & d and Plots e & f show

the performance of GA-2 and Rand approaches respectively. The fitness

metric of subject TPs in random group is plotted by using logarithmic scale.

 113

Rand method could not trigger any subject TP of the GA group (Figure 4.4e). This

can lead to a conclusion that none of these subject TPs can be classified as being

easy to trigger. Since the random group of TPs did not contain any feasible TP

(Figure 4.4f), it was not surprising that the Rand performance on these TPs is the

same as the performance of the other two approaches (GA-1 and GA-2).

 Table 4.2 reports the summary of the results achieved by the three test

cases generators on Lift system EFSM. From this table, the proposed approach,

GA-1, triggered all the subject TPs in the GA group (success rate = 100%).

However, the alternative approach, GA-2 was outperformed by the proposed

approach since it was able to trigger only 8 TPs (success rate ≈ 8%). The Rand

approach exhibited the worst performance on the GA group and did not trigger

any TP (success rate = 0%). Since none of the subject TPs included in the random

group is feasible, the considered test cases generation methods did not trigger any

of them.

4.4.2.2 Results Derived from the In-Flight EFSM

For this EFSM, the GA group contains 93 subject TPs and so does the random

group of subject TPs.

 Figure 4.5a shows that the proposed approach, GA-1, was successful in

generating test cases that triggered the entire subject TPs included in the GA

group. This shows that all the subject TPs in the GA group are feasible.

Triggering

Method

TP Generation

Method

Total TPs

Count

Feasible

TPs

Triggered Success

rate

GA-1
GA generated

TPs (GA group)
72 72

72 = 100%

GA-2 8 ≈ 11%

Rand 0 ≈ 0%

GA-1 Randomly

generated TPs

(Random group)

72 0

0 = 0%

GA-2 0 = 0%

Rand 0 = 0%

GA-1

Both methods 144 72

72 = 100%

GA-2 8 ≈ 11%

Rand 0 ≈ 0%

Table ‎4.2: The performance of three test case generation methods on two

groups of subject TPs derived from the Lift EFSM.

 114

 a- GA-1 to trigger GA generated TPs b- GA-1 to trigger randomly generated TPs

 c- GA-2 to trigger GA generated TPs d- GA-2 to trigger randomly generated TPs

 e- Rand to trigger GA generated TPs f- Rand to trigger randomly generated TPs

 Figure ‎4.5: In-Flight EFSM GA and random groups of subject TPs. Plots a &

b show the performance of the GA-1 approach on TPs in GA group and TPs

in the random group respectively. Similarly, Plots c & d and Plots e & f show

the performance of GA-2 and Rand approaches respectively. The fitness

metric of subject TPs in random group is plotted by using logarithmic scale.

 115

Furthermore, it is clear that the GA-1 approach could trigger some subject TPs as

early as one generation. For the subject TPs in the random group, these are

associated with a TP fitness metric values which indicate that these TPs are

infeasible. Therefore, The GA-1 approach could not trigger any of them. A close

examination of these TPs showed that each TP included at least one instance of

the infeasible TP cases and so such TPs cannot be triggered. Figure 4.5b shows

that the GA-1 reached the maximum number of generations and none of these TPs

was triggered.

Figure 4.5c demonstrates that GA-2 approach could trigger many subject

TPs of the GA group. However, there are still TPs that are feasible but not

triggered. Furthermore, The GA-2 approach seems to perform only when the TP

fitness metric values did not exceed 144 but there are still some TPs that have less

than 144 TP fitness metric values and were not triggered. This result states that for

this EFSM, the proposed approach, GA-1, also outperformed the alternative

approach (GA-2). Since the random group contains only infeasible TPs, GA-2

approach could not trigger any of them as shown in Figure 4.5d.

 Rand approach successfully triggered some of the subject TPs in the GA

group as shown in Figure 4.5e. Furthermore, all the successfully triggered TPs are

associated with TP fitness metric value that did not exceed 132. But some subject

TPs are associated with a lower TP fitness but were not triggered. Moreover, the

Rand approach exhibited different performance on TPs that have the same TP

fitness metric values. When the TP fitness metric value is 72, the average number

of the required generations to trigger TPs varied between 1 generation and 830

generations. Nevertheless, the results exhibited by Rand on this EFSM shows that

the TP fitness metric approach generated some TPs that are easy to trigger. For the

random group of subject TPs, the Rand approach could not trigger any TP since

the entire group contains only infeasible TPs (see Figure 4.5f).

 Table 4.3 summarises the results achieved by the three test cases

generation techniques on the In-Flight EFSM. The proposed approach, GA-1,

exhibited the best performance on the GA group of subject TPs where it triggered

all the 93 subject TPs (success rate = 100%). The alternative approach, GA-2,

exhibited better performance than that observed on the Lift EFSM and had a

 116

success rate approximately 72%. However, it was outperformed by the GA-1

approach. The Rand technique exhibited the worst performance where it triggered

only 33 subject TPs (success rate ≈ 35.5%). Nevertheless, the Rand performance

on this EFSM was much better than that on the Lift EFSM. This leads to a

conclusion that, for the considered EFSM, the TP fitness metric approach

generated some subject TPs that are easy to trigger.

4.4.2.3 Results Derived from the ATM EFSM

For this EFSM, each group (GA or random group) contains 90 subject TPs. From

Figure 4.6a, the proposed GA-1 approach triggered almost all the subject TPs in

the GA group. However, there are three TPs that were associated with the greatest

TP fitness metric values (among other TPs) and were not triggered. As reported in

the experimental results of Chapter 3, these TPs suffer from the counter problem

and are infeasible. By considering only the FTPs in the GA group, the proposed

approach, GA-1, did not require, on average, more than 600 generations. This

states that for this EFSM, the TP fitness metric approach generated subject TPs

(GA group) that are relatively easier to trigger than those produced for the

previous two EFSMs. The random group includes subject TPs with greater TP

fitness metric values than that seen in the GA group. However, the GA-1 approach

triggered all of the FTPs in the random group (Figure 4.6b). All of the subject TPs

that belong to the random group and were not triggered, were infeasible because

Triggering

Method

TP Generation

Method

Total TPs

Count

Feasible

TPs

Triggered Success

rate

GA-1
GA generated

TPs (GA group)
93 93

93 = 100%

GA-2 67 ≈ 72%

Rand 33 ≈ 35.5%

GA-1 Randomly

generated TPs

(Random group)

93 0

0 = 0%

GA-2 0 = 0%

Rand 0 = 0%

GA-1

Both methods 186 93

93 = 100%

GA-2 67 ≈ 72%

Rand 33 ≈ 35.5%

Table ‎4.3: The performance of three test case generation methods on two

groups of subject TPs derived from the In-Flight EFSM.

 117

Figure ‎4.6: ATM EFSM GA and random groups of subject TPs. Plots a & b

show the performance of the GA-1 approach on TPs in GA group and TPs in

the random group respectively. Similarly, Plots c & d and Plots e & f show

the performance of GA-2 and Rand approaches respectively. The fitness

metric of subject TPs in random group is plotted by using logarithmic scale.

 a- GA-1 to trigger GA generated TPs b- GA-1 to trigger randomly generated TPs

 c- GA-2 to trigger GA generated TPs d- GA-2 to trigger randomly generated TPs

 e- Rand to trigger GA generated TPs f- Rand to trigger randomly generated TPs

 118

either these included instance(s) of the infeasible TP cases (TP fitness metric ≥

10
4
) and / or they suffered from the counter problem.

 The alternative approach, GA-2, triggered almost all of the FTPs included

in the GA group (Figure 4.6c). However, GA-2 required almost the maximum

number of generations to perform on FTPs that are associated with the greatest TP

fitness metric values (among other FTPs in GA group). Furthermore, the

performance of GA-2 on the subject TPs in the GA group is also better than that

observed in the previous two EFSMs. From Figure 4.6d, it is also clear that the

GA-2 approach performed well on the FTPs included in the random group.

However, it failed on some of the FTPs in the random group.

 The Rand approach appears to perform poorly on the FTPs included in the

GA group (Figure 4.6e) where there are many FTPs that were not successfully

triggered. Furthermore, the Rand approach required more than 800 generations for

the FTPs that were triggered. From Figure 4.6f, the Rand performance on the

random group was the worst and it could not trigger any of the FTPs.

 Table 4.4 reports the summary of the results derived from ATM EFSM by

the three test cases generators. The best performance was exhibited by the

proposed approach. For all the FTPs in both groups (GA and random), the

proposed approach, GA-1, had a success rate of 100%. The alternative approach,

GA-2, performed relatively similar to the GA-1 approach when subject TPs

belonged to the GA group. However it exhibited a slightly worse performance

than that of the GA-1 approach when subject TPs were randomly generated. The

Triggering

Method

TP Generation

Method

Total TPs

Count

Feasible

TPs

Triggered Success

rate

GA-1
GA generated

TPs (GA group)
90 87

87 = 100%

GA-2 82 ≈ 94.1%

Rand 20 ≈ 23%

GA-1 Randomly

generated TPs

(Random group)

90 49

49 = 100%

GA-2 42 ≈ 85.7%

Rand 0 = 0%

GA-1

Both methods 180 136

136 = 100%

GA-2 124 ≈ 91.2%

Rand 20 ≈ 14.7%

Table ‎4.4: The performance of three test case generation methods on two

groups of subject TPs derived from the ATM EFSM.

 119

overall success rate associated with GA-2 was approximately 91.2%. Finally, the

Rand approach exhibited the worst performance with an overall success rate of

approximately 14.7%. However, the performance of the Rand approach was much

better on GA group of subject TPs than that observed on the random group of

subject TPs. This can also support the previous observation that the TP fitness

metric approach can help in generating FTPs that are relatively easy to trigger.

4.4.2.4 Results Derived from the Inres Initiator EFSM

For the Inres initiator EFSM, each group of subject TPs contains 45 paths. As

shown in Figure 4.7a, the proposed approach, GA-1, triggered almost all the

subject TPs included in the GA group. The remaining untaken TPs were

infeasible; they suffered from the counter problem. Therefore, for all the FTPs

included in the GA group, the GA-1 approach was successful. Furthermore, the

average maximum number of generations required by GA-1 to perform did not

exceed 36 generations. This can be explained by the fact that the FTPs included in

the GA group were associated with low fitness metric values. The performance of

GA-1 on the random group of subject TPs is plotted in Figure 4.7b. For all

feasible TPs, the GA-1 approach was also successful. Other TPs in the random

group that were not triggered were infeasible since they either included an

instance(s) of the infeasible TP cases and / or suffered from the counter problem.

 Figure 4.7c shows the performance of GA-2 approach on the GA group of

subject TPs. The performance exhibited by GA-2 approach on GA group is almost

the same as that exhibited by the GA-1 approach. This indicates that when FTPs

are associated with relatively low TP fitness metric values (< 55), both approaches

GA-1 and GA-2 are likely to perform similarly. This observation is also supported

by the GA-2 performance on the random group of subject TPs. Figure 4.7d shows

that GA-2 approach performed similarly to the GA-1 approach on the random

group of subject TPs where the maximum TP fitness metric value in this group is

54.

 120

Figure ‎4.7: Inres EFSM GA and random groups of subject TPs. Plots a & b

show the performance of the GA-1 approach on TPs in GA group and TPs in

the random group respectively. Similarly, Plots c & d and Plots e & f show

the performance of GA-2 and Rand approaches respectively. The fitness

metric of subject TPs in random group is plotted by using logarithmic scale.

 a- GA-1 to trigger GA generated TPs b- GA-1 to trigger randomly generated TPs

 c- GA-2 to trigger GA generated TPs d- GA-2 to trigger randomly generated TPs

 e- Rand to trigger GA generated TPs f- Rand to trigger randomly generated TPs

 121

Rand approach exhibited a better performance than that observed on the

previous three EFSMs. For the GA group of subject TPs, Figure 4.7e shows that

the Rand approach could trigger almost all of the FTPs (only 2 FTPs were left

untaken). Similarly, the Rand approach triggered almost all of the FTPs included

in the random group of subject TPs (see Figure 4.7f). The results achieved from

the Rand approach support the claim that when the FTPs are associated with low

TP fitness metric values, then they are likely to be easy to trigger.

 Table 4.5 shows that both the proposed and the alternative approaches

could trigger all the subject FTPs and so they have the same overall success rate

(100%). The Rand approach performed relatively worse than the GA approaches

and the overall success rate was approximately 90.7%. The result achieved from

Inres EFSM states that when subject FTPs are associated with low TP fitness

metric values (<55), the GA approaches are likely to perform similarly.

Furthermore, such FTPs are likely to be easy to trigger by using a random test

cases generator.

4.4.2.5 Results Derived from the Class 2 EFSM

The total subject TPs for Class 2 EFSM is 63 in each group (GA or random). For

the proposed approach, GA-1, this was able to trigger the entire subject TPs in the

GA group relatively quickly (see Figure 4.8a). The maximum average number of

Triggering

Method

TP Generation

Method

Total TPs

Count

Feasible

TPs

Triggered Success

rate

GA-1
GA generated

TPs (all lengths)
45 36

36 = 100%

GA-2 36 = 100%

Rand 34 ≈ 94.4%

GA-1 Randomly

generated TPs

(all lengths)

45 7

7 = 100%

GA-2 7 = 100%

Rand 5 ≈ 71.4%

GA-1

Both methods 90 43

43 = 100%

GA-2 43 = 100%

Rand 39 ≈ 90.7%

Table ‎4.5: The performance of three test case generation methods on two

groups of subject TPs derived from the Inres initiator EFSM.

 122

Figure ‎4.8: Class II EFSM GA and random groups of subject TPs. Plots a &

b show the performance of the GA-1 approach on TPs in GA group and TPs

in the random group respectively. Similarly, Plots c & d and Plots e & f show

the performance of GA-2 and Rand approaches respectively. The fitness

metric of subject TPs in random group is plotted by using logarithmic scale.

 a- GA-1 to trigger GA generated TPs b- GA-1 to trigger randomly generated TPs

 c- GA-2 to trigger GA generated TPs d- GA-2 to trigger randomly generated TPs

 e- Rand to trigger GA generated TPs f- Rand to trigger randomly generated TPs

 123

generations required by GA-1 did not exceed 25. However, it is worth noting here

that the maximum TP fitness metric value in the GA group is 46. For the random

group (Figure 4.8b), the GA-1approach was also successful in triggering all the

FTPs. However, the GA-1 required more generations to trigger certain FTPs that

were associated with greater TP fitness metric values. The subject TPs that were

left untaken were infeasible since they included instances of the infeasible TP

cases.

From Figure 4.8c, the GA-2 approach exhibited a similar performance to

that of GA-1 on the GA group where it successfully triggered all the subject TPs.

Furthermore, GA-2 performance on the random group was similar to that of GA-1

where it triggered all the FTPs included in this group but one FTP. The FTP that

was left untaken has the greatest TP fitness metric value in this group (190). The

performance of the GA-2 approach on both groups leads to the same conclusion

derived from Inres EFSM. That is, when FTPs are associated with TP fitness

metric values less than 55, it is likely that the performances of both GA-1 and

GA-2, in terms of the triggering capability, are alike.

 The Rand approach performance on the GA group is plotted in Figure

4.8e. This approach could also trigger all of the subject TPs included in this

group. This can be also related to the observation that these FTPs are associated

with low TP fitness metric values. The performance of the Rand approach on the

random group is shown in Figure 4.8f. Although the Rand performance was

similar to that of GA-2, there are some FTPs that were left untaken. The results of

the Rand approach on this EFSM also support the observation that for certain

EFSMs, the TP fitness metric approach can produce FTPs that are easy to trigger.

Such EFSMs can possibly be determined from the average TP fitness metric value

of the derived FTPs (see Table 3.11, pp. 97). As shown in Figure 4.8, the

maximum TP fitness metric value did not exceed 50 when TPs were generated by

using the TP fitness metric approach.

Table 4.6 shows that the three test cases generation approaches performed

similarly on the GA group of subject TPs and triggered all of them. Therefore,

these three approaches have a success rate of 100%. For the random group of

subject TPs, the GA-1 approach exhibited the best performance and triggered all

 124

the FTPs. The performance of GA-2 approach was a little worse than that of GA-1

whereas the Rand approach exhibited the worst performance. The overall success

rate of GA-1 approach was 100%, GA-2 approach was 99% and the Rand

approach was approximately 95%

4.4.2.6 Summary of the Results

Table 4.7 summarises the results achieved by the three test cases generators on the

five EFSM cases studies. The total number of subject TPs that were generated by

the TP fitness metric approach (GA group) was 363 TPs. From these TPs, there

were 351 FTPs and 12 infeasible TPs (3 TPs belong to ATM and 9 belong to Inres

initiator). The proposed approach, GA-1, triggered all of the FTPs in the GA

group (success rate = 100%). However, the alternative approach, GA-2, failed on

some of these FTPs (success rate ≈ 72.9%). The worst performance was exhibited

by the Rand approach where it was able to trigger only 150 FTPs (success rate ≈

42.7%).

 For TPs included in the random group, there were only 93 FTPs out of 363

subject TPs. For all the FTPs included in this group, the proposed approach was

also successful and triggered all of them (success rate = 100%). The performance

of the alternative approach, GA-2, on the random group was much better than that

observed on the GA group where the success rate increased to approximately

Triggering

Method

TP Generation

Method

Total TPs

Count

Feasible

TPs

Triggered Success

rate

GA-1
GA generated

TPs (all lengths)
63 63

63 = 100%

GA-2 63 = 100%

Rand 63 = 100%

GA-1 Randomly

generated TPs

(all lengths)

63 37

37 = 100%

GA-2 36 ≈ 97.3%

Rand 32 ≈ 86.5%

GA-1

Both methods 126 100

100 = 100%

GA-2 99 = 99%

Rand 95 ≈ 95%

Table ‎4.6: The performance of three test case generation methods on two

groups of subject TPs derived from the Class 2 EFSM.

 125

91.4%. However, the Rand approach exhibited a slightly worse performance than

that observed on the GA group where the success rate decreased to approximately

39.8%.

 By considering only the FTPs in both groups (GA and random), the

proposed approach exhibited the best performance and triggered all of them

(success rate = 100%). The alternative approach, GA-2, was outperformed by the

proposed approach where the overall GA-2 success rate was approximately

76.8%. Finally, it was not surprising that Rand approach came last with a success

rate of approximately 42.1%.

 The results achieved of this experiment suggest that the proposed approach

GA-1 is associated with the best performance and can potentially trigger FTPs

derived from an EFSM model. The GA-2 approach exhibited better performance

on the FTPs that were randomly generated than on the GA group of FTPs. This

can be explained by considering the fact that FTPs in the random group were

derived from ATM, Class 2 and Inres initiator EFSMs. However, for In-Flight and

Lift EFSMs, none of the randomly generated TPs was feasible. By considering

only the two groups of FTPs that were derived from these three EFSMs, it is clear

that GA-2 exhibited better performance on the GA-group than that on the random

group.

 The results exhibited by the Rand approach on the GA group of FTPs

show a trend that the TP fitness metric approach has the potential to produce FTPs

that are relatively easy to trigger (by using a random test cases generator).

Triggering

Method

TP Generation

Method

Total TPs

Count

Feasible

TPs

Triggered Success

rate

GA-1
GA generated

TPs (all lengths)
363 351

351 = 100%

GA-2 256 ≈ 72.9%

Rand 150 ≈ 42.7%

GA-1 Randomly

generated TPs

(all lengths)

363 93

93 100%

GA-2 85 ≈ 91.4%

Rand 37 ≈ 39.8%

GA-1

Both methods 726 444

444 = 100%

GA-2 341 ≈ 76.8%

Rand 187 ≈ 42.1%

Table ‎4.7: The performance of the three test case generators on the five

EFSM case studies.

 126

4.4.3 Design of the Second Experiment

In designing the second experiment, the aim was to study two questions. The first

question is whether there is a relationship between the fitness metric value of an

FTP and how much effort, in terms of time, is required by a test cases generator to

trigger this FTP. The second question is to check whether the fitness metric of an

FTP can predict the effort that is required by a test cases generator to trigger this

FTP.

