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Abstract. We apply the method of skew-orthogonal polynomials (SOP) in the

complex plane to asymmetric random matrices with real elements, belonging to two

different classes. Explicit integral representations valid for arbitrary weight functions

are derived for the SOP and for their Cauchy transforms, given as expectation values

of traces and determinants or their inverses, respectively. Our proof uses the fact

that the joint probability distribution function for all combinations of real eigenvalues

and complex conjugate eigenvalue pairs can be written as a product. Examples for the

SOP are given in terms of Laguerre polynomials for the chiral ensemble (also called the

non-Hermitian real Wishart-Laguerre ensemble), both without and with the insertion

of characteristic polynomials. Such characteristic polynomials play the role of mass

terms in applications to complex Dirac spectra in field theory. In addition, for the

elliptic real Ginibre ensemble we recover the SOP of Forrester and Nagao in terms of

Hermite polynomials.

Keywords: skew-orthogonal Laguerre polynomials, real asymmetric random
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1. Introduction

Classical orthogonal polynomials (OP) are one of the principal standard tools used to

solve problems in Random Matrix Theory (RMT). The three classical Wigner-Dyson

ensembles with Gaussian elements can be solved in terms of Hermite polynomials,

whereas their chiral counterparts require the use of Laguerre polynomials. Whilst for

the symmetry classes with unitary invariance (β = 2) the corresponding scalar product

is symmetric with the standard weight, for the classes with orthogonal (β = 1) or

symplectic (β = 4) symmetry the scalar product becomes skew-symmetric, with the

details – including the weight – dependent on the symmetry class. The corresponding

polynomials are then called skew-orthogonal polynomials (SOP). For details of all these

cases we refer to [1], as well as to [2] and [3] for reviews on SOP. What all these ensembles
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have in common is that each of their solutions can be expressed using the kernel of the

corresponding (S)OP as a building block.

The solution of RMT in terms of (S)OP is exact for finite matrix size N . Moreover,

when taking one of the possible large-N limits in the bulk of the spectrum, or at the

soft or hard edge, the standard Plancherel-Rotach asymptotics can be used. Much work

has been done on the question of universality, i.e. the extent to which the asymptotics

also hold for non-Gaussian weights, see e.g. [4] for a review.

This setup of (S)OP has been generalised to the complex plane in order to solve

non-Hermitian RMT. However, for the standard Ginibre ensembles the (S)OP are

simply given in terms of monic powers (which holds for all weights that are rotationally

invariant in C). Only when considering so-called elliptic deformations of the Gaussian

Ginibre weight do Hermite polynomials on C appear, as was first observed in [5]. The

corresponding quaternionic (β = 4) elliptic Ginibre ensemble was solved in terms of some

Hermite SOP in [6], and only very recently was the real elliptic Ginibre case (β = 1)

solved in terms of another set of Hermite SOP [7].

The chiral counterparts of two of these ensembles were introduced in [8] (β = 2) and

[9] (β = 4), where they were solved in terms of Laguerre OP on C and Laguerre SOP

respectively. The obvious question then arises about the existence of Laguerre SOP for

the chiral β = 1 ensemble [10, 11] which we answer affirmatively in this article, thereby

completing the set of classical Hermite and Laguerre (S)OP in the complex plane for

these non-Hermitian RMT.

One complication arises for the ensembles with Laguerre (S)OP in the complex

plane: due to the integration over angular variables the elliptic ensembles that are

Gaussian in terms of the matrix elements lead to non-Gaussian weight functions for the

eigenvalues (for β = 1 elliptic Ginibre we have also a complementary error function).

The Bessel function of the second kind appearing here for all three β = 1, 2, 4 makes

the orthogonality question much more involved.

For this reason we first provide a new integral representation for the β = 1 SOP,

valid in both the elliptic Ginibre and chiral symmetry classes for arbitrary weight

functions. In view of earlier results for SOP on R for both β = 1, 4 [12, 13], as well as

for complex SOP for β = 4 [6, 9], this representation comes very naturally. Moreover,

it was shown very recently in [14] that the β = 1 and β = 4 Ginibre ensembles can

be treated on an equal footing. We will rederive this relation amongst these symmetry

classes from a different angle. We will also derive a new integral representation for the

Cauchy transforms of the SOP on C valid for both β = 1 and 4. This extends the

expression for Cauchy transforms on C for β = 2 in [15].

One important ingredient necessary in order to derive these results is the

factorisation of the joint probability distribution function (jpdf) for β = 1, which is

originally given by a sum over all possible combinations of real and complex conjugate

eigenvalues [16, 17]. Such a factorisation, which uses the symmetrisation over all

eigenvalues, might have been expected from the fact that the partition function can

be written as a single Pfaffian over double integrals [18].
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Our integral representation allows us to derive the β = 1 Laguerre SOP on C in a

straightforward fashion. The known Hermite SOP on C of [7] also follow easily. As a

third and important example for our general formalism we explicitly compute the SOP

for the chiral β = 1 ensemble with the insertion of mass terms. Such insertions play

a crucial role in the application of RMT to the complex Dirac operator spectrum in

Quantum Chromodynamics (QCD) and related field theories at small quark chemical

potential in the low density phase, see e.g. [19] for reviews, as well as very recently in

the high density phase corresponding to maximal non-Hermiticity [20].

For this third example we exploit the fact that averages (and ratios) of the required

characteristic polynomials have been computed very recently for the non-Hermitian

β = 1 symmetry classes in [21]. Together with our interpretation of the building blocks

there as the kernel, SOP and their Cauchy transforms this completes the analogy to

earlier computations of such averages and ratios for β = 2 in [22, 15, 23] and β = 4 in

[9, 24].

This article is organised as follows. In section 2 we recall the definition of the

two RMT with real asymmetric matrices including mass terms, their respective weight

functions and eigenvalue representations. Section 3 is devoted to a factorisation proof

of the jpdf of real and complex eigenvalues, where we give two different arguments. The

new integral representations for the SOP and their Cauchy transforms are then shown

in subsections 4.1 and 4.2 respectively. In section 5 we provide three explicit examples

for SOP including Hermite in subsection 5.1, Laguerre SOP in subsection 5.2 and SOP

including masses in subsection 5.3. In the Appendices we collect together short proofs

for some mathematical identities used in the text.

2. The Matrix Models

We will show how to solve the following two matrix models of real asymmetric matrices

in terms of skew-orthogonal polynomials (SOP) in the complex plane.

The first model is given by the chiral extension of the elliptic real Ginibre ensemble

Z(Nf )

ch ({m}) ∼
∫

R2N(N+ν)

dA dB

Nf∏

f=1

det

(
mf11N×N A

BT mf11(N+ν)×(N+ν)

)
(2.1)

× exp

[
−1

2
η+Tr(AAT +BBT ) + η−Tr(ABT )

]
,

with η± ≡
1± µ2

4µ2
. (2.2)

Here A and B are real asymmetric matrices of size N × (N + ν), and µ ∈ (0, 1] is

a non-Hermiticity parameter. The integration runs over all independent real matrix

elements of A and B with a flat measure. The product of determinants or characteristic

polynomials is motivated by the addition of Nf quark flavours in applications to QCD at

finite density [19, 20]. The model can be written as a Gaussian two-matrix model with

two independent real asymmetric matrices P and Q, with A = P +µQ and B = P −µQ
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(see [11]). In the limit µ → 0 the model reduces to the chiral Gaussian Orthogonal

Ensemble (chGOE).

The second matrix model is also a generalisation of the elliptic real Ginibre ensemble

and is given by

Z(Nf )
Gin ({m}) ∼

∫

RN2
dJ

Nf∏

f=1

| det[J − imf ]|2 exp

[
− 1

1− τ 2
Tr(JJT − τJ2)

]
. (2.3)

Here J is a real asymmetric matrix of size N 2, and τ ∈ [0, 1) is the non-Hermiticity

parameter. We again integrate over all the independent matrix elements of J . The model

can alternatively be written as a two-matrix model with symmetric and anti-symmetric

matrices S and A with Gaussian elements, where J = S +A
√

(1− τ)/(1 + τ), see also

[25] for Nf = 0. In the limit τ → 1 the model reduces to the GOE when Nf = 0. The

extra determinants correspond to the imaginary mass terms coming in pairs of opposite

sign. These are also motivated from applications to QCD with a chemical potential, but

this time in three dimensions, see [26].

Once we switch to an eigenvalue basis for the Dirac matrix D for the first model,

where

D ≡
(

0N×N A

BT 0(N+ν)×(N+ν)

)
, (2.4)

and to the eigenvalues of the matrix J for the second model, both models can be treated

along the same lines. Because the characteristic equation for both D and J is real its

solutions are either real or come in complex conjugate pairs. However, because of the

chirality of D there is a peculiarity here:

0 = det[Λ112N+ν −D] = Λν det[Λ211N − ABT ] = Λν
N∏

j=1

(Λ2 − Λ2
j) . (2.5)

Whilst the Λ2
j are indeed either real or come in complex conjugate pairs, the Dirac

eigenvalues Λj are consequently real (Λ2
j > 0), purely imaginary (Λ2

j < 0), or come in

quadruplets (±Λj,±Λ∗j); there are also ν generic zero-eigenvalues. For simplicity and

to keep the presentation of the two models parallel we will mainly consider changed

variables zj ≡ Λ2
j in the following.

