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ABSTRACT 

Amongst the majority of work done in Supply Chain 
Simulation, papers have emerged that examine the area of 
model distribution. The executions of simulations on 
distributed hosts as a coupled model require both . 
coordination and facilitating infrastructure. A distributed 
environment, . the Generic Runtime Infrastructure for 
Distributed Simulation (GRIDS) is suggested to provide 
the bonding requirements for such a model. The 
advantages of transparently connecting the distributed 
components of a supply chain simulation allow the 
construction of a conceptual simulation while releasing the 
modeler from the complexities of the underlying network. 
The infrastructure presented demonstrates scalability 
without loosing flexibility for future extensions based on 
open industry standards. 

1 INTRODUCTION 

Distributed simulations most frequent area of application is 
currently in military simulation. Realization of these 
techniques into the commercial sector are slowly 
forthcoming. Simulationists can benefit from using this 
type of technology by connecting existing models together, 
reducing efforts of re-coding and pushing €or model reuse. 
Internal details of models can also be protected by - 
providing proprietary interfaces during collaborative 
projects. However, investigation into the types of 
infrastructures that can support disparate model types and 
allow transparency for the entities of a typical coupled 
model are forthcoming. 

Zeigler et al. (1999) discusses the use of 
-DEVS/CORBA as a distributed execution environment for 
supply chain simulation. The use of CORBA acts as the 
linking infrastructure between the distributed components of 
the simulation. CORBA, a middleware standard promoted 
by the Object Management Group (OMG) for connecting 

distributed components of software, actually performs a very 
similar role to our own extensible infrastructure, GRIDS 
(Saville and Taylor 1998, Taylor et al. 1999). 

This paper is structured as follows. In section 2 we 
review the techniques and reasons for simulating supply 
chains. In section 3 we present the Generic Runtime 
Infrastructure for Distributed. Simulation (GRIDS), our 
contribution to the field of distributed simulation, and 
discuss the extensible features of the infrastructure as well as 
a description of the package interfaces. Section 4 gives a 
case study illustrating how the distributed service 
mechanism can be applied in supporting a coupled simu- 
lation. The paper ends with some conclusions in section 5 .  

2 SUPPLY CHAIN MANAGEMENT 

Supply Chain Management (SCM) is the series of activities 
that an organization uses to deliver products, services or a 
combination of both to its customers. Recent opinions 
coupled with a shift in modem economics have shown a 
de-emphasis in the benefits of vertical integration such as 
economies of scale towards a focus on the benefits reaped 
from being specialized. 

Supply Chain Simulations (referred to as SCS in this 
paper) are implemented in order to observe how the supply 
chains perform. Observations are made on processes such 
as customer demand planning and production logistics. 
Archibald et al. (1 999) present’s a more comprehensive list 
of the processes that, when optimized, are suggested to 
yield a successful supply chain configuration. Simulation 
provides one mechanism for finding these optimizations. 

A supply chain of a given organization initially 
describes the processes that occur internally but must also 
consider the activities of both the suppliers (inputs) and the 
customers (outputs) as part of the total supply function. 
Actual supply chains usually involve multiple sites and 
often different partners are located at disparate positions 
geographically resulting in a distribution of models that 
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Name 
Services 

require aggregation. These distributed supply chain models 
can be linked together and organized into complete chains 
covering source materials through to end customers as has 
been demonstrated by Zeigler et al. (1 999). The paper goes 
on to suggests that the distribution of a supply chain 
simulation can sometimes benefit from parallel execution 
as well basing their foundation on DEVS, a discrete event 
formalism. However, for any performance improvement 
and also for coordination, parallel and distributed 
execution is partially dependent on some type of time 
synchronization mechanism (Fujimoto 1999a), which we 
address in a later section as a feature of our execution 
environment. 

State Simulation ThirAgent 
Services Services Services 

3 REVIEW OF GRIDS 

Java Virtual 
Machine 

Operating 
System 

GRIDS has already been seen to support Distributed 
Interactive Simulation (Taylor et al. 1999). It is an 
execution environment capable of supporting a broad range 
of simulation types. The infrastructure’s primary function 
is to coordinate the activities of distributed components 
with additional functionality via the use of a novel service 
distribution model known as Thin Agents. 

