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Abstract

This Chapter contains a brief introduction to complex networks, and in partic-

ular to small world and scale free networks. We show how to apply the replica

method developed to analyse random matrices in statistical physics to calcu-

late the spectral densities of the adjacency and Laplacian matrices of a scale

free network. We use the effective medium approximation to treat networks

with finite mean degree and discuss the local properties of random matrices

associated with complex networks.

1.1 Introduction

Graphs are incorporated into many theories in physics, and as our society be-

comes ever more globalised and inter-connected, the study of graphs forms an

integral part of the systematic study of a vast array of human, social, economic,

technological, biological and physical systems. The graph theory developed by

Erdös and Rényi, [Erd60] considers vertices and edges linked with a fixed prob-

ability p. This yields networks with a Poisson degree distribution. Since then

Watts observed that many real networks exhibit properties in which there is

a small finite number of steps between any two vertices in the network, but
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some local order, so that if vertex A is connected to vertex B and B is con-

nected to vertex C then there is a good chance that A is connected to C.

Networks with these two properties are referred to as small world networks.

Albert and Barabási [Alb02] observed that many real networks had a degree

distribution that had a fat tail, which is that the degree distribution decays

at a rate slower than exponential. Furthermore, Barabási and Albert [Bar99]

introduced a model that built a network with a power-law degree distribution,

and networks of this type have become known as scale free networks. These two

classes of networks are the two best understood complex networks. Any net-

work that is neither regular nor of Erdös and Rényi type is normally described

as complex.

1.1.1 Small world networks

A small world is a loosely defined concept normally associated with systems in

which most vertices are not neighbours of one another but where it is only a

small finite number of steps between any two vertices, and where there is a de-

gree of local order. The small world phenomenon, in which strangers are often

linked by a mutual acquaintance, is captured in the phrase six handshakes from

the president in which nearly everyone in the world is around six acquaintances

from the president. Networks exhibiting the small world phenomenon include

social networks, the world wide web (the network of webpages and html links)

and gene expression networks. The local ordering property of small world net-

works is usually associated with regular networks such as a 2-d square lattice.

The finite number of steps between any two vertices is associated with com-

pletely connected graphs. In this sense small world networks can be thought

of as being intermediate between a completely connected graphs and regular

lattices. Most scale free networks exhibit the small world phenomenon but

few small world networks are scale free. In 1998 Watts and Strogatz [Wat98]

characterised all graphs by the clustering coefficient C, defined by

C = 3
Number of Triangles

Number of Connected Triples
, (1.1.1)

and by the mean vertex-to-vertex distance. C is the average probability that

two of ones friends are friends themselves (C = 1 on a fully connected graph,

everyone knows everyone else). Watts and Strogatz observed that while Erdös

and Rényi graphs had a small clustering coefficient and small mean vertex-to-

vertex distance, many real graphs had a clustering coefficient larger than those

seen in random graphs, but had a similar mean vertex-to-vertex distance. They

then introduced a model that exhibited this property. Later, a related model

was introduced by Newman and Watts [New99]. This is built as follows;

• Let N vertices be connected in a circle;
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• Each of several neighbours is connected by a unit length edge;

• Then each of these edges is rewired with probability ϕ to a randomly

chosen vertex.

This network has the following properties

• ϕ = 0 is a regular lattice;

• ϕ = 1 is an Erdös and Rényi graph;

• Exhibits small world property for 0 < ϕ < 1.

• Average shortest distance behaves as ∼ N for ϕ = 0 and ∼ logN for

ϕ > 0.

Obviously this model mechanism can be generalised to any regular 2-d or

3-d graph. Models of this type are difficult to formulate analytically, and only a

few basic properties have been obtained analytically, in contrast to both Erdös

and Rényi graph and scale free networks.

