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Abstract 

Telomeres are physical ends of chromosomes consisting of (TTAGGG)n DNA 

sequence and a specialized set of proteins that protect chromosomal ends from 

degradation and from eliciting DNA damage response. These specialized set of 

proteins, known as shelterin, directly bind to telomeric DNA. In addition, some DNA 

double-strand break (DSB) repair proteins such as, DNA-PKcs and KU70/80, play 

active roles in telomere maintenance. Mouse knock-out experiments have revealed 

that deletion of either DNA-PKcs or Ku70/80 resulted in elevated levels of telomeric 

fusion, indicative of dysfunctional telomeres. Artemis protein is involved in DNA DSB 

repair through non-homologous end joining (NHEJ) and it is phosphorylated by DNA-

PKcs. Human cells defective in Artemis have been identified and shown to be 

radiosensitive and patients with an Artemis defective gene suffer from radiosensitive 

severe-combined immune deficiency syndrome (RS-SCID). Mouse cells defective in 

Artemis have elevated levels of telomeric fusion.  

We have demonstrated in this thesis that Artemis defective human cell lines show a 

mild telomeric dysfunction phenotype detectable at the cytological level. The nature 

of telomere dysfunction phenotype appears to be similar to that observed in DNA-

PKcs defective cells as exemplified by the presence of IR induced chromatid 

telomeric fusions. We have also shown that (a) DNA damage occurring within the 

telomeric DNA is difficult to repair or irreparable in older cells and that (b) Artemis 

defective older cells show higher proportion of DNA damage at telomeres than their 

normal counterparts. Finally, we have demonstrated that inhibition of DNA-PKcs 

causes (a) an increase in telomeric fusions in Artemis defective cell lines relative to 

both normal cell lines after inhibition and Artemis cell lines before inhibition and (b) 
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elevated levels of DNA damage at telomeres following exposure of cells to radiation 

relative to both irradiated normal cells exposed to a DNA-PKcs inhibitor and 

irradiated Artemis defective cells but not exposed to the DNA-PKcs inhibitor. These 

results suggest that the effects of Artemis and DNA-PKcs on telomeres are 

cumulative. We have also performed (a) experiments to examine telomere function 

in Artemis defective cell lines after knocking down DNA-PKcs levels by RNAi and b) 

preliminary experiments to knock-down Artemis in DNA-PKcs defective cells. Taken 

together, our results suggest that the Artemis defect causes mild telomere 

dysfunction phenotype in human cells. 
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1.1 Telomere structure and function 
 
Telomeres are specialized structures found at the end of most eukaryotic and all of 

mammalian chromosomes. The combined action of telomeric DNA, telomere 

associated proteins, and telomerase, facilitate the protection, degradation, and in 

some cases fusion of mammalian chromosomal ends (de Lange, 2006). The highly 

conserved DNA component of telomeres in humans was first described by Moyzis 

and colleagues in 1988. They showed telomeres to be comprised of a tandem of 

guanine-rich repeats of (TTAGGG)n (Moyzis et al., 1988). Human telomeres were 

found to be 10kb long at birth and gradually shorten with cell division (de Lange et 

al., 1990), although human telomere length may vary between 2kb – 30kb in 

telomerase positive human cell lines (de Lange, 2006). With each cell cycle, in 

telomerase-negative cell lines, telomere length gets shorter at a rate of 50-

300bp/population doubling (Huffman et al., 2000). James Watson was the first to 

observe the problem with replicating telomeres and called it the “end replication 

problem” (Watson, 1972) (Figure 1.1). However it was a Russian scientist that linked 

the end replication problem to telomere shortening (Olovnikov, 1973). Olovnikov then 

linked cellular aging to telomere shortening and called it marginotomy (Olovnikov, 

1973). It is now understood that telomere shortening is a major cause of replicative 

senescence in human cells lacking telomerase activity. It was shown in 1997 that 

telomeres of many eukaryotes including mammals have a 3´ overhang (Makarov et 

al., 1997). In his paper, Makarov proposed a new model for telomere replication that 

extended Watson’s and Olivnokov’s end replication problem and proposed that there 

is a much greater degradation at the 5´ of the lagging strand that leaves a long 3’  
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Figure 1.2 T-Loop Structure  
A| Electron Microscopy image of purified human telomeres revealing the lariat 
structure known as T-loop. (Griffith et al., 1999) B| The 3´overhang of single 
stranded DNA invades the dsDNA forming a larger T-loop and smaller D-Loop(de 
Lange, 2005). 