GRIDS is built using the Java language (Amold and 
Gosling 1996). Java was chosen since it offers a large set 
of features appropriate to distributed systems construction, 
figure 1 describes the protocol layers present in a typical 
GFUDS implementation. In particular, Java provides the 
facility to load objects from across the network using the 
dynamic class loader. Java also allows deployment of its 
code across most of the popular operating systems ensuring 
an increased potential user base and allows connectivity of 
simulations running on several platforms. 

TCPA P 

Network Transport 

Distributed Simulation 
(simulation application) 

Simulations require services to both supplement and 
enhance execution. The GRIDS extensible service 
architecture is realized by thin agents. These agents may be 
used to support the simulation by providing tasks such as 
optimizations and assistance. Figure 2 provides an 
illustration of a typical GRIDS coupled model. Simulation 
objectsifederates are connected to a GRIDS client via the 
published interface. Thin agents that are distributed to 
participating clients are instantiated to provide the required 
services. A description of the execution model and the 
client and thin agent interface is now examined. 

. 

lnformatlon Informatton 

I 

Simulation Object Simulation Object 

Figure 2:  GRIDS Coupled Model 

3.1 GRIDS Execution Model 

A GRIDS session has three distinct stages of execution: 
Register, Broadcast, and Run. 

3.1.1 Stage 1: Register 

Registering involves individual simulation nodes making 
their presence known to the GRIDS “Boot Server” and 
publishing the initial state variables of that node. 
Additionally, the Boot Server builds the namespace of all 
the clients registering, and constructs a central entity list of 
all entities in the simulation. Once all clients are registered 
the server closes all incoming connections for registration. 

3.1.2 Stage 2: Broadcast 

Upon a simulation “Start” event, the boot server broadcasts 
to all registered clients the entire entity list built up during 
registration. The entity list is stored in the internal database 
on each GRIDS client. In addition to broadcasting the 
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entity list, the server broadcasts the namespace for all 
participating clients to be stored internally within each 
GRIDS client. 

3.1.3 Stage 3: Run 

Once all entity lists and namespaces are broadcast to the 
individual clients, the server issues a “go” command to all 
the clients, signaling the start of the simulation. At this 
point, the server will terminate and cease to be a part of the 
simulation. The clients communicate directly as necessary 
in a peer to peer fashion. The GRIDS client is responsible 
for “ticking” the host application to perform a simulation 
cycle, and for synchronizing entity attributes between the 
local and remote nodes. 

method. The thin agents will be transparently sent to the 
Boot Server during the Registration Phase. Sending of 
messages is provided by the senmessage method. 
Messages are posted direct to the receiving client where it 
will be placed within an internal mailbox for processing by 
the GRIDS client. Time synchronization control of the 
nodes is provided by the timeAdvance and timeElapsed 
methods. 

The interface GridsRunnable is implemented by the 
application to provide GRIDS with two handlers for 
processing the application loop, and processing incoming 
messages. The processExecutionLoop is called by GRIDS 
on a set interval to process a single simulation loop. The 
processIncomingMessage method would be called by 
GRIDS whenever a message is received by a node. 

3.2 GRIDS Client Interface 3.3 Thin Agent Interface Model 

In this section, we describe how a federate within the- 
coupled simulation model would connect to the GRIDS 
client infrastructure. The node would need to implement 
the GridsRunnable interface in order to allow GRIDS to 
call appropriate methods within the execution loop and 
process incoming messages. 

Gridsclient ( 
void setvalue (string name, object Value) 

object getvalue (string name) throws 

void registerserver (Gridsserver Server, 

throws GridsException; 

GridsException; 

. string EntityName, gridsRunnable 
callback) t h r o w s  GridsException; 

void registerAgent (string TAClassname) 
throws GridsException; 

void sendMessage (string Entity, GridsMessage 
message) throws GridsException; 

void timeAdvance (double Time) throws 
GridsException; 

double timeElapsed ()throws GridsException; 
1 

interface GridsRunnable ( 
void processIncomlngMessage (GridsMessage 

void processExecutionLoop 0 throws 
message)-throws GridsException; 

GridsExceptlon; 