1.1.2 Scale free networks

A scale free network has a degree distribution that is asymptotically power-

law. That is, the number N(k) of vertices with degree k behaves like k−λ

for large k with 2 < λ. Many real world networks are scale free including

the world wide web, the internet, the citation graph, the science collaboration

graph, the actor collaboration graph and the phone call graph. The latter is

of course big business for telecommunications firms. Scale free networks are

hugely heterogeneous structures, with, depending on the position of the cut-off

in the network model, nodes with degrees ranging from 1 to N
1

λ−1 . A list of cut-

offs for different scale networks is given in [Dor08]. There are several different

ways to build a model scale free graph. These include the Barabási-Albert

model [Bar99], the static model introduced by Goh, Kahng and Kim [Goh01b]

and the grown scale free graph with statistically defined modularity introduced

by Tadic [Tad01]. In this Chapter we consider uncorrelated networks, there is

discussion of causality and homogeneity in complex networks in [Bia05, Bia05].

In this chapter we briefly introduce two models of scale free graphs, then

use the replica method to examine the adjacency matrix and the Laplacian

associated with a complex network built using the static model. We then show

how the effective medium approximation can be used to treat a complex network

with a finite mean degree. Finally we discuss extensions of this work to other

local properties of the random matrices and to other types of complex network.
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1.2 Replica analysis of scale free networks

1.2.1 Degree distribution and spectral density

Let us consider a complex network with N nodes and examine the asymptotic

behaviour in the limit N → ∞. The connection pattern of the network is

described by the adjacency matrix A, which is an N × N symmetric matrix

with

Ajl =

{
1, if j−th and l−th nodes are directly connected,
0, otherwise.

(1.2.1)

In order to characterise the connection pattern, various statistical quantities

are studied. One of the most common quantities is the degree distribution

function. The number of edges attached to the j-th node

kj =
N∑

l=1

Ajl (1.2.2)

is called the degree. The degree distribution function P (k) is defined as

P (k) =

〈
1

N

N∑

j=1

δ(k − kj)
〉
, (1.2.3)

where the brackets stand for the average over the probability distribution func-

tion of the adjacency matrices.

If the degree distribution function P (k) obeys a power law, namely, if it is

proportional to k−λ with a positive exponent λ in the limit k → ∞, then the

network is said to be scale free. The scale free property is one of the prominent

universal features of social and biological networks [Bar99].

In spectral theory of networks, the Laplacian matrix is of another interest.

The Laplacian matrix L is an N ×N symmetric matrix defined as

Ljl =

{
kj , j = l,
−Ajl, j 6= l.

(1.2.4)

The Laplacian matrix has non-negative eigenvalues and the smallest eigenvalue

is always zero.

The spectral density of the adjacency (or Laplacian) matrix is an important

quantity for characterising the properties of the network. It is defined as

ρ(µ) =

〈
1

N

N∑

j=1

δ(µ− µj)
〉
, (1.2.5)

where µ1, µ2, · · · , µN are the eigenvalues of the adjacency matrix A (or the

Laplacian matrix L).
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For scale free complex networks, it is expected that the spectral density

of adjacency matrices obeys a power law ρ(µ) ∝ µ−γ in the limit µ → ∞.

Such a behaviour was first observed in numerical work on complex networks

[Far01, Goh01a]. Then the relation between γ and λ was analytically specified

as γ = 2λ − 1 in a work on locally tree-like networks [Dor03, Dor04]. This

relation was confirmed in a study on the static network model [Rod05].

In the following, after a brief description of a growth model, the static

model of complex networks is introduced. Then the replica method in statistical

physics is applied to the static model and the spectral densities of the adjacency

and Laplacian matrices are evaluated.

1.2.2 Models of scale free networks

Barabási and Albert invented a growth model (BA model) of complex networks

[Bar99], in which the n-th node with m edges is newly introduced at a time

tn, where n = 1, 2, 3, · · · . Let us discuss the degree distribution of the BA

model, neglecting the fluctuation of kj (so that 〈kj〉 = kj). Each of m edges is

attached to the old nodes in the network, according to the rule of preferential

attachment. That is, the attachment probability Πj of the j-th old node is

proportional to the degree:

Πj =
kj∑n−1
l=1 kl

, j = 1, 2, · · · , n− 1, (1.2.6)

so that a difference equation

kj(tn)− kj(tn−1) = mΠj = m
kj∑n−1
l=1 kl

(1.2.7)

follows. As m edges are attached at each time when a node is introduced, an

asymptotic estimate
∑n−1

l=1 kl ∼ 2mn holds for large n. Let us suppose that

the time difference ∆t = tn − tn−1 is a constant. Then, in the continuous limit

∆t→ 0 with a fixed t = n∆t, we obtain a differential equation

∂kj(t)

∂t
=
kj
2t
. (1.2.8)

One can solve this equation with the initial condition kn(tn) = m as

kj(tn) = m

√
n

j
. (1.2.9)

That is, the degree of the j-th node is proportional to j−1/2 at a fixed time.