Following [27, 10] the partition functions in eqs. (2.1) and (2.3) above can be written

as follows, where the normalisation is to be determined later, see eq. (4.16),

Z2N+χ = N !

N∑

n=0

2n+χ∏

k=1

∫

R

dxk

N−n∏

m=1

∫

C

d 2zm P2n+χ,N−n(x, z, z∗) . (2.6)

Here we sum over all the possible ways of splitting the total number (2N + χ) of

eigenvalues into K ≡ 2n + χ real eigenvalues {xk} and M ≡ N − n complex conjugate

eigenvalue pairs {zm, z∗m}. A product with an upper limit less than its lower limit is

defined as unity. Note that in this expression we have only one complex integration for

each complex conjugate eigenvalue pair. The differentials of the complex eigenvalues are
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defined over the real and imaginary part, i.e. d 2zm = d<ezmd=mzm. In the following

we treat the cases of an even (χ = 0) and odd (χ = 1) total number of eigenvalues on

the same footing. The jpdf for a fixed number K of real eigenvalues and M complex

eigenvalue pairs is defined as

PK,M(x, z, z∗) ≡
K∏

k=1

h(xk)
M∏

m=1

(
g(zm, z

∗
m) 2iΘ(=m zm)

)
∆K+2M({x}, {z, z∗})

×
K∏

k=2

Θ(xk − xk−1)

M∏

m=2

Θ(<e zm −<e zm−1) (2.7)

with the weight specified in eqs. (2.9) and (2.11) below ‡. Here Θ is the Heaviside

distribution, and the Vandermonde determinant is defined as

∆N({z}) =
N∏

k>l

(zk − zl) = det
1≤a,b≤N

[
zb−1
a

]
. (2.8)

In eq. (2.7) we explicitly specify the number K of real eigenvalues and M complex

eigenvalue pairs, with the set of arguments labelled as x1, . . . , xK , z1, z
∗
1 , . . . , zM , z

∗
M in

∆K+2M({x}, {z, z∗}). The factors 2iΘ(=m zm) and the ordering of the real eigenvalues

Θ(xk − xk−1) in eq. (2.7) allow us to omit the modulus sign around the Vandermonde

determinant. The ordering of the real parts Θ(<e zm − <e zm−1) is needed to make the

transformation to upper triangular 2 × 2 block form of the matrices A and BT (or J)

unique when computing the Jacobian [11] (see also [28]). The latter and part of the

former can be dropped later due to the symmetrising integration as will be shown in

the next section.

We also mention that the partition function can be written as a single Pfaffian

[18, 27], eq. (3.8) below, and we come back to the consequences for factorisation in the

next section.

We now give the weight functions for our two models. Looking at eq. (2.5) for the

chiral model we are only interested in the eigenvalues of the matrix C = ABT . Because

the Nf extra mass terms compared with [11] depend only on C their addition to the

jpdf in [11] is trivial and so we only give the result. The corresponding weight functions

in eq. (2.7) for the real eigenvalues x and complex eigenvalues z = x+ iy read

hch(x) ≡ 2|x|ν/2Kν/2(η+|x|) exp[η−x]

Nf∏

f=1

(x +m2
f ) , (2.9)

gch(z1, z2) ≡ 2|z1z2|ν/2 exp[η−(z1 + z2)]

Nf∏

f=1

(z1 +m2
f)(z2 +m2

f )

×
∫ ∞

0

dt

t
exp

[
− η2

+t(z
2
1 + z2

2)− 1

4t

]
Kν/2

(
2η2

+tz1z2

)
erfc

(
η+

√
t|z2 − z1|

)
.

‡ In contrast to [11] we distinguish the weights for real and complex eigenvalues by different symbols

(h and g respectively).
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In addition we have a trivial overall factor arising from the generic zero eigenvalues in

the mass terms:

P ch
K,M(x, z, z∗) =

Nf∏

f=1

mν
f PK,M(x, z, z∗) (2.10)

For the second model eq. (2.3) we have instead

hGin(x) ≡ exp[−x2]

Nf∏

f=1

(x2 +m2
f) , (2.11)

gGin(z1, z2) ≡ exp[−z2
1 − z2

2 ] erfc

( |z1 − z2|√
1− τ

) Nf∏

f=1

(z2
1 +m2

f )(z2
2 +m2

f ) .

For the two Gaussian examples above the following relation is satisfied

lim
=mz→0

g(z, z∗) = h(<e z)2 , (2.12)

relating the two weights.

As a general remark here and in the following we can allow for more general weight

functions h(x) and g(z1, z2) in eq. (2.7) that do not necessarily follow from a matrix

representation. For example, we could generalise the weights in eqs. (2.9) and (2.11) by

multiplying by a factor exp[−V (z1, z2)] where V is a polynomial in z1 and z2 §. Moreover

one can independently choose h and g instead fulfilling the relation (2.12).

3. Factorisation of the joint probability distribution

In this section we prove that the jpdf inside the partition function can be written in

a factorised form. For this to be possible, it is essential that we integrate over all the

eigenvalues, leading to a symmetrisation. Hence this applies equally to the expectation

value of any operator symmetric in all variables. Examples for this are the computation

of the gap probability or expectation values leading to integral representations of the

SOP in the next section. However, such a factorisation can also be found for the k-point

density correlation functions when summing over all possibilities of splitting k into real

and complex eigenvalue pairs.

Let us first state the result for the partition function eq. (2.6) in terms of a single

product for the weights

Z2N+χ =

∫

R

dyχ hχ(y)
2N∏

k=1

∫

C

d 2zk

N∏

j=1

F (z2j−1, z2j) ∆χ+2N (y, {z}) , (3.1)

where we define the anti-symmetric function

F (z1, z2) ≡ ig(z1, z2)(Θ(=m z1)−Θ(=m z2)) δ2(z2 − z∗1) (3.2)

+
1

2
h(z1)h(z2)δ(=m z1)δ(=m z2)sgn(<e z2 − <e z1) .

§ A so-called harmonic potential could be realised as a matrix model, by multiplying eqs. (2.1) and

(2.3) with exp[−TrV (ABT )] or exp[−TrV (J2)]. Although at finite N these are formal expressions due

to lack of convergence this can be dealt with in the large-N limit.
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Note that for an even number of variables (χ = 0 in eq. (3.1)) the integration and

weight for the real variable y have to be dropped, as well as the argument y inside the

Vandermonde determinant. In eq. (3.1) we integrate over 2N independent complex

variables in contrast to the ordered integration in complex conjugated pairs. The

standard two-dimensional delta function in eq. (3.2) reads δ2(z) = δ(x)δ(y) for z = x+iy.

We will prove this factorisation in two different ways. One is by explicitly summing

up all the terms in eq. (2.6) to make a single product. The results for expectation

values of characteristic polynomials in [21] are built up on this idea, although a proof of

this was not given. The second way is by starting from a single Pfaffian representation

of the partition function derived in [18, 27] and using (in reverse) a proof of a slightly

generalised version of the de Bruijn integral formula. Because both derivations are short

and illustrate different aspects we decided to present both.

The first derivation of the factorisation of the jpdf goes as follows. From eqs. (2.7)

and (2.6) we obtain

Z2N+χ = N !
N∑

n=0

1

(N − n)!

2n+χ∏

l=1

∫

R

dxl h(xl)

2n+χ∏

j=2

Θ(xj − xj−1)

×
N−n∏

m=1

∫

C

(d 2zm g(zm, z
∗
m) 2iΘ(=m zm)) ∆(2n+χ)+2(N−n)({x}, {z, z∗}) , (3.3)

where we use that the integrand is totally symmetric under a permutation of two pairs

of complex conjugated eigenvalues. Dropping the ordering of the real parts leads to a

factor 1/(N − n)!.

The ordering of the real variables can be simplified by applying the method of

integration over alternating variables [1] twice. Pulling the integrations over odd

variables in, dropping the symmetrisation giving a factor 1/n! and then pulling them

back out leads to the following result:

Z2N+χ =
N∑

n=0

N !

n!(N − n)!

2n+χ∏

l=1

∫

R

dxl h(xl)
n∏

j=1

Θ(x2j − x2j−1)

×
N−n∏

m=1

∫

C

(d 2zm g(zm, z
∗
m) 2iΘ(=m zm)) ∆(2n+χ)+2(N−n)({x}, {z, z∗}) . (3.4)

Isolating the integration dxχ we can do the sum over multiple integrations, using the

binomial formula and the permutation invariance of the integrand under exchanging

pairs of complex numbers:

a ≡
∫

R

dx1 h(x1)

∫

R

dx2 h(x2) Θ(x2 − x1)

=

∫

C

d 2z1 h(z1)

∫

C

d 2z2 h(z2) Θ(<e z2 − <e z1) δ(=m z1) δ(=m z2) (3.5)

b ≡
∫

C

d 2z g(z, z∗) 2iΘ(=m z) =

∫

C

d 2z1

∫

C

d 2z2 g(z1, z2) 2iΘ(=m z1) δ2(z2 − z∗1) , (3.6)
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with
N∑

n=0

N !

n!(N − n)!
anbN−n = (a+ b)N . (3.7)

Pulling out all 2N independent complex integrations of the N -fold product this leads

to eq. (3.1) as claimed, after making the function F (z1, z2) manifestly anti-symmetric.

