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ABSTRACT:
This paper describes a case study that was
undertaken at a leading European Investment
bank in which desktop grid computing was used
to speed-up the execution of Monte Carlo credit
risk simulations. The credit risk simulations were
modelled using commercial-off-the-shelf
simulation packages (CSPs). The CSPs did not
incorporate built-in support for desktop grids,
and therefore the authors implemented a
middleware for desktop grid computing, called
WinGrid, and interfaced it with the CSP. The
performance results show that WinGrid can
speed-up the execution of CSP-based Monte
Carlo simulations. However, since WinGrid was
installed on non-dedicated PCs, the speed-up
achieved varied according to users’ PC usage.
Finally, the paper presents some lessons learnt
from this case study. It is expected that this paper
will encourage simulation practitioners and CSP
vendors to experiment with desktop grid
computing technologies with the objective of
speeding-up simulation experimentation.
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1. INTRODUCTION

The grid computing (or grids) vision of providing
users continuous access to computing resources,
similar to public utility services such as
electricity and telephone, can be traced back to
the Multiplexed Information and Computing
Service (Multics) system that arguably discussed
this in the context of time-sharing of a CPU
among jobs of several users (Corbato and
Vyssotsky, 1965). Grid computing has the
potential to provide users on-demand access to
large amounts of computing power, just as power
grids provide users with consistent, pervasive,
dependable and transparent access to electricity,
irrespective of its source (Baker et al, 2002). It

has been identified that simulation modelling can
potentially benefit from this since computing
power can be an issue in the time taken to get
results from a simulation (Robinson, 2005;
Taylor and Robinson, 2006).

In the industry, simulations are often modeled
and executed using Commercial-Off-The-Shelf
(COTS) Simulation Packages (CSPs). For
simulation practitioners to benefit from grid
computing, it is important that the CSP vendors
incorporate grid support into their products.
However, it is generally the case that the vendors
incorporate additional functionality into their
software on an incremental basis, and only if they
are assured of a guaranteed Return On Investment
since the cost of development can be
prohibitively expensive. Another alternative for
simulation practitioners to realise the power of
the grids is to implement “distributed computing
code” that makes it possible to execute CSP-
based simulation over multiple PCs. However,
the users of these packages tend to be skilled in
simulation and not computer science and
therefore it is not practical to expect such
programming expertise from the vast majority of
simulation users. Thus, in order to increase the
adoption of grid technologies in the field of CSP-
based simulation, it is important to develop grid
computing software (subsequently referred to as
either grid computing middleware or just
middleware) that grid-enables existing CSPs
using a solution that requires little or no change
to them. Our system WinGrid (Mustafee et al,
2006; Mustafee and Taylor, 2009) aims to deliver
such a low intervention technological solution to
grid-enable existing Windows-based CSP
applications.

By means of a case study conducted in
conjunction with a leading European investment
bank, we investigate how a grid computing
middleware implemented via our system
(WinGrid) can increase the performance of Monte
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Carlo simulation experimentation. Our approach
differs from previous attempts to use distributed
computing to speed up simulation
experimentation (Anagnostopoulos and
Nikolaidou, 2003; Biles and Kleijnen, 2003; Paris
and Pierreval, 2001; Yücesan et al, 2001) by
using a grid composed of commodity PCs at
workplace specifically aimed at Windows
applications and by transparently, in as much as
possible, grid-enabling simulation within an
enterprise context (i.e. by changing the existing
simulation application as little as possible to
encourage adoption of this technology).

The paper is structured as follows. Section 2
presents an overview of Monte Carlo Simulation
and the CSPs. This is followed by a discussion on
grid computing in Section 3. In Section 4 we
describe the architecture of WinGrid. Section 5
outlines the case study that was conducted in a
leading investment bank. The experiments,
corresponding results and related discussions are
presented in Section 6. Section 7 outlines some
of the lessons learnt and draws the paper to a
close.

2. MONTE CARLO SIMULATION
AND CSPs

Monte Carlo simulation is a statistical technique
which uses a sequence of random numbers to
generate values from a known probability
distribution associated with a source of
uncertainty (Rubinstein, 1981). It is formed by a
class of computational algorithms that rely on
repeated random sampling to compute a result.
This method is usually employed when it is
impossible or infeasible to compute an exact
result using fixed values or deterministic
algorithms.