The published methods getvalue and setvalue provide 
the API calls to modify and retrieve published entity state 
properties visible across the coupled model. Where a value 
exists on a different node, the GRIDS infrastructure will 
transparently either retrieve the value from the relevant 
node, or via a supplied thin agent. The registerserver 
method registers the node onto the supplied “Boot Server” 
and also registers within the GRIDS client infrastructure, 
the object class responsible for processing incoming 
messages and implementing the execution loop. Thin 
agents are registered by the node using the registerAgent 

This. section describes the interface that needs to be 
adopted by designers of thin agents for use within a 
GRIDS session. 

abstract ThinAgent ( 
void initialise (Gridsclient) throws 

object getAttrcbuteValue (string Name) throws 

void SetAttributeValue (string Name, object 

GridsException; 

GridsException; 

value) throws GridsException; 
. void startLoop 0 throws GridsException; 

void endLoop ( )  throws GridsException; 
void sendMessage (GRIDSMessage m); 
void receiveMessage (GRIDSMessage m) 

1 

A thin agent service needs to implement the above- 
published interface in order to be used by the GRIDS 
client. Providers of thin agent services need not implement 
all the above methods, but rather only implement a 
subclass of the generic thin agent class, and override the 
relevant methods allowing development of a taxonomy of 
thin agent types. Figure 3 describes the process taken to 
deploy a thin agent service from sub-classing through to 
instantiation on to the target client. 

The initialize method is called by GRIDS when 
instantiating a thin agent for use by a client. Thin agents 
can register themselves within the MetaDatabase to handle 
specific simulation attributes. The GRIDS client calls the 
getAttributeValue and setAttributeValue methods 
whenever the registered data value owned by the thin agent 
is accessed by the simulation application. The startLoop 
and endLoop methods are called at the start and end of 
every execution loop to allow designers of thin agents to be 
able to perform any processing required at these stages. 
sendMessage is provided to allow the agent to 
communicate with a remote node. 
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Figure 3: Thin Agent Mechanism 

4 CASESTUDY 

The case study discussed here focuses on the ability of thin 
agents to assist the coupling of a distributed model. 
Specifically, thin agents are used to coordinate the time 
synchronization of the coupled model. 

Our scenario is loosely based on the Global Food 
Manufacturing case study described by Archibald et al. 
(1999). The model is composed of supply chain 
simulations that require to be connected into a linked 
model. GRIDS is employed as the middleware 
infrastructure. The infrastructure’s primary function is to 
provide execution context and simulation data services. 

An infrastructure to support a supply chain simulation 
would need to support the following requirements: 

An event list. 
0 A simulation clock that is advanced to the time of 

the next scheduled event on each iteration of the 
simulation. 
State variables containing the state of the simulation. 

In order to implement simulation support of the supply 
chain simulations within the GRIDS infrastructure, we 
extended the interface to the GRIDS client to provide 
methods for supporting Discrete Event Simulation. This 
resulted in a specific client interface designed for DES in a 
similar fashion to proprietary client development. This 
section describes the synchronization role of the thin agent 
and extending the client interface to work with a SCS 
coupled model. 

4.1 Synchronization Thin Agent 

One of the main tasks of the thin agent is in the 
synchronization of events across the coupled model. To 
exemplify this approach we use conservative parallel 
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simulation. Fujimoto (1 999a, 1999b) provides a detailed 
discussion of this field. 

Synchronization thin agents that are distributed to all 
participating simulations coordinate consistent time 
advancement of the coupled model. The thin agents control 
access to the two types of event queues, incoming and 
outgoing. Events are always sent with non-decreasing time 
stamps ensuring arrivals are queued in the order that they 
are sent. The thin agent is able to send event messages both 
locally as well as remotely. This process ensures that 
locally generated events are also processed in the correct 
order avoiding local causality errors. 

Figure 4 illustrates how the model is arranged. The 
thin agents control the passing of events to the simulation 
by taking the next event with the lowest timestamp from its 
connected incoming queues and internal queue in line with 
the conservative approach. The local clock is advanced to 
the timestamp of that event and the simulation processes it. 
This processing may generate an additional event (either 
local or remote) which is handed back to the thin agent to 
be scheduled. If the generated event is local, it is redirected 
back into its own event link queue, otherwise it is sent to 
the remote client’s thin agent link queue. Outgoing events 
are scheduled with time stamps avoiding the generation of 
causality errors for the target simulation. 