 To answer these questions, there are three factors to be considered. The

first factor concerns the considered test cases generator approaches. Since the

proposed FTP test cases generator, GA-1, could trigger all the generated FTPs,

this approach was selected to be used in this experiment. Furthermore, for

comparison, it is useful to use another test cases generator approach to understand

whether the same conclusion can be drawn for each question even though the test

cases generation approach is different. For this, a constraint based testing

approach was used. If the constraint based testing approach can trigger all the

generated FTPs, then it can also be used in answering the two questions.

 The second factor is related to the way in which the considered FTPs were

generated. There are two groups of FTPs: (1) the GA group which includes FTPs

that were generated by a GA search that implemented the TP fitness metric

approach and (2) the random group which includes FTPs that were randomly

generated. It is useful to understand whether the two considered questions can be

answered regardless of the FTP generation method. Thus, the two questions were

separately studied on the GA group of FTPs, on the random group of FTPs and on

both groups of FTPs (all the FTPs).

 The last factor is based on the observations from the previous experiment.

For some FTPs that were associated with the same TP fitness metric value, the

average number of GA-1 generations spanned a range of generations (see for

example Figure 4.5a). Therefore, it is useful to understand whether clustering

FTPs according to their TP fitness metric values can help with these questions. To

investigate this, the FTPs in the GA group, the random group and all FTPs (both

groups) were clustered by the same fitness metric value. Each cluster contained

 127

FTPs with the same fitness metric value. Then for each cluster, the required time

or generations to trigger was the average time or generations of the FTPs in this

cluster.

For ease of reference, the proposed GA-1 approach will be denoted

henceforth by GA while the constraint based testing approach will be denoted

henceforth by CBT.

 For the CBT approach, each FTP was first transformed to a set of

constraints as described in Subsection 4.3.3. Then a solver, constrained nonlinear

minimisation fmincon (Matlab, 1984-2010), was applied. A detailed description of

the solver‟s parameters is provided in the Matlab‟s website. However, the values

that were used are recorded here for the purpose of experiment replication. Each

FTP was a set of constraints of two types: equality and inequality. The range of

values that the solver can search was set to [0..1000] while the initial solutions of

the considered variables were randomly generated in the range [0..1000]. For each

FTP, the solver was called ten times to try to find the required test case and then

the average time required by the solver in the ten tries was calculated.

In order to answer the experiment questions, statistical software was used

(SPSS). For the first question, the Pearson correlation was selected. Although

Spearman correlation can be also used, Spearman correlation was found to yield

mostly higher correlation values. Therefore, Pearson correlation was selected

since it gave the worst case correlation. Pearson correlation was performed

between FTP fitness metric values and the CBT time, the GA time, and the GA

generations that are required to trigger these FTPs. In Pearson correlations, there

are two main outputs. The first output is the correlation coefficient r and the

second output is the p value. The r value can be in the range [-1..1] where the

range boundaries state a perfect correlation. Other values of r are classified to

three categories (Cohen, 1988): (1) a small correlation when 0.10 ≤ r ≤ 0.29, (2) a

medium correlation when 0.30 ≤ r ≤ 0.49 and (3) a large correlation when r ≥

0.50. The p value determines the confidence in the results where p < 0.05 denotes

a statistically significant result. In this thesis the correlation value is only

considered if the result is statistically significant (when p < 0.05).

 128

Since there is only one considered factor (TP fitness metric value) to be used to

estimate other factors (GA time and CBT time), a linear regression analysis can be

performed. In linear regression, there are two variables: independent variable or

the explanatory and dependent variable to be estimated. In linear regression there

are two hypotheses: the null hypothesis which states that the independent variable

has a zero impact on the dependant variable whereas the alternative hypothesis

states that the independent variable does impact the dependent one. The important

outputs of a linear regression are:

1. The coefficient of determination or R Squared (RS) which states how

much the independent variable is capable of explaining the variance in the

dependent variable. The range of RS values is [0..100]%.

2. The F ratio significance (Sig) which states the confidence (1 − Sig) by

which the null hypothesis can be rejected (usually when Sig < 0.05).

3. The line fit plot which shows the trend by which the estimation can be

performed.

4.4.4 Results of the Second Experiment

This Section reports the experimental results obtained from applying the CBT

approach to each group of FTPs. Then, the results of the correlation and linear

regression analysis are presented.

4.4.4.1 CBT Performance on Both Groups of FTPs

The CBT approach was applied to each group of FTPs (351 FTPs in the GA group

and 93 FTPs in the random group). For each FTP, the approach was applied ten

times to try to solve the FTP‟s constraints and hence to find a test case that can

exercise this FTP. Figure 4.9 shows the performance of CBT approach on both

groups of FTPs. Each plot shows an FTP fitness metric value against the average

time in seconds that is required by the CBT in ten tries to solve an FTP‟s

constraints.

 129

Figure 4.9a shows that CBT approach was successful in triggering all the FTPs

that are included in the GA group. Furthermore, the maximum average time that

was required for CBT to perform did not exceed 0.15 of a second. From Figure

4.9b, a similar observation can be noticed. The CBT approach successfully trigged

all of the FTPs in the random group. Also, the maximum average time did not

exceed 0.08 of a second
3
. The results achieved by the CBT approach suggest that

this method can also be used as a second test cases generator approach to answer

the considered two questions.

4.4.4.2 Correlation Study (Without FTP Clustering)

A study of the correlation among the FTPs fitness metric values and their

corresponding GA average time (sec), GA average generations, and average CBT

time (sec) are reported in Tables 4.8, 4.9 and 4.10.

Table 4.8 shows the correlations derived from the FTPs in the GA group.

From this table, all the correlation values are statistically significant at p < 0.01.

The achieved correlation shows that there was a strong positive correlation

3
 All experiments were conducted on a PC with Windows® XP Service Pack 3 OS, Intel®

Pentium® 4 CPU 2.80 GHz 2.79 GHz and 1.24 GB of RAM

 a- CBT to trigger GA generated TPs b- CBT to trigger randomly generated TPs

Figure ‎4.9: The CBT performance on both groups of FTPs. Plot a shows the

performance on the GA group of FTPs while Plot b shows the performance

on the random group of FTPs.

 130

 (r.=.0.798) between the fitness metric and the required GA time in seconds to

trigger the FTPs. Similarly, there was a strong positive correlation (r = 0.791)

between the fitness metric and the required GA generations to trigger the FTPs.

The relationship between the GA time and GA generations was found to be almost

perfect (r = 0.999). Furthermore, the correlations between the fitness metric and

the required CBT time in seconds to trigger the FTPs was also found to be

positive and strong (r = 0.864). This shows that for the considered test cases

generators (GA and CBT), there was a strong agreement on their performances on

the FTPs included in the GA group. Greater fitness metric values were associated

with more GA time or CBT time.

Table 4.9 shows the correlations achieved from the FTPs in the random

group. All the correlation values were found to be statistically significant at p <

0.01. The correlation between the fitness metric and the required GA time was

positive and strong (r = 0.650). Similarly, the correlation between the fitness

metric and the required GA generations was also positive and strong (r = 0.650).

Thus, the correlation between the GA time and GA generations was almost perfect

(r = 0.999). However, the correlation between the fitness metric and the required

CBT time to trigger the FTPs was found to be positive but medium (r = 0.363).

Similarly, the agreement in the performance between GA time and CBT time was

found to be positive and medium (r = 0.414). The results achieved from the

random group of FTPs suggest that greater fitness metric values were associated

with more GA time and generations.

 Fitness metric GA Gen. GA time CBT time

Fitness metric 1

GA Gen. 0.791* 1

GA time 0.798* 0.999* 1

CBT time 0.864* 0.847* 0.851* 1

* Correlation is significant at the p < 0.01 level (2-tailed).

Table ‎4.8: GA group of FTPs (no clustering) - Correlation among FTPs’

fitness metric, GA average generations, GA average time and CBT average

time.

 131

Table 4.10 shows the results of the correlation study achieved from both groups of

FTPs. Similar to the previous results, all correlations were found to be statistically

significant at p < 0.01. There were strong positive correlations between the fitness

metric and both GA time (r = 0.642) and GA generations (r+=+0.654). Also, the

correlation between GA time and GA generations was almost perfect (r = 0.999).

The correlation between the CBT time and the fitness metric was found to be

positive and medium (r = 0.454). However, the correlation between the CBT time

and the GA time was found to be positive and strong (r = 0.757). This indicates

that more GA time was associated with more CBT time.

The results obtained from the correlation study raised a question about the

difference in the correlations between the fitness metric and the CBT time which

were observed on the GA group of FTPs (r = 0.864) and on the random group of

FTPs (r = 0.363). This can be partially explained by the fact that the random

group of FTPs did not include all the considered EFSMs (the In-Flight and Lift

EFSMs were excluded since no randomly generated TP was an FTP). This, in

turn, may mean that the random group is less representative. However, the latter

reason cannot fully explain the difference in the performance of CBT approach on

both groups. Since the CBT approach considers only two types of constraints:

equality and inequality, these two factors can be used to provide some insights

about the performance of the CBT approach.

The number of equality and inequality constraints was calculated for each

FTP in each group. Then, a correlation study was performed again. For GA

groups of FTPs, the total number of inequality constraints is 3035 whereas the

 Fitness metric GA Gen. GA time CBT time

Fitness metric 1

GA Gen. 0.650* 1

GA time 0.650* 0.999* 1

CBT time 0.363* 0.414* 0.414* 1

* Correlation is significant at the p < 0.01 level (2-tailed).

Table ‎4.9: Random group of FTPs (no clustering) - Correlation among FTP

fitness metric, GA average generations, GA average time and CBT average

time.

 132

total number of equality constraints is 385. This gives a ratio of approximately 7.9

and thus the prevalence of the inequality constraints is greater than that of equality

constraints by approximately 7.9 times. Each FTP in the GA group has an average

about 9 inequality constraints and 1 equality constraint. Similarly, for the random

group of FTPs, the total number of inequality constraints is 291 and the total

number of equality constraints is 332. The prevalence of the equality constraints is

greater than that of inequality constraints by approximately 1.1 times. That is,

each FTP in the random group has in average about 4 equality constraints and 3

inequality constraints.

From Table 4.11 and for the GA group of FTPs, the fitness metric was

found to have a strong positive correlation (r = 0.842) with the number of

inequality constraints. Nevertheless, the correlation between the fitness metric and

the number of equality constraints was positive but small (r = 0.156). For the GA

time, this was also found to have a strong positive correlation with the number of

inequality constraints (r = 0.940). However, the correlation between the GA time

and the number of equality constraints was found to be positive but small

(r+=+0.172). Similarly, the correlation between the CBT time and the number of

inequality constraints was strong and positive (r = 0.849) but interestingly there

was no significant correlation (p > 0.05) between the CBT time and the number of

equality constraints.

For the random group of FTPs, the fitness metric was found to have a

strong positive correlation with the number of equality constraints (r = 0.688). But

it was found to have a positive small correlation with the number of inequality

constraints (r = 0.261). The GA time was strongly correlated with the number of

 Fitness metric GA Gen. GA time CBT time

Fitness metric 1

GA Gen. 0.654* 1

GA time 0.642* 0.999* 1

CBT time 0.454* 0.747* 0.757* 1

* Correlation is significant at the p < 0.01 level (2-tailed).

Table ‎4.10: Both groups of FTPs (no clustering) - Correlation among FTP

fitness metric, GA average generations, GA average time and CBT average

time.

 133

equality constraints (r = 0.952) but it did not have a correlation with inequality

constraints. Importantly, the CBT time was strongly correlated with the number of

inequality constraints (r = 0.619) but it had a medium correlation with the number

of equality constraints (r = 0.357).

Finally, for both groups of FTPs, the fitness metric was strongly correlated

with the number of equality constraints (r = 0.553) but this has a medium

correlation with the number of inequality constraints (r = 0.436). For GA time,

this was strongly correlated with the number of inequality constraints (r = 0.828)

but it had a medium correlation with equality constraints (r = 0.381). Importantly,

the correlation between the CBT time and the inequality constraint was strong (r =

0.894) but there was no correlation between the CBT time and the number of

equality constraints.

The results of the correlation study achieved by considering the two types

of constraints show that the performance of the CBT approach was always

correlated with the number of inequality constraints. In order to investigate this

further, a close examination was conducted on the form of the equality constraints

in the considered FTPs. It transpired that the majority of the equality constraints

are of the form parameter = constant. Such constraints represent assignments that

FTPs Fitness

metric

GA

Gen.

GA

time

CBT

time

Inequali

ty Cons.

Equality

Cons.

GA

group

of FTPs

Inequality

Cons.
0.842* 0.938* 0.940* 0.849* 1

Equality

Cons.
0.156* 0.177* 0.172* 0.088 -0.013 1

Random

group

of FTPs

Inequality

Cons.
0.261* 0.197 0.201 0.619* 1

Equality

Cons.
0.688* 0.951* 0.952* 0.357* 0.036 1

Both

groups

of FTPs

Inequality

Cons.
0.436* 0.819* 0.828* 0.894* 1

Equality

Cons.
0.553* 0.395* 0.381* -0.031* -0.108 1

* Correlation is significant at the p < 0.01 level (2-tailed).

Table ‎4.11: FTPs (no clustering) - Correlation among FTP fitness metric,

GA average generations, GA average time, CBT average time, number of

inequality constraints and number of equality constraints.

 134

the solver (CBT approach) has to apply before starting to find suitable values of

the parameters in the inequality constraints. Therefore, the inequality constraints

seem most likely to affect the time that is required by the solver. Another look at

the correlations in Table 4.11 shows that in all cases the CBT time was strongly

attached to the number of inequality constraints. For the GA group of FTPs, the

prevalence of the equality constraints is minimal and so this is potentially the

reason of there not being a correlation between the CBT time and the number of

equality constraints. However, for the random group of FTPs, the prevalence of

the equality constraints was dominant but the CBT time was still strongly

correlated to the number of the inequality constraints.

In contrast, an equality constraint can be considered the hardest type for a

GA search to satisfy. This explains why, for the random group of FTPs, the GA

time was strongly attached to the number of equality constraints (since these were

dominant). However, when the equality constraints were minimal, as the case in

the GA group of FTPs, the GA time was strongly correlated with the other type

(inequality).

The fitness metric seemed also to have statistically significant correlation

with both types of constraints. When the number of equality constraints was

minimal (GA group of FTPs), there was a small correlation between the fitness

metric value and the number of equality constraints. Similarly, when the number

of inequality constraints was minimal (Random group of FTPs) there was a small

correlation between the fitness metric value and the number of inequality

constraints. This can be explained by considering the fitness metric calculation.

That is, the fitness metric penalises equality constraints with larger values than

that of inequality constraints. Therefore, having more equality constraints results

in greater fitness metric values. This is also the case in the random group of FTPs

where the fitness metric was strongly correlated to the equality constraints.

However, the equality constraints seem not to impact the CBT approach.

A very recent study by (Zhao et al., 2010) focused on determining factors

that affect the efficiency of a search-based approach when generating test cases to

trigger FTPs through an EFSM. The study concluded that the total number of

numerical equality operators found in the guards of a given FTP has a vital role in

 135

estimating the test efficiency. Nevertheless, this factor depends on the prevalence

of such operators in the first place. By considering Table 4.11, if there are few of

such operators, then the test efficiency is associated with the number of inequality

constraints. Furthermore, when other test cases generators are considered, such as

the CBT approach, the number of numerical equality operators does not seem to

be that important.

The results of the correlation study can answer the first question about the

relationship between the fitness metric and how much effort, in terms of time, that

is required by a test cases generator to perform. However the answer does vary

with the FTPs generation approach. For FTPs that were generated by a GA search

which implemented the TP fitness metric approach, there was a strong positive

correlation between the fitness metric and the time required by a test cases

generator (CBT or GA) to trigger the FTPs. The strength of the relationship was

almost the same even though different test cases generators were used. However,

this was not the case when the FTPs were randomly generated. While the

correlation between the fitness metric and the GA time was found to be positive

and strong, the correlation was medium between the fitness metric and the CBT

time (see Table 4.9). As aforementioned, this can partially be explained by

considering that two EFSMs were excluded in the random group of FTPs.

Therefore, the random group was not fully representative. Nevertheless, two other

factors were found to affect the CBT time. These are the number of equality and

inequality constraints in the considered FTPs. The correlation between the CBT

time and the number of inequality constraints was found to always be greater than

that between the CBT time and number of equality constraints. However, there

were relatively few inequality constraints in the random group of FTPs and so

CBT approach performed relatively similar on all the FTPs that are included in

this group (see Figure 4.9b).

4.4.4.3 Regression Analysis (Without FTP Clustering)

The liner regression analysis was performed on each group of FTPs (GA and

random) and then on all the FTPs from both groups. The independent variable was

the fitness metric whereas the dependent variables were the GA time and CBT

 136

Figure ‎4.10: Fitness line fit plots of regression analysis (without clustering).

Plots a, c & e are the prediction of GA time in seconds from FTPs in GA

group, random group and both groups respectively. Similarly, Plots b, d & f

are the prediction of CBT time in seconds from the same groups respectively.

 a- Predicting GA time - FTPs in GA group b- Predicting CBT time - FTPs in GA group

 c- Predicting GA time - FTPs in random group d- Predicting CBT time - FTPs in random group

 e- Predicting GA time - FTPs in both groups f- Predicting CBT time - FTPs in both groups

 137

time. The number of GA generations was not considered in this analysis since this

was found to have almost a perfect correlation with GA time.

Figure 4.10 reports the results of the regression analysis in terms of RS and

Sig values and also the fitness line fit plot. Figure 4.10a and Figure 4.10b show

the predictions of GA time and CBT time respectively by using the GA group of

FTPs. From Figure 4.10a, the regression analysis reported that the fitness metric

contributes significantly to the prediction of the GA time (Sig < 0.001) and so the

null hypothesis is rejected. Furthermore, the fitness metric explains 64% of the

variance in the GA time. Figure 4.10b also shows that the fitness metric

contributes significantly to the prediction of the CBT time (Sig < 0.001). The

fitness metric here explains 75% of the variance in the CBT time.

 Figures 4.10c and 4.10d report the regression analysis results obtained

from the random group of FTPs for GA time and CBT time respectively. The

fitness metric makes a significant contribution (Sig < 0.001) to the prediction of

GA time (see Figure 4.10c). 42% of the variance in the GA time is explained by

the fitness metric. However, for the CBT time, the fitness metric also makes a

significant contribution (Sig < 0.001) but this explains only 13% of the variance in

the CBT time (see Figure 4.10d).

 The regression analysis results derived from both groups of FTPs for GA

time and CBT time are shown in Figure 4.10e and Figure 4.10f respectively. From

these figures, the fitness metric contributes significantly to the predictions of both

GA time and CBT time. However, the fitness metric explains more of the variance

in GA time (41%) than that of the CBT time (21%).

The results observed from the regression analysis lead to two important

findings. When the FTPs are generated by using the GA search that implemented

the proposed TP fitness metric approach, then the fitness metric has the potential

to predict the effort of a test cases generation approach (explains from 64% to

75% of the variance in effort). However, when the FTPs are randomly generated,

then the fitness metric has a relatively poor prediction capability of CBT time and

medium prediction capability of GA time. When merging both groups of FTPs,

the random group of FTPs seems to negatively impact the GA group of FTPs and

 138

thus the prediction capability of the fitness metric on both groups of FTPs was

similar to that observed on the random group of FTPs.

4.4.4.4 Correlation Study (Clustered FTPs)

For each group of FTPs (GA and random groups) and for all the FTPs (both

groups) the FTPs were clustered according to their fitness metric values. For each

cluster, the corresponding GA time, GA generations and CBT time values were

averaged. The correlation study was then conducted again on the clustered FTPs

in the GA group, the clustered FTPs in the random group and on all the FTPs after

they were clustered.