Monte Carlo simulation is extensively used in
application areas such as finance and insurance
(Herzog and Lord, 2002). Commercially
available spreadsheet applications (Lotus 1-2-
3™, etc.), spreadsheet add-ins (Crystal Ball™,
@Risk™, etc.) and Monte Carlo simulation
packages (Analytica™, etc.) are often used for
modelling Monte Carlo simulations in industry
(Swain, 2007). In this paper we collectively refer
to these different groups of software, namely,
spreadsheet applications, spreadsheet add-ins and
Monte Carlo simulation packages, as
Commercial-Off-The-Shelf (COTS) Simulation
Packages (CSPs).

Swain (2005) has made a comprehensive survey
of commercially available simulation tools based
on the information provided by vendors in
response to a questionnaire requesting product

information. This list consists of 56 CSPs, of
which 12 are CSPs for Monte Carlo simulation.
Spreadsheet applications such as Microsoft
Excel™ and IBM Lotus1-2-3™ have not been
included in Swain’s survey, but will nonetheless
be considered as CSPs since they can be used to
create Monte Carlo simulations that are deployed
in organizations (rather than developed entirely as
programmed code). SunGard Analytics™
software is used in banking and finance for
Monte Carlo-based credit risk simulations, and
this too will be considered as a CSP for Monte
Carlo simulation. These products have been
specifically mentioned because the investment
bank case study, discussed later in this paper, has
used Monte Carlo applications built using
Microsoft Excel™ and SunGard Analytics™.
The next paragraph gives an overview of CSP
Analytics™.

Analytics™ is the calculation engine for the
Credient credit risk system that provides
algorithms to calculate time-dependent profiles of
credit exposure using MCSs (Credient Analytics,
2007). Analytics™ consists of three separate
applications, namely, Analytics™ Desktop,
Analytics™ Market Data Manager (MDM) and
Analytics™ Server COM Object. The
Analytics™ Desktop application is a standalone
application that uses a calculation engine to
construct and analyse financial portfolios. It links
to the Market Data Manager to derive both
current and historical market data which serve as
inputs to these calculations. Analytics™ Server
COM Object is essentially a COM interface to the
Analytics™ Desktop and can be invoked by
external systems.

Of the total 12 CSPs for Monte Carlo simulation
that have been identified from Swain’s survey, all
the 12 are supported by the Windows Operating
System platform. Furthermore, Microsoft
Excel™ and SunGard Analytics™ are supported
only on the Windows platform. The platform
support for CSPs is important when considering
different grid technologies that can be potentially
used with existing CSPs. As has been mentioned
earlier, WinGrid is a grid computing middleware
that is targeted at Windows-based applications,
and it aims to deliver low intervention
technological solution to grid-enable existing
Windows-based CSP applications.

3. GRID COMPUTING

Grid computing focuses on large-scale resource
sharing, innovative applications and high-
performance orientation, with the objective of
coordinated resource sharing and problem solving
in dynamic multi-institutional virtual
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organizations (Foster et al, 2001). The
development of applications that can benefit from
grid computing (faster execution speed, linking of
geographically separated computational and data
resources, workflows, interoperation of software,
etc.) typically requires the installation of complex
supporting software and an in-depth knowledge
of how this complex supporting software works
(Jaesun and Daeyeon, 2003). This software is
commonly referred to as grid middleware. A grid
middleware is a distributed computing software
that integrates network-connected computing
resources (computer clusters, data servers,
standalone PCs, sensor networks, etc.), that may
span multiple administrative domains, with the
objective of making the combined resource pool
available to user applications for number
crunching, remote data access, remote application
access, among others (Mustafee and Taylor,
2008). Examples of grid middleware include
Globus (Foster et al, 2002), gLite (Berlich et al,
2005), and VDT (VDT, 2009).

The majority of grid computing middleware used
for e-Science projects, such as those mentioned
earlier, are targeted at dedicated and high-
performance cluster computers running various
UNIX/LINUX distributions - we refer to them as
cluster-based grid computing middleware.
Cluster-based grid computing can be contrasted
with desktop-based grid computing, which refers
to the aggregation of non-dedicated, de-
centralized, commodity PCs connected through a
network and running (mostly) the Microsoft
Windows operating system (Mustafee and Taylor,
2009).

Desktop grid computing or desktop grids
addresses the potential of harvesting the idle
computing resources of desktop PCs for
processing of parallel, multi-parameter
applications which consist of a lot of instances of
the same computation with its own input
parameters (Choi et al, 2004). Middleware for
cluster-based grid computing severely limits the
ability to effectively utilize the vast majority of
Windows-based resources that are common place
in both enterprise and home environments, and
therefore development of middleware for
desktop-based grid computing is important with
the growing industry interest in grids (Luther et
al, 2005). The focus of this paper is on utilising
the vast pool of underutilised desktop resources
in an enterprise – we refer to this as Enterprise-
wide Desktop Grid Computing (EDGC).