In order to have a degree kj smaller than k, we need to have j > n(m/k)2.

Therefore the number ν(k) of the nodes with the degrees smaller than k is
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ν(k) =
∑n

j>n(m/k)2 1 = n(1 − (m/k)2). Then the degree distribution function

P (k) is estimated as

P (k) =
∂

∂k

ν(k)

n
= 2

m2

k3
, (1.2.10)

so that the BA model has the exponent λ = 3.

Goh, Kahng and Kim introduced a static model (GKK model) simulating

the growth model with a fixed number of nodes [Goh01b]. In the GKK model,

the upper (lower) triangular elements of the adjacency matrix are assumed to

be independently distributed. Suppose that there are N nodes and that the

j-th node is assigned a probability

Pj =
j−α

∑N
j=1 j

−α ∼ (1− α)Nα−1j−α, 0 < α < 1. (1.2.11)

In each step two nodes are chosen with the assigned probabilities and connected

unless they are already connected. In order to have a mean degree p, as we

shall see below, such a step is repeated pN/2 times. Then the j-th and l-th

nodes are connected with a probability

fjl = 1− (1− 2PjPl)
pN/2 ∼ 1− epNPjPl , (1.2.12)

so that the adjacency matrix A of the network is distributed according to a

probability distribution function

Pjl(Ajl) = (1− fjl)δ(Ajl) + fjlδ(Ajl − 1), j < l. (1.2.13)

A useful asymptotic estimate [Kim05] in the limit N → ∞ for averaging over

Pjl(Ajl) is

ln

〈
exp


−i

N∑

j<l

Ajltjl



〉
∼ pN

N∑

j<l

PjPl(e
−itjl − 1) (1.2.14)

where tjl is a parameter independent of N . The remainder term is O(1) for

0 < α < 1/2, O((lnN)2) for α = 1/2 and O(N 2−(1/α) lnN) for 1/2 < α < 1.

As a special case, we find an estimate

Fj(t) ≡ ln
〈
e−i

PN
l=1 Ajlt

〉
∼ pNPj(e−it − 1). (1.2.15)

Now let us calculate the degree distribution. Using the definition (1.2.2)

and asymptotic estimate (1.2.15), one obtains [Lee04]

〈kj〉 =
N∑

l=1

〈Ajl〉 = i
∂

∂t
Fj(t)

∣∣∣∣
t=0

∼ pNPj , (1.2.16)
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so that the mean degree of the j-th node is proportional to j−α. Hence one

can expect that the case α = 1/2 approximates the BA model. As announced

before, the mean degree is (1/N)
∑N

j=1〈kj〉 = p. Moreover it follows from

(1.2.3), (1.2.11) and (1.2.15) that the degree distribution function is

P (k) =
1

2πN

N∑

j=1

∫
dt eikt+Fj(t)

∼ 1

2π

∫
dt

∫ 1

0
dx exp

{
ikt+ p(1− α)x−α(e−it − 1)

}
. (1.2.17)

Then, in the limit k →∞, we find

P (k) ∼
∫ 1

0
dx δ

{
k − p(1− α)x−α

}
=
{p(1− α)}1/α

α

1

k1+(1/α)
. (1.2.18)

Therefore the exponent λ of the GKK model is equal to 1 + (1/α). When we

put α = 1/2, λ is identified with the corresponding exponent of the BA model,

as expected.