A B 

Figure 1.1 Conventional end replication problem 
A| The end replication problem applies to the lagging strand of DNA during 
replication processes. The leading strand is replicated in a continuous fashion. B| 
Formation of an Okazaki fragment in the lagging strand and subsequent 
degradation of primers leaves a gap of around 8-12bp in the 5´ end of lagging 
strand that cannot be replicated and is lost during cell division. C| Revised model 
predicts a greater degradation at 5’ end of both DNA strands (lagging and leading), 
leaving a long 3’ overhang at both ends. This revised model was first proposed by 
(Makarov et al., 1997).  
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overhang (Makarov et al., 1997) composed of TTAGGG repeats and it could be 

several hundred nucleotides long (Wright et al., 1997). The long 3’ overhang (50-

300bp) has a crucial function and it was shown in 1999 to form a telomeric loop (t-

loop) by folding back and invading the double stranded DNA (dsDNA) (Griffith et al., 

1999). The formation of a t-loop hides the 3´ overhang from telomerase and from 

DNA repair and degradation activities (Figure 1.2) (Blasco, 2007).  

1.2 Proteins associated with mammalian telomeres 
 
Factors associated with human telomeric DNA are divided into three groups: 1. 

Nucleosomes, 2. Proteins directly bound to t-loops and D-loops known as shelterin, 

3. Other factors, namely DNA-damage response proteins found to function 

elsewhere in the cell but  also found to be associated with telomere maintenance.  

1.2.1 Shelterin 

 

There are six proteins that were found to be directly associated with telomeric DNA 

at the end of the human chromosome and they are known by a collective name 

shelterin (de Lange 2006). Two of these proteins, telomere repeat factor 1 (TRF1) 

and telomere repeat factor 2 (TRF2) are directly bound to the double stranded 

telomeric DNA. Protection of telomeres 1 (POT1) binds to single stranded, TTAGGG 

repeats of telomeric DNA. The protein interaction between TRF1, TRF2, and POT1 

holds together and protects the t-loop formation of the telomere (de Lange, 2006). 

TRF1 and TRF2 complexes regulate telomere length and function (de Lange, 2002). 

Inhibition of TRF2 in human culture cells causes telomere dysfunction (de Lange, 

2002). By depleting TRF2, the cell perceives telomere sites as DNA damage sites. 

Depending on cell types, depletion of TRF2 induces either apoptosis or triggers 

senescence by activating ATM and p53 (de Lange, 2002). For example, inhibition of 

A 
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TRF2 in primary fibroblast initiates senescence via p53 activation and/or p16/Rb 

inhibition, whilst in primary lymphocytes TRF2 inhibition causes cellular apoptosis via 

ATM/p53 activation (de Lange, 2002). The three protein complexes of TRF1, TRF2, 

and POT1 have a strong affinity to bind only to the telomeric DNA due to five DNA-

binding domains that recognize TTAGGG repeats of telomeric DNA (de Lange, 

2005). Three other members of shelterin are TIN2, Rap1, and TPP1. TIN2 interacts 

directly with TRF1 and TRF2 to regulate telomere length and it is also shown to bind 

to POT1 through TPP1 (de Lange, 2006). TIN2 also stabilizes TRF2 to bind with 

telomeric DNA and can be lethal to a cell when both TRF2 and TIN2 are depleted 

and show telomere deprotection phenotype (Kim et al., 2004). 

Human Rap1 is a TRF2 interacting protein that contains a conserved MYB DNA 

binding domain which is necessary for it to bind with telomeric DNA. Because of a 

weak positive charge Rap1 is unable to bind directly to telomeric DNA and hence 

interacts with TRF2 (Li et al., 2000). TRF2’s and Rap1’s protein interaction regulates 

telomere length and also affects telomere length heterogeneity (Li et al., 2000). 