EDGC is a grid infrastructure that is confined to
an institutional boundary, where the spare
processing capacities of an enterprise’s desktop
PCs are used to support the execution of the

enterprise’s applications (Chien et al, 2003).
User participation in such a grid is not usually
voluntary and is governed by enterprise policy.
Applications such as Condor (Litzkow et al,
1988), Platform LSF (Zhou, 1992), Entropia
DCGrid (Kondo et al, 2004), and Digipede
Network (Digipede Technologies, 2009) are all
examples of EDGC middleware.

In order to increase the enterprise-wide adoption
of Windows-based grid technologies, it is also
imperative to develop new grid software to
specifically deal with Windows issues and grid-
enable existing Windows applications. With
regard to the former, for example, a .NET-based
grid computing framework called Alchemi has
been developed that provides the runtime
machinery and programming environment
required to construct Windows-based desktop
grids and develop grid applications (Luther et al,
2005). As for the latter, it requires development
of a grid-enabling solution that requires little or
no change to existing Windows applications. As
mentioned earlier in this paper, our system
WinGrid aims to deliver such a low intervention
technological solution to grid-enable existing
Windows applications. The architecture of
WinGrid is described next.

4. WINGRID: A MIDDLEWARE FOR
DESKTOP GRID COMPUTING

WinGrid is an EDGC middleware that is targeted
at the Windows operating system. WinGrid is
based on the master-worker distributed
computing architecture. This architecture consists
of one master entity and multiple workers
entities, where the master entity decomposes the
problem into small tasks, distributes these tasks
among a farm of worker processes and gathers
the partial results to produce the final result of the
computation; and the worker entities receive
message from the master with the next task,
process the task and send back the result to the
master (Heymann et al, 2000).

WinGrid consists of four different components:
the Manager Application (MA), the WinGrid Job
Dispatcher (WJD), the Worker Application (WA)
and the WinGrid Thin Client (WTC). The
interactions between the WinGrid components
are illustrated in Figure 1. A user submits a job
through the MA (1), which in turn interacts with
the WJD process (2) in the manager computer to
send work (3) to the WinGrid workers and their
WTCs (4). The WTC pass this work to their WA
for processing (5) and returns the result to the
WJD (6). The results of all the sub-jobs are
communicated back to the MA which then
collates the results and presents it to the user.
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The reader is referred to Mustafee (2007a) and
Mustafee and Taylor (2009) for more information
on WinGrid.

Figure 1 WinGrid architecture

5. CASE STUDY: IRS-RBF
SIMULATION APPLICATION

The investment bank uses CSP SunGard
Analytics™ for Monte Carlo-based credit risk
simulations of counterparty transactions. Credit
risk is the potential that the counterparty will fail
to meet its obligations in accordance with the
agreed terms (Basel Committee on Banking
Supervision, 1999). Credit risk simulations are
usually used to calculate the credit exposure over
a period of time, i.e., in the event of a default,
how large will the outstanding obligation be
when the default occurs? The IRS-RBF
application takes its name from two different
products, namely, Interest Rate Swaps (IRS) and
Risky Bond Forwards (RBF), which it simulates.
This application comprises of different Excel™
spreadsheets, VBA modules and Analytics™.

The IRS-RBF application requires two stages of
processing, we refer to it as Stage one and Stage
two respectively, and involves three distinct
operations that have to be “manually-executed”.
These operations are (1) generate profiles, (2)
create EPE tables, and (3) create PFE tables.
The EPE/PFE create table operations can only
start after successful execution of the generate
profile operation. The time taken to execute both
these stages for the IRS-RBF application is
shown in Table 1. The numbers of currencies that
are simulated by these products are 23 and 13
respectively. Ideally, the bank would expect to
run the IRS and RBF simulations with 37
currencies. This implies that the execution time
would increase further. Please note that the data
for Table 1 has been provided by the credit risk

analysts who have developed the IRS-RBF
application.