1.2.3 Partition function

In order to calculate the spectral densities of the adjacency and Laplacian ma-

trices of the GKK model, let us apply the replica method [Rod88, Bra88] in

statistical physics (see Chapter 8). To begin with, we rewrite (1.2.5) in the

form

ρ(µ) =
2

Nπ
Im

∂

∂µ
〈lnZ(µ+ iε)〉, ε ↓ 0 (1.2.19)

in terms of the partition function

Z(µ) =

∫ N∏

j=1

dφj exp


 i

2
µ

N∑

j=1

φ2
j −

i

2

N∑

jl

Jjlφjφl


 . (1.2.20)

Here J is the adjacency matrix A or the Laplacian matrix L. Since there is a

relation

〈lnZ〉 = lim
n→0

ln〈Zn〉
n

, (1.2.21)

we wish to evaluate

〈Zn〉 =

∫ N∏

j=1

d~φj exp


 i

2
µ

N∑

j=1

~φ2
j



〈

exp


− i

2

N∑

jl

Jjl~φj · ~φl



〉
. (1.2.22)

In term of the replica variables φ
(k)
j , the vector ~φj and the measure d~φj are

defined as

~φj = (φ
(1)
j , φ

(2)
j , · · · , φ(n)

j ), d~φj = dφ
(1)
j dφ

(2)
j · · · dφ

(n)
j . (1.2.23)
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Let us introduce

c̃j(~φ) = δ(~φ − ~φj) (1.2.24)

and an auxiliary function cj(~φ) with a normalisation
∫
d~φ cj(~φ) = 1. (1.2.25)

Then the relation (1.2.14) yields an asymptotic estimate

〈Zn〉 ∼
∫ N∏

j=1

d~φj

∫ N∏

j=1

Dcj(~φ)

N∏

j=1

∏

~φ

δ(cj(~φ)− c̃j(~φ))eS1+S2 (1.2.26)

in the limit N →∞. Here S1 and S2 are defined as

S1 =
i

2
µ

N∑

j=1

∫
d~φ cj(~φ)~φ2 (1.2.27)

and

S2 =
pN

2

N∑

jl

PjPl

∫
d~φ

∫
d~ψ cj(~φ)cl(~ψ)(f(~φ, ~ψ)− 1) (1.2.28)

with

f(~φ, ~ψ) =

{
e−i~φ·~ψ, if J is the adjacency matrix A,

e−(i/2)(~φ−~ψ)2
, if J is the Laplacian matrix L.

(1.2.29)

Now we consider the asymptotic estimate of

∫ N∏

j=1

d~φj

N∏

j=1

∏

~φ

δ(cj(~φ)− c̃j(~φ)) =

∫ N∏

j=1

Daj(~φ) exp




N∑

j=1

Gj




with

Gj = 2πi

∫
d~φ aj(~φ)cj(~φ) + ln

∫
d~φ e−2πiaj (~φ) (1.2.30)

in the limit N →∞. The dominant contribution to the functional integral over

aj(~φ) comes from the extremum satisfying δGj/δaj = 0. It follows that the

asymptotic estimate of 〈Zn〉 is rewritten as

〈Zn〉 ∼
∫ N∏

j=1

Dcj(~φ)eS0+S1+S2 (1.2.31)

with

S0 = −
N∑

j=1

∫
d~φ cj(~φ) ln cj(~φ). (1.2.32)
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1.2.4 Extremum condition

Let us next examine the functional integration over cj(~φ). It is dominated in

the limit N →∞ by the extremum satisfying

δ



S0 + S1 + S2 +

N∑

j=1

αj

(∫
d~φ cj(~φ)− 1

)
 = 0, (1.2.33)

where αj is the Lagrange multiplier ensuring the normalisation of cj(~φ). This

extremum condition can be rewritten in the form

cj(~φ) = Aj exp

{
i

2
µ~φ2 + pNPj

N∑

l=1

Pl

∫
d~ψ cl(~ψ)(f(~φ, ~ψ)− 1)

}
, (1.2.34)

where Aj is a normalisation constant.

There have been several attempts to solve this extremum condition. In

numerical work [Kue08] claimed that a superimposed Gaussian form

cj(~φ) =

∫
dΠj(ω)

1

(2π/ω)n/2
exp

(
−ω

2
~φ2
)

with

∫
dΠj(ω) = 1 (1.2.35)

gives good agreement with the results of numerical diagonalizations.