We now come to our second argument, starting from the result derived in [18, 27].

This states that, including normalisation,

Z2N = N ! Pf
1≤a,b≤2N



∫

C2

d 2z1d
2z2F (z1, z2)[za−1

1 zb−1
2 − za−1

2 zb−1
1 ]


 , (3.8)

where for simplicity we only state the even case, i.e. with 2N eigenvalues. The sign of

the Pfaffian is defined as in [1] such that the Pfaffian of the matrix

[
0 1

−1 0

]
⊗ 11N is

unity. Here F (z1, z2) is the function from eq. (3.2). By using a slight generalisation of

the proof of the de Bruijn integral formula, in reverse,

2N∏

k=1

∫

C

d 2zk

N∏

j=1

F (z2j−1, z2j) det
1≤a,b≤N

[{fa(z2b−1), ga(z2b)}]

= N ! Pf
1≤a,b≤2N



∫

C2

d 2u d 2vF (u, v)[fa(u)gb(v)− fb(u)ga(v)]


 (3.9)

where we refer to Appendix A for a derivation (cf. Appendix C.2 in [29]), we obtain

Z2N =
2N∏

k=1

∫

C

d 2zk

N∏

j=1

F (z2j−1, z2j) det
1≤a≤2N ; 1≤b≤N

[
{za−1

2b−1, z
a−1
2b }

]
. (3.10)

Here the last determinant is simply the Vandermonde determinant, and thus we have

arrived again at eq. (3.1).

All of the above arguments can be generalised, by including an arbitrary observable

that is symmetric under the exchange of all the eigenvalues. Perhaps the simplest

example, which we will also encounter in the next section, is a factorising operator,

f(x, z, z∗) = fχ(x)
2N∏

j=1

f(zj) . (3.11)

The individual factors do not affect the symmetry arguments above and we obtain

〈f(x, z, z∗)〉2N+χ =
1

Z2N+χN !

∫

R

dyχ(h(y)f(y))χ
2N∏

k=1

∫

C

d 2zkf(zk)
N∏

j=1

F (z2j−1, z2j)

×∆χ+2N(y, {z}) (3.12)

for general expectation values. An explicit example for such an operator is the

characteristic polynomial. This result can be generalised to non-factorising observables

symmetric in the eigenvalues. Since the monomials in the traces of a matrix can be traced
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back to products over characteristic polynomials eq. (3.12) is true for all symmetric

polynomials in the eigenvalues. With Weierstraß’ approximation theorem all symmetric

functions are built of polynomials in the traces, and as a limiting case one can also

construct distributions like the Dirac distribution. This means that all observables

symmetric in the eigenvalues fulfil a similar equation as (3.12) in a weak sense.

As a further remark the symplectic non-Hermitian ensembles with β = 4 [9, 6] are

already of the factorised form eq. (3.1) from the onset, with

F (β=4)(z1, z2) = i(z2 − z1)w(z1, z2)δ2(z2 − z∗1) (3.13)

and we always have χ = 0 due to symmetry. The symmetric real weight w(z1, z2) can be

found in [6] and [9] for the Gaussian Ginibre and chiral classes respectively. Therefore

all statements we derive from the form of eq. (3.1) automatically hold true for these

symmetry classes as well. The factorisation thus unifies the non-Hermitian ensembles

for β = 1 and 4; in fact, this was already pointed out in [14, 21]. In [14], this was found

in a different way without using factorisation.

4. Integral representation of skew-orthogonal polynomials and their

Cauchy transforms

In this section we will derive integral representations for the SOP for general weight

functions, using the results from the previous section. For this we will only need the

result for an even total number of eigenvalues (i.e. χ = 0).

All the matrix or complex eigenvalue models introduced previously can be solved

for all eigenvalue density correlation functions in terms of the following skew-symmetric

kernel

K2N(z1, z2) =

2N−1∑

k,l=0

A−1
kl pk(z1) pl(z2) (4.1)

where

Akl ≡ 2

∫

C2

d 2z1 d
2z2 F (z1, z2) pk(z1) pl(z2) . (4.2)

In fact, the kernel is only a property of the measure F (z2j−1, z2j) and not of the particular

choice of the polynomials {pk(z)}; in [27] these were chosen to be monic. For an odd total

number of eigenvalues a similar representation to eq. (4.1) holds, but with a modification

to the last row and column of the matrix A; see [28] and [30]. Here we will choose the

polynomials pk(z) to be skew-orthogonal with respect to the following anti-symmetric

scalar product

〈f |g〉 = −〈g|f〉 ≡
∫

C2

d 2z1 d
2z2 F (z1, z2) det

[
f(z1) g(z1)

f(z2) g(z2)

]
, (4.3)

defined for two functions f(z) and g(z) that are integrable with respect to the weight

functions contained in F (z1, z2). This includes the particular function g(z1, z2) from eq.

(2.7).
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Our skew-orthogonal polynomials qk(z) are defined to satisfy

〈q2k|q2l+1〉 = hkδkl ,

〈q2k|q2l〉 = 0 = 〈q2k+1|q2l+1〉 ∀k, l ≥ 0 , (4.4)

where the hk > 0 are their positive (squared skew) norms, see eq. (4.16). This leads to

a block diagonal matrix A = diag (h0ε, . . . , hN−1ε) that can be easily inverted, where ε

is the anti-symmetric 2 × 2 matrix with elements ε12 = 1 = −ε21. The kernel can be

written as a single sum in terms of the SOP:

K2N(z1, z2) =
N−1∑

k=0

1

hk
(q2k+1(z1)q2k(z2)− q2k+1(z2)q2k(z1)). (4.5)

The kernel for 2N + 1 contains the same SOP plus a correction term, see also [30] for

the Ginibre ensemble and [1] for the GOE.

4.1. Skew-orthogonal polynomials

After all this preparation we come to our second result, an explicit representation of the

SOP. They are given in terms of the following expectation values

q2n(z) =
〈

det(z − J)
〉

2n
=

〈
2n∏

j=1

(z − zj)
〉

2n

(4.6)

for the even polynomials, and

q2n+1(z) =
〈

det(z − J)[TrJ + z + c]
〉

2n
=
〈

det(z − J)TrJ
〉

2n
+ (z + c) q2n(z)

=

〈
2n∏

j=1

(z − zj)
[ 2n∑

i=1

zi + z + c
]〉

2n

, (4.7)

for the odd polynomials, which are both expectation values over an even number of

eigenvalues 2n, n ≥ 1. For n = 0 we simply have q0(z) = 1 and q1(z) = z + c, by

definition. It is easy to see by taking large arguments that these representations are in

monic normalisation, viz qn(z) = zn +O(zn−1). Similar expressions hold in terms of the

matrix D from eq. (2.4) for the chiral model (see subsection 5.2 for more details), whilst

the representations given in terms of squared eigenvalues Λ2
j = zj are identical. Eqs.

(4.6) and (4.7) were also shown for particular non-Hermitian ensembles in refs. [12, 13].

The set of odd polynomials is not unique because of the anti-symmetry of the skew

product (4.3), as the arbitrary constant c times the even polynomial drops out. In most

of the following we will keep the constant c 6= 0 though.

The proof of the first integral representation eq. (4.6) goes as follows. We can write

the product times the Vandermonde determinant of dimension 2n as a Vandermonde

determinant of dimension 2n + 1, and so

q2n(z) =
1

Z2n

2n∏

k=1

∫

C

d 2zk

n∏

j=1

F (z2j−1, z2j) det
1≤a≤2n+1;1≤b≤2n

[
{za−1

b }|za−1
]
. (4.8)
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We can now apply a slight modification of the generalisation of the de Bruijn integral

formula proved in Appendix C.2 of [29],

2n∏

k=1

∫

C

d 2zk

n∏

j=1

F (z2j−1, z2j) det
1≤a≤2n+m; 1≤j≤n; 1≤i≤m

[
{fa(z2j−1), ga(z2j)}| αai

]

= (−)m(m−1)/2n! Pf
1≤a,b≤2n+m; 1≤i≤m




{
∫
C2

d 2u d 2v F (u, v)[fa(u)gb(v)− fb(u)ga(v)]

}
αai

−αTib 0




(4.9)

The overall sign can be seen by choosing [αai] = [ 0m, 2n 11m ]T . Here α is a constant

matrix, which in our case in eq. (4.8) is a simple vector with m = 1. In contrast to the

usual de Bruijn formula we integrate over 2n variables here instead of n, as is shown to

hold in Appendix A (see also Appendix C.2 in [29]).

Denoting the basis functions of monic powers by ea(z) ≡ za and using the fact that

we have equal functions fa(z) = ga(z) = ea−1(z) above we arrive at

q2n(z) =
n!