Table 1 Execution time for different products using the
original (non-grid version) IRS-RBF application

Products Generate
Profiles

(Stage one)

Create EPE
and PFE

Tables
(Stage two)

Currencies

Interest Rate
Swaps (IRS)

1 hour 15
minutes

12 hours 23

Risky Bond
Forwards (RBF)

4 hours 30
minutes

1 hour 20
minutes

13

This case study was undertaken as it became
essential to reduce the execution time of the
simulation. With the aim of creating an enterprise
desktop grid middleware capable of distributed
parallel execution of the IRS-RBF application,
WinGrid middleware was installed on computers
belonging to the credit risk division of the
investment bank. These computers already had
Excel™ and Analytics™ installed on them. For
the IRS-RBF application to utilise the resources
made available through WinGrid, it had to be
integrated to the WTC and the WJD (please refer
to Section 4 and Figure 1).
WinGrid Worker Application (WA) and
WTC: The WA is the IRS-RBF application.
Integration of the Excel-based IRS-RBF
application with WTC was achieved using
Excel’s COM interface. A custom built IRS-RBF
adapter was developed which encapsulated the
COM function calls required by WTC to interact
with the IRS-RBF application.

WinGrid Manager Application (MA) and
WJD: The MA that controls the IRS and RBF
simulation execution is called the WJD
Application Specific Parameter (ASP) Tool for
IRS-RBF application. It is an Excel-based tool
that consists of specific parameters that are
required for processing the IRS-RBF application;
for example, the name of the product to simulate
(IRS or RBF), the operation to perform (create
table, create profiles or both), the filename to
simulate, etc. The WJD APS tool also consists of
two other worksheets, namely “RBF” and “IRS”,
which contains data specific to the RBF and the
IRS simulations respectively. Each worksheet has
a list of currencies. Each currency is a separate
unit of computation (job). The interaction
between the MA and WJD is by means of an
Excel Adapter. This adapter contains specific
COM calls required by WJD to access the MA.

6. EXPERIMENTS, RESULTS AND
DISCUSSION

Identical IRS-RBF experiments for this case
study were conducted on (1) one dedicated
WinGrid node (running both WJD and WTC), (2)

WinGrid Job
Dispatcher

(2)

Manager
Application

(1)

Worker
Application

(5)

WinGrid
Thin Client

(4)(6)

(3)

(6)

(3)

WinGrid
Thin Client

(4)

Worker
Application

(5)
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4 non-dedicated WinGrid nodes connected
through the investment bank’s corporate LAN,
and (3) 8 non-dedicated WinGrid nodes
connected with the corporate LAN. The grid-
enabled IRS-RBF application was used for
running experiments over the different test beds.
The reason for not using the original IRS-RBF
application for execution over one dedicated,
standalone PC (i.e., test bed 1) was, (a) the
original IRS-RBF application was modified to a
large extent by the authors, and (b) to execute the
IRS and RBF simulations using the original
application meant that three different operations
(create profiles, create EPE tables and create PFE
tables) had to be manually invoked by the user.
The execution of the grid-version of this
application, on the other hand, was fully
automated.

The experiments were conducted over a period of
two days during normal working hours of the
investment bank. The 4-node and the 8-node
WinGrid experiments were run using production
machines that were also being used by the
analysts to do their jobs. The one node
experiments were conducted using a PC that was
not being used. There were three computers with
2.99GHz Intel P-IV processor and 512MB RAM.
Five other computers had 2.13GHz Intel P-II
processor with 2GB RAM. All the computers
were installed with Microsoft XP operating
system.

The dedicated WinGrid node used for performing
the standalone experiments had a 2.99GHz Intel
Pentium IV processor with 512MB RAM. The 4
non-dedicated WinGrid nodes used for the
experiments comprised of different subsets of the
machines at different times. The results of the
IRS and RBF simulations are presented in Figure
2. These results are based on two separate runs
for each workload (ideally we would have liked
to conduct more runs; however, running
experiments on a production network meant that
we did not have the required flexibility.
Furthermore, the time taken to execute the
simulations using non-dedicated nodes would
depend on the usage patterns of the underlying
PCs). The execution of all the four workloads,
pertaining to either IRS or RBF simulation, was
fastest using the 8 non-dedicated WinGrid nodes.
The slowest execution was recorded by the
standalone, dedicated WinGrid node.