TPP1 is the most recently identified telomere binding protein that interacts with 

POT1 and TIN2, and helps in the recruitment of POT1 to telomeres (Ye et al., 2004). 

1.2.2 Nucleosome 

 

Besides proteins that are directly associated with telomeric DNA, nucleosomes were 

also found to bind to telomeres (Tommerup et al., 1994). Modified versions of 

histone proteins were found associated with heterochromatin. Several of histone 

proteins including, heterochromatic protein 1 (HP1), isoforms of HP1 (HP1α), histone 

3 trimethylated at lysine 9 (H3-K9), and histone 4 trimethylated at lysine 20 (H4-

K20), suppressor of variegation 3-9 homologue (SUV39H), suppressor of variegation 
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4-20 homologue (SUV4-20H), and histone methyltransferases (HMTases) are found 

at heterochromatin near the telomeric ends of chromosomes (Blasco, 2005). The 

retinoblastoma (RB) family of proteins were also found to be required for the 

trimethylation of H4-K20 at both telomeres and centromeres (Gonzalo et al., 2005, 

Blasco, 2005). The novel role of the RB-family of proteins, apart from its function in 

cellular proliferation, is in histone modification which interacts directly with SUV4-20H 

HMTases that regulate telomeric and pericentric heterochromatin. Hence the novel 

role of the RB-family of proteins in chromatin remodelling, chromosome segregation, 

and telomere length control (Blasco, 2005). Loss of the RB-family of proteins leads 

to the abnormal elongation of telomeres (Gonzalo et al., 2005). The abnormal 

elongation of telomeres can be explained by the loss of the heterochromatin at 

telomeres that leads to a less compact chromatic structure. This in turn, results in 

abnormal telomere elongation due to an increased access of telomerase or other 

telomere-elongating activities to the telomere (Blasco, 2005). 

1.3 Telomere length regulation 
 
Normal somatic cells cannot elongate their telomeres so the telomere length 

eventually gets shorter in each cell cycle until it reaches critical length when cells 

stop dividing and enter the senescence state. Telomeric proteins mentioned above 

have a role in protecting telomeres. The telomerase enzyme (an enzyme responsible 

for elongating telomeric DNA) is present in germ line cells, cancer cells, and 

immortal cell lines but it is usually below the level of detection in somatic cells 

(Greider and Blackburn, 1985). However, Masutomi et al 2003, found a small 

quantity of telomerase enzyme in primary presenescence cells that exhibited hTERT 

(a ribonucleoprotien that functions with telomerase to maintain telomeric DNA length) 
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activity in S-phase and argued that telomere shortening on its own cannot trigger 

senescence and cells need the bimodal action of hTERT depletion and telomere 

shortening (Masutomi et al., 2003).  

Shelterin proteins sense telomere length through their ability to bind and accumulate 

at telomeric binding sites with their TTAGGG binding motifs. They protect and 

prevent the access of the telomerase enzyme to the telomeric sites and hence 

prevent telomere elongation. A model proposed by de Lange explains the telomere 

length homeostasis and the role shelterin plays in telomere end protection (see 

Figure 1.3, de Lange 2006). Telomere length homeostasis therefore is affected by all 

components of shelterin.  

 

Figure 1.3 Telomere length homeostasis.  
Long telomeres will contain more shelterin with the binding of POT1 to the 3’ 
overhang. This blocks the access of telomerase whereas shorter telomeres will 
have less shelterin proteins and therefore easier access for the telomerase enzyme 
(de Lange, 2006). 

 
 

Tankyrase is a protein involved in telomere maintenance but it is not part of the 

shelterin complex . It has a modulating effect on TRF1 and causes the release of 

TRF1 from telomeric DNA (Mattuli, 2007, de Lange, 2006). Overexpression of 

tankyrase also reduces the amount of POT1 on telomeres and hence explains the 

induction of telomere elongation in cells with excess tankyrase expression in the 
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nucleus. Tankyrase 1 has an ankyrin domain and a catalytic domain of the 

poly(ADP-ribose) polymerases (PARPs) with an amino terminus motif similar to that 

of TRF1 (Smith et al., 1998, Smith and de Lange, 2000).   