 Table 4.12 shows the correlation results obtained from the clustered FTPs

in the GA group. All the achieved correlations were statistically significant at p <

0.01. The fitness metric had strong positive correlations with both the GA time

(r+= 0.851) and GA generations (r = 0.847) respectively. Furthermore, the

correlation between the fitness metric and the CBT time was also positive and

strong (r = 0.904). Moreover, more GA time or generations was strongly

associated with more CBT time (r = 0.919). Compared to the correlation results

obtained from the GA group of FTPs without clustering, these values clearly show

an improvement in the strength of these correlations (see Table 4.8). Therefore,

clustering the FTPs in the GA group has led to stronger associations among the

considered factors.

 For the clustered FTPs in the random group, Table 4.13 shows that all the

achieved results were statistically significant at p < 0.01. The fitness metric was

found to have a strong positive correlation with both the GA time and GA

generations (r = 0.582). However, the fitness metric and the CBT time were in a

small positive correlation (r = 0.297). Furthermore, the GA time and the CBT

time were found to have a medium positive correlation (r = 0.348). Compared to

the correlation results obtained from the random group of FTPs without

clustering, all the correlations, apart from that between GA time and GA

generations, have been worsened (see Table 4.9). This is different from the effect

of clustering as observed on the GA group. In order to understand this, the number

of the clusters in each group of FTPs was considered. The total number of FTPs in

 139

the GA group is 351 which include 46 unique fitness metric values. Thus the total

number of clusters in the GA group is 46 clustered FTPs (approximately 87%

reduction rate). In contrast, the total number of FTPs in the random group is 93

which include 62 unique fitness metric values. Thus, the total number of clusters

in the random group is 62 clustered FTPs (approximately 33% reduction rate). By

considering the performance of clustering on the GA group of FTPs, it is clear that

clustering had less of an effect on the random group of FTPs. Thus, clustering

cannot be expected to have a similar impact on the correlation results derived

from both clustered groups of FTPs.

 For all clustered FTPs (both groups), Table 4.14 shows that the fitness

metric had a statistically significant medium positive correlations with both GA

time (r = 0.482) and GA generations (r = 0.494). Furthermore, there was a

statistically significant strong positive correlation between the GA time and CBT

time (r = 0.655). However, there was no statistically significant correlation

between the fitness metric and the CBT time. In Table 4.14 the correlation

 Fitness metric GA Gen. GA time CBT time

Fitness metric 1

GA Gen. 0.582* 1

GA time 0.582* 1.000* 1

CBT time 0.297* 0.350* 0.348* 1

* Correlation is significant at the p < 0.01 level (2-tailed).

Table ‎4.13: Random group of FTPs (clustered) - Correlation among FTP

fitness metric, GA average generations, GA average time and CBT average

time.

 Fitness metric GA Gen. GA time CBT time

Fitness metric 1

GA Gen. 0.847* 1

GA time 0.851* 1.000* 1

CBT time 0.904* 0.919* 0.919* 1

* Correlation is significant at the p < 0.01 level (2-tailed).

Table ‎4.12: GA group of FTPs (clustered) - Correlation among FTPs’ fitness

metric, GA average generations, GA average time and CBT average time.

 140

strength among the considered factors was worse than that observed before the

clustering was applied (see Table 4.10). This indicates that clustering all the

generated FTPs did not improve the correlation strength.

The results achieved from the correlation study, after clustering was

applied, show that for the GA group of FTPs, the clustering technique can help

strengthening the correlation between the fitness metric and both the GA time (or

GA generations) and CBT time. A similar impact on the correlation between the

GA time (or GA generations) and CBT time was also observed. Nevertheless, for

the randomly generated FTPs, the clustering technique worsened the correlation

strength among the fitness metric and both the GA time (or GA generations) and

CBT time. It was also found to worsening the correlation strength between the GA

time (or GA generations) and the CBT time. A similar negative impact of the

clustering was also observed when all the generated FTPs were considered.

4.4.4.5 Regression Analysis (Clustered FTPs)

The linear regression was applied to each clustered group of FTPs and also to all

the generated FTPs (both groups) after they were clustered.

 Figure 4.11 reports the linear regression analysis of the fitness metric and

the GA time and also of the fitness metric and the CBT time on each group. For

the clustered FTPs in the GA group, Figure 4.11a shows that the fitness metric

contributes significantly to the prediction of GA time (sig < 0.001). Furthermore,

the fitness metric is found to explain 72% of the variance in the GA time.

Similarly, Figure 4.11b reports that the fitness metric makes a significant

 Fitness metric GA Gen. GA time CBT time

Fitness metric 1

GA Gen. 0.494* 1

GA time 0.482* 0.999* 1

CBT time 0.047* 0.642* 0.655* 1

* Correlation is significant at the p < 0.01 level (2-tailed).

Table ‎4.14: Both groups of FTPs (clustered) - Correlation among FTP fitness

metric, GA average generations, GA average time and CBT average time.

 141

Figure ‎4.11: Fitness line fit plots of regression analysis. Plots a, c & e are the

prediction of GA time in seconds from clustered FTPs in GA group, random

group and both groups respectively. Similarly, Plots b, d & f are the

prediction of CBT time in seconds from the same groups respectively.

 a- Predicting GA time - FTPs in GA group b- Predicting CBT time - FTPs in GA group

 c- Predicting GA time - FTPs in random group d- Predicting CBT time - FTPs in random group

 e- Predicting GA time - FTPs in both groups f- Predicting CBT time - FTPs in both groups

 142

contribution to the prediction of the CBT time (sig < 0.001). 81% of the variance

in the CBT time is explained by the fitness metric.

For the clustered FTPs in the random group, Figure 4.11c indicates a significant

contribution of the fitness metric to the prediction of the GA time (sig < 0.001).

However, the fitness metric explains only 34% of the variance in the GA time. For

the prediction of CBT time, Figure 4.11d shows that the fitness metric did not

actually contribute to the prediction of the CBT time and the null hypothesis

cannot be rejected (sig = 0.019).

 When all the FTPs were clustered, there is a significant contribution of the

fitness metric to the prediction of the GA time. However, a small amount of the

variance in the GA time is explained by the fitness metric (23%) (see Figure

4.11e). This is not the case for the prediction of the CBT time where the fitness

metric is not found to impact the CBT time and the null hypothesis cannot be

rejected (Sig = 0.664).

 Compared to the linear regression analysis that was performed without

FTPs being clustered (see Figure 4.10), the fitness metric is better able to predict

both the GA time and CBT time when clustering was applied to the FTPs in the

GA group. In contrast, when FTPs in the random group were clustered, the fitness

metric is less able to predict the GA time. Furthermore, the fitness metric cannot

be used to predict the CBT time. The same observations are also seen when all the

FTPs were clustered. The results achieved from the linear regression, before and

after FTP clustering was applied, lead to two findings. First, when FTPs are

generated by a GA search that implemented the proposed TP fitness metric, then

clustering improves the prediction capability of the fitness metric for both the GA

time and CBT time. Second, if FTPs are randomly generated, then clustering

worsens the prediction capabilities of the fitness metric for both the GA time and

CBT time. The same negative impact on the prediction capability of the fitness

metric can also be observed when all the generated FTPs are clustered.

 143

4.5 Conclusion

Although the EFSM is a powerful modelling approach which has been widely

applied, testing from this model is a challenging task. One part of the problem is

related to finding a set of test cases that can follow the selected feasible transition

paths through the model. Despite the fact that search-based testing techniques

have proven to be effective in automating aspects of testing, previously these have

mainly been applied to white-box testing.

This chapter addressed the problem of generating test cases that can trigger

a given feasible path in an EFSM. The proposed approach treated transitions in an

EFSM model as functions. Then the problem of test cases generation became a

search for suitable test cases to be applied to a sequence of functions. The fitness

of a test case has two components. The first is the function distance which

measures how close a given input to a particular transition was to triggering this

transition. The second component is the function approach level which determines

how far the whole set of path inputs was to reaching the target (executing the last

transition in a path).

The proposed test cases generation approach was applied to a set of

subject TPs that were generated from five EFSM case studies. Also, an alternative

test cases generation approach (taken from literature) and a random test cases

generator were applied for comparison.

In the experiment the proposed approach was successful in triggering all

the considered FTPs. Furthermore, it was found that when FTPs were generated

by using the proposed TP fitness metric approach, a random test data generator

was successful in triggering many of them. Moreover, the proposed approach was

found to be superior to the other two used search-based test cases generators.

The chapter also studied the relationship between the fitness metric and the

time which is required by two test cases generators: the proposed approach (GA)

and a constraint based testing approach (CBT) to execute the FTP. Furthermore,

the capability of the fitness metric to predict the required time to trigger a given

FTP was also investigated.

 144

The results showed that when FTPs are generated by using the proposed TP

fitness metric approach (GA group of FTPs), there was a strong positive

correlation between the fitness metric and the required time to execute FTPs by

both approaches (GA and CBT). Also, the fitness metric showed a strong

capability to predict the required time by both approaches. However, when FTPs

were generated randomly, the correlation strength between the considered factors

was weaker than that observed on the GA group of FTPs. Similarly, the

predication capability of the fitness metric was also found to be much less than

that observed on the GA group. Similar results to that achieved from the random

group of FTPs were also achieved when all the FTPs were considered (both

groups).

Finally, the correlation strength and the prediction capability were found to

be stronger when the FTPs in the GA group were clustered by the same fitness

metric values. Nevertheless, clustering was found to worsen the correlation

strength and the predication capability on the random group of FTPs and so was

when all the FTPs were considered.

Future work in this area is to investigate the performance of the proposed

test cases generator when FTPs are associated with greater TP fitness metric

values (i.e. producing TPs which have large fitness metric values but are still

feasible). Another point is to redo the correlations and the predication capability

on such set of FTPs.

 145

Chapter 5: Generating Feasible Transition

Paths for Testing from EFSMs with

Counter Problem

5.1 Introduction

The extended finite state machine (EFSM) is a powerful approach for modelling

that has been found to be suitable for state-based systems. Automatic test

generation from an EFSM can be approached by generating a set of transition

paths (TPs) that satisfy a test criterion and then finding test cases that exercise

these paths. Nevertheless, generating feasible transition paths (FTPs) for model

based testing is a challenging task and is an open research problem. One important

problem is the existence of a transition with a guard that references a counter

variable whose value depends on previous transitions. The presence of such

transitions in paths can lead to infeasible paths and this has been reported by

several authors (Chanson and Zhu, 1993, Derderian et al., 2010, Kalaji et al.,

2010). Furthermore, previous studies have shown that the state problem can

adversely affect methods that automate test generation in white-box testing

(McMinn, 2005, McMinn and Holcombe, 2003, McMinn and Holcombe, 2005,

Zhan and Clark, 2006). The problem is that it is not possible to derive an FTP to

exercise such a transition without determining which other transitions are

involved in setting the value of the counter variable and how many times they

need to be called. This chapter proposes a novel approach based on data and

control analysis to bypass the counter problem. It achieves this by automatically

determining whether a given TP includes a transition whose guard references a

counter variable. If so, the approach determines which other transitions must exist

 146

and how many times they must occur so that the considered guard over the

counter is satisfied. The proposed approach is evaluated by being used in a genetic

algorithm to guide the search for FTPs.

The chapter starts by describing the problem. Then Section 3 reintroduces

two case studies, Inres initiator and ATM EFSMs, that suffer from the counter

behaviour. The proposed approach is described in Section 4. In Subsection 4.1,

the dependencies representation is described, then Subsection 4.2 describes how

to automatically determine which other transitions are required in a given TP that

references a counter together with the algorithms that perform this task. A method

to suggest the length of the generated TPs is then given in Subsection 4.3. The

experiment is presented in Section 5 where Subsection 5.1 describes the

experimental design and Subsection 5.2 reports the experimental results.

Concluding remarks are in Section 6.

5.2 Problem Area

Testing from an EFSM can be based on coverage criteria such as state coverage,

transition coverage and path coverage (Tahat et al., 2001). One approach to

satisfying a criterion is to produce a set of paths through an EFSM that satisfies

the criterion and then produce test cases (test data) to trigger the paths. However,

a transition path (TP) can be infeasible as a result of transitions having guards

(preconditions). For example, in a given TP a transition may set the value of

variable x to 0 and a later transition can have a guard that requires x > 0. Such a

conflict, as described in Chapter 3, can be statically determined and heavily

penalised so that it can be avoided during the search. However, a TP can be

infeasible due to a particular transition not being included a sufficient number of

times. For example, if an EFSM has a counter variable c whose value is initially 0,

a transition ti that has a guard c > 2 cannot be exercised unless a transition tj which

updates the value of c has already occurred a sufficient number of times. Such

variables are often called counter variables and are usually used to count how

many times a transition is repeated. For example, the variable attempts in ATM

 147

EFSM (Figure 5.2) plays the role of a counter where it is increased whenever

transition t2 is called (an incorrect pin was entered).

For an EFSM that contains a counter variable, a given TP may include a

transition that has a guard over the counter variable and so there is a need to

determine which other transitions are involved (those that affect the counter

variable value) and how many times they must be called. The counter problem

thus requires additional analysis. Unfortunately, this is a substantial mathematical

problem (Chanson and Zhu, 1993) which is related to a complex dynamic

behaviour that is difficult to determine (Derderian et al., 2010). Furthermore,

counter variables are a significant problem for search based testing (McMinn,

2004, Harman, 2008, Kalaji et al., 2009c).

For example, (Harman, 2008) states that the problem is related to

assigning a suitable value to the counter variable, however, such a value cannot be

assigned directly but indirectly by calling a specific function and for a specific

number of times. Thus, the problem also involves a determination of this

function(s) and a decision about how many times it should be called.

Another problem associated with the counter is the need to reason about

the adequate length of the test case (i.e. how many transitions in a TP) to be

executed so that the counter can be assigned the required value (McMinn, 2004).

Consider for example, a test case which comprises a sequence of calls to a set of

functions. If the test case is short (in terms of the number of calls), then it may not

allow a specific function (that updates the counter) to be called a sufficient

number of times. Nevertheless, if the test case is long, it may simply complicate

the generated test case by calling unnecessary functions.

 As mentioned in Chapter 3, the problem of generating feasible transition

paths (FTPs) is generally an undecidable problem (Chanson and Zhu, 1993,

Dssouli et al., 1999, Hierons et al., 2009). Furthermore, developing good methods

to derive FTPs from an EFSM is an open research problem (Duale and Uyar,

2004) and the existence of the counter behaviour is therefore an additional

substantial obstacle.

The approach described in Chapter 3 (Kalaji et al., 2009a) proposes a TP

fitness metric to generate FTPs that are likely to be feasible by using search.

 148

Importantly, the TP fitness metric can be computed quickly and thus is suitable to

be used in search. However, since the TP fitness metric does not consider the

counter problem and so this requires additional analysis. This chapter proposes a

novel approach based on control and data analysis to automatically determine

whether in a given TP a particular transition‟s guard references a counter variable,

which other transitions are involved (are required in this TP) and how many times

they must be called. To this end, the approach presented in this chapter aims to

form part of the solution to the following problem:

Given: a test adequacy criterion and an EFSM model that includes counter

variables

Problem: generate a set of TPs that are feasible and satisfy the test criterion.

The primary contributions of this chapter are the following:

1. It proposes a method to bypass the counter problem by automatically

determining whether a transition‟s guard references a counter, which other

transitions are involved and how many times they have to be called

2. It proposes a method based on Dijkstra‟s algorithm that suggests a suitable

length of TPs to be generated in the presence of the counter problem.

3. It shows that the proposed approach is effective in generating FTPs to satisfy

the test criterion from EFSM models that suffer from the counter problem.

4. The chapter empirically validates the approach by using it with two EFSM

case studies: an ATM model and the Inres initiator.

5.3 Case Studies

In this chapter, two EFSM case studies are used to validate the proposed

approach. The first EFSM is the Inres initiator (Hogrefe, 1991) that is described in

Chapter 3. This EFSM suffers from the counter problem through using the

variable counter which is referenced by the guards of six transitions t3, t4, t8, t9, t10

and t11. The second case study is an ATM system that represents an extension of

the machine described in (Korel et al., 2002) which includes a counter variable

attempts that is referenced by the guards of two transitions t2 and t3. The Inres

 149

initiator and ATM EFSMs are shown in this chapter in Figure 5.1 and Figure 5.2

respectively.

5.4 The Proposed Approach

The TP fitness metric described in Chapter 3 estimates a given TP feasibility by

analysing the dependencies among the TP‟s transitions. In order to do this, an

EFSM‟s transitions are classified to two types: affecting and affected-by. A

transition ti is said to be affecting within a TP if it has an assignment operation

that can affect the guard of a later transition (the affected-by). Based on this, any

pair (t, t') which represents (affecting, affected-by) is assigned a penalty value

depending on the type of the assignments and guards found in t and t' respectively.

The assignment operation (op) is classified to three types {op
vp

, op
vv

, op
vc

} which

denote that a variable v is assigned a value of an expression that depends on

parameters, only context variables and a constant respectively. Also, a transition‟s

guard is classified to five types {g
pp

, g
pc

, g
vp

, g
vv

, g
vc

} which denote a comparison

Figure ‎5.1: Inres Initiator EFSM. Initialisers, updaters and target

transitions are coloured green, blue and red respectively. Transition t12

represents an‎‘escape’‎transition‎and‎is‎represented‎by‎a‎dashed‎arrow.‎‎

wait

(sw)

sending

(ss)

connect

(sc)

disconnect

(sd)

t2

t14

t5

t8

t10

t11

t15

t9

t3

t12 t0

 (s0, , , p:=5, sd)

(sd, (ICONreq,,),

counter:=0;!CR;T:=p, sw)

(sS, (AK,{num},

num<>number),

counter<4, undef T;

counter:=counter+1;

DT(number,olddata);

T:=p, sS)

(sS, (T_expired, ,),

counter < 4,

undef T;

counter:=counter+1;

DT(number,olddata);

T:=p, sS)

(sS, (T_expired, ,),

counter > 4, undef T;

!IDISind, sd)

(sS, (AK,{num},

num=number),

number=1, undef T;

number:=0

T:=p, sc)

(sS, (AK,{num},

num=number),

number=0,

undef T;

number:=1, sc)

(sS, (IDATreq,{data},), ,

counter=0, olddata:= data;

DT(number, data); T:=p, sS)

(sw, (DR,,), , undef T;

!IDISind, sd)

(sw, (T_expired,,),

counter < 4 , undef T;

!CR; counter:= counter+1;

T:= p, sw)

(sw, (T_expired,,),

counter > 4 , undef T;

!IDISind, sd)

(sd, (DR,,), , !IDISind, sd)

(sw, (CC,,), ,undef T;

numberi:=1;!CONconf, sC)

(sc, (DR,,), ,

!IDISind, sd)

(sS, (DR,,), ,

!IDISind, sd)

(sS, (AK,{num},

num<>number),

counter>4, undef T;

!IDISind, sd)

t1

t13 t4

t7

t6

 150

 F
ig

u
re

 ‎5
.2

:
T

h
e

E
F

S
M

 M
o
d

el
 o

f
th

e
A

T
M

 S
y
st

em
.

 I
n

it
ia

li
se

rs
,
u

p
d

a
te

r
a
n

d
 t

a
rg

et
 t

ra
n

si
ti

o
n

s
a
re

 c
o
lo

u
re

d
 g

r
ee

n
,
b

lu
e

a
n

d
 r

ed

re
sp

ec
ti

v
el

y
.
T

ra
n

si
ti

o
n

 t
'

re
p

re
se

n
ts

 a
n
‎‘
es
ca
p
e
’‎
tr
a
n
si
ti
o
n
‎a
n
d
‎i
s‎
re
p
re
se
n
te
d
‎b
y
‎a
‎d
a
sh
ed
‎a
rr
o
w
.

S
0

P
IN

(p
),

 p
 !

=
 p

in
,

at
te

m
p
ts

 =
=

3
,

D
is

p
(”

W
ro

n
g
 P

IN
”)

;

S
el

ec
t(

id
),

 i
d
 =

=
2

D
is

p
(F

re
.
M

e
n
u
);

S
2

S

1

S
3

C
ar

d
(p

in
,

sb
,

cb
),

at
te

m
p
ts

:=
0
;

D
is

p
(”

E
n
te

r

P
IN

”)
;

P
IN

(p
),

 p
 !