For workloads [30 workunits (IRS)], [69
workunits (IRS)] and [15 workunits (RBF)] the
time taken to execute the IRS-RBF simulations
using the 4 node WinGrid test-bed was
comparable to its 8 node counterpart. One reason
for this may be that, with 8 nodes the number of

Excel files created in Phase 2 (create EPE table)
and Phase 3 (create PFE table) of the workflow
are double the number of Excel files created
when running the simulation using 4 nodes. Thus,
the sequential MA operation that collated data
from the EPE and PFE tables would generally
take more time in the case of the former. An
additional reason could be the specific usage
pattern of the PCs during the experiments. It is
therefore likely that the majority of the PCs in the
8 node set-up had their WTC clients manually or
automatically shut down because the analysts
were using the computers for their own work.
The WTC program can be shut down manually
through WinGrid’s graphical user interface. This
can also happen automatically as the WTC
program is designed to continuously monitor
CPU and the memory usage on a PC, and if the
resource usage crosses the pre-determined
CPU/RAM threshold levels then the user jobs are
immediately stopped. Similarly, jobs are started
automatically again when the CPU and memory
usage decreases as a result of a resource not being
used. Thus, the time taken to execute the
simulations on non-dedicated WinGrid nodes is
very much related to the usage pattern of the
underlying desktop PCs. Arguably, this is best
shown by the results of workload [39 workunits
(RBF)] in relation to its execution over 4 non-
dedicated WinGrid nodes, where the time taken to
complete the simulation is comparable to that of
its standalone counterpart (approximately 1200
seconds for both). In case the WinGrid nodes
were dedicated resources, this result would have
been surprising since it is generally expected that
with more computers the execution time of the
simulation would decrease (through adopting of
“divide and conquer” strategy). However, in case
of non-dedicated WinGrid nodes (as in our
example), the availability of the PCs for
executing the simulation actually depends upon
its use by the user. Thus, if the users are working
on their PCs then it is possible that WinGrid may
not be able to execute the simulation until the
users have finished their work. And this behavior
of non-dedicated WinGrid resources is aptly
reflected in Figure 2 below (especially, with
regard to workload [39 workunits (RBF)]).
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Comparing execution speed of IRS-RBF application
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Figure 2 Time taken to execute the IRS-RBF
application using different workloads

7. LESSONS LEARNT AND
CONCLUSIONS

In the concluding section of this paper we
describe some of the lessons that we learnt from
this case study. The reader should note that the
lessons learnt focus on the process of
implementing a desktop grid solution and our
engagement with the stakeholders (and the
experiment results).

 Show a technology demonstrator

Our experience shows that developing a
technology demonstrator (a demo!) and
presenting it to the stakeholders is very important
for gaining their confidence. This also provides
an opportunity for the stakeholders to give their
inputs and enables them to have a “picture in
mind” of the intended end-product.

 Good relation with stakeholder is the key

It is imperative that the stakeholders consider
themselves as part of the project. The onus is on
the researcher/developer to build such a rapport
with the stakeholders.

 Security of the network is paramount

Computer security is understandably very
important for any organisation. Computer support
is generally paranoid about installing software
that has not been internally tested and certified.
The cause for their concern increases manifolds
in cases where the software being installed opens
communication ports for computers to
communicate with each other – as is the case with
grid computing middleware like WinGrid. Thus,
any solution should take into account the security

concerns of the organisation and try to work
around it. WinGrid therefore uses only one
communication port. This is unlike several other
grid computing middleware that use multiple
ports for communication, for example, Condor
uses multiple, bi-directional, static and dynamic
ports (Beckles et al, 2005).

 Provide regular updates

From our experience we find that giving
stakeholders regular updates is very important.
Showing demos of ongoing work is very
effective.

 Write a user guide for the application

The researcher/developer should spend time in
writing a comprehensive user manual. This
manual should include system requirements,
installation instructions, information on software
dependencies, instructions for working
effectively with the software, troubleshooting,
FAQ, etc. For example, WinGrid has a
comprehensive user guide titled “WinGrid 0.2
User Documentation: WinGrid-Excel Integration
for Speeding up IRS and RBF Simulations”
(Mustafee, 2007b).

 Provide ongoing support

It is important to recognise that the organisation
will generally use the software until ongoing
support is provided. The ongoing support is
required since bugs may be encountered in the
program, the requirements may change, new
functionality has to be introduced, etc. Being
researchers, it is difficult to provide such support.
It is therefore important that the computer support
in the organisations where the software is
deployed be trained to take-over the maintenance
of the software. However, this is only possible if
the support personnel have the necessary
expertise to do so and there are necessary
indemnity clauses in the original contract
(between the University/researcher and the
organisation).

In conclusion the deployment of WinGrid and the
collaboration yielded successful results. It is
hoped that our lessons learnt will be useful to
others undertaking such industry-based ventures
in the future.
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