In the limit of large mean degree p, the extremum condition can be simpli-

fied, so that it can be treated analytically [Rod05, Kim07]. In order to see the

simplification, one puts a (single) Gaussian ansatz

cj(~φ) =
1

(2πiσj)n/2
exp

(
− 1

2iσj
~φ2

)
(1.2.36)

into (1.2.34). It follows in the limit n→ 0 that

exp

(
− 1

2iσj
~φ2

)
= Aj exp

[
i

2
µ~φ2 + pNPj

N∑

l=1

Pl

{
hl(~φ)− 1

}]
, (1.2.37)

where

hl(φ) =





exp

(
− iσl

2
~φ2

)
, if J is the adjacency matrix A,

exp

(
− i

2(1− σl)
~φ2

)
, if J is the Laplacian matrix L.

(1.2.38)

Let us first consider the spectral density of the adjacency matrix. Introduc-

ing the scalings µ = O(p1/2), ~φ2 = O(p−1/2) and σj = O(p−1/2), we take the

limit of large p. Then we see from (1.2.37) that

µ− 1

σj
− pNPj

N∑

l=1

Plσl = 0, (1.2.39)
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which determines σj. It follows from (1.2.19), (1.2.21) and (1.2.31) that

ρ(µ) ∼ − 1

Nπ
Im

N∑

j=1

σj ∼ −
1

π
Im

∫ 1

0
σ(x)dx (1.2.40)

gives the spectral density, where σ(x) = σj with x = j/N .

Let us define the scaled variables s(x) =
√
p σ(x) and E = µ/

√
p. Then,

using (1.2.11), we can rewrite (1.2.39) as

s(x)x−α =
1

Exα − c with c = (1− α)2

∫ 1

0
s(x)x−αdx, (1.2.41)

from which s(x) is evaluated and the asymptotic expansions of the spectral

density are derived. The results are [Rod05]

ρ(µ) =
1

π
√
p

{
1

1− α2
− 1 + 5α+ 18α2 + 20α3 + 16α4

8(1 − α2)3(1 + 2α)(1 + 3α)
|E|2

}
+O(|E|4)

(1.2.42)

for small |E| and

ρ(µ) ∼ 2√
p

(1− α)1/α

α

1

E1+(2/α)
(1.2.43)

for large E. Therefore the exponent γ is 1 + (2/α), so that the relation with

λ = 1 + (1/α) is γ = 2λ− 1, as anticipated from the analysis of locally tree-like

networks [Dor03, Dor04].

We next analyse the spectral density of Laplacian matrices. Let us adopt

the scalings µ = O(p), ~φ2 = O(p−1) and σj = O(p−1). Then it follows from

(1.2.37) that

σj =
1

µ+ iε− pNPj
, ε ↓ 0. (1.2.44)

In terms of the scaled variable ω = µ/(p(1 − α)), the spectral density ρ(µ) of

the Laplacian matrix is derived from (1.2.40) and (1.2.44) as [Kim07]

ρ(µ) =





ω−1−(1/α)

p α(1 − α)
, ω > 1,

0, ω < 1.

(1.2.45)

The weighted versions of the adjacency and Laplacian matrices, such as the

weighted Laplacian matrix

Wjl =
Ljl

(〈kj〉〈kl〉)β/2
(1.2.46)

with an exponent β, can be analysed [Kim07] in a similar way in the limit

p→∞.
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1.2.5 Effective medium approximation

In order to approximately treat a network with a finite mean degree p, we

can employ a useful scheme called the effective medium approximation (EMA)

[Sem02, Nag07, Nag08]. In the EMA, one substitutes the (single) Gaussian

ansatz (1.2.36) into (1.2.27),(1.2.28) and (1.2.32) and consider the variational

equation
∂

∂σj
(S0 + S1 + S2) = 0. (1.2.47)

For the spectral density of adjacency matrices, the variational equation

(1.2.47) turns into

µ− 1

σj
−NpPj

N∑

l=l

Plσl
1− σjσl

= 0 (1.2.48)

in the limit n → 0. This equation can be solved by a numerical iteration

method. Then we put the solution into (1.2.40) and obtain the EMA spectral

density. The result is compared in Figure 1.1 with the spectral density of

numerically generated adjacency matrices (averaged over 100 samples, N =

1000, α = 1/2 and p = 12). The agreement is fairly good except around the

origin.