=
 p

in
,

at
te

m
p
ts

<
3
,

D
is

p
(”

W
ro

n
g
 P

IN
,

R
e-

e
n
te

r”
);

 a
tt

em
p
ts

:=

at
te

m
p
ts

+
1
;

 at
te

m
p
ts

:=
0
;!

”E
n
te

r
P

IN
”
)

P
IN

(p
),

 p
 =

=
 p

in
,

at
te

m
p
ts

 ≤
3
,

D
is

p
(”

S
el

e
ct

L
an

g
.”

);

S
el

ec
t(

id
),

 i
d
 =

=
1

D
is

p
(E

n
g
.
M

e
n
u
);

 at
te

m
p
ts

:=
0
;!

”E
n
te

r
P

IN
”
)

S
8

S
6

C
u

rr
e
n
t

D
o
n
e

S
av

in
g

T
ra

n
sf

e
r

D
o
n
e

S
9

S
7

T
ra

n
s(

id
1

,i
d

2
,a

m
n

t)
,
id

1
 =

=
1
,

id
2

 =
=

2
,

am
n
t>

0
,

am
n
t<

cb
,

cb
=

cb
 –

 a
m

n
t;

 s
b

 =
 s

b
 +

 a
m

n
t;

T
ra

n
s(

id
1

,i
d

2
,a

m
n

t)
,
id

1
 =

=
2
,

id
2

 =
=

1
,

am
n
t>

0
,

am
n
t<

sb
,
sb

=

sb
 –

 a
m

n
t;

 c
b

 =
 c

b
 +

 a
m

n
t;

P
ri

n
t(

id
),

 i
d
 =

=
1
,

re
ce

ip
t(

E
n

g)
;

W
it

h
d

ra
w

al
 (

w
),

 w
>

0
,

w
<

=
2

0
0

,

w
<

sb
,
sb

=
 s

b
–

w
;

B
al

an
ce

(i
d
),

 i
d

=
=

1
,
D

is
p
(E

n
g,

 s
b
);

D

ep
o

si
t(

d
),

 d
>

0
,

sb
=

 s
b

+
d
;

B
al

an
ce

(i
d
),

 i
d

=
=

2
,
D

is
p
(F

re
,

sb
);

P

ri
n
t(

id
),

 i
d
 =

=
1
,

re
ce

ip
t(

E
n

g)
;

 P
ri

n
t(

id
),

 i
d
 =

=
2
,

re
ce

ip
t(

F
re

);

S
el

ec
t(

id
),

 i
d
 =

=
0

D
is

p
(“

C
an

ce
li

n
g
)”

;

E
je

ct
 c

ar
d
;

t7

t9

t4

t1

t3

t6

t5

t2

t8

t1
0

t2
3

t2
5

t2
0

t1

9

t2
2

t2

1

t2
4

t2
7

t2
6

t2
8

t1
7

t1

8

P
ri

n
t(

id
),

 i
d
 =

=
2
,

re
ce

ip
t(

F
re

);

t2
9

t3
0

S
4

D

o
n
e

S
5

P
ri

n
t(

id
),

 i
d
 =

=
1
,

re
ce

ip
t(

E
n

g)
;

W
it

h
d

ra
w

al
 (

w
),

 w
>

0
,

w
<

=
2

0
0

,
w

<
cb

,

cb
=

 c
b
–

w
;

D
ep

o
si

t(
d
),

 d
>

0
,

cb
=

 c
b

+
d
;

B
al

an
ce

(i
d
),

 i
d

=
=

1
,
D

is
p
(E

n
g,

 c
b
);

B
al

an
ce

(i
d
),

 i
d

=
=

2
,
D

is
p
(F

re
,

cb
);

t1
5

t1
4

t1
1

t1
3

t1

2

P
ri

n
t(

id
),

 i
d
 =

=
2
,

re
ce

ip
t(

F
re

);

t1

6

t'

 151

among only parameters, parameters and constants, variables and parameters, only

variables, and variables and constants respectively.

The penalty value assigned to each pair (t, t') represents a numerical

estimation of how difficult it is to satisfy the guard of t'. Problems can occur when

a given TP includes a transition guard that references a counter variable and in

this case the search may not receive the necessary guidance. Here, the problem is

that in a given TP in order to execute a transition t′ whose guard references a

counter variable, the TP must first call another transition t (that updates the value

of the counter variable) a certain number of times so that the guard of t′ is

satisfied.

For example, consider Inres initiator (Figure 5.1), in order to cover

transition t4, the counter should have a value of at least 4. Thus, t1 should occur

first (to initialise the variable counter), followed by t3 (to update the value of the

counter) four times. However, (t3, t3) forms a pair of (affecting, affected-by)

because t3 affects (updates) the value of the variable counter and also t3 is

affected-by (has a guard referencing the variable counter), thus each occurrence of

t3 followed by t3 incurs a new penalty and therefore increasing the overall TP

penalty. However, the search aims to minimise the TP fitness metric value and so

the correct sequence of the required transitions is unlikely to be generated in this

particular counter case. This description explains why the TP fitness metric, in

certain cases, could not guide the GA search towards FTPs when the TP includes

a transition whose guard references a counter variable.

To overcome this problem, the test criterion should include the required

extra transitions together with the number of times they have to be called (Kalaji

et al., 2010). Generally, this problem is a challenging mathematical task (Chanson

and Zhu, 1993). However, in some cases it can be approached with an abstraction

to generate acceptable solutions. This abstraction is related to the counter

definition in an EFSM. In Chapter 3, assignment operations are classified to three

types {op
vp

, op
vv

, op
vc

}. In this chapter, the operation op
vv

 is further classified to

four subtypes to cover the counter situations:

1. op
v+c

: it increments the context variable v by a constant value

2. op
v-c

: it decrements context variable v by a constant value

 152

3. op
v×c

: it multiplies context variable v by a constant value

4. op
v/c

: it divides context variable v by a none-zero constant value

Based on the classifications of counter situations, the following definitions can be

provided:

Definition 5.4.1: A context variable v in an EFSM is a counter variable if there is

a transition t with an assignment op  {op
v+c

, op
v-c

, op
v×c

, op
v/c

} to v, and v is

referenced in a guard of a transition t'.

Definition 5.4.2: A transition t is affecting a counter variable v if it assigns to v

using an op  {op
vc

, op
v+c

, op
v-c

, op
v×c

, op
v/c

}, however, t is affected-by a counter

variable v if it has a guard that references v.

Definition 5.4.3: A transition t is an initialiser of a counter variable v if it assigns

to v using an op  {op
vc

},

Definition 5.4.4: A transition t is an updater of a counter variable v if it assigns to

v using an op  {op
v+c

,op
v-c

, op
v×c

, op
v/c

}.

Definition 5.4.5: Given a counter variable v, a TP: t1, t2, .., tn and three transitions

ti, tj and tk from this TP where i < j < k, the triple (ti, tj, m) forms a sequence that

can satisfy the guard of tk if ti is an initialiser of v, tj is an updater of v, tk is

affected-by v, the path ti,..,tk contains exactly m instances of transition tj without

other assignments to v and m ≥ 0 is an integer that specifies the exact number of

updater occurrences required so that the guard of tk is satisfied.

 For example, consider Inres initiator (Figure 5.1), the variable counter is a

counter variable because there is a transition t3 which assigns to this variable by

using op
v+c

 and counter is referenced in the guard of transition t4. Transition t1 is

an initialiser since it assigns to the counter by using op
vc

 while transition t3 is an

updater since it assigns to counter by using op
v+c

.

Based on the above definitions, if a given TP is required to cover a

transition tk which is affected-by a counter variable, the problem can be

approached by having a method to automatically determine all the possible triples

of (initialiser, updater, updater times) that can satisfy the guard of tk (Kalaji et al.,

2010).

 153

5.4.1 Dependencies Representation

For each counter variable v, its initialisers and updaters are determined. Also, for

each transition that is affecting a counter, its operation type is recorded whereas

for each affected-by a counter, its guard type is recorded.

Table 5.1 and Table 5.2 above show the integer representation of possible

guard operators and possible assignment operations. Based on this representation,

two matrices can be constructed: affecting a counter aff and affected by a counter

aff-by. Each row in these matrices represents one transition and each column

represents one counter variable. In an aff matrix, each cell comprises a tuple with

two fields: one to record the operation code (see Table 5.2), and the other records

the value of the constant that appears in this operation. Similarly, each cell of the

aff-by matrix is a tuple with two fields: one to represent the guard code (see Table

5.1), and the other records the constant value referenced by this guard and thus it

considers only the cases where a counter variable is compared to a constant.

Consider for example the Inres initiator shown in Figure 5.1. This EFSM

has one counter variable: counter (which will be referred to by v1). Figure 5.3

shows a part of the two matrices: aff and aff-by for this counter variable. From the

aff matrix, t1 and t5 are initialisers as they assign to v1 the constant value 0

(operation code =1: op
v=c

) (see Table 5.2). Similarly t3, t8 and t10 are updaters

(operation code = 2: op
v+c

) with an assignment of constant value 1. From the aff-

by matrix, t3, t4, t8 and t10 are affected-by a counter. For example, t4 has a guard

Operation Representation

No operation 0

op
v=c

 1

op
v+c

 2

op
v-c

 3

op
v×c

 4

op
v/c

 5

Table ‎5.2: Operations representation

as integers

Guard Representation

No guard 0

= 1

> 2

< 3

≥ 4

≤ 5

≠ 6

Table ‎5.1: Guards representation

as integers

 154

code = 4 (≥) (see Table 5.1) and a constant 4. The existence of extra columns in

Figure 5.3 is just for illustration purpose as it is possible to have more than one

counter variable in a given EFSM.

5.4.2 Finding the Required Sequence of Transitions

This subsection defines the approach that determines a sequence(s) of transitions

that is required to satisfy a given target guard over a counter variable. The

proposed approach is applied through an algorithm which consists of four

routines: FindSequence, Validate, GuardCheck and IsTripleExisted.

The first procedure, FindSequence, is the main one and it performs the following

tasks:

1. Determining whether a target transition (to be covered), tj, has guard(s)

referencing a counter variable(s).

2. Scanning for all possible pairs of (initialiser, updater) that initially have

the potential to satisfy the given target guard(s) over a counter variable(s)

The second function, Validate, is called from the main procedure to validate each

given triple (initialiser, updater, updater_times) by:

1. Checking whether calling only the initialiser can satisfy the target

transition guard and in this case updater_times will be set to 0

2. Setting a given triple as either invalid or valid and thus setting the number

of times the updater must be occurred (updater_times > 0)

Affected-by a counter

Constant value Guard code

t1

t2

t3

t4

t5

t6

t8

t10

 0 | 0

 0 | 0

 3 | 4

 4 | 4

 0 | 0

 0 | 0

 3 | 4

 3 | 4

 v1

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 v2

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 v3

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 v4

 1 | 0

 0 | 0

 2 | 1

 0 | 0

 1 | 0

 0 | 0

 2 | 1

 2 | 1

 v1

Constant value

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 v4

t1

t2

t3

t4

t5

t6

t8

t10

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 v2

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 0 | 0

 v3

 Affecting a counter

Operation code

Counter variables

Figure ‎5.3: Example of affecting and affected-by (a counter) matrices for

Inres initiator EFSM

 155

Function Guard Check

a1. input: guard_code, guard_const, counter_var

a2. output: boolean result

a3. goal: check whether a guard is satisfied

a4. initialise variable: result := false;

a5. begin

a6. case guardCode of

a7. 0 : result := true; // no guard

a8. 1 : if counter_var = = guard_const then result := true; // equality

a9. 2 : if counter_var > guard_const then result := true; // greater than

a10. 3 : if counter_var < guard_const then result := true; // less than

a11. 4‎:‎if‎counter_var‎≥‎guard_const‎then‎result‎:=‎true;‎‎‎‎ // equal or greater than

a12. 5‎:‎if‎counter_var‎≤‎guard_const‎then‎result‎:=‎true;‎‎‎‎ // equal or greater than

a13. 6 :‎if‎counter_var‎≠‎guard_const‎then‎result‎:=‎true;‎‎‎‎ // inequality

a14. end;

a15. end;

Figure ‎5.5: The Guard_Check routine

Figure ‎5.4: The algorithm which finds sequence of transitions

Procedure Find Sequences of Transitions

1. input: tj, affecting matrix aff[], affected-by matrix aff-by[]

2. output: a list LT of triples (initialiser, updater, updater_times)

3. goal: determine a sequence of transitions to satisfy tj guard

4. initialise variable: empty(LT); integer updater_times := 0;

5. begin

6. for vi := 1 to number_of_counter_variables

7. if guard of tj references a counter_var_vi then

8. begin

9. build a list LI of transitions that initialise vi

10. build a list LU of transitions that update vi

11. for every initialiser from LI

12. for every updater from LU

13. if validate (initialiser, updater, updater_times) then

14. insert in LT the triple (initialiser, updater, updater_times);

15. end;

16. end;

 156

The third function, GuardCheck, is used by function Validate to check if a given

guard is satisfied. The GuardCheck is called to decide whether:

1. The target guard over the counter is satisfied and thus the triple is valid

2. The guard of an updater is still satisfied so more calls can be made to the

updater.

The last function IsTripleExisted is called during the search phase to check

whether one of the required triple exists within a given TP.

Figures 5.4, 5.5, 5.6 and 5.7 show a high level description of the algorithm

that find a sequence of transitions to cover a particular transition tj that has a guard

referencing a counter variable. Given a transition to cover tj in an EFSM, the

algorithm finds a sequence or a set of sequences by first using FindSequence

(Figure 5.4) to check if tj has a guard which reference a counter variable(s) (Line.

6 & 7). This is accomplished by checking if tj belongs to the matrix that contains

all the transitions that are affected by counter variables. For each counter variable

vi referenced by tj guard, the algorithm builds two lists: LI that contains all the

initialisers and LU that contains all the updaters of vi (Line 9 & 10). An initialiser

of vi is determined from the matrix that lists all the transitions that are affecting

counter variables (transitions that have operation code =1). Similarly, updaters are

detected from the same matrix with operation code in [2..5] (see Table 5.2). For

each initialiser, every updater is considered (Line 11 & 12) to form a candidate

triple of (initialiser, updater, updater times) where updater_times is an integer

value that represents how many times an updater should be called after an

initialiser. After a candidate triple is formed (Line 13), this needs to be checked

for being valid and to set the value of updater_times. This is accomplished

through the function Validate (Figure 5.6)

The function Validate checks whether a given triple is valid and so how

many times the updater within this triple must be called. Firstly, the triple is set to

be initially invalid (Line b4). Then the initialiser is called to initialise the counter

variable vi and so the value of vi is now equal to the constant value of the

initialiser (Line b5). Since calling only the initialiser may satisfy the guard of tj,

the status of tj guard is checked by calling the function GuradCheck (Line b7). If tj

guard is achieved, then the updater_times is set to be 0 (there is no need to call the

 157

Figure ‎5.6: The algorithm which validates a given triple

Function Validate

b1. input: tj, vi, aff[], affby[], a triple (initialiser, updater, updater_times)

b2. output: boolean result; integer updater_times;

b3. goal: determine how many times an updater should be called in order to satisfy the

guard of tj over the counter variable vi

b4. initialise variable: result := false; // currently set the triple to be invalid

b5. counter_var_vi := initialiser_const; // apply the initialiser operation

b6. begin

b7. if guardCheck(tj_guard_code, counter_var_vi, tj_guard_const) then

b8. begin

b9. updater_times := 0; // calling the initialiser alone can satisfy tj_guard

b10. result := true; // and so the triple is valid; exit the routine

b11. exit;

b12. end;

b13. repeat // the updater must be called. Determine the updater times

b14. first_branch_distance_of_tj_guard := abs(counter_var_vi −‎tj_guard_const);

b15. if guardCheck(updater_guard_code, counter_var_vi, updater_guard_const) then

b16. begin // updater’s guard is true, so call the updater

b17. case updater_operation_code of

b18. 2 : counter_var_vi := counter_var_vi + updater_operation_const;

b19. 3‎:‎counter_var_vi‎:=‎counter_var_vi‎−‎updater_operation_const;

b20. 4 : counter_var_vi := counter_var_vi * updater_operation_const;

b21. 5 : counter_var_vi := counter_var_vi / updater_operation_const;

b22. end;

b23. updater_times := updater_times + 1;

b24. end

b25. else // cannot call the updater and thus the triple is invalid

b26. exit; // exit and return false

b27. if guardCheck(tj_guard_code, counter_var_vi, tj_guard_const) then

b28. begin // the guard over the counter is satisfied,

b29. result := true; // triple is valid and no more calls to the updater is required

b30. exit; // return true and exit

b31. end

b32. else‎next_branch_distance_of_tj_guard‎:=‎abs(counter_var_vi‎−‎tj_guard_const);

b33. until‎(next_branch_distance_of_tj_guard‎≥‎first_branch_distance_of_tj_guard);

b34. end. // the value that can satisfy tj guard has been surpassed and the triple is invalid.

 // The loop is broken and no more calls to the updater are performed

 158

updater), the triple is set to be valid and the function is exited (Lines b9, b10 &

b11). If tj guard is not yet satisfied, a loop is entered to try to detect how many

times an updater should be called to satisfy tj guard (Line b13).

Since an updater can have a guard that controls its assignment operation

(the assumption here is that an updater‟s guard only references the same counter

variable), there is a need to check that this guard is always satisfied (through

calling the function GuardCheck) every time an updater is called (Line b15). If

the current value of vi does not breach the updater guard, the updater can be called

one more time. Depending on the updater operation code (see Table 5.2) an

updating operation is executed over vi by the updater (either Line b18, b19, b20 or

b21). Since the updater is called, the updater_times is increased (Line b23). If the

updater guard is breached (as a result of calling the initialiser or the updater itself)

(Line b25), then the current triple is invalid. If tj guard is satisfied due to calling

the updater, then the triple is set to be valid, the number of times the updater must

be called is recorded and the algorithm exits (Line b27 & b29). If tj guard is not

yet satisfied, there is a need to check whether more calls should be made to the

updater.

Since a loop is utilised to determine how many times an updater must be

called, it is necessary to avoid looping infinitely. Utilising a loop to perform the

necessary calls has been proposed by (Harman, 2008), however, the loop was

allowed to iterate n times where n is an arbitrary large value. The proposed

method here manipulates this problem by firstly, the absolute branch distance of tj

guard is calculated after the loop is entered (Line b14) and then calculated again

after the updater is called (Line b32). Finally, the first branch distance is

compared to the next branch distance (Line b33). If the next branch distance is

greater than or equal to the first branch distance, then calling the updater has

caused the value of vi to surpass the desired point and thus the guard of tj is

breached. Consequently, no more calls to the updater should be performed, the

triple is invalid and the loop is broken. However, if the first branch distance of tj

guard is less than the next branch distance, then more calls to the updater are

required and so forth.

 159

Figure ‎5.7: The routine which verifies a triple existence in a TP

Function Is Triple Existed

c1. input: a TP, target transition position in the TP (t_pos), counter variable (vc),

triple (initialiser, updater, updater_times), aff[], aff-by[].

c2. output: boolean result

c3. goal: check whether the given triple exists in the given TP

c4. initialise variables: result:= false; integer k := -1; integer count :=0;

c5. begin

c6. for i := t_pos -1 downto 1 // scan the TP to detect the last initialiser

c7. if t[i] is the initialiser then // if the current transition is the initialiser

c8. begin

c9. k := i; // store the initialiser position in the TP

c10. break; // and break the loop since the very last

c11. end; // initialiser is the important one

c12. if k < 0 then // the initialiser is not found. The triple is

c13. exit

invalid. Exit and return false

// invalid. Exit and return false

c14. if updater_times > 0 then // the updater should occur at least once

c15. begin

c16. for i := k+1 to t_pos -1 // scan for the updater in the path between

c17. if t[i] is the updater then // the initialiser and the target transition

c18. count := count + 1; // count each updater occurrence

c19. else if t[i] is in aff[vc] then // if there are other assignments, path is not

c20. exit; // a definition clear. Exit and return false

c21. if count := updater_times then // if the updater occurs the required

c22. begin // number of times, the triple is valid

c23. result := true; // return true and exit

c24. exit;

c25. end

c26. else exit; // updater did not occur as required. Exit

c27. end // and return false

c28. else // no need for the updater and so scan to

c29. for i := k+1 to t_pos -1 // determine whether the path between the

c30. if t[i] in aff[vc] then // initialiser and the target transition is

c31. exit // definition clear for the counter variable

c32. result := true; // if not, exit and return false, otherwise

c33. end // return true.