Several other non-shelterin proteins affect telomere length regulation in human cells, 

including Nijmegan breakage syndrome 1 (Nbs1) and Est1A/SMG6 (Ever Shorter 

Telomeres, EST) that mediate telomere elongation (de Lange, 2006). However, in 

mouse cell lines, a deficiency in DNA-PK causes altered telomere length (Hande et 

al., 1999) and mouse cells lacking all three of the Rb-family of proteins are shown to 

have longer telomere length than normal. Other factors affecting telomere length are 

PARP1, Rad54, Rad51D, Suv39h1/2, heterogeneous nuclear ribonucleoprotein 

(hnRNP) and A1/UP1 (see for review de Lange, 2006).  

 
Figure 1.4. Shelterin proteins.  
Schematic representation of shelterin proteins and their interaction with telomeric 
DNA. TRF1 and TRF2 directly bind to the TTAGGG repeats due to their Myb 
domain. Rap1 binds to TRF2 in a 1:1stoichiometry, and has a role in telomere 
length regulation and affects telomere length heterogeneity. POT1 binds to the 
single stranded 3´ overhang. TIN2 and TPP1 link POT1 to TRF1/TRF2. Shelterin 
proteins protect telomeres and hold together the lariat structure of telomeres (de 
Lange, 2006). 
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1.4 Telomere and DNA Damage Response Proteins 
 
During the replication stage of the cell cycle, the compact structure of telomeric DNA 

is opened up to allow access to DNA replication machinery and therefore telomeres 

become subject to cellular repair machinery. In the opened up form telomeres 

resemble a DNA double strand break (DSB) and proteins involved in DNA damage 

response and repair mechanisms are then localized on telomeres (M. Matuli, 2007). 

However, Slijepcevic  (2008), argues that the conventional model of telomeres acting 

as a protective mechanism, hiding telomeric DNA from DNA repair machinery 

constitutes a “paradox” with the finding that two of the non-homologous end joining 

(NHEJ) proteins, namely Ku70/80 and DNA-PKcs are physiologically present at 

telomeres and interact with shelterin (de Lange, 2005, Slijepcevic, 2008). Other 

proteins involved in DNA damage response that are found at telomeres include, 

Mre11, Rad50, Rad51, NBS1, ATM, WRN, PARP-2, ERCC1, XPF, BRCA1, RAD9, 

and PARP1 (Slijepcevic, 2008, M. Matuli, 2007, de Lange, 2005, Gitte De Boeck, 

2009). 

In some cases, these factors directly interact with shelterin proteins. For example, 

WRN helicase (protein that is mutated in Werner syndrome patients), and BLM 

helicase (mutated RecQ helicase protein in Bloom’s syndrome) bind to TRF2 

(Opresko et al., 2002). TRF2 directly interacts and recruits the MRN complex 

(Mre11, Rad50, NBS1) (de Lange, 2005). The MRN complex is a DNA damage 

sensor with multiple functions in genome integrity. Although each component of the 

MRN complex is found at varying concentrations at telomeric sites throughout the 

cell cycle, the concentration of the MRN complex is sharply increased when 

telomeres are de-protected, suggesting that the MRN complex recognizes 
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unprotected telomeres as sites of DNA breaks (de Lange, 2005, M. Matuli, 2007). 

One of the more recent shelterin interacting proteins discovered is hSnm1B or better 

known as Apollo. It has a 5´→3´ exonuclease activity and it was found to interact 

with TRF2 in telomere protection (Lenain et al., 2006, van Overbeek and de Lange, 

2006). Table 1.1 summarizes all DNA damage response proteins that have links with 

telomere maintenance (Slijepcevic, 2006). Alteration in some of the DNA double 

strand break (DSB) repair proteins, namely Ku70/80 and DNA-PKcs have been 

associated with the telomere end capping function (Bailey et al., 1999). This function 

essentially prevents fusion between chromosomes and keeps them as separate 

entities. Mouse cell lines deficient in DNA-PKcs and in Ku70/80, or cells from mice 

genetically modified to lack these proteins have been shown to have an increased 

incidence of telomere end-to-end fusion, suggesting DNA-PKcs’ and Ku70/80’s dual 

role in repairing damaged DNA and also in telomeric end-capping (Bailey et al., 

1999). 