Z2n
Pf

1≤a,b≤2n+1

[
{〈ea−1|eb−1〉} ea−1(z)

−eb−1(z) 0

]
. (4.10)

It is easy to see that using the definition of the skew product in eq. (4.3) and performing

one more integration we have

〈q2n|ec〉 = 0 ∀c = 0, . . . 2n , (4.11)

because the corresponding Pfaffian vanishes. Using the linearity of the skew product

we can deduce that the even polynomials q2n(z) in eq. (4.6) are skew-orthogonal to all

polynomials of lower and equal degree.

To prove the second integral representation eq. (4.7) we need a further identity for

manipulating Vandermonde determinants,

N∑

a=1

za ∆N({z}) = det




1 . . . 1

z1 . . . zN
...

...

zN−2
1 . . . zN−2

N

zN1 . . . zNN



≡ ∆̃N ({z}) , (4.12)

which is proved in Appendix B. We can now proceed as in eq. (4.8), by first incorporating

the product in eq. (4.7) into a larger Vandermonde determinant, and then applying the

identity (4.12) for 2n+ 1:

q2n+1(z) =
1

Z2n

2n∏

k=1

∫

C

d 2zk

n∏

j=1

F (z2j−1, z2j) det
1≤a,b≤2n

[
{za−1

b } za−1

z2n+1
b z2n+1

]
. (4.13)

For simplicity we have set c = 0 here as it does not affect the proof. Again applying the

integral formula eq. (4.9), with a slightly modified range of indices compared with the
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even polynomial case, we obtain

q2n+1(z) =
n!

Z2n
Pf

1≤a,b≤2n+1



{〈ea−1|eb−1〉} 〈ea−1|e2n+1〉 ea−1(z)

〈e2n+1|eb−1〉 0 e2n+1(z)

−eb−1(z) −e2n+1(z) 0


 . (4.14)

On taking the skew product (4.3) of this result it obviously follows that

〈q2n+1|ec〉 = 0 ∀c = 0, . . . 2n− 1 , (4.15)

this being the skew-orthogonality of the odd polynomials q2n+1(z) given by eq. (4.7) to

all polynomials of degree less than or equal to 2n− 1.

As a last step we will verify the coefficient of the only non-vanishing skew product

which due to linearity and eq. (4.11) equals 〈q2n|e2n+1〉 = 〈q2n|q2n+1〉. To do so we

will first determine the partition function in terms of the norms. It follows along the

lines of eq. (4.8). Inside the Vandermonde determinant there we could choose any set

of polynomials in monic normalisation, after applying the invariance properties of the

determinant. We thus have

Z2n =
2n∏

k=1

∫

C

d 2zk

n∏

j=1

F (z2j−1, z2j) det
1≤a,b≤2n

[qa−1(zb)] = n! Pf
1≤a,b≤2n

[〈qa−1|qb−1〉]

= n!

n−1∏

a=0

ha . (4.16)

In the second step we applied once more the integral identity (4.9), with m = 0 and the

matrix α absent. Due to the skew-orthogonality, the matrix inside the Pfaffian becomes

block diagonal, with the norms hk times ε down the diagonal, which finally leads to the

product of the norms.

Using eq. (4.10) after replacing the monic powers with polynomials qk we have

〈q2n|q2n+1〉 =
n!

Z2n

Pf
1≤a,b≤2n+1

[
{〈qa−1|qb−1〉} 〈qa−1|q2n+1〉
−〈q2n+1|qb−1〉 0

]

=
n!

Z2n

n∏

a=0

ha = hn , (4.17)

and thus the consistency of the normalisation of our integral representations (4.6) and

(4.7) with respect to eq. (4.4). This concludes our proof of the integral representations

of the SOP satisfying eq. (4.4). An entirely different derivation of the same results can

be made by a mapping to the β = 4 symplectic case. When mapping our F (z1, z2)

as in eq. (3.13) we could in principle copy the orthogonality proof from [6] where the

representations eq. (4.6) and (4.7) were derived for β = 4 .

It is worth mentioning that the same representation for SOP holds for Hermitian

RMT at β = 1 and 4 with real eigenvalues as was shown earlier in [12, 13]. However, for

all four cases – two Hermitian and two non-Hermitian – the jpdf and corresponding skew

products are different. In contrast for β = 2 all OP are obtained from a single relation

as in eq. (4.6), in both Hermitian and non-Hermitian RMT [22]. The fact that the same
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integral representation for SOP holds both in non-chiral [12, 13] and chiral ensembles

is straightforward in the Hermitian case. However, for non-Hermitian ensembles this

becomes nontrivial comparing [6] vs. [9] for β = 4, and [10] for β = 1. This is due to the

two-matrix model structure of the chiral ensembles, where the change to an eigenvalue

basis requires detailed calculations.

Let us finish this subsection with some remarks. For an even number of eigenvalues

χ = 0 the anti-symmetric kernel eq. (4.1) (or (4.5)) can itself be expressed as the

expectation value of two characteristic polynomials for β = 1 [10]‖ (and β = 4 [24])
〈

det(λ− J) det(γ − J)
〉

2N
= hN

K2N+2(λ, γ)

λ− γ with λ 6= γ , (4.18)

and similarly for the chiral ensemble. This equation is valid for arbitrary weight

functions. In fact we will partly use this relation to determine the set of odd polynomials

eq. (4.7) in section 5 below. So why are eqs. (4.6) and (4.7) interesting if the kernel

itself can be independently determined as a building block? It is because the integral

representations we just derived, and the explicit determination of the SOP in some

examples in the next section, complete the list of classical polynomials in the complex

plane for the three elliptic Ginibre ensembles and their chiral extensions.

The determination of the SOP through an ansatz, and subsequently the direct

verification of the relations (4.4) for skew-orthogonal Hermite polynomials, was already

a formidable task for the elliptic real Ginibre ensemble as can be seen from [7]. Because

of the non-Gaussian form of the chiral weight eq. (2.9) this is even more so true for skew-

orthogonal Laguerre polynomials. The integral representations derived here provide an

alternative, constructive approach, leading to a new result for skew-orthogonal Laguerre

polynomials.

4.2. Cauchy transforms

We now come to the definition and integral representation of the Cauchy transforms

tk(z). It is very natural to define them with respect to the scalar product eq. (4.3) as

follows:

tn(κ) ≡
∫

C2

d 2z1 d
2z2 F (z1, z2) det



qn(z1)

1

κ− z1

qn(z2)
1

κ− z2


 =

〈
qn

∣∣∣ 1

κ− z

〉
. (4.19)

We will now show that the following integral representations hold:

t2n(κ) = hn

〈
1

det(κ− J)

〉

2n+2

= hn

〈
2n+2∏

j=1

1

(κ− zj)

〉

2n+2

(4.20)

for the Cauchy transforms of the even polynomials, and

t2n+1(κ) = hn

〈
TrJ − (κ + c)

det(κ− J)

〉

2n+2

= hn

〈
TrJ

det(κ− J)

〉

2n+2

− (κ+ c) t2n(κ)

‖ Note that the overall constant in front of the kernel has been chosen here to be consistent with the

standard choice in eq. (4.5).
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= hn

〈2n+2∑
a=1

za − (κ+ c)

2n+2∏
j=1

(κ− zj)

〉

2n+2

(4.21)

for the odd polynomials. Note that the averages for t2n(κ) and t2n+1(κ) run over 2n+ 2

variables, instead of 2n as for the polynomials q2n(z) and q2n+1(z). This implies in

particular that t0(κ) 6= constant, see also eq. (4.22) below.

The correct overall prefactors can also easily be seen. From expanding the geometric

series in the definition eq. (4.19) for large arguments, and using eqs. (4.11) and (4.15)

as well as the anti-symmetry of the first non-vanishing skew product, it follows that the

Cauchy transforms are indeed Laurent series with the following coefficients

t2n(κ) = +
hn
κ2n+2

+ O
(

1

κ2n+3

)
,

t2n+1(κ) = − hn
κ2n+1

+ O
(

1

κ2n+2

)
. (4.22)

The form given in eqs. (4.20) and (4.21) is completely analogous to eqs. (4.6) and

(4.7), as well as to the corresponding result for β = 2. Let us also remark that such a

representation was not known before in the non-Hermitian β = 4 symmetry class, and

that both translate into new representations for β = 1, 4 in the Hermitian limit.