 160

The algorithm that finds the required sequences has a polynomial running time

T(n) = O(n
2

 × vc × k) where n is the number of transitions in an EFSM, vc is the

number of the counter variables and k is the number of iterations performed by

validate routine. The IsTripleExist routine used during a GA search has a linear

running time T(n) = O(n) where n is the number of transitions in a TP.

Naturally, there can be more than one possible triple (initialiser, updater,

updater times) that may satisfy tj guard. For such a case, a set of triples are linked

by OR. If the guard of tj references more than one counter variables, then triples

that belong to different counter variables which are referenced by tj guard are

linked by AND.

For example, let‟s consider a TP that includes the transition t4 in the Inres

initiator (Figure 5.1). Since t4 has a guard that references a counter variable, the

algorithm first detects all the potential triples that may lead to the guard of t4 being

satisfied. From the two matrices aff and aff-by, there are two initialisers t1 and t5,

also, there are three updaters t3, t8 and t10. Thus there are six triples that can be

initially considered. When Validate is called, these triples are set to be valid and

so the final criterion (to generate a TP to cover t4) will be: (t4) AND ((t1, t3, 4) OR

(t1, t8, 4) OR (t1, t10, 4) OR (t5, t3, 4) OR (t5, t8, 4) OR (t5, t10, 4)).

Once the final set of triples is ready, it is fed to the TP fitness metric to

check whether the transition to cover (tj) exists, furthermore, the triple (initialiser,

updater, updater times) is present in this TP and the TP incurs the least possible

penalty. This is accomplished by calling the function IsTripleExisted (Figure 5.7)

which checks that the initialiser comes first (Lines c6, c7, c8 & c9), then the

updater occurs certain number of times (Lines c14, c16, c17, & c18) and finally

the target tj. It also checks that the path from the initialiser to the first occurrence

of the updater is definition clear for the related counter variable (Line c19). The

occurrences of the updater need not be in successive transitions in the path and it

is sufficient that the sub-path between each pair of occurrences of the updater is

definition clear for the counter variable. Finally, the path from the last occurrence

of the updater to the target tj must be also definition clear for the same counter

variable (line c19). If a given generated TP does not meet the criterion, then a

large penalty value (INF) is assigned i.e. an infeasible TP.

 161

5.4.3 Determining the Length of TPs

Short TPs may not allow the target transition (the transition whose guard

references a counter variable) to be reached. Furthermore, if the target transition

can be reached by a certain TP length, it is still possible that this length does not

allow the updater transition to occur a sufficient number of times. Moreover, if the

length is chosen to be longer than necessary, the generated TP may incur

unnecessary complexity by including transitions that are not required.

 A possible way to overcome this problem is to select a long TP length

which can be considered adequate. The selection of such a length can partially be

based on the previously derived triples (initialiser, updater, updater times). The

maximum value of updater occurrences among all of the derived triples can be

considered in computing the length. In addition to this value, the maximum length

to reach any transition in the considered EFSM by starting from the initial state

should also be taken into account.

 In this way, any generated TP is likely to have extra transitions since the

worst case scenario is considered. However, extra transitions in a given TP may

not be desirable since it may lead to a given TP incurring a larger penalty and thus

an unnecessary complexity. To avoid this problem, any EFSM can be extended

with a cyclic transition t' which starts and ends at the first state. Such a transition,

t', does not have any operations or guards and so it is an „escape‟ transition (an

„escape‟ transition is a transition that has no guards and operations). The t' is

placed in the first state to guarantee that any generated TP can make use of it. The

idea of using such a transition is already discussed on the experimental results

reported in Chapter 3. TPs that were generated by using the TP fitness metric from

EFSM machines that contain „escape‟ transitions (such as Inres initiator and ATM

EFSMs) did not incur larger penalty values when they were longer. However, the

existence of t' in any TP, means that such a TP cannot directly be applied to the

considered implementation under test (IUT). The remedy of this problem is

simple where any generated TP that includes instances of t' can easily be filtered

by just removing t' from the transition sequence. In this way, the resultant TP

includes only the actual transitions. For Inres initiator EFSM (Figure 5.1), this

 162

already includes the transition t12 which represents t' (represented by a dashed

arrow). However, for ATM EFSM, this was extended with t' that is represented by

a dashed arrow in Figure 5.2.

 Determining the shortest length to reach a given transition by starting from

the first state can be performed by using Dijkstra‟s algorithm (Dijkstra, 1959).

Dijkstra‟s algorithm can generally be used to determine the shortest path between

two nodes in a given graph. The algorithm input is a graph (V, E) where V is a

finite set of vertex (node) and E is a finite set of edges that connects the graph

vertices. Also, the algorithm requires a finite set of cost, ω, which determines the

cost associated with each edge of E. Each edge between two vertices represents

the distance and thus the cost which the algorithm uses when searching the graph

to produce the shortest (lowest cost) path between two vertices.

 For the TP length, an EFSM transition diagram is the graph to be searched

where states represent vertices and transitions represent edges. Since the aim is to

find the shortest path, all transitions are given the same cost (i.e. ω1 = ω2 =... ωn=

1, where n is the total number of transitions). Furthermore, if two or more

transitions are connecting the same two states, one transition is kept and the others

are removed.

 By specifying the start and end states for which a shortest path is required,

the algorithm begins searching from the start state. For each state, the search

includes two labels: a permanent label and a temporary label. A label at each state

is used to store the lowest cost (the shortest distance) between this state and the

start state. At any given time, any state can have only one label and therefore one

cost. If the label is permanent, then it specifies the final value of cost, however, a

temporary label represents an initial cost or a cost which is not yet a final one.

Initially, all states but the start state are associated with temporary labels with an

infinite cost value, however, the first state is associated with a permanent label of

a cost value equal to zero and marked as a current state.

 The next step is to search all the neighbour states of the current state by

following the transitions that initiate from the current state. For each neighbour

state, if the sum of the current state‟s cost and the cost of the transition which

reaches to the considered neighbour state is less than the cost recorded in the

 163

Figure ‎5.8: The initial and first steps of Dijkstra’s‎algorithm between

states Sd & Ss in Inres Initiator EFSM

wait

(sw)

sending

(ss)

connect

(sc)

disconnect

(sd)

t2

t14

t5

t9

t1

t4

t7

t6

∞

Temporary Label (TL)

Transition Path (TP)

ω =1

ω =1

ω =1

ω =1

ω =1

ω =1

ω =1

∞

0

 -

∞

Permanent Label (PL)

Transition Path (TP)

(TL)

(TP)

(TL)

(TP)

wait

(sw)

sending

(ss)

connect

(sc)

disconnect

(sd)

t2

t14

t5

t9

t1

t4

t7

t6

∞

(TL)

(TP)

ω =1

ω =1

ω =1

ω =1

ω =1

ω =1

ω =1

∞

0

 -

1

 t1

Permanent Label (PL)

Transition Path (TP)

(TL)

(TP)

(PL)

(TP)

Initialising

Step-1-

 164

Figure ‎5.9: The second and last steps of Dijkstra’s‎algorithm between

states Sd & Ss in Inres Initiator EFSM

wait

(sw)

sending

(ss)

connect

(sc)

disconnect

(sd)

t2

t14

t5

t9

t1

t4

t7

t6

(PL)

(TP)

ω =1

ω =1

ω =1

ω =1

ω =1

ω =1

ω =1

3

t1, t2, t5

0

 -

1

 t1

Permanent Label (PL)

Transition Path (TP)

(PL)

(TP)

(PL)

(TP)

wait

(sw)

sending

(ss)

connect

(sc)

disconnect

(sd)

t2

t14

t5

t9

t1

t4

t7

t6

2

 t1, t2

(PL)

(TP)

ω =1

ω =1

ω =1

ω =1

ω =1

ω =1

ω =1

∞

0

 -

1

 t1

Permanent Label (PL)

Transition Path (TP)

(TL)

(TP)

(PL)

(TP)

2

 t1, t2

Step-3-

Step-2-

 165

temporary label of the considered neighbour state, the cost recorded in the

temporary label is updated to be equal to the sum of the values. Once all the

neighbour states are explored, the current state is marked as visited so that it will

not be visited again. Furthermore, the neighbour state which is associated with the

lowest cost is set as the current state and its label becomes permanent. Now, the

search starts to explore the neighbours of the new current state and so on.

For example, consider the Inres initiator EFSM for which a shortest path is

required between the first state (sd) and the last state (ss). Figure 5.8 and Figure

5.9 show how the algorithm is applied step by step to the considered case.

For any transition whose guard references a counter variable, the proposed

approach produces a set of triples that initially has the potential to satisfy the

considered guard. However, to determine an adequate TP length, there are five

factors to be considered when a TP references a counter variable:

1. The initial cost: The initialiser must occur once and so should the target

transition (to be covered).

2. The updater cost: The cost associated with calling the updater and its

number of occurrence. If the updater is cyclic, the cost of calling an

updater is the number of updater times. However, if the updater starts and

ends at different states, then the cost associated with calling an updater is

calculated as (1 + Dijkstra (updater‟s end state, updater‟s start state)) ×

updater occurrences.

3. The starting cost: The cost to reach the initialiser from an EFSM‟s initial

state as Dijkstra (initial state, initialiser‟s start state)

4. The middle cost: The cost to reach the updater (from the initialiser) as

Dijkstra (initialiser‟s end state, updater‟s start state)

5. The end cost: The cost to reach the target transition (from the updater) as

Dijkstra (updater‟s end state, target transition‟s start state)

The final length then is the sum of these considered costs. Naturally, for a given

EFSM, there can be more than one TP which references a counter variable and so

different lengths are required. Furthermore, the above factors may be insufficient

to suggest a length to reach any transition in an EFSM. Thus, the final TP length

can be calculated as shown in Equation 5.1.

 166

The first part of Equation 5.1 can be calculated by using the considered

five factors when a TP references a counter variable. The second part of this

equation is calculated by using Dijkstra‟s algorithm between the initial state and

each other state.

 Table 5.3 shows the length calculation for the TPs that reference counter

variables in Inres initiator and ATM EFSMs by using the considered five factors.

Then, by using Equation 5.1, the suggested TP lengths for Inres initiator and ATM

EFSMs are: Length Inres = Max (12, 4) = 12; LengthATM = Max (5, 6) = 6.

5.5 Experiment

This section describes the experiment design and reports the experimental results

achieved from applying the proposed approach to two EFSM case studies: Inres

initiator and ATM EFSMs that both suffer from the counter problem.

EFSM Target Triple
Cost

Initial Updater Starting Middle End Total

Inres

t4

(t1, t3, 4) 2 4 0 0 0 6

(t1, t8, 4) 2 4 0 2 0 8

(t1, t10, 4) 2 4 0 2 0 8

(t5, t3, 4) 2 4 2 2 0 10

(t5, t8, 4) 2 4 2 0 0 8

(t5, t10, 4) 2 4 2 0 0 8

t9

OR

t11

(t1, t3, 4) 2 4 0 0 2 8

(t1, t8, 4) 2 4 0 2 0 8

(t1, t10, 4) 2 4 0 2 0 8

(t5, t3, 4) 2 4 2 2 2 12

(t5, t8, 4) 2 4 2 0 0 8

(t5, t10, 4) 2 4 2 0 0 8

ATM t3 (t1, t2, 3) 2 3 0 0 0 5

Table ‎5.3: Calculating the TP length for the Inres initiator and the ATM

EFSMs.

 Length = Max (lengths of counter TPs, lengths to reach any transition) (5.1)

 167

5.5.1 Experimental Design

In designing the experiment, the aim was to evaluate the effectiveness of the

proposed approach by guiding a GA search towards a set of FTPs that satisfies the

transition coverage test criterion and also bypasses the counter problem that was

observed in Chapter 3.

Since the considered problem is the counter problem, it is important to

consider the length of the generated TPs. To achieve this, the affecting and

affected-by counter matrices were derived for each considered EFSM. Then for

each transition that is affected-by a counter variable, the proposed approach

generated candidate triples that were valid and potentially satisfied the considered

transition‟s guard that is affected-by a counter variable. Dijkstra‟s algorithm was

then applied and a set of proposed TP length was derived.

As described in Subsection 5.4.3, for Inres initiator EFSM the TP length is

12 transitions and for ATM EFSM the TP length is 6 transitions (see Table 5.3).

Since Inres initiator originally had an „escape‟ transition (t12 in Figure 5.1), other

longer TP lengths can also be used. Thus, three TP lengths were considered when

generating the Inres initiator subject TPs. These lengths are 13, 14 and 15

transitions where each specific length was used to generate a set of subject TPs

that satisfy transition coverage test criterion. Similarly, ATM EFSM was

instrumented with an „escape‟ transition which starts and ends at the first state (t'

in Figure 5.2) and therefore longer TP length can also be used. Thus, three TP

lengths as 6, 12 and 15 transitions were used. For each specific length, a set of

subject TPs was generated that satisfies transition coverage test criterion.

Also, the experiment aimed to understand how the proposed approach

enhances the previously proposed TP fitness metric approach described in Chapter

3. Thus, when generating subject TPs, two approaches were used to guide the GA

search. The first approach is the proposed approach which consists of the

previously defined TP fitness metric and the technique to bypass the counter

problem. The second approach is merely the previous approach that depends only

on the TP fitness metric guidance (described in Chapter 3). This allows

comparing the performance of the proposed approach with the previous one and

 168

therefore understanding whether the proposed technique, presented in this chapter,

enhances the TP fitness metric guidance to overcome the counter problem.

 A GA search that implemented the previously defined TP fitness metric

together with the proposed approach was applied to the two EFSM case studies to

generate three sets of subject TPs from each EFSM where each set provides

transition coverage test suite for the considered machine. During TP generation

with the proposed technique, each TP was first checked for the existence of a

particular transition that this TP is intended to cover. Then, if this TP included a

transition‟s guard that references a counter variable, the test criterion (transition

coverage) for this TP was modified to require extra transitions (triples) and the TP

was rechecked against these additional requirements by using the IsTripleExisted

routine (given in Figure 5.7). Any TP that violated these constraints was

considered invalid and given a large fitness value (INF = 1 × 10
4
). For the purpose

of comparison, three similar alternative sets of subject TPs were generated from

each EFSM by using only the guidance of the previously defined TP fitness

metric. For ease of reference, the proposed approach will be denoted by (GA-1)

whereas the previously defined TP fitness metric approach will be denoted by

(GA-2).

Once the sets of subject TPs were generated, these were checked for being

feasible by using the test cases generation technique described in Chapter 4. If a

given TP was not successfully trigged, this was closely examined to determine

whether or not it was an FTP.

The GA (FTPs and path test case generation) was implemented using the

publicly available Genetic and Evolutionary Algorithm Toolbox (GEATbx)

(Pohlheim, 1994-2010). A detailed description of each of the GEATbx parameters

used is provided at the tool‟s website (Pohlheim, 1994-2010) and the values used

in the experiment are record here for the purpose of experiment replication.

An integer valued encoding was used. The population size was 100. The

selection method was linear-ranking with a selective pressure set to 1.8. Discrete

recombination was used whereas mutate integer mutation was applied. For FTP

generation, individuals consisted of a number of variables depending on the

considered TP length. For Inres initiator, individuals consisted of 13, 14 or 15

 169

variables. For ATM, individuals consisted of 6, 12 or 15 variables. For path test

case generation, an individual consisted of 20 variables that represent the number

of inputs to be applied to a given FTP in order to be triggered. When a given TP

required less than 20 inputs, extra inputs were ignored. The range of values

allowed for each individual‟s variable was [0..1000] for path test case generation,

[1..28] for Inres initiator FTPs generation and [1..60] for the ATM FTPs

generation. An FTP generation search and a path test case generation search were

given 1000 generations before being terminated. Finally, for path test case

generation, the search was repeated 10 times for each subject TP.

5.5.2 Experimental Results

For each EFSM, there are two parts of the results achieved from the experiment.

The first part reports three sets of subject TPs that were generated by the GA

search (GA-1) which implemented the proposed approach described in this

chapter. The second part reports the three alternative sets of subject TPs that were

generated by the GA search (GA-2) which implemented the previously defined TP

fitness metric (described in Chapter 3).

5.5.2.1 Results of the Inres Initiator EFSM

The GA search that implemented the proposed approach (GA-1) was applied to

the Inres initiator EFSM to generate three sets of subject TPs where each set

comprises 15 TPs that provide, if all subject TPs are FTPs, a transition coverage

test suite for the Inres initiator EFSM. The first set contained subject TPs with

length of 13 transitions whereas the second and third sets contained subject TPs

with length of 14 and 15 transitions respectively. For the purpose of comparison,

similar alternative sets of subject TPs were generated by a GA search that

depended only on the guidance of the previously defined TP fitness metric (GA-

2).

 170

 a- GA-1 generated TPs (9 transitions length) b- GA-2 generated TPs (length= 9 transitions)

 c- GA-1 generated TPs (length= 12 transitions) d- GA-2 generated TPs (length= 12 transitions)

 e- GA-1 generated TPs (length= 15 transitions) f- GA-2 generated TPs (length= 15 transitions)

 Figure ‎5.10: Inres EFSM TPs. The sets a & b have a TP length = 13, sets c &

d have a TP length = 14 and sets e & f have a TP length = 15. Sets a, c & e are

generated by using the proposed approach (GA-1). Sets b, d & f are the

alternative sets that are generated by using the previously defined TP fitness

metric approach (GA-2).

 171

Figure 5.10 shows all the generated sets of subject TPs for Inres initiator EFSM

by using the two approaches. The left column shows the sets a, c and e that were

generated by the proposed approach (GA-1) whereas the right column shows the

sets b, d, and f that were generated by the approach that uses the previous TP

fitness metric (GA-2). Each generated TP, in any set, was assigned a unique ID

that refers to the transition‟s number that this TP covers. Each set is plotted in

terms of the ID of the generated TP against its best achieved TP fitness metric

value.

 For all the considered TP lengths (13, 14 and 15 transitions), the proposed

approach generated subject TPs that were all FTPs (see Figures 5.10a, 5.10c &

5.10e). Furthermore, for each transition, all the derived TPs with corresponding

ID have similar best TP fitness metric values. The TP fitness metric values

associated with the TPs that did not suffer from a counter problem were generally

low. However, the TPs that include transitions with guards that reference a

counter variable were associated with greater TP fitness metric values. This

applies to TPs with IDs 4, 9 and 11 where these TPs are associated with TP fitness

metric values 820, 840 and 855 respectively. Nevertheless, these TPs were all

feasible.

 By considering the alternative sets, shown in Figures 5.10b, 5.10d & 5.10f,

these were also similar to each other in terms of the TPs‟ IDs and their best

achieved fitness metric values. However, there are three TPs in each set that are

infeasible but associated with lower fitness metric values than the corresponding

TPs produced using GA-1. This applies to TPs with IDs 4, 9 and 11 where these

TPs are associated with TP fitness metric values 136, 142 and 136 respectively. A

close inspection of these TPs showed that each TP includes a transition that

references a counter variable where the required updater transition occurred

insufficiently and consequently the TP is infeasible. This performance that was

exhibited by GA-2 approach was also previously observed in the experimental

results reported in Chapter 3.

 By excluding the TPs that reference counter variables, all the generated

sets of subject TPs (by either GA-1 or GA-2) were similar in terms of the TP‟s

IDs and their best achieved fitness metric values (see Figure 5.10). This shows

 172

that when the counter problem is absent, the proposed approach relies on the TP

fitness metric guidance to evolve TPs that are associated with lower TP fitness

metric values and therefore are likely to be feasible. Nevertheless, for TPs that

reference counter variables, the performances of the two approaches were

different.