GRIDS Client I I I GRIDS Client 

I 1 
Simulation 

I GRIDS Client I 

Figure 4: Event Queues 

Figure 5 shows a more detailed view of the thin agent. 
Although only one incoming queue is shown here, there 
can actually be more with each one holding time ordered 
events from the same or different source simulation. 
Fujimoto’s description of null messages is used to avoid 
deadlock. This algorithm is implemented in the thin agent. 
Time stamDs in the null messages are used to advance the - 
simulations. The null message algorithm introduces a 
property known as lookahead that is utilized by virtually all 
conservative synchronization algorithms. Lookahead is 
used to generate the time stamps of null messages 
scheduled in the future and is further discussed by 
Fujimoto (1999b). 
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Figure 5 :  Synchronization Thin Agent 

4.2 GRIDS Proprietary Interface to support SCS 

To implement the synchronization thin agent, we needed to 
extend the GRIDS client interface to add support for 
requirements of SCS. A description of the additional 
methods is presented. 

gridsSCSClient extends gridsclient( 
void registerserver 

(gridsserver Server, 

callback) throws GridsException; 

(string Entity, SCSEvent event, double 
schedulelime) throws GridsException; 

string EntityName, gridsSCSRunnable 

void scheduleEvent 

1 

interface gridsSCSRunnable { 
void processEvent (SCSEvent event) throws 

GridsException; 
1 

class SCSEvent { 
Long EventUID; //unique number for the event 
String targetName; 
double scheduleTime 
String Value; 

1 

SCSAgent extends ThinAgent{ 
void scheduleEvent 

(string Entity, SCSEvent event, double 
scheduleTime) throws GridsException; 

1 

The registerserver0 method is modified to only allow 
a callback class that implements the gridsSCSRunnable 
Java interface. The method scheduleEvent() within the 
GRIDS interface is a proxy method used to invoke the 
SCSAgent, a specialized version of our ThinAgent class. 

Events dispatched by this thin agent increment a local 
counter. These counters can be matched globally to check 
if there are any events that have not arrived into event 
queues, these are known as transient messages (Fujimoto 
1999a). When an event needs to be processed the 
infrastructure calls the processEvent() method in the 
application with the event as the parameter. 

This description of the extended interface is actually a 
move towards a proprietary supply chain simulation client. 
This involves taking the generic GRIDS client and adding 
the required behaviors for the given simulation type. It can 
be seen that several different types of interface can be 
generated and specifically applied to a range of simulation 
types. This feature allows connectivity of simulations 
without compromising internal structure and allows for 
additional services not directly catered for in the core 
GRIDS distribution. A major goal of GRIDS is 
extensibility and this is provided in part by using thin 
agents and also by subclassing the GRIDS client. 

5 CONCLUSIONS 

This paper has reviewed the need for supply chain 
simulations to aid the decision processes involved in its 
management. The distribution of simulations as a result of 
mutually exclusive development has created a demand for 
building connecting infrastructure. This replaces the need 
to rebuild simulations and rather relies on the use of 
existing models. Additionally, -model reuse is promoted 
reducing the effort of redevelopment. We have introduced 
a novel paradigm for implementing the middleware 
technology in GRIDS and provided another example of its 
extensible services architecture using mobile objects. The 
potential exists for organizations to publish proprietary 
interfaces, partly to protect models and also to allow easier 
integration of stakeholder’s simulations with other models. 

This contribution primarily demonstrates an 
alternative approach to distributed simulation. It serves as 
an exemplar of GRIDS support for a range of simulation 
types. The works continued use of Java as the 
implementation vehicle serves to further evaluate -its 
capabilities in the distributed simulation area. Issues 
surrounding speed, usability and reliability are the focus 
here and feedback from our research group is available on 
request. More so, it is our intention to prototype possible 
architectures. If this kind of architecture was to meet with 
success then it is possible that a high speed implementation 
could be implemented in C++ or possibly future versions 
of Java (with optimization). This work is continuing 
through further development of the infrastructure and its 
applicability to problem domains other than DES (web- 
based simulation and our continued efforts in DIS). 
Examples of the GRIDS implementation are available from 
<www.brunel.ac.uk/ research/casm>. 
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