We begin by proving the representation for the Cauchy transforms of the even

polynomials. Inserting the result eq. (4.6) into the definition (4.19) we have

t2n(κ) =

∫

C2

d 2z1 d
2z2 F (z1, z2)

[〈det(z1 − J)〉2n
κ− z2

− 〈det(z2 − J)〉2n
κ− z1

]

=
1

Z2n

∫

C2

d 2z2n+1 d
2z2n+2 F (z2n+1, z2n+2)

2n∏

k=1

∫

C

d 2zk

n∏

j=1

F (z2j−1, z2j) ∆2n({z})

×
[∏2n

j=1(z2n+1 − zj)
κ− z2n+2

−
∏2n

j=1(z2n+2 − zj)
κ− z2n+1

]

=
1

(n+ 1)Z2n

2n+2∏

k=1

∫

C

d 2zk

n+1∏

j=1

F (z2j−1, z2j)

×
n+1∑

k=1

[
∆2n+1({z}l 6=2k)

κ− z2k
− ∆2n+1({z}l 6=2k−1)

κ− z2k−1

]

=
1

(n+ 1)Z2n

2n+2∏

k=1

∫

C

d 2zk

n+1∏

j=1

F (z2j−1, z2j) det
1≤a≤2n+2; 1≤b≤2n+1

[
{zb−1

a }
∣∣∣ 1

κ− za

]

=
1

(n+ 1)Z2n

2n+2∏

k=1

∫

C

d 2zk

n+1∏

j=1

F (z2j−1, z2j)

∏2n+2
i>j (zi − zj)∏2n+2
l=1 (κ− zl)

= hn

〈
1

det(κ− J)

〉

2n+2

. (4.23)
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In the first step we have simply written out the expectation value and renamed the

additional two integration variables. The products in the numerator can be incorporated

into a larger Vandermonde determinant. Next we can symmetrise the integrand with

respect to an exchange of any pair of variables z2j , z2j+1 leading to a prefactor 1/(n+1).

The resulting expression can be seen to be the expansion of a Vandermonde determinant

plus an extra column. In the last step we use an identity that was proved in [29], see

eqs. (3.3) vs (3.7) there¶, deriving different representations for Berezinians

det
1≤a≤2n; 1≤b≤2n−1

[
{zb−1

a }
∣∣∣ 1

κ− za

]
=

∏2n
a>b(za − zb)∏2n
l=1(κ− zl)

. (4.24)

This can be used to express the Cauchy transform as an expectation value, after

providing the correct normalisation factor from eq. (4.16) in the last step.

The proof for the odd Cauchy transforms follows along the same lines. For simplicity

we set c = 0 here, which can easily be reinstated at the end:

t2n+1(κ) =
1

Z2n

2n+2∏

k=1

∫

C

d 2zk

n+1∏

j=1

F (z2j−1, z2j)




(∑2n
l=1 zl + z2n+1

)∏2n
j=1(z2n+1 − zj)

κ− z2n+2

−

(∑2n
l=1 zl + z2n+2

)∏2n
j=1(z2n+2 − zj)

z2n+1 − κ


∆2n({z})

=
1

(n+ 1)Z2n

2n+2∏

k=1

∫

C

d 2zk

n+1∏

j=1

F (z2j−1, z2j)

×
n+1∑

k=1

[
∆̃2n+1({z}l 6=2k)

κ− z2k

− ∆̃2n+1({z}l 6=2k−1)

κ− z2k−1

]

=
1

(n+ 1)Z2n

2n+2∏

k=1

∫

C

d 2zk

n+1∏

j=1

F (z2j−1, z2j) det
1≤a≤2n+2; 1≤b≤2n

[
{zb−1

a }
∣∣∣z2n+1
a

∣∣∣ 1

κ− za

]

=
1

(n+ 1)Z2n

2n+2∏

k=1

∫

C

d 2zk

n+1∏

j=1

F (z2j−1, z2j)

(∑2n+2
l=1 zl − κ

)∏2n+2
i>j (zi − zj)

∏2n+2
l=1 (κ− zl)

= hn

〈
TrJ − κ

det(κ− J)

〉

2n+2

. (4.25)

Here we included the product into the Vandermonde determinant as before, as well

as the additional sum leading to the modified Vandermonde determinant ∆̃ defined in

the right-hand side of eq. (4.12). In the last step we simply need a slightly modified

version of the identity eq. (4.24) which is derived in Appendix C. The inclusion of the

arbitrary constant c 6= 0 follows simply by shifting κ→ κ+ c in the numerator but not

in the denominator. This concludes the derivation of all the integral representations of

the SOP and their Cauchy transforms. In principle the simple expectation values in

¶ Note that we order products here so that there is no sign in eq. (2.8) for the Vandermonde

determinant.



Skew-OP for chiral real asymmetric random matrices 16

eqs. (4.6) and (4.7) as well as eqs. (4.20) and (4.21) could be computed explicitly using

supersymmetric vectors depending on ordinary variables and Grassmannians. In the

explicit examples given in the next section we shall give the resulting SOP only.

5. Examples for skew-orthogonal polynomials

In this section we will give three examples of skew-orthogonal polynomials in the complex

plane: Hermite, Laguerre and Laguerre with mass terms. Although the first of these

were already known, our derivation is new. The second and third are new examples.

In principle there are two different methods. In the first of these we directly use the

integral representations; for the even polynomials these are the expectations of a single

determinant, eq. (4.6), and for the odd polynomials the expectations of a determinant

multiplied by a trace, eq. (4.7). Both can be calculated in one step by computing the

expectation of the product of two determinants (which is proportional to the kernel)

and either taking limits or differentiating, and using the fact that the determinant is the

generating functional of all independent matrix invariants. The expectations can then

be computed using Grassmannians, and because this was already explicitly done in [10]

we can be very brief here.

The second method follows the general setup outlined at the start of section 4.

Given the kernel in terms of general polynomials eq. (4.1), and choosing them to be

skew-orthogonal eq. (4.3), the individual polynomials can be “read off” from the kernel

in eq. (4.5) by differentiation (or taking limits):

q2n(z) = hn
1

(2n+ 1)!

∂2n+1

∂u2n+1
K2n+2(u, z) = hn lim

u→∞
K2n+2(u, z)

u2n+1

q2n+1(z) = − hn
1

(2n)!

∂2n

∂u2n
K2n+2(u, z)

∣∣∣
u=0

+ c q2n(z) . (5.1)

This is possible whenever the kernel has already been independently determined, e.g.

by the above procedure detailed in [10] (see also [27] for another method). In addition

the norms hk can be read off from the kernel as the leading coefficients.

Of course both methods lead to the same answer. In the third example the kernel

including the masses as well as the partition function itself have not previously been

computed explicitly and so this also constitutes a new result.

5.1. Example I: skew-orthogonal Hermite polynomials

In general the calculation of the expectation of a single determinant (or the product

of two determinants) is straightforward, even without switching to an eigenvalue basis:

we express the determinant as an integral over anti-commuting (Grassmann) variables,

and then the Gaussian random matrices can be integrated out. After a Hubbard-

Stratonovich transformation the anti-commuting variables can also be integrated out.

Because the procedure was carried out and explained in detail for two determinants
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with Nf = 0 in this model in [10] we only quote here the result for our first example,

the expectation with respect to model eq. (2.3)+:

〈
det(z − J) det(u− J)

〉
N

= N !

N∑

l=0

τ l
l∑

k=0

1

k! 2k
Hk

(
z√
2τ

)
Hk

(
u√
2τ

)
(5.2)

where τ is the non-Hermiticity parameter, and the Hk(z) are the standard Hermite

polynomials. Hence, for the even polynomials we can simply project out the second

determinant to give

q2k(z) = lim
u→∞

〈
det(z − J) det(u− J)

〉
2k

u2k
=
(τ

2

)k
H2k

(
z√
2τ

)
. (5.3)

Here we used the following result to calculate the single term in the double sum that

survives the limiting process:

lim
u→∞

1

uN
HN

(u
α

)
=

(
2

α

)N
. (5.4)

This equation also implies that the even polynomials eq. (5.3) are in monic normalisation

as they should be, starting with q0(z) = 1. Alternatively we could of course have

differentiated eq. (5.2) N times with respect to u.

For the odd polynomials, we use the fact that the determinant is the generating

functional for symmetric functions, and in particular for the trace:

1

(N − 1)!

∂N−1

∂uN−1
det(u11N − J)

∣∣∣
u=0

= −TrJ , (5.5)

where J is an N × N matrix, and N ≥ 1. Applying this to eq. (5.2) on the left-hand

side allows us to obtain q2k+1(z) from eq. (4.7), for k ≥ 1:

q2k+1(z) = − 1

(2k − 1)!

∂2k−1

∂u2k−1

〈
det(z − J) det(u− J)

〉
2k

∣∣∣
u=0

+ (z + c)q2k(z)

= − (2k)

(√
τ

2

)2k−1

(τ + 1)H2k−1

(
z√
2τ

)
+ (z + c)

(τ
2

)k
H2k

(
z√
2τ

)

=
τk+ 1

2

2k+ 1
2

H2k+1

(
z√
2τ

)
+ 2k

τk−
1
2

2k−
1
2

H2k−1

(
z√
2τ

)
+ c

τk

2k
H2k

(
z√
2τ

)
. (5.6)

In the first step only two terms survive the differentiation after setting u = 0; we used

the following properties of Hermite polynomials in addition to eq. (5.4)

dn−1

dzn−1
Hn(z) = 2nn! z (5.7)

Hn+1(z) = 2zHn(z)− 2nHn−1(z) , for n ≥ 1 , (5.8)

as well as the recurrence relation to simplify eq. (5.6) in the last line. This form makes

it more transparent that the arbitrary addition of cq2k(z) is the only even Hermite

+ The double sum can be simplified by using the Christoffel-Darboux identity [10].
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polynomial appearing in this example. From eq. (5.4) it also follows that q2k+1(z) is in

monic normalisation, and for k = 0 we have q1(z) = z + c by definition. Defining

Ck(z) ≡
(τ

2

) k
2
Hk

(
z√
2τ

)
(5.9)

we reobtain the following final simple result from [7]

q2k(z) = C2k(z),

q2k+1(z) = C2k+1(z)− 2kC2k−1(z)− cC2k(z) . (5.10)

The norms hk = 2(τ + 1)
√

2π (2k)! can be determined either by direct calculation

of the scalar product eq. (4.4) of the SOP which we just obtained, as was done in [7],

or by computing the partition function∗.
Let us emphasise that in our derivation the skew-orthogonality of the polynomials

is automatically satisfied due to their general integral representation eqs. (4.6) and (4.7).