1.5 DNA DSB repair 
 
Two pathways are responsible for the repair of DNA DSBs in mammalian cells. 

These pathways are: Non-homologous End Joining (NHEJ) and Homologous 

Recombination (HR). DSB is a form of DNA damage that can be caused by 

exogenous or endogenous agents. For example, exposure of the cell to ionising 

radiation (IR) can cause complex, clustered types of DSB lesions by the deposition 

of random energy. IR can also induce DBSs indirectly via the production of a reactive 

oxygen species (O'Driscoll and Jeggo, 2006). Closely packed single strand breaks 

can also result in the DBSs of DNA molecules. In certain recombination reactions, 

such as V(D)J recombination in the immunoglobulin of the immune system (i.e. the  
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Table 1.1 DNA damage response proteins have also been found to interact with telomeres.  
(Slijepcevic, 2006) 
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generation of diversity in the development of T-Cells and B-Cells), DSBs are also 

generated by recombination activating gene (RAG) proteins between the 

recombination signal sequence (RSS) and the coding sequence (Janeway, 2004, 

O'Driscoll and Jeggo, 2006) . Meiosis (the division of a gamete-producing cell) 

involves the programmed generation of a site or region specific formation of DSB 

through endonucleases (O'Driscoll and Jeggo, 2006). Studies have also shown 

that telomere shortening can activate DSB repair and propagation of 

apoptosis/senescence via p53 activation (Smith and de Lange, 2000). However, 

the variation in the occurrence of DSBs results in the activation of relevant 

pathways and individual factors. For example, the exogenous generation of 

DSBs through IR results in the activation of NHEJ and ATM signalling. On the 

other hand, replication fork stalling activates primarily HR and ATR signalling. 

The degree of DSB damage also has an effect on the activation of the relevant 

rejoining mechanism (O'Driscoll and Jeggo, 2006). 

1.5.1 Non-homologous End Joining Pathway 

 

The majority of DSBs in eukaryotic cells are repaired through either NHEJ or HR. 

Although recent findings have found a third, less characterized repair mechanism 

named microhomology-mediated end joining (MMEJ) as another DNA DSB 

repair pathway (McVey M. and Lee S.E., 2008). However, for the purpose of this 

thesis the two main and well characterized DNA DSB repair mechanism, namely 

NHEJ and HR will be described in more detail. HR takes place in late S-G2 

phases, while NHEJ occurs throughout the cell cycle, but mainly in the G1 phase 

(O'Driscoll and Jeggo, 2005). Core proteins involved in the NHEJ process include 
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Ku dimers (Ku70-Ku80), DNA-PKcs, XRCC4, Ligase IV, Artemis, and recently 

discovered cernunnos-XLF (Buck et al 2006, Ahnesorg et al 2006). The Ku 

complex (Ku70/Ku80) is involved in the early detection of DNA DSBs due to its 

high affinity for DNA ends. The attachment of the Ku heterodimmer to the site of 

DSB attracts DNA-PKcs, a serine/threonine protein kinase. The regulatory 

Ku70/80/DNA-PKcs complex acts as a DNA damage sensor. A purified Artemis 

protein has shown to possess single-stranded 5’ to 3’exonuclease activity. 

However, when Artemis protein forms a complex in the presence of DNA-PKcs, 

Artemis becomes phosphorylated and Artemis acquires endonucleotytic activity 

on 5’ and 3’ overhangs as well as hairpins (Ma Y. et al., 2002). Artemis provides 

an important nucleolytic processing activity to prepare DNA ends for re-ligation 

(Sekiguchi and Ferguson 2006). Once the ends of the DNA are secured, XRCC4 

and Ligase IV seal the break, although another protein complex such as 

MRE11/RAD50/NSB1 (MRN complex) could be required for further processing of 

the DNA ends before re-ligation. The newly discovered member of NHEJ protein 

family, Cernunnos-XLF, is believed to play a role in DSB end joining alongside 

XRCC4 and Ligase IV. The exact role of this new protein is not yet known, but 

Ahnesorg et al (2006) suggested that Cernunnos-XLF may serve as a bridge 

between XRCC4 and Ligase IV and the other NHEJ factors to facilitate the 

recruitment of the other factors to the ends of DSB. Or it might be involved in the 

regulation of XRCC4-Ligase IV activity via the modulation of active and inactive 

multimeric states of XRCC4 (Sekiguchi and Ferguson 2006). Interestingly, some 

of the NHEJ factors are shown to be involved in telomere length maintenance. 
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For instance, Ku70, Ku80 and DNA-PKcs associate with telomeric DNA in 

several human cell types (d’Adda di Fagagna et al., 2001). Similar results were 

seen in mice deficient in Ku86 with increased chromosome end-to-end fusion 

with strong telomeric signals at point of fusion thus indicating important role of 