 0
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Figure 1.1: The EMA spectral density (+) and the spectral density of numer-
ically generated adjacency matrices (histogram) with α = 1/2 and p = 12.
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In the limit p→∞ with a scaling σj = O(p−1/2), the EMA equation (1.2.48)

becomes the extremum condition (1.2.39), as expected. Then one can formulate

a perturbative method to analytically calculate the finite p correction to the

solution of (1.2.39). The result for the spectral density takes the form

ρ(µ) =
1√
p

{
ρ0(µ) +

1

p
ρ1(µ) +O

(
1

p2

)}
. (1.2.49)

For large E, we have already seen in equation (1.2.43) that the unperturbed

term p−1/2ρ0(µ) is O(E−1−(2/α)), whereas the first order correction p−3/2ρ1(µ)

turns out [Nag08] to be O(E−3−(2/α)). Hence the spectral density is dominated

by the unperturbed term in the limit E →∞.

In the limiting case α = 0, one obtains the adjacency matrices of classical

random graphs [Erd60, Rod88, Bra88]. Then the dependence of σj on j can be

omitted so that σj is set to be σ. The EMA equation becomes a simple cubic

equation [Sem02]

µσ3 + (p− 1)σ2 − µσ + 1 = 0 (1.2.50)

and gives a closed analytic solution for the spectral density. In the limit p→∞
we obtain a semi-circular density

ρ(µ) =





√
4p− µ2

2πp
, −2

√
p < µ < 2

√
p,

0, µ < −2
√
p or µ > 2

√
p,

(1.2.51)

as expected from the theory of random matrices.

In the case of Laplacian matrices, the variational equation (1.2.47) takes

the form

µ− 1

σj
−NpPj

N∑

l=1

Pl
1− σj − σl

= 0. (1.2.52)

As before, the EMA spectral density can be evaluated from this equation by

a numerical iteration method. It is compared with the spectral density of

numerically generated Laplacian matrices (averaged over 100 samples, N =

1000, α = 1/2 and p = 12) in Figure 1.2.

In the limiting case of classical random graphs (α = 0), we find a quadratic

equation

2µσ2 + (p− µ− 2)σ + 1 = 0, (1.2.53)

which yields the EMA spectral density

ρ(µ) =





√
8p− (µ− p− 2)2

4πµ
, p− < µ < p+,

0, µ < p− or µ > p+

(1.2.54)

with p± = p± 2
√

2p+ 2.
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Figure 1.2: The EMA spectral density (+) and the spectral density of numer-
ically generated Laplacian matrices (histogram) with α = 1/2 and p = 12.

1.3 Local properties

In the application of random matrices to quantum physics, it is known that

the local spectral distributions are universal even if the global spectral density

depends on the details of each system. It is interesting to see if such strong

universality also holds for the matrices associated with complex networks.

Chung, Lu and Vu rigorously analysed the largest eigenvalues of the ad-

jacency matrices of scale free networks [Chu03a, Chu03b]. A variant of the

static model was used in their work. If the exponent of the degree distribu-

tion is λ > 5/2, their result claims under certain conditions that the largest

eigenvalues have power law distributions with the exponent 2λ− 1.

Bandyopadhyay and Jalan, on the other hand, numerically analysed the

eigenvalue correlation of the adjacency matrices of scale free as well as small

world networks [Ban07, Jal07, Jal08]. The growth process of the BA model was

used to generate scale free networks. Their results show that the eigenvalue

spacing distributions and the spectral rigidity follow the predictions of Gaussian

Orthogonal Ensemble (GOE) of random matrices (see Chapter 13). In the case

of small world networks, they used the Watts-Strogatz model, in which a regular

ring lattice is randomised [Wat98]. A transition toward the GOE behaviour
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is observed as a function of the fraction of randomised edges. Very recently

[Car09], the deformation in the eigenvalue spacing distribution described in

Chapter 13 has been found empirically in a small world network.

Finally, in [Mit08] Mitrovic and Tadic studied numerically the spectral prop-

erties of the adjacency and Laplacian matrices in a wide class of scale free net-

works with mesoscopic subgraphs. They identify signals of cyclic mesoscopic

structures in the spectra. For instance, the centre of the spectra is effected

by minimally connected nodes and the number of distinct modules leads to

additional peaks in the Laplacian spectra.
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