This is in contrast to [7], where the skew-orthogonality was explicitly verified for the

weights eq. (2.11) in the complex plane.

5.2. Example II: skew-orthogonal Laguerre polynomials

In this subsection we turn to entirely new expressions for skew-orthogonal Laguerre

polynomials for our chiral model eq. (2.1). We will start with the so-called quenched

case (Nf = 0) and then add mass terms in the next subsection.

Expressed in terms of the 2n eigenvalues zj of ABT these are the same as before;

however, the matrix D in eq. (2.4) also has ν generic zero eigenvalues, and so we repeat

the integral representations eqs. (4.6) and (4.7) for completeness, and also to make

contact with [10]. For the even polynomials, we have

q2n(z) =
1

zν/2

〈
det(
√
z114n+ν −D)

〉
4n+ν

=
〈

det(z112n − ABT )
〉

2n
(5.11)

and for the odd polynomials

q2n+1(z) =
1

zν/2

〈
det(
√
z114n+ν −D)

[
1

2
TrD 2 + z + c

]〉

4n+ν

=
〈

det(z112n − ABT ) TrABT
〉

2n
+ (z + c) q2n(z) . (5.12)

The starting point for what we need for our calculations, namely the expectation of

two determinants, was again given in detail in [10] and thus we merely state the result:
〈

det(z112n − ABT ) det(u112n − ABT )
〉

2n

= (2n)! (2n+ ν)!(4µ2η+)4n

2n∑

l=0

(
η−
η+

)2l l∑

k=0

k!

(k + ν)!
Lνk

(
z

4µ2η−

)
Lνk

(
u

4µ2η−

)
, (5.13)

where we recall the notation (2.2).

∗ The lower order terms from combining eqs. (4.5) and (4.18) will provide ratios of norms hN/hk and

thus the k-dependence only.



Skew-OP for chiral real asymmetric random matrices 19

We thus obtain the even polynomials by simply projecting out the second

determinant

q2k(z) = lim
u→∞

1

u2k

〈
det(z112k − ABT ) det(u112k − ABT )

〉
2k

= (4µ2η−)2k (2k)!Lν2k

(
z

4µ2η−

)
. (5.14)

Here we have used the following relation for the Laguerre polynomials

lim
u→∞

1

uN
LνN

(u
α

)
=

(−1)N

N !αN
, (5.15)

which also confirms that the even polynomial is properly normalised.

For the odd polynomials we again need to take derivatives as in eq. (5.5) to obtain

for k ≥ 1

q2k+1(z) = − 1

(2k − 1)!

∂2k−1

∂u2k−1

〈
det(z112k − ABT ) det(u112k − ABT )

〉
2k

∣∣∣
u=0

+ (z + c)q2k(z)

= (4µ2η−)2k+1(2k)! (2k + ν)

(
2kLν2k

(
z

4µ2η−

)
+
(

1 +
η2

+

η2
−

)
Lν2k−1

(
z

4µ2η−

))

+ (z + c)(4µ2η−)2k (2k)!Lν2k

(
z

4µ2η−

)

= − (4µ2η−)2k+1 (2k + 1)!Lν2k+1

(
z

4µ2η−

)
+ c′(4µ2η−)2k (2k)!Lν2k

(
z

4µ2η−

)

+ (2k + ν)(4µ2η+)2(4µ2η−)2k−1 (2k)!Lν2k−1

(
z

4µ2η−

)
, (5.16)

where the new arbitrary constant

c′ ≡ c+ (4µ2η−)(4k2 + 4k + 1 + (2k + 1)ν) (5.17)

now depends on k, ν and µ. The above result was obtained after using the corresponding

relations for Laguerre polynomials:

dn−1

dzn−1
Lνn(z) = (−1)n(z − (n+ ν)) (5.18)

(n+ 1)Lνn+1(z) = (2n+ ν + 1− z)Lνn(z)− (n+ ν)Lνn−1(z) , for n ≥ 1 . (5.19)

It is easy to see that the polynomials are again monic, due to eq. (5.15). This once more

fixes q1(z) = z + c. We can now define

Cν
k (z) ≡ (4µ2η−)k k!Lνk

(
z

4µ2η−

)
(5.20)

allowing us to write

q2k(z) = + Cν
2k(z),

q2k+1(z) = − Cν
2k+1(z) + (1 + µ2)2 (2k)(2k + ν)Cν

2k−1(z) + c′Cν
2k(z) , (5.21)

giving the new skew-orthogonal Laguerre polynomials up to an arbitrary constant. The

final result compares with the similar form of eq. (5.10).
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For the norms we find hk = 8π(4µ2)(2k)! (2k + ν)! (4µ2η+)4k+ν+1 where the k-

dependence again follows from the ratio of the norms hN/hk, see eqs. (4.18) and (4.5),

whereas the overall constant factor can be deduced from the partition function, see eq.

(3.46) in [11], and taking the ratio for consecutive values of N .

5.3. Example III: inclusion of mass terms in the chiral model

Our third example gives the SOP again for weights including Nf > 0 mass terms, which

is also called the unquenched case. We will exemplify this using the chiral model eq.

(2.1) where such terms are more common due to applications in QCD. However, the

same insertion of mass terms can be done in the non-chiral model eq. (2.3) following the

same lines.

Our main point here will be to express the SOP for Nf > 0 in terms of the SOP for

Nf = 0 (and the corresponding kernel), which we have already calculated. To indicate

which polynomials we are referring to we will use a superscript, as in q
(Nf )

k (z), and

correspondingly for the kernel and expectations.

Our derivation relies heavily on [21] where all the expectation values of products

and ratios of characteristic polynomials (or determinants) have been expressed in terms

of Pfaffian expressions of matrices containing a small number of building blocks; in our

case these building blocks will be the quenched (Nf = 0) SOP and kernel.

To begin we first express the unquenched integral representations eqs. (4.6) and

(4.7) in terms of ratios of quenched expectations. For the even polynomials we have

q
(Nf )
2n (z) =

〈
det(z112n − ABT )

〉(Nf )

2n
(5.22)

=

〈
det(z112n − ABT )

∏Nf
f=1 det(m2

f112n − ABT )
〉(0)

2n〈∏Nf
f=1 det(m2

f112n − ABT )
〉(0)

2n

,

and similarly for the odd polynomials we have

q
(Nf )
2n+1(z) =

〈
det(z112n − ABT ) TrABT

∏Nf
f=1 det(m2

f112n − ABT )
〉(0)

2n〈∏Nf
f=1 det(m2

f112n − ABT )
〉(0)

2n

+ (z + c)q
(Nf )
2n (z).

(5.23)

We will now give all the building blocks for these expressions. The first building block

in the denominator, the expectation value of the mass term, simultaneously provides us

with the massive partition function itself:

Z(Nf )
ch 2N({m})
Z(0)
ch 2N

=

Nf∏

f=1

mν
f

〈 Nf∏

f=1

det(m2
f112N − ABT )

〉(0)

2N
. (5.24)

The masses to the power of ν, the number of generic zero eigenvalues, of course cancel

in the ratios for the q
(Nf )
k (z) above. Using the results from [21] and expressing the
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expectation values there in terms of our quenched kernel and even SOP we obtain:

Z(Nf )

ch 2N ({m})
Z(0)
ch 2N

=

∏Nf
f=1 m

ν
f

∆Nf ({m2})(−)Nf/2
N+(Nf−2)/2∏

j=N

h
(0)
j Pf

1≤f,g≤Nf

[
K(0)

2N+Nf
(m2

f , m
2
g)
]

Nf even

Z(Nf )
ch 2N ({m})
Z(0)
ch 2N

=

∏Nf
f=1 m

ν
f

∆Nf ({m2})(−)(Nf−1)/2

N+(Nf−3)/2∏

j=N

h
(0)
j

× Pf
1≤f,g≤Nf

[
0 q

(0)
2N+Nf−1(m2

g)

−q(0)
2N+Nf−1(m2

f) K(0)
2N+Nf−1(m2

f , m
2
g)

]
, Nf odd (5.25)

where we have to distinguish even and odd numbers of flavours Nf . The product over

the norms in the prefactor is equal to unity when the upper limit is N − 1. Compared

to [21] we have used the following identity

Pf
1≤f,g≤Nf

[
0 q

(0)
2M (m2

g)

−q(0)
2M (m2

f) K(0)
2M+2(m2

f , m
2
g)

]
= Pf

1≤f,g≤Nf

[
0 q

(0)
2M (m2

g)

−q(0)
2M (m2

f ) K(0)
2M(m2

f , m
2
g)

]
(5.26)

which can be easily seen by adding multiples of the first row and column to the remaining

rows and columns, in order to eliminate the leading SOP in the kernels and hence shifting

their index down by two. This result for the partition function (or expectation values of

characteristic polynomials) precisely equals the corresponding result for β = 4 in [24]].