Table 5.4 shows the summary of the results derived from Inres initiator

EFSM. The average TP fitness metric value for each set of subject TPs that was

generated by the proposed approach was approximately 173 and this is greater

than that achieved by using the previously defined TP fitness metric approach

where the average TP fitness metric was approximately 33. However, the

proposed approach generated TPs that are all FTPs and thus had a success rate of

100%. This was not the case with the previously defined approach where the

success rate was 80%. This shows that for this EFSM case study the proposed

approach outperformed the previously defined TP fitness metric approach.

The fitness metric values of the infeasible TPs observed on each

alternative set were the same (136, 142 and 136). By considering the TPs‟ IDs, the

corresponding TPs generated by the proposed approach are associated with

greater TP fitness metric values (820, 840 and 855). This suggests that the

approach that depends only on the guidance of the TP fitness metric is unlikely to

overcome the counter problem. That is, the search aims to minimise the TP fitness

metric value, however, there exist alternative TPs that are associated with low

Method TP Length Feasible Infeasible Avg. Fitness ≈

GA-1
9

15 0 173

GA-2 12 3 33

GA-1
12

15 0 173

GA-2 12 3 33

GA-1
15

15 0 173

GA-2 12 3 33

Total GA-1 9, 12, 15 45 0 173

Total GA-2 9, 12, 15 36 9 33

Table ‎5.4: The Inres initiator EFSM generated TPs by the proposed

approach (GA-1) and by the previously defined TP fitness metric approach

(GA-2).

 173

fitness metric values but correspond to infeasible TPs (such as the infeasible TPs

observed on the alternative sets). Furthermore, the corresponding feasible TPs are

associated with greater fitness metric values. Thus, the search that merely uses the

guidance of the proposed TP fitness metric is unlikely to favour the TPs with

greater TP fitness metric values and so is unlikely to work in such a situation. By

using the proposed technique in this chapter, the search was directed to look for a

subsequence of transitions that are required in the presence of the counter

behaviour. Therefore, the search was successful to progress towards TPs that are

feasible in the presence of the counter behaviour.

From Table 5.4, it is also clear that the TP length factor did not play a role

in worsening the TP fitness metric value when this was longer. This observation

was also previously spotted (Chapter 3) on the subject TPs derived from Inres

initiator by using the TP fitness metric approach. As mentioned before, this

machine is already facilitated with „escape‟ transitions and so for longer TPs, the

search tends to produce more instances of „escape‟ transitions since these do not

incur any penalty and thus do not worsen the overall TP fitness metric value.

Nevertheless, the proposed TP length that is derived by using Dijkstra‟s algorithm

was adequate to allow producing TPs that fulfil the counter requirements in terms

of an adequate length that allows repeating an updater.

Since the best achieved TP fitness metric values were the same for the

same TPs‟ IDs in each produced set of subject TPs, the subject TPs produced by

each approach were grouped according to their best achieved TP fitness metric

values. Then, these were plotted against the average number of generation

required by the path test case generator in ten tries. Figure 5.11a shows the entire

generated subject TPs by using the proposed approach (GA-1) whereas those

generated by using the previous approach (GA-2) are plotted in Figure 5.11b.

From Figure 5.11a, it is clear that TPs that suffer from the counter

behaviour where associated with greater fitness metric values but were easily

triggered (required just one generation). For remaining TPs, there is a significant

strong correlation (Pearson r = 0.976) between the average number of path test

case generations and the associated fitness metric values. A similar observation is

also exhibited by the TP fitness metric approach (GA-2) shown in

 174

Figure 5.4b. This shows that the TP fitness metric values associated with TPs that

suffer from the counter behaviour do not reflect the actual TP complexity in terms

of how difficult such TPs can be triggered. This suggests that a further calibration

is required for the TP fitness metric approach when evaluating TPs that reference

counter variables.

5.5.2.2 Results of the ATM EFSM

The proposed approach (GA-1) was applied to the ATM EFSM to generate three

sets of subject TPs. Each set provided, when all TPs are FTPs, a transition

coverage test suite for the considered ATM machine. The first set contained

subject TPs with length of 6 transitions whereas the second and third sets

comprised subject TPs with lengths of 12 and 15 transitions respectively.

Furthermore, the previously defined TP fitness metric approach (GA-2) was

applied to generate three similar alternative sets of subject TPs for comparison

purpose.

Figure 5.12 shows all the generated sets of subject TPs for ATM EFSM by

using the two approaches. The left column shows the sets a, c and e that were

generated by the proposed approach (GA-1). The right column shows the sets b, d,

 a- All GA-1 generated TPs grouped by fitness b- All GA-2 generated TPs grouped by fitness

 Figure ‎5.11: Inres initiator EFSM TPs. Each figure shows a TP fitness metric

value vs. the average number of generations in ten tries to trigger this TP.

Figure a plots all the generated TPs by using the proposed approach (GA-1).

Figure b plots all the generated TPs by using the previously defined TP

fitness metric approach (GA-2). For clarity, the horizontal axis is a

logarithmic scale.

 175

 a- GA-1 generated TPs (9 transitions length) b- GA-2 generated TPs (length= 9 transitions)

 c- GA-1 generated TPs (length= 12 transitions) d- GA-2 generated TPs (length= 12 transitions)

 e- GA-1 generated TPs (length= 15 transitions) f- GA-2 generated TPs (length= 15 transitions)

 Figure ‎5.12: ATM EFSM TPs. The sets a & b have a TP length = 9, sets c & d

have a TP length = 12 and sets e & f have a TP length = 15. Sets a, c & e are

generated by using the proposed approach (GA-1). Sets b, d & f are the

alternative sets that are generated by using the previously defined TP fitness

metric approach (GA-2).

 176

and f that were generated by the approach that uses the previous TP fitness metric

(GA-2). Each set is plotted in terms of the ID of the generated TP against its best

achieved TP fitness metric value.

 From the left column of Figure 5.12, all the sets of subject TPs generated

by using the proposed approach (GA-1) were feasible. Furthermore, these sets, in

terms of TPs‟ IDs and their best achieved fitness metric values, were alike.

Nevertheless, every set of subject TPs generated by using the previous TP fitness

metric approach (GA-2) contained one TP which is infeasible. This applies to all

the GA-2 sets when the TP ID is 3. A close inspection showed that these TPs are

infeasible since they reference a counter variable where the required updater did

not occur sufficiently.

 For the sets that were generated by the proposed approach (GA-1), TPs

that reference counter variable were feasible but associated with greater fitness

metric value than that observed on the alternative sets. This applied to the TPs

with ID number 3. From the left column of Figure 5.12, the GA-1 TPs that

referenced a counter variable were associated with TP fitness metric value of 600.

However, in the alternative sets (shown in the right column of Figure 5.12) the

fitness metric value was 172. This is consistent with the previous conclusion that

the formerly proposed TP fitness metric approach is unlikely to produce FTPs

when a given TP references a counter variable. This is because alternative

infeasible TPs exist and are associated with lower fitness metric values and so the

search is likely to progress towards such TPs. However, the results show that the

proposed approach enhanced the TP fitness metric approach and guided the GA

search towards TPs that were feasible though they were associated with greater

TP fitness metric values.

 Similar to the results achieved from Inres, if TPs that suffer from counter

problem are excluded (TPs with ID =3), all the derived sets of subject TPs by

using both approaches were alike. This shows that if the machine does not suffer a

counter behaviour, the proposed approach functions by using the TP fitness metric

approach. However, with the existence of counter variable, the proposed approach

outperformed the previously defined TP fitness metric approach.

 177

Table 5.5 shows the summary of the results derived from the ATM EFSM.

For each considered TP length, the proposed approach (GA-1) produced a set of

TPs that were feasible and thus had a success rate of 100%. However, the

alternative approach (GA-2) had a success rate of 96.6%. For the proposed

approach, the best average achieved TP fitness metric value was 67 and this was

the same for each set of subject TPs. Similarly, for the alternative approach, the

best average achieved TP fitness metric value was 52 for each set of subject TPs.

This shows that the proposed approach produced greater average fitness metric

values than the alternative one. This emphasises that when the counter problem

exists, there can be TPs that are associated with lower TP fitness metric values but

they are infeasible.

Furthermore, for each approach (GA-1 & GA-2) the best average TP

fitness metric in each set did not increase when the TP length increased. This

shows that the existence of an „escape‟ transition is important to avoid

unnecessary complexities when producing TPs that have extra length. In order to

validate this, Figure 5.13 shows the prevalence of the „escape‟ transition, t', for

each TP in the three sets of subject TPs that were derived from ATM EFSM by

using the proposed approach. This figure shows that when TPs are longer, the

search avoids extra penalties by targeting the „escape‟ transition. Consequently,

the longer the TP is the more likely the „escape‟ transition is to be repeated.

Although this trend is relatively clear in Figure 5.13, there are cases where the

search did not particularly make use of the „escape‟ transition t' (i.e. TP ID 22).

Method TP Length Feasible Infeasible Avg. Fitness ≈

GA
9

30 0 67

RA 29 1 52

GA
12

30 0 67

RA 29 1 52

GA
15

30 0 67

RA 29 1 52

Total GA 9, 12, 15 90 0 67

Total RA 9, 12, 15 87 3 52

Table ‎5.5: The ATM EFSM generated TPs by the proposed approach

(GA-1) and by the previously defined TP fitness metric approach (GA-2).

 178

This can be explained by considering the ATM structure shown in Figure 5.2.

Since there are already other transitions that represent „escape‟ ones such as t7, t8,

t9, t10, t25 & t26, the search also targeted these transitions when TPs were longer.

However, the use of an „escape‟ transition at the first state is still important

even if the machine is already facilitated with other „escape‟ transitions at other

states. This can be verified by comparing the ATM results achieved by the TP

fitness metric approach to the results derived by the same approach on Chapter 3

where the considered ATM did not have the particular „escape‟ transition t'. By

referring to (Table 3.8, pp. 89), the best average achieved TP fitness metric was

60, however as reported in Table 5.5, this value is dropped down to 52 even

though the same approach was applied in both cases. This shows that the search

can better use the „escape‟ transition when it is presented at the first state. This

finding suggests that when deriving FTPs by using the proposed TP fitness metric

approach, the addition of an „escape‟ transition can be useful in two aspects.

Firstly, it helps the search in avoiding unnecessary transitions in the generated

TPs and consequently it is likely to avoid extra complexity. Secondly, when the

length of the generated TPs is difficult to reason about, the „escape‟ transition at

the first state can ease the problem.

By considering the length factor, the results achieved in the experiment

show that the TP length of 6 transitions derived by using Dijkstra‟s algorithm was

sufficient. Furthermore, longer TP length did not improve the performance of the

alternative approach (i.e. increasing the chance by which the approach (GA-2) can

Figure ‎5.13:‎The‎prevalence‎of‎ the‎ ‘escape’‎ transition‎ t' in the three sets of

subject TPs derived from the ATM EFSM by using the proposed approach.

 179

produce a correct sequence of transitions to bypass the counter problem). This

supports the observation that the proposed approach enhances the TP fitness

metric approach in the presence of the counter problem.

Finally, since for each approach the generated sets of subject TPs were

similar, each three sets that belong to the same approach (GA-1 or GA-2) were

grouped by the TP fitness metric values. Then, these were plotted against the

average number of generations required by the path test case generator in ten tries

to trigger each TP. Figure 5.14 shows two plots where Figure 5.14a represents the

subject TPs derived by the proposed approach (GA-1) and Figure 5.14b represents

the subject TPs derived by the alternative approach (GA-2). From these Figures

(5.14a & 5.14b), there is a significant strong correlation (Pearson r = 0.801)

between the TP fitness metric value and the average number of generations that

were required to trigger each FTP. However, this was not the case for the FTPs

that suffer from the counter behaviour. For example, Figure 5.14a shows that the

TP ID 3 is associated with a TP fitness metric value of 600 but this TP required

only one generation to trigger. This finding supports the previous finding (from

Inres initiator EFSM) where the TP fitness metric does not seem to reflect the

actual complexity of given FTPs when these suffer from the counter problem.

 a- All GA-1 generated TPs grouped by fitness b- All GA-2 generated TPs grouped by fitness

 Figure ‎5.14: ATM EFSM TPs. Each figure shows a TP fitness metric value

vs. the average number of generations in ten tries to trigger this TP. Figure a

plots all the generated TPs by using the proposed approach (GA-1). Figure b

plots all the generated TPs by using the previously defined TP fitness metric

approach (GA-2). For clarity, the horizontal axis is a logarithmic scale.

 180

This motivates a need for a further investigation into the proposed TP fitness

metric approach (Chapter 3) when evaluating such TPs.

5.5.2.3 Summary of Results

Table 5.6 reports the summary of the results achieved from the experiment. From

this Table, the proposed approach successfully guided a GA search towards FTPs

and the counter problem was bypassed. Therefore, the proposed approach had a

success rate of 100%. In contrast, the previously defined TP fitness metric

approach (Chapter 3) did not overcome the counter problem even when TPs were

allowed to be longer. The success rate associated with the latter approach was

approximately 91.1%.

 This provides evidence that the proposed approach in this chapter

enhanced the previously defined TP fitness metric approach and consequently

provided better guidance towards TPs that are feasible when the counter problem

exists. Furthermore, the experimental results suggest that utilising Dijkstra‟s

algorithm in the way described in this chapter can allow reasoning about the

length of the generated TPs. Moreover, the results highlight the importance of

facilitating a given machine with an „escape‟ transition at the first state if the

machine does not already have one. This has two benefits. First, it helps avoiding

unnecessary complexity when the considered TP length (to be generated) is longer

than necessary. Second, it can ease the problem of deciding about a suitable TP

EFSM Method Total TPs FTPs Avg. Fitness ≈ Success

Rate

Inres
GA-1

45
45 173 100%

GA-2 36 33 80%

ATM
GA-1

90
90 67 100%

GA-2 87 52 96.6%

All
GA-1

135
135 Not applicable 100%

GA-2 123 Not applicable 91.1%

Table ‎5.6: Summary of the results achieved by the proposed approach

(GA-1) and the previously defined TP fitness metric approach (GA-2) on

generating FTPs from two EFSMs that suffer from the counter problem.

 181

length where it allows producing variable-length TPs by using a fixed TP length

approach.

The results also show that the proposed TP fitness metric calculation is not

always suitable when TPs suffer a counter problem. In particular, there are cases

where the actual TP‟s complexity is not reflected by the overall assigned penalty.

This, in turn, suggests the need for further investigation in order to calibrate the

TP fitness metric.

5.6 Conclusion

The EFSM is a powerful modelling approach and has been widely applied when

testing from state-based systems. Despite its popularity, testing from an EFSM is

complicated by the presence of infeasible transition paths. The problem of

generating feasible transition paths from an EFSM is generally uncomputable.

One particular problem that causes paths to be infeasible is the existence of a

counter variable whose value depends on previous transitions. Thus, in order to

generate a feasible path to exercise a particular transition which has a guard that

references a counter variable, there is a need to ensure that other transitions, that

update the value of the counter, have occurred sufficiently often. Previous studies

have shown that the counter problem can adversely affect methods that automate

test generation from an EFSM.

This chapter presents an approach based on the analysis of data and

control dependency to automatically determine whether a transition‟s guard

references a counter variable, which other transitions are involved and the number

of times they have to be called. The approach is then utilised the TP fitness metric

approach to search automatically for feasible transition paths that satisfy a test

criterion.

In the experiment, the proposed approach was utilised to guide a GA

search to generate subject TPs from two EFSM case studies that suffer from the

counter problem. For each EFSM three sets for subject TPs were derived with

different TP lengths where the minimum adequate TP length was calculated by

 182

utilising Dijkstra‟s algorithm. Each derived set of subject TPs provided transition

coverage test suite for the considered EFSM. For the purpose of comparison,

similar alternative sets of subject TPs were generated by using the guidance of the

previously proposed TP fitness metric. The TPs generated by using the proposed

approach were all feasible and so the approach had a success rate of 100%.

However, in the alternative sets, TPs that suffer from the counter problem were

found to be infeasible. The experimental results show that the proposed approach

effectively guided the GA search towards TPs that were feasible and the counter

problem was successfully bypassed.

Future work in this area could investigate other cases of the counter

problem that might exist in order to extend the current approach so it includes

these cases. Furthermore, the TP fitness metric values associated with FTPs that

reference counter variables did not reflect the actual complexity a TP may have.

This was observed by considering the average number of generations that a GA

path test case generator required to trigger such FTPs. This shows that the penalty

values, incurred as a result of repeating the updater for a certain number of times,

may not be necessary. A further investigation on this would be useful to allow a

more representative TP fitness metric value to be assigned to TPs that reference

counter variables.

 183

Chapter 6: Conclusions and Future Work

6.1 Conclusion of Achievements

The thesis‟s main aims and objectives were:

1. To identify challenges associated with testing from extended finite state

machine (EFSM) models. Furthermore, highlighting limitations associated

with current EFSM testing approaches.

2. To determine barriers to the application of search-based approaches to

testing from EFSM models.

3. To propose an integrated search-based approach to automate the process of

testing from EFSM models.

6.1.1 Problems Associated with Testing from EFSMs

Chapter 2 determined the importance of model based testing and particularly the

wide use of an EFSM as a modelling approach. Furthermore, the chapter

identified the main two problems associated with EFSM testing:

1. Since an EFSM combines both control and data aspects of a system,

generating feasible transition paths (FTPs) from an EFSM to satisfy a

given test adequacy criterion is a substantial problem.

2. When there is a set of FTPs that are derived from an EFSM, these FTPs

require suitable input values in order to be triggered. Nevertheless, finding

such values is a challenging task since the input domain can be

considerably large, while the suitable input values may constitute just a

very small subset of the input domain. This is because FTPs usually

 184

include guards narrowing the acceptable range of input values to a certain

small sub-ranges.

The chapter also determined that many current EFSM testing approaches tackled

these problems by:

1. Converting an EFSM to an FSM (by either expanding an EFSM or

abstracting an EFSM) to avoid the path feasibility problem and thus apply

the widely studied FSM-based testing techniques. However, this approach

may either lead to the state explosion problem (when expanding) or the

path feasibility problem (when abstracting).

2. Rewriting an EFSM to form another EFSM in which the path feasibility

problem does not exist. Such approaches are either limited to certain

EFSMs or are not automated.

3. Using symbolic execution and constraint satisfaction techniques to study

the path feasibility and also to produce test cases to trigger the generated

paths. However, such approaches inherit the applicability limitations of

both symbolic execution and constraint satisfaction.

Moreover, Chapter 2 showed that while search-based approaches have proven

efficient in automating aspects of testing, these have received little attention when

testing from an EFSM. The search-based testing approaches are particularly

suitable for automating the test from an EFSM because:

1. The complex nature of the problems associated with an EFSM testing in

terms of feasible path generation and test cases generation where:

a. The search space for the path generation problem is large

(theoretically, there can be an infinite number of paths that can be

formed from a given EFSM).

b. The search space for the problem of test cases generation to trigger

a given path can also be considerably large.

2. Search-based approaches have proven efficient in automating aspects of

white-box testing.

The proposed approach in this thesis handled testing from an EFSM by generating

feasible transition paths (FTPs) that satisfy a given test criterion, then generating

test cases (test data) that can exercise the generated FTPs.

 185

6.1.2 Generating Feasible Transition Paths (FTPs)

For an EFSM, there can be a large number of transition paths that can be formed.

Due to the complex nature of an EFSM model, some transition paths may be

infeasible. When testing from an EFSM according to a given test criterion, there is

a need to generate a set of transition paths to satisfy this criterion. Chapter 3

proposed a novel search-based approach to generate transition paths that are likely

to be feasible. To facilitate the search for such FTPs, transitions in an EFSM were

classified into two types: affecting and affected-by. An affecting transition is one

which has an assignment operation that affects a guard of another transition (the

affected-by).

 Furthermore, assignment operations were classified into three types that

represent a context variable being assigned a value based on (1) a parameter

value, (2) a constant value and (3) context variables value. Similarly, guards were

classified into five types that represent a comparison that involves (1) only

parameters, (2) parameters and constants, (3) variables and parameters, (4) only

variables, and (5) variables and constants. The fitness metric was then calculated

for each transition path by detecting all pairs of (affecting, affected-by). Then for

each pair of (affecting, affected-by), and depending on the assignment and guard

types that appear in the (affecting, affected-by) respectively, a penalty was

assigned. The penalty is a numerical estimation of how difficult it is to satisfy the

guard of the affected-by transition by considering the type of the affecting

transition‟s assignment. Furthermore, transitions that are not affected by any

transition but have guards (such as comparison among parameters), these are also

penalised.