Ku86 (Ku86 is the same as Ku80) in telomere end capping in mouse (Samper et 

al., 2000, Espejel et al., 2002a, Espejel and Balsco 2002). Similarly, DNA-PKcs 

(catalytic subunit of DNA-PK) was shown to be essential in protecting 

mammalian telomeres (Bailey et al 2004) and that inhibition of DNA-PKcs leads 

to increased levels of chromatid fusions (Bailey et al., 2001, Bailey et al., 2004). 

Similar results were observed in DNA-PKcs deficient mice (known as SCID mice) 

with increased levels of telomere fusions indicative of telomere dysfunction 

through loss of telomere end capping (rather than telomere shortening since it 

has been shown that SCID mouse cells have abnormally longer telomeres 

(Hande et al., 1999, Samper et al 2000, Goytisolo et al 2001). The question is 

whether other NHEJ factors, including Artemis or Ligase 4/XRCC4, or the newly 

found NHEJ protein XLF, are involved in telomere maintenance. The Ligase IV 

deficient human fibroblast cell line with radio-sensitivity was shown to have 

accelerated telomere shortening in comparison to the normal cell line in a study 

published by Cabuy et al 2005. In the same study they showed that an Artemis-

deficient human cell line (F01/240), also radio-sensitive, display accelerated 

telomere shortening and signs of telomere fusions (although the study was 

limited) (Cabuy et al., 2005)  
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1.5.2 Homologous Recombination (HR) 

 

Homologous recombination is another form of the DSB repair operating mainly in 

late S and G2 phases of a cell cycle. HR is a preferred mechanism of simple 

eukaryotes such as yeast. HR is much more accurate than NHEJ since it uses a 

sister chromatid as a template in rejoining DSBs. HR is predominantly 

responsible for repairing DSBs that arise due to replication fork stalling (in the 

late S phase) and the HR pathway involves nucleolytic processing, strand 

invasion, Holliday junction formation, and branch migration (see figure 1.5). 

The proteins involved in HR pathway are: RAD51, RAD52, RPA, BRCA1, BRCA2 

XRCC2, XRCC3, RAD54, DNA polymerases, and DNA ligases. The HR repair 

follows two pathways. A RAD51-dependent pathway, which is an error free and 

RAD51-independent pathway, which is prone to errors in the DNA sequence 

(Griffin and Thacker, 2004). The RAD51-dependent pathway involves a 

homology search and strand invasion to allow the restoration of the original DNA 

sequence based on the undamaged homologous sequence (Figure 1.5).  
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DNA-PKcs Artemis XLF XRCC4/Liq IV 

Key: 

Ku70/80 

 

 
 

 
Figure 1.5 Schematic representation of NHEJ and HR.  
NHEJ A: DSB is detected in a mammalian cell via sensor molecules MRN 
complex and ATM, which recruits Ku70/Ku80 heterodimmers that are attached to 
the ends of the broken DNA molecule. The doughnut shape of the Ku 
heterodimer is perfectly matched to its DNA double helix shape and is inserted 
at the ends of the broken DNA molecule. B: The dimerization of Ku70/Ku80 
recruits DNA-PKcs to the ends of the broken DNA molecule, forming a 
Ku70/Ku80/DNA-Pkcs complex. C: One of the functions of DNA-PKcs is to 
phosphorylate the Artemis molecule to activate its endonucleolytic properties to 
“chew” any overhangs at the end of the DNA molecule, a process that is 
necessary for the proper re-ligation step. D: Ligation occurs in the presence of 
XRCC4 (known as the x-ray cross linking protein), Ligase IV protein and the 