The even polynomials now easily follow from eq. (5.25), by choosing one of the

masses to be the argument. We obtain

q
(Nf )
2N (z) =

Pf




0 q
(0)
2N+Nf

(z) q
(0)
2N+Nf

(m2
g)

−q(0)
2N+Nf

(z) 0 K(0)
2N+Nf

(z,m2
g)

−q(0)
2N+Nf

(m2
f ) K(0)

2N+Nf
(m2

f , z) K(0)
2N+Nf

(m2
f , m

2
g)




∏Nf
f=1(z −m2

f ) Pf
[
K(0)

2N+Nf
(m2

f , m
2
g)
] (5.27)

for Nf even. Here and in the following we suppress the indices of the Pfaffian which run

from 1 to Nf in both the even and odd cases. For Nf odd we obtain

q
(Nf )
2N (z) = −

h
(0)
N+(Nf−1)/2Pf

[
0 K(0)

2N+Nf+1(z,m2
g)

K(0)
2N+Nf+1(m2

f , z) K(0)
2N+Nf+1(m2

f , m
2
g)

]

∏Nf
f=1(z −m2

f) Pf

[
0 q

(0)
2N+Nf−1(m2

g)

−q(0)
2N+Nf−1(m2

f ) K(0)
2N+Nf−1(m2

f , m
2
g)

] . (5.28)

Next we determine the massive kernel using eq. (4.18)

K(Nf )
2N (z, u) =

(z − u)

h
(Nf )
N−1

〈
det(z112N − ABT ) det(u112N − ABT )

〉(Nf )

2N−2
(5.29)

=
(z − u)

h
(Nf )
N−1

〈
det(z112n − ABT ) det(u112N − ABT )

∏Nf
f=1 det(m2

f112n − ABT )
〉(0)

2N−2〈∏Nf
f=1 det(m2

f112n − ABT )
〉(0)

2N−2

.

] Notice a typo in [24] in eq. (2.8) compared to the correct Theorem 1 in eq. (3.1) there.
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Using eq. (5.25) with two extra masses we obtain for Nf even

K(Nf )
2N (z, u) = −

Pf




0 K(0)
2N+Nf

(u, z) K(0)
2N+Nf

(u,m2
g)

K(0)
2N+Nf

(z, u) 0 K(0)
2N+Nf

(z,m2
g)

K(0)
2N+Nf

(m2
f , u) K(0)

2N+Nf
(m2

f , z) K(0)
2N+Nf

(m2
f , m

2
g)




∏Nf
f=1(z −m2

f )(u−m2
f ) Pf

[
K(0)

2N+Nf
(m2

f , m
2
g)
] . (5.30)

Here the mass dependent inverse norm 1/h
(Nf )
N−1 has been eliminated using the following

identity, leading to a shift in the index of the kernels in the denominator by +2.

Following eq. (4.16) we can write

h
(Nf )
N−1

h
(0)
N−1

=
Z(Nf )
ch 2N({m})
Z(0)
ch 2N

Z(0)
ch 2N−2

Z(Nf )
ch 2N−2({m})

(5.31)

=





h
(0)
N+(Nf−2)/2

h
(0)
N−1

Pf
[
K(0)

2N+Nf
(m2

f , m
2
g)
]

Pf
[
K(0)

2N−2+Nf
(m2

f , m
2
g)
] , Nf even

h
(0)
N+(Nf−3)/2

h
(0)
N−1

Pf

[
0 q

(0)
2N+Nf−1(m2

g)

−q(0)
2N+Nf−1(m2

f ) K(0)
2N+Nf−1(m2

f , m
2
g)

]

Pf

[
0 q

(0)
2N+Nf−3(m2

g)

−q(0)
2N+Nf−3(m2

f ) K(0)
2N+Nf−3(m2

f , m
2
g)

] , Nf odd.

Likewise for Nf odd we have

K(Nf )
2N (z, u) =

−1

∏Nf
f=1(z −m2

f )(u−m2
f )Pf

[
0 q

(0)
2N+Nf−1(m2

g)

−q(0)
2N+Nf−1(m2

f ) K(0)
2N+Nf−1(m2

f , m
2
g)

]

× Pf




0 q
(0)
2N+Nf−1(z) q

(0)
2N+Nf−1(u) q

(0)
2N+Nf−1(m2

g)

−q(0)
2N+Nf−1(z) 0 K(0)

2N+Nf−1(z, u) K(0)
2N+Nf−1(z,m2

g)

−q(0)
2N+Nf−1(u) K(0)

2N+Nf−1(u, z) 0 K(0)
2N+Nf−1(u,m2

g)

−q(0)
2N+Nf−1(m2

f) K(0)
2N+Nf−1(m2

f , z) K(0)
2N+Nf−1(m2

f , u) K(0)
2N+Nf−1(m2

f , m
2
g)



.

(5.32)

Let us pause with a few remarks. Following [11] these expressions for the massive

kernel determine all massive eigenvalue correlation functions for 2N , in terms of the

known quenched kernel and the quenched even SOP that were given in Example II

above. In particular it is transparent that even for finite N the unquenched kernel

(when properly normalised by the massive weight) is given by the quenched kernel plus

some correction terms. The same structure thus prevails for all unquenched eigenvalue

correlation functions.

For 2N + 1, correction terms to the massive kernel will also include the massive

SOP q
(Nf )
2N (z), when following e.g. [30]. Thus all massive eigenvalue correlation functions

follow in this case as well.
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As the final step we will give the massive odd SOP q
(Nf )
2N+1(z). Here we will follow

eq. (5.1) and determine them from the kernel, rather than eq. (5.5). As an aside, above

we could have alternatively determined the kernel first and then the even SOP from eq.

(5.1) as well. A slight generalisation of eq. (5.1) reads

q
(Nf )
2n+1(z) = −h(Nf )

n
1

(2n+ k)!

∂2n+k

∂u2n+k

(
k∏

l=1

(u− al)K(Nf )
2n+2(u, z)

)∣∣∣∣∣
u=0

+ c′ q
(Nf )
2n (z) (5.33)

where k ≥ 0, and the al are some arbitrary constants. It is easy to see that we only

get a non-vanishing result when 2n or 2n + 1 of the derivatives act on the kernel and

not the prefactor. This is true because the function in the brackets is a polynomial of

order 2n + k + 1 in the variable u. Hence, the differentiation yields the coefficients of

the monomials of order 2n and 2n+ 1 in the variable u of the kernel K(Nf )
2n+2.

In choosing k = Nf and the al = m2
l we can use this relation to cancel the

factor
∏Nf

f=1(u − m2
f ) in the denominator of eq. (5.30) that would otherwise have to

be differentiated as well. We thus obtain from eq. (5.33) and (5.30) that

q
(Nf )
2N+1(z) = − h(Nf )

N

1

(2N +Nf)!

∂2N+Nf

∂u2N+Nf




Nf∏

f=1

(u−m2
f )K(Nf )

2N+2(u, z)



∣∣∣∣∣∣
u=0

+ c′ q
(Nf )
2N (z)

=

Pf




0 q
(0)
2N+Nf+1(z) q

(0)
2N+Nf+1(m2

g)

−q(0)
2N+Nf+1(z) 0 K(0)

2N+Nf
(z,m2

g)

−q(0)
2N+Nf+1(m2

f) K(0)
2N+Nf

(m2
f , z) K(0)

2N+Nf
(m2

f , m
2
g)




∏Nf
f=1(z −m2

f) Pf
[
K(0)

2N+Nf
(m2

f , m
2
g)
] + c′q

(Nf )
2N (z)

for Nf even. (5.34)

Here we have pulled the derivatives inside the Pfaffian leading to the quenched SOP of

shifted odd index, and used eq. (5.31) and the identity corresponding to eq. (5.26) for

the odd polynomials. For odd Nf we obtain

q
(Nf )
2N+1(z) =

1

∏Nf
f=1(z −m2

f ) Pf

[
0 q

(0)
2N+Nf−1(m2

g)

−q(0)
2N+Nf−1(m2

f) K(0)
2N+Nf−1(m2

f , m
2
g)

]

× Pf




0 q
(0)
2N+Nf+1(z) c̃ q

(0)
2N+Nf+1(m2

g)

−q(0)
2N+Nf+1(z) 0 q

(0)
2N+Nf−1(z) K(0)

2N+Nf+1(z,m2
g)

−c̃ −q(0)
2N+Nf−1(z) 0 q

(0)
2N+Nf−1(m2

g)