 An algorithm was then proposed to calculate the fitness metric of a given

transition path. Importantly, the proposed TP fitness metric can be computed

quickly and thus is suitable to be used in a search-based approach. Furthermore, to

apply a search-based approach, a TP encoding method was adapted from the

literature. A GA search that implemented the proposed TP fitness metric approach

was applied to five EFSM case studies. For each case study, three different TP

lengths were used. Also, a random path generator was applied for the purpose of

 186

comparison. Experimental results showed that generating FTPs from the

considered machines is not an easy task. However, the proposed search-based

approach was found to generate FTPs that are mostly feasible regardless of the TP

length. However TPs that were found to be infeasible, suffered from the counter

problem.

6.1.3 Generating Test Cases to Trigger FTPs

In order to apply a test to an EFSM, FTPs that were previously derived (to satisfy

a test criterion) need to be triggered. Since a transition can require some input

values in order to be executed, it is necessary to provide such values. However, a

transition can also have guards that need to be satisfied in order for this transition

to be fired. Furthermore, for a given FTP, there is a need to find a test case that

can trigger each transition in this path. Such a test case should consider the effects

of triggering the earlier transitions in the path on the later transitions. These

effects take place through the machine context variables. This, in turns, makes the

process of finding a suitable test case to trigger a given FTP difficult.

 Chapter 4 proposed a search-based approach that can automatically

generate test cases to trigger given FTPs through an EFSM. The approach

considered an EFSM transition as a function. Thus, the problem of test cases

generation was formulated as finding input values to take a sequence of functions.

These functions interact with each other through a set of global variables (the

machine‟s context variables). Then, a fitness function to facilitate the search in the

presence of function calls was derived. The fitness calculation was performed

through two steps. First, a function distance was calculated to determine whether a

given function was achieved or how close the applied inputs were to executing the

function. The function distance was calculated by using a method proposed in the

literature for calculating the fitness for nested conditions. Then for each guarded

function in the path, a function approach level was measured. The function

approach level determines how close a test case was to triggering the last

transition in the path and calculated by subtracting one from the number of

guarded transition away from the last transition. The final fitness was then

 187

composed of two components: the normalised function distance and the function

approach level at the transition where the execution flow was diverted.

Subject TPs that were previously derived from the five EFSM case studies

by using the TP fitness function approach and random path generator were the

experiment subjects. Furthermore, the experiment used two other search-based

approaches to find an FTP‟s test case for comparison. The first approach was

taken from the literature while the second approach was a random test case

generator. The experimental results reported that the proposed test cases

generation approach successfully generated test cases that triggered all the used

FTPs. Also, the proposed approach was found to be superior to the other two

search-based approaches.

Chapter 4 also studied the relationship between two factors: the FTP‟s

fitness metric value and the effort, in terms of time, that is required to trigger the

FTP. Furthermore, an investigation of the FTP‟s fitness metric capability to

predict such an effort was also studied. In the second experiment, a constraint

satisfaction approach was used together with the proposed search-based FTP test

cases generator. The subject FTPs were the same ones that were generated in

Chapter 3.

The salient results of the second experiment stated that when FTPs were

generated by the proposed search-based approach that implemented the TP fitness

metric, there was significantly positive strong correlation. The correlation was

between the FTP‟s fitness metric value and the effort that was required to trigger

the FTP. This correlation was found to be strong regardless of the applied test case

generator. Furthermore, the study found that the FTP fitness metric value can

significantly predict the time that is required by a test cases generator to trigger an

FTP. The predication capability of the fitness metric together with the relationship

between the fitness metric and the effort of a test cases generator were found to be

stronger when the subject FTPs were clustered by the same fitness metric values.

For FTPs that were randomly generated, the correlation between the FTP‟s

fitness metric value and the effort that was required to trigger the FTP by the

proposed test cases generator was found to be statistically significant and strongly

positive. However, there was a small positive correlation between the FTP‟s

 188

fitness metric value and the time required by the constraint satisfaction approach

to trigger the FTP. Furthermore, the capability of the FTP fitness metric to predict

the required time to trigger an FTP was found to be significant but explained less

variance in the required time by the proposed test cases generator. The predication

capability of the FTP fitness metric was much less for the constraint satisfaction

approach. Finally, FTP clustering was found to worsen both correlation strength

and the predication capability among the considered factors.

6.1.4 By-Passing The Counter Problem When Generating

FTPs

A transition path through an EFSM can be infeasible due to an opposition

between guards or a guard and an assignment. Such oppositions can be static

when guards and assignments involve constants. When there is a static opposition,

this can be captured by the proposed TP fitness metric approach and harshly

penalised so that the search can avoid it. However, oppositions between guards or

a guard and an assignment can be dynamic where a certain infeasible path would

be feasible were certain transitions to occur sufficiently often. Such transitions

update the value of an internal variable (a context variable) so that the guard of a

later transition is satisfied and the path becomes feasible. In the EFSMs studied,

such a variable plays the role of a counter. Therefore, when a path has a

transition‟s guard that references a counter variable, there is a need to determine

which other transitions have to occur earlier and also how many times they should

occur so that the considered guard is satisfied.

 Chapter 5 proposed a novel approach to determine whether a given EFSM

contains a counter variable. If so, the EFSM transitions were classified to two

types: affecting a counter and affected by a counter. Transitions that affect a

counter can be either initialisers which initialise the counter variable with a

constant or updaters that update the counter variable by using one of the

{+a,−a,×a, /} operations and a constant. Transitions that are affected by a counter

contain a guard that references a counter variable.

 189

Then, an algorithm was defined that can produce triples of the form (initialiser,

updater, updater times). These triples state which particular initialise should come

first, which particular updater should follow and how many times the updater

should be repeated. The algorithm was then combined in the TP fitness metric

approach to inform the search when a path should meet an extra requirements to

be potentially feasible.

 Since the counter problem required a given path to have an adequate

length to allow certain transitions to occur sufficiently often, the path length was

also studied. Dijkstra‟s algorithm was utilised to suggest a path length that can be

considered sufficient (long enough). However, when a path length is longer than

that actually required, extra complexity can be introduced by calling unnecessary

transitions. This problem was overcome by adding an „escape‟ transition at the

first state of an EFSM so that an extra length can potentially be occupied by

instances of the „escape‟ transition.

 The approach was then applied to two EFSM case studies that suffer from

the counter problem. Also, the original TP fitness metric approach was applied for

the purpose of comparison. The experimental results reported that the proposed

approach in Chapter 5 significantly enhanced the performance of the TP fitness

metric approach and the counter problem was successfully surpassed. However,

the generated FTPs that referenced a counter variable were found to be associated

with greater TP fitness metric values. These values did not seem to reflect the FTP

complexity in the same way that was observed when FTPs did not suffer from the

counter problem.

6.2 Points for Future Work

There are many directions in which the work of this thesis can be extended. These

directions are listed in the next subsections.

 190

6.2.1 The Fitness Metric

The proposed TP fitness metric is designed to penalise guards according to their

types. For example, consider the flowing two sets of nested guards:

Both sets (Figure 6.1a and Figure 6.1b) have guards involving parameters and

constants. The fitness metric mechanism gives both sets the same penalty value.

However, in the first set, each input parameter is bounded once while the second

set has one input parameter which is bounded twice. The first set is likely to be

much easier to achieve than the second set. This is because, in the first set the

range of acceptable values of p1 is much larger than that in the second set where

this range is narrowed down to, possibly, a tiny range. Therefore, it would be

useful if the fitness metric could consider how many times the same variable is

constrained when the comparison operator is not the equal one. This could

improve the path‟s complexity reflected by the TP fitness metric.

 Another point of fitness metric improvement could be the case when a

transition path suffers from the counter problem. The current fitness metric

approach is to penalise each pair of (affecting, affected-by) with a certain number

of points. However, when there is a counter variable, there is a need for a certain

transition, an updater, to occur a specific number of times. Since an updater can be

affecting and affected-by at the same time, each occurrence of the updater will

incur extra penalty. Nevertheless, such extra penalty might not actually reflect an

// Transition t

if v < c1 then

 v = v +1

// Transition t'

 if v ≥ c1 then

 // target

 a- A transition that is affected-by and also

 affecting a counter variable

 b- A transition that is only affected by a counter

 variable

 Figure ‎6.2: A counter problem and a TP fitness metric mechanism.

 if p1 > c1 then

 if p2 > c2 then

 if p3 > c3 then

 // target

 if p1 > c1 then

 if p1 < c2 then

 if p2 > c3 then

 // target

 a- Case study of penalty assignment b- Equivalent penalty but yet harder to satisfy

 Figure ‎6.1: Two sets of nested guards that are assigned the same TP fitness

metric value. However, the second set is harder to be satisfied.

 191

additional path‟s complexity as a result of repeating the updater. Consider for

example transition t and t' shown in Figure 6.2. Transition t is an updater and also

affected by a counter while transition t' is just an affected-by a counter. Transition

t however should occur for a number of times so that the guard of t' is satisfied.

While, t is repeated, a new pair of (affecting, affected-by) is formed by (updater,

updater) and thus new penalty is incurred. However, these repetitions do not

necessarily increase the complexity. Therefore, developing a method (i.e. a filter)

that drops penalties assigned to (updater, updater) might help when FTPs suffer

from the counter problem.

6.2.2 FTPs Test Cases Generations

The approach presented in Chapter 4 manipulates a given feasible transition path

as a sequence of functions. Then, the problem is tackled by triggering the

functions in their order in the considered path. Another potential way to calculate

the fitness of a path is to merge the path‟s functions altogether in one function and

then compute the fitness by using the approach of (Wegener et al., 2001).

Consider for example transitions t1 and t2 shown in Figure 6.3a. The fitness of the

path t1t2 can be calculated as shown in Figure 6.3b. The main idea is to nest the

guards of the two transitions in one transition by considering the order of both

guards and assignments.

// Transition t1

 if p1 > c1 then

 if p2 > c2 then

 if p3 > c3 then

 v = v + p1 // target-1

// Transition t2

 if p1 > v then

 v = p1 // target-2

double path (int p1, int p2, int p3, int p4)

{ if p1 > c1 then

 if p2 > c2 then

 if p3 > c3 then

 v = v + p1 // target-1

 if p4 > v then

 v = p4

 return 0 // main target

 // else return normalised(branch distance)

 // + approach level at the false branch}

 a- Two guarded transitions b- A path fitness calculation by using „bushing‟

 Figure ‎6.3: Calculating a path fitness by using only Wegener et al. approach

 192

6.2.3 The Normalisation Function During FTPs Test

Cases Generation

The proposed fitness function that evaluates a given test case to trigger an FTP

consists of two components: the function distance and the function approach

level. Since it is important to reward a test case that achieves more transitions, the

function distance is normalised to a value in the range [0..1]. Furthermore, in

order to calculate the function distance for each transition in a path, there are two

components to be calculated: the branch distance and the approach level. Again,

the branch distance is normalised to a value in the range [0..1] so that the

approach level can reward a test case that exercises more branches (guards) in a

transition. This shows that the proposed fitness function that evaluates an FTP‟s

test case uses the normalisation function a number of times depending on the

number of the guarded transitions in a given FTP. A recent study (Arcuri, 2010)

focused on the way in which a normalisation function is implemented. The study

compared the commonly used form of the normalisation function (Equation 6.1)

to a new form proposed by the study (Equation 6.2).

norm(x) = 1- α
-x

 ; where α > 0 is a constant (6.1)

norm(x) = x /(x + β) ; where β > 0 is a constant (6.2)

The study argued that the commonly used form requires running the math library

(to calculate the power function) every time the norm function is called.

Furthermore, the conventional norm function can be more vulnerable to precision

error. By considering the fact that the proposed fitness function is calculated a

large number of times during FTPs‟ test cases generation, the efficiency of the

proposed fitness function could be improved by using the one proposed in the

study (Equation 6.2).

6.2.4 Complex FTPs’ Test Cases Generation

One important aspect of the proposed TP fitness metric is to target transition paths

that are potentially associated with the least fitness metric values. Therefore, such

paths are likely to be less complex and thus relatively easy to trigger. However,

 193

complex paths could be better able to reveal errors than simple ones. The TP

fitness metric approach can be adjusted to produce paths with large TP fitness

metric values but they are still likely to be feasible. However, the problem that

may arise is to generate test cases that can trigger such complex paths (FTPs that

have large TP fitness metric values).

 One important technique to overcome this problem is the approach of

„program stretching‟ proposed by (Ghani and Clark, 2009b). Consider for

example transition t1 shown in Figure 6.4 which has two nested IF statements. The

idea of program stretching is to use auxiliary variables in each IF statement. Each

auxiliary variable has initially a large value which makes each guard initially

satisfied. Then, the target becomes to have the sum of these auxiliary variables

equal to zero while the guards still hold (Figure 6.4b). The „program stretching‟

approach was found to enhance the search-based testing in the presence of

difficult guards and thus fulfil the problem of test cases generation for complex

FTPs.

6.2.5 Calibrating the TP Fitness Metric

The penalties that were used by the TP fitness metric when generating transition

paths are by no means definitive. Although these penalties were found to be

potentially reasonable to reflect paths‟ complexity, a further calibration would be

useful. A possible way to achieve this is to use feedbacks from a test cases

generator and reflect these on the penalties as shown in Figure 6.5. Such an

approach could be used to learn about how much a path‟s complexity, in terms of

the time required to be triggered, is actually reflected by the associated TP fitness

metric value. Then this information is reflected on the used penalties in order to

// Transition t1

 if p1 > c1 then

 if p1 < c2 then

 // target

// double stretched (int p1, int aux1, int aux2)

{ if (p1 + aux1) > c1 then

 if p1 < (aux2 + c2) then

 if (aux1+ aux2 == 0) then

 // target

 a- A transition with nested guards b- Calculate the fitness by using „Stretching‟

Figure ‎6.4:‎ Calculating‎ a‎ path‎ fitness‎ by‎ using‎ ‘Program‎ Stretching’‎

approach (Ghani and Clark, 2009b).

 194

calibrate and thus the TP fitness metric. Figure 6.5 shows five stages: the first

stage is to generate a TP by using the initial penalties while stage 2 can be used to

determine the desirable range of TP complexity. The number of attempts that are

allowed for a test cases generator to trigger a TP can be adjusted to decide how

the average time is calculated (Stage 3). The recorded average time is then used to

modify the penalties by considering their initial values (Stage 5). Finally, the

modified penalties are used to generate new TPs, and so on.

6.2.6 An Iterative Approach

The proposed approach has the potential to be implemented as an iterative process

as shown in Figure 6.6. Such a process starts by generating a path in the first stage

while the complexity of the generated path can be controlled by using the second

stage. Then, in the third stage, the path is checked for the counter problem. If the

counter problem is detected, the path may be regenerated. The next stage, number

4, is to accept the generated path if its estimated time (to be triggered) fits in the

allowed time (i.e. a time dedicated for testing). If this path is not accepted, a

request to regenerate the path is sent. Similarly in the final stage, if a test case

cannot be found to trigger the path, a request to regenerate the path is sent. Such

Use the modified penalties to generate TPs

Figure ‎6.5: An iterative approach to calibrate the TP fitness metric

Generate a TP by

using the Fitness

Metric

Test Criterion
Generate a test

case to trigger the

TP

Re-generate the TP if test case was not found

E

F

S

M Control the TPs

complexity [0..INF)

Modified penalties

Adjust the number

of attempts to

calculate the

average

Initial penalties

3 4

5

1

2

 195

an iterative search-based approach can be useful to provide important flexibility to

the testing process.

6.3 General Conclusion

The work of this thesis investigated the application of search-based approaches to

the domain of EFSM testing. An integrated search-based approach was then

developed for the purpose of an automating testing from an EFSM. The proposed

approach comprised of three stages where each stage tackled one important

problem associated with EFSM testing.

A set of experiments showed the value of the proposed approach in

automating the process of testing from EFSM models.

Re-generate the TP if a suitable test case was not found

Figure ‎6.6: An iterative search-based approach to test from an EFSM

Generate a TP by

using the Fitness

Metric

Test Criterion
Estimate test case

generation time

Re-generate the TP if the predicted time is not suitable

E

F

S

M Control the TPs

complexity [0..INF)

Generate a test

case to trigger the

TP

Detect the counter

problem

1

3

2

4

5

 196

References

Aho, A. V., Dahbura, A. T., Lee, D. & Uyar, M. U. (1991) An optimization

technique for protocol conformance test generation based on UIO

sequences and rural Chinese postman tours. Communications, IEEE

Transactions on, 39, 1604-1615.

Andrews, A. A., Offutt, J. & Alexander, R. T. (2005) Testing Web applications by

modeling with FSMs. Software and Systems Modeling, 4, 326-345.

Apfelbaum, L. & Doyle, J. (1997) Model Based Testing. 10th International

Software Quality Week, pp. 296-300. May 1979.

Arcuri, A. (2010) It Does Matter How You Normalise the Branch Distance in

Search Based Software Testing. Third IEEE International Conference on

Software Testing, Verification and Validation (ICST10), pp. 205-214.

IEEE Press, April 2010.

Baresel, A., Binkley, D., Harman, M. & Korel, B. (2004) Evolutionary testing in

the presence of loop-assigned flags: a testability transformation approach.

ACM SIGSOFT international symposium on Software testing and analysis,

pp. 108-118. ACM Press, July 2004.

Beizer, B. (1990) Software testing techniques 2nd ed., Van Nostrand Reinhold.

Bertolino, A. (2007) Software Testing Research: Achievements, Challenges,

Dreams. Future of Software Engineering (FOSE '07), pp. 85-103. IEEE

Press, May 2007.

Bochmann, G. V. (1990) Specifications of a simplified transport protocol using

different formal description techniques. Computer Networks and ISDN

Systems, 18, 335-377.

Boehm, B. W. (1981) Software Engineering Economics, NJ, Prentice Hall PTR.

Bourhfir, C., Dssouli, R. & Aboulhamid, E. M. (1996) Automatic Test Generation

for EFSM-based Systems. Technical report. University of Montreal, TR-

1043.

Browne, M. C., Clarke, E. M., Dill, D. L. & Mishra, B. (1986) Automatic

Verification of Sequential Circuits Using Temporal Logic. IEEE

Transactions on Computers, 35, 1035-1044.

 197

Budkowski, S. & Dembinski, P. (1987) An introduction to Estelle: a specification

language for distributed systems. Computer Networks and ISDN Systems.,

14, 3-23.

Chanson, S. T. & Jinsong, Z. (1994) Automatic protocol test suite derivation. 13th

IEEE Networking for Global Communications (INFOCOM '94), 2, pp.

792-799. IEEE Press, June 1994.

Chanson, S. T. & Zhu, J. (1993) A unified approach to protocol test sequence

generation. 12th Annual Joint Conference of the IEEE Computer and

Communications Societies. Networking: Foundation for the Future

(INFOCOM '93), 1, pp. 106-114. IEEE Press, April 1993.

Cheng, K.-T. & Krishnakumar, A. S. (1996) Automatic generation of functional

vectors using the extended finite state machine model. ACM Transactions

on Design Automation of Electronic Systems., 1, 57-79.

Chow, T. S. (1978) Testing Software Design Modeled by Finite-State Machines.

Software Engineering, IEEE Transactions on, SE-4, 178-187.

Clark, J., Dolado, J. J., Harman, M., Hierons, R. M., Jones, B., Lumkin, M.,

Mitchell, B., Mancoridis, S., Rees, K., Roper, M. & Shepperd, M. (2003)

Reformulating software engineering as a search problem. Software, IEE

Proceedings -, 150, 161-175.

Clarke, E. (2008) The Birth of Model Checking. 25 Years of Model Checking.

Berlin, Springer.

Clarke, L. A. (1976) A System to Generate Test Data and Symbolically Execute

Programs. Software Engineering, IEEE Transactions on, SE-2, 215-222.

Cohen, J. (1988) tatistical power analysis for the behavioral sciences, New Jersy,

Lawrence Erlbaum Associates.

Dahbura, T. A., Sabnani, K. K. & Uyar, M. U. (1990) Formal methods for

generating protocol conformance test sequences. Proceedings of the IEEE,

78, 1317-1326.

Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton, G. C. &

Horowitz, B. M. (1999) Model-based testing in practice. International

Conference on Software Engineering, pp. 285-294. IEEE Press, May 1999.

Darringer, J. A. & King, J. C. (1978) Applications of Symbolic Execution to

Program Testing. Computer, 11, 51-60.

 198

David, H. & Amnon, N. (1996) The STATEMATE semantics of statecharts. ACM

Trans. Softw. Eng. Methodol., 5, 293-333.

Dechter, R. & Pearl, J. (1989) Tree clustering for constraint networks (research

note). Artificial Intelligence, 38, 353-366.

Demillo, R. A. & Offutt, A. J. (1991) Constraint-based automatic test data

generation. Software Engineering, IEEE Transactions on, 17, 900-910.

Derderian, K., Hierons, R. M., Harman, M. & Guo, Q. (2005) Generating feasible

input sequences for extended finite state machines (EFSMs) using genetic

algorithms. The Genetic and Evolutionary Computation Conference

(GECCO), pp. ACM Press, June 2005.

Derderian, K., Hierons, R. M., Harman, M. & Guo, Q. (2006) Automated Unique

Input Output Sequence Generation for Conformance Testing of FSMs. The

Computer Journal, 49, 331-344.

Derderian, K., Hierons, R. M., Harman, M. & Guo, Q. (2010) Estimating the

feasibility of transition paths in extended finite state machines. Automated

Software Engineering, 17, 33-56.

Dijkstra, E. W. (1959) A note on two problems in connexion with graphs.

Numerische Mathematik 1, 269–271.

Dijkstra, E. W. (1970) Notes on Strcutred Programming. Technical Report 70-

WSK03. Eindhoven, Technological University.

Dssouli, R., Saleh, K., Aboulhamid, E. M., En-Nouaary, A. & Bourhfir, C. (1999)

Test development for communication protocols: towards automation.

Computer Networks, 31, 1835-1872.

Duale, A. Y. & Uyar, M. U. (2004) A method enabling feasible conformance test

sequence generation for EFSM models. Computers, IEEE Transactions

on, 53, 614-627.

Duale, A. Y., Uyar, M. U., Mcclure, B. D. & Chamberlain, S. (1999)

Conformance testing: towards refining VHDL specifications. IEEE

Military Communications Conference Proceedings (MILCOM 1999), 1,

pp. 140-144. IEEE Press, October 1999.

El-Far, I. K. & Whittaker, J. A. (2001) Model-based software testing. IN

MARCINIAK, J. J. (Ed.) Encyclopedia on Software Engineering. Wiley.

 199

Elfriede, D., Jeff, R. & John, P. (1999) Automated software testing: introduction,

management, and performance, Addison-Wesley Longman Publishing

Co., Inc.

Ferrante, J., Ottenstein, K., J. & Warren, J., D. (1987) The program dependence

graph and its use in optimization. ACM Transactions on Programming

Languages and Systems, 9, 319-349.

Fraser, G., Wotawa, F. & E. Ammann, P. (2009) Testing with model checkers: a

survey. Software Testing, Verification & Reliability, 19, 215-261.

Ghani, K. & Clark, J. A. (2009a) Automatic Test Data Generation for Multiple

Condition and MCDC Coverage. Fourth IEEE International Conference

on Software Engineering Advances (ICSE '09), pp. 152-157. IEEE Press,

September 2009.

Ghani, K. & Clark, J. A. (2009b) Widening the Goal Posts: Program Stretching to

Aid Search Based Software Testing. 1st International Symposium on

Search Based Software Engineering, pp. 122-131. IEEE Press, May 2009.

Gonenc, G. (1970) A Method for the Design of Fault Detection Experiments.

Computers, IEEE Transactions on, C-19, 551-558.

Harman, M. (2008) Open Problems in Testability Transformation. 1st IEEE

International Conference onSoftware Testing Verification and Validation

Workshop (ICSTW '08), pp. 196-209. IEEE Press, April 2008.

Harman, M. & Clark, J. (2004) Metrics are fitness functions too. 10th

International Symposium on Software Metrics (METRICS'04), pp. 58-69.

IEEE Press, September 2004.

Harman, M. & Danicic, S. (1997) Amorphous program slicing. 5th International

Workshop on Program Comprehension (WPC '97), pp. 70-79. IEEE Press,

May 1997.

Harman, M. & Hierons, R. M. (2001) An overview of Program Slicing. Software

Focus, 2, 85-92.

Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A. & Roper,

M. (2004) Testability transformation. Software Engineering, IEEE

Transactions on, 30, 3-16.

Harman, M., Hu, L., Hierons, R. M., Baresel, A. & Sthamer, H. (2002) Improving

Evolutionary Testing By Flag Removal. Genetic and Evolutionary

 200

Computation Conference (GECCO '02), pp. 1359-1366. Morgan

Kaufmann, 2002.

Harman, M. & Jones, B. F. (2001) Search-based software engineering.

Information and Software Technology, 43, 833-839.

Harman, M. & Mcminn, P. (2009) A Theoretical and Empirical Study of Search

Based Testing: Local, Global and Hybrid Search. IEEE Transactions on

Software Engineering. In press.

Hierons, R. M. (2004) Testing from a nondeterministic finite state machine using

adaptive state counting. Computers, IEEE Transactions on, 53, 1330-

1342.

Hierons, R. M., Bogdanov, K., Bowen, J. P., Cleaveland, R., Derrick, J., Dick, J.,

Gheorghe, M., Harman, M., Kapoor, K., Krause, P., Lüttgen, G., Simons,

A. J. H., Vilkomir, S., Woodward, M. R. & Zedan, H. (2009) Using formal

specifications to support testing. ACM Computing Surveys, 41, 1-76.

Hierons, R. M. & Harman, M. (2004) Testing conformance of a deterministic

implementation against a non-deterministic stream X-machine. Theoretical

Computer Science, 323, 191-233.

Hierons, R. M., Harman, M. & Fox, C. J. (2005) Branch-Coverage Testability

Transformation for Unstructured Programs. The Computer Journal, 48,

421-436.

Hierons, R. M., Kim, T.-H. & Ural, H. (2004) On the testability of SDL

specifications. Computer Networks, 44, 681-700.

Hierons, R. M., Sadeghipour, S. & Singh, H. (2001) Testing a system specified

using Statecharts and Z. Information and Software Technology, 43, 137-

149.

Hogrefe, D. (1991) OSI formal specification case study: the Inres protocol and

service. Technical Report IAM-91-012. University of Bern, Institute of

Computer Science and Applied Methematics.

Holland, J. H. (1975) Adaptation in natural and artificial systems, Ann Arbor,

The University of Michigan Press.

Holzmann, G. J. (1991) Design and Validation of Computer Protocols, New

Jersey, Prentice-Hall, Englewood Cliffs.

 201

Itu-T (1994) Recommendation Z.100-Specification and Description

Language(SDL). Geneva.

Jaffar, J. & Maher, M. J. (1994) Constraint Logic Programming: A Survey.

Journal of Logic Programming, 19/20, 503-581.

Jolliffe, I. T. (2002) Principal Component Analysis. Springer Series in Statistics

2nd ed. New York, Springer.

Jones, B. F., Eyres, D. E. & Sthamer, H. H. (1998) A Strategy for using Genetic

Algorithms to Automate Branch and Fault-based Testing. The Computer

Journal, 41, 98-107.

Kalaji, A. S., Hierons, R. M. & Swift, S. (2009a) Generating Feasible Transition

Paths for Testing from an Extended Finite State Machine (EFSM). 2nd

IEEE International Conference on Software Testing, Verification, and

Validation (ICST' 09), pp. 230-239. IEEE Press, April 2009.

Kalaji, A. S., Hierons, R. M. & Swift, S. (2009b) A Search-Based Approach for

Automatic Test Generation from Extended Finite State Machine (EFSM).

Testing: Academic and Industrial Conference - Practice and Research

Techniques (TAIC-PART), pp. 131-132. IEEE Press, September 2009.

Kalaji, A. S., Hierons, R. M. & Swift, S. (2009c) A Testability Transformation

Approach for State-Based Programs. Search Based Software Engineering,

2009 1st International Symposium on, pp. 85-88. IEEE Press, May 2009.

Kalaji, A. S., Hierons, R. M. & Swift, S. (2010) Generating Feasible Transition

Paths for Testing from an Extended Finite State Machine with the Counter

Problem. 3rd IEEE International Conference on Software Testing

Verification and Validation Workshops (ICSTW' 10), pp. 232-235. IEEE

Press, April 2010.

Keum, C., Kang, S., Ko, I.-Y., Baik, J. & Choi, Y.-I. (2006) Generating Test

Cases for Web Services Using Extended Finite State Machine. Testing of

Communicating Systems.

Kim, Y. G., Hong, H. S., Bae, D. H. & Cha, S. D. (1999) Test cases generation

from UML state diagrams. Software, IEE Proceedings -, 146, 187-192.

King, J. C. (1976) Symbolic execution and program testing. Communications of

the ACM, 19, 385-394.

Kirkpatrick, S., Gelatt, J. C. D. & Vecchi, M. P. (1983) Optimization by

Simulated Annealing. Science, 220, 671-680.

 202

Koh, L.-S. & Liu, M. T. (1994) Test path selection based on effective domains.

International Conference on Network Protocols (ICNP '94), pp. 64-71.

IEEE Press, October 1994.

Kohavi, Z. (1978) Switching and finite automata theory, New York, McGraw-

Hill.

Korel, B. (1990) Automated software test data generation. Software Engineering,

IEEE Transactions on, 16, 870-879.

Korel, B., Tahat, L. H. & Vaysburg, B. (2002) Model based regression test

reduction using dependence analysis. International Conference on

Software Maintenance (ICSM '02), pp. 214-223. IEEE Press, October

2002.

Lee, D. & Yannakakis, M. (1994) Testing finite-state machines: state

identification and verification. Computers, IEEE Transactions on, 43, 306-

320.

Lee, D. & Yannakakis, M. (1996) Principles and methods of testing finite state

machines-a survey. Proceedings of the IEEE, 84, 1090-1123.

Lefticaru, R. & Ipate, F. (2008) Functional Search-based Testing from State

Machines. 1st International Conference on Software Testing, Verification,

and Validation (ICST '08), pp. 525-528. IEEE Press, April 2008.

Lorenzoli, D., Mariani, L. & Pezz, M. (2008) Automatic generation of software

behavioral models. 30th international conference on Software

engineering, pp. 501-510. ACM Press, May 2008.

Matlab (1984-2010) The Math Works- Optimization Toolbox:

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/fminc

on.html.

Mcminn, P. (2004) Search-based software test data generation: a survey. Software

Testing, Verification & Reliability, 14, 105-156.

Mcminn, P. (2005) Evolutionary Search for Test Data in the Presence of State

Behaviour. University of Sheffield.

Mcminn, P., Binkley, D. & Harman, M. (2009) Empirical evaluation of a nesting

testability transformation for evolutionary testing. ACM Transactions on

Software Engineering and Methodology, 18, 1-27.

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/fmincon.html
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/fmincon.html

 203

Mcminn, P., Harman, M., Binkley, D. & Tonella, P. (2006) The species per path

approach to SearchBased test data generation. International Symposium on

Software Testing and Analysis (ISSTA '06), pp. 13-24. ACM Press, July

2006.

Mcminn, P. & Holcombe, M. (2003) The State Problem for Evolutionary Testing.

Genetic and Evolutionary Computation - GECCO 2003. Berlin, Springer-

Verlage.

Mcminn, P. & Holcombe, M. (2005) Evolutionary testing of state-based

programs. Conference on Genetic and Evolutionary Computation

(GECCO '05), pp. 1013-1020. ACM Press, June 2005.

Michael, C. C., Mcgraw, G. & Schatz, M. A. (2001) Generating software test data

by evolution. Software Engineering, IEEE Transactions on, 27, 1085-

1110.

Myers, G. J. (2004) The Art of Software Testing, New Jersey, John Wiley & Sons.

Nilsson, R., Offutt, J. & Mellin, J. (2006) Test Case Generation for Mutation-

based Testing of Timeliness. Electronic Notes in Theoretical Computer

Science, 164, 97-114.

Nist (2002) National Institution of Standard and Technology. The economic

impacts of inadequate infrastructure for software tesing. May 2002.

Palnning Report 02-3.

Omg (2002) Unified Modeling Language (UML), Version 1.4. November 2002.

Petrenko, A., Bochmann, G. V. & Yao, M. (1996) On fault coverage of tests for

finite state specifications. Computer Networks and ISDN Systems, 29, 81-

106.

Petrenko, A., Boroday, S. & Groz, R. (2004) Confirming configurations in EFSM

testing. Software Engineering, IEEE Transactions on, 30, 29-42.

Pohlheim, H. (1994-2010) GEATbx - Genetic and Evolutionary Algorithm

Toolbox for Matlab.

Ramalingom, T., Thulasiraman, K. & Das, A. (1996) Context independent unique

sequences generation for protocol testing. Fifteenth Annual Joint

Conference of the IEEE Computer Societies. Networking the Next

Generation (INFOCOM '96), 3, pp. 1141-1148. IEEE Press, March 1996.

 204

Ramalingom, T., Thulasiraman, K. & Das, A. (2003) Context independent unique

state identification sequences for testing communication protocols

modelled as extended finite state machines. Computer Communications,

26, 1622-1633.

Rapps, S. & Weyuker, E. J. (1985) Selecting Software Test Data Using Data Flow

Information. Software Engineering, IEEE Transactions on, SE-11, 367-

375.

Rivest, R. & Schapire, R. (1993) Inference of finite automata using homing

sequences. Machine Learning: From Theory to Applications. Springer

Berlin / Heidelberg.

Sadiq, M. S. & Habib, Y. (1999) Iterative Computer Algorithms with Applications

in Engineering: Solving Combinatorial Optimization Problems, Los

Alamitos, CA, IEEE.

Sarikaya, B. & Bochmann, G. (1984) Synchronization and Specification Issues in

Protocol Testing. Communications, IEEE Transactions on, 32, 389-395.

Sarikaya, B., Bochmann, G. V. & Cerny, E. (1987) A Test Design Methodology

for Protocol Testing. Software Engineering, IEEE Transactions on, SE-13,

518-531.

Shih, C.-H., Huang, J.-D. & Jou, J.-Y. (2005) Stimulus generation for interface

protocol verification using the nondeterministic extended finite state

machine model. Tenth Annual IEEE International High-Level Design

Validation And Test Workshop, pp. 87-93. IEEE Press, November 2005.

Shuhao, L., Ji, W. & Zhi, C. (2004) Property-oriented test generation from UML

Statecharts. Automated Software Engineering, 2004. Proceedings. 19th

International Conference on, pp. 122-131.

Sidhu, D. P. & Leung, T. K. (1989) Formal methods for protocol testing: a

detailed study. Software Engineering, IEEE Transactions on, 15, 413-426.

Sinha, A., Paradkar, A. & Williams, C. (2007) On Generating EFSM Models from

Use Cases. Sixth International Workshop on Scenarios and State Machines

(SCESM '07), pp. 20-26. IEEE Press, May 2007.

Srinivas, M. & Patnaik, L. M. (1994) Genetic algorithms: a survey. Computer, 27,

17-26.

Tahat, L. H., Vaysburg, B., Korel, B. & Bader, A. J. (2001) Requirement-based

automated black-box test generation. 25th Annual International Computer

 205

Software and Applications Conference (COMPSAC '01), pp. 489-495.

IEEE Press, October 2001.

Tai, K.-C. (1984) A program complexity metric based on data flow information in

control graphs. 7th International Conference on Software Engineering

(ICSE '84), pp. 239-248. IEEE Press, September 1984.

Tracey, N., Clark, J. & Mander, K. (1998a) Automated program flaw finding

using simulated annealing. ACM SIGSOFT International Symposium on

Software Testing and Analysis, pp. 73-81. ACM Press, March 1998.

Tracey, N., Clark, J. & Mander, K. (1998b) The Way Forward for Unifying

Dynamic Test-Case Generation: The Optimisation-Based Approach. The

IFIP International Workshop on Dependable Computing and Its

Applications (DCIA), pp. 169-180. January 1998

Tracey, N., Clark, J., Mander, K. & Mcdermid, J. (1998c) An automated

framework for structural test-data generation. 13th IEEE International

Conference on Automated Software Engineering, pp. 285-288. IEEE Press,

October 1998.

Tretmans, J. (2008) Model Based Testing with Labelled Transition Systems. IN

HIERONS, R. M., BOWEN, J. P. & HARMAN, M. (Eds.) Formal

Methods and Testing: An Outcome of the FORTEST Network Revised

Selected Papers. Berlin Heidelberg, Springer.

Tsang, E. P. K. (1993) Foundations of Constraint Satisfaction, London and San

Diego, Academic Press.

Turner, K. J. (1993) Using Formal Description Techniques: An Introduction to

Estelle, Lotos, and SDL, West Sussex, John Wiley & Sons.

Ural, H., Saleh, K. & Williams, A. (2000) Test generation based on control and

data dependencies within system specifications in SDL. Computer

Communications, 23, 609-627.

Ural, H. & Yang, B. (1991) A test sequence selection method for protocol testing.

Communications, IEEE Transactions on, 39, 514-523.

Wang, C.-J. & Liu, M. T. (1993) Generating test cases for EFSM with given fault

models. Twelfth Annual Joint Conference of the IEEE Computer and

Communications Societies. Networking: Foundation for the Future

(INFOCOM '93), 2, pp. 774-781. IEEE Press, March 1993.

 206

Wegener, J., Baresel, A. & Sthamer, H. (2001) Evolutionary test environment for

automatic structural testing. Information and Software Technology, 43,

841-854.

Weiser, M. (1981) Program slicing. 5th International Conference on Software

Engineering (ICSE '81), pp. 439-449. IEEE Press, September 1981.

Wenzel, I., Kirner, R., Rieder, B. & Puschner, P. (2009) Measurement-Based

Timing Analysis. Leveraging Applications of Formal Methods,

Verification and Validation. Berlin & Heidelberg, Springer.

Whitley, D. (1989) The GENITOR algorithm and selection pressure: why rank-

based allocation of reproductive trials is best. Third International

Conference on Genetic Algorithms, pp. 116-121. Morgan Kaufmann,

1989.

Whitley, D. (1999) A free lunch proof for Gray versus binary encodings. Genetic

and Evolutionary Computation Conference (GECCO '99), pp. 726-733.

Morgan Kaufmann, July 1999.

Wong, W. E., Restrepo, A. & Choi, B. (2009) Validation of SDL specifications

using EFSM-based test generation. Information and Software Technology,

51, 1505-1519.

Xu, B., Qian, J., Zhang, X., Wu, Z. & Chen, L. (2005) A brief survey of program

slicing. ACM SIGSOFT Software Engineering Notes, 30, 1-36.

Zhan, Y. & Clark, J. A. (2006) The state problem for test generation in Simulink.

Genetic and Evolutionary Computation Conference (GECCO '06), pp.

1941-1948. ACM Press, July 2006.

Zhang, J. (2008) Constraint Solving and Symbolic Execution. Verified Software:

Theories, Tools, Experiments. Berlin / Heidelberg, Springer.

Zhang, J., Xu, C. & Wang, X. (2004) Path-Oriented Test Data Generation Using

Symbolic Execution and Constraint Solving Techniques. Second

International Conference on Software Engineering and Formal Methods

(SEFM '04), pp. 242-250. IEEE Press, September 2004.

Zhao, R., Harman, M. & Li, Z. (2010) Empirical Study on the Efficiency of

Search Based Test Generation for EFSM Models. 3rd IEEE International

Conference on Software Testing Verification and Validation Workshops

(ICSTW' 10), pp. 222-231. IEEE Press, April 2010.