−q(0)
2N+Nf+1(m2

f) K(0)
2N+Nf+1(m2

f , z) −q(0)
2N+Nf−1(m2

f) K(0)
2N+Nf+1(m2

f , m
2
g)




+ c′q
(Nf )
2N (z) for Nf odd. (5.35)

The constants c̃ in the Pfaffian in the numerator can be absorbed into the even

polynomial c′q
(Nf )
2N (z), which can be seen as follows. Just as the determinants of two

matrices that only differ by a single row (or column) can be added, a similar statement

holds for Pfaffians: due to linearity the Pfaffians of two anti-symmetric matrices that



Skew-OP for chiral real asymmetric random matrices 24

only differ by a single row and its transposed column can be added. We can thus split

off the c̃-part from the Pfaffian above to obtain

Pf




0 q
(0)
2N+Nf+1(z) c̃ q

(0)
2N+Nf+1(m2

g)

−q(0)
2N+Nf+1(z) 0 0 K(0)

2N+Nf+1(z,m2
g)

−c̃ 0 0 0

−q(0)
2N+Nf+1(m2

f) K(0)
2N+Nf+1(m2

f , z) 0 K(0)
2N+Nf+1(m2

f , m
2
g)




= − Pf




0 c̃ 0 0

−c̃ 0 0 0

0 0 0 K(0)
2N+Nf+1(z,m2

g)

0 0 K(0)
2N+Nf+1(m2

f , z) K(0)
2N+Nf+1(m2

f , m
2
g)


 (5.36)

which is proportional to the numerator of the even polynomials with odd Nf in eq.

(5.28). Thus the final result for the odd polynomial with odd Nf is eq. (5.35) with c̃ = 0

and c′ → c
′′
. This ends our third example for the SOP and kernel including masses.

Similar expressions could be given for the non-chiral model eq. (2.3), as well as for

the Cauchy transforms of the unquenched SOP.

6. Conclusions

In this paper we have completed the analysis of the set of (skew-) orthogonal polynomials

in the complex plane that apply to the chiral extensions of the three elliptic Ginibre

ensembles. By constructing an explicit integral representation we found a new set of

skew-orthogonal Laguerre polynomials in the complex plane which provide an alternative

method of solving the chiral ensemble with real asymmetric elements. Our integral

representation is also valid for the real elliptic Ginibre ensemble; in fact, it holds for

arbitrary weight functions g and h in these two classes. Furthermore we also gave a

new integral representation of the Cauchy transforms of these polynomials which holds

not only for the two symmetry classes with real matrix elements (β = 1) but also for

quaternion real matrix elements (β = 4).

An important ingredient for our results was a proof that the probability distribution

in the partition function factorises for β = 1. This offers another unifying view of the

non-Hermitian β = 1 and β = 4 symmetry classes, both chiral and non-chiral.

There are many more non-Hermitian ensembles, in addition to the three Ginibre

classes and their chiral counterparts, all six of which have now been solved. It thus

remains an open question whether corresponding sets of orthogonal or skew-orthogonal

polynomials exist for the other ensembles. It is possible that, just as in the real case, the

known polynomials also apply to some of these other non-Hermitian symmetry classes,

once a complex eigenvalue representation has been found for them.

As an application of our results we have shown how to construct the skew-orthogonal

polynomials and the kernel when including Nf characteristic polynomials or mass terms

into our models. These constitute the building blocks for the massive partition function

and eigenvalue density correlation functions. Consequently this will allow us to study
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the complex Dirac operator spectrum for Quantum Chromodynamics with two colours

and non-vanishing quark chemical potential, both in the low and high density phases.

The study of the large-N limit needed for this partly follows from the known quenched

Nf = 0 results and is left for future investigations.

Acknowledgements: We thank the Niels Bohr Foundation for financial support

(G.A.), as well as the Niels Bohr Institute and International Academy for the

warm hospitality (G.A., M.J.P.). We also acknowledge support by the Deutsche

Forschungsgemeinschaft within Sonderforschungsbereich Transregio 12 “Symmetries and

Universality in Mesoscopic Systems” (M.K.) and support by an EPSRC doctoral training

grant (M.J.P.). Furthermore we would like to thank Tilo Wettig and Takuya Kanazawa

for useful exchanges.

Appendix A. Generalisation of the de Bruijn integral formula

In this appendix we slightly generalise the standard de Bruijn integral formula that

reads
n∏

j=1

∫

C

d 2zj w(zj) det
1≤a≤2n; 1≤l≤n

[{fa(zl), ga(zl)}]

= n! Pf
1≤a,b≤2n



∫

C

d 2uw(u)[fa(u)gb(u)− fb(u)ga(u)]


 . (A.1)

Here w(z) is a weight function in the complex plane and f and g are functions such that

the integrals exist. The proof is usually done by a Laplace expansion into 2× 2 blocks

that each depend on a single variable zl.

If we start out with 2n instead of n integrations over a product of an anti-symmetric

weight F (u, v) and let f and g depend on different variables, we have on the left-hand

side
2n∏

k=1

∫

C

d 2zk

n∏

j=1

F (z2j−1, z2j) det
1≤a≤2n; 1≤b≤n

[{fa(z2b−1), ga(z2b)}]

=

n∏

j=1

∫

C2

d 2z2j−1d
2z2jF (z2j−1, z2j)

∑

σ

(−)σ
n∏

j=1

det

[
fσ(2j−1)(z2j−1) gσ(2j−1)(z2j)

fσ(2j)(z2j−1) gσ(2j)(z2j)

]

= n! Pf
1≤a,b≤2n



∫

C2

d 2u d 2vF (u, v)[fa(u)gb(v)− fb(u)ga(v)]


 . (A.2)

Here (−)σ is the sign of the permutation of the 2n variables, and the sum is over all

(2n)! permutations which satisfy the restriction σ(1) < σ(2) < . . . < σ(2n). Note that

each pair {z2j−1, z2j} only appears in one subdeterminant. This gives the Pfaffian as a

result (see e.g. [1] for a definition).
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Appendix B. Relation to a modified Vandermonde determinant

In this appendix we prove an identity related to Vandermonde determinants, which is

needed to derive the integral representation eq. (4.7) for the odd polynomials q2n+1(z).

For completeness we repeat the relation eq. (4.12) which is to be shown here,

N∑

i=1

zi ∆N ({z}) = det




1 . . . 1

z1 . . . zN
...

...

zN−2
1 . . . zN−2

N

zN1 . . . zNN



≡ ∆̃N({z}) . (B.1)

Using the second representation from eq. (2.8), ∆N({z}) = det1≤a,b≤N [zb−1
a ], one can see

that the modified Vandermonde determinant in eq. (B.1) has a mismatch of 1 in the

powers in the last row compared to the Vandermonde determinant.

Our proof uses that ∆̃N ({z}) is simply the coefficient of power uN−1 in a Leibniz

expansion of the Vandermonde determinant ∆N+1({z}, u) of size N + 1 with respect to

the last column in the extra variable u. This term can be singled out by a differentiation,

1

(N − 1)!

∂N−1

∂uN−1

∣∣∣∣
u=0

∆N+1({z}, u) = −∆̃N ({z}) . (B.2)

On the other hand, using again eq. (2.8) that ∆N({z}) =
∏N

j>k(zj − zk), one can write

∆N+1({z}, u) =
N∏

a=1

(u− za)∆N({z}). (B.3)

Combining eqs. (B.2) and (B.3) we obtain the result (B.1).

Appendix C. Cauchy-type identity for the modified Vandermonde

determinant

In this appendix we prove the following identity,

det
1≤a≤2n+2; 1≤b≤2n

[
{zb−1

a }
∣∣∣z2n+1
a

∣∣∣ 1

κ− za

]
=

(∑2n+2
k=1 zk − κ

)∏2n+2
i>j (zi − zj)

∏2n+2
l=1 (κ− zl)

, (C.1)

which is a slight modification of identity (4.24) with a mismatch by one power in the last

but one column. In fact we will use the identity (4.24) to prove the above. Expanding

the left-hand side with respect to the last but one column we have

2n+2∑

k=1

(−)2n+2−k−1z2n+1
k det

1≤a6=k≤2n+2; 1≤b≤2n

[
{zb−1

a }
∣∣∣ 1

κ− za

]

= (−)
2n+2∑

k=1

(−)2n+2−kz2n+1
k

∏2n+2
i>j; i,j 6=k(zi − zj)∏2n+2
l 6=k (κ− zl)

(κ− zk)
(κ− zk)

= (−)
κ∆2n+2({z})− ∆̃2n+2({z})∏2n+2

l=1 (κ− zl)
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=

(∑2n+2
k=1 zk − κ

)∏2n+2
i>j (zi − zj)

∏2n+2
l=1 (κ− zl)

. (C.2)

In the second step we used the identity (4.24) and multiplied by unity to complete the

product in the denominator. For the numerator we obtain the modified Vandermonde

determinant ∆̃ from eq. (4.12) and a proper Vandermonde determinant, both of size

2n+ 2, after resumming the expansion. Writing out explicitly ∆̃2n+2 from the left-hand

side of eq. (B.1) yields the right-hand side of our identity (C.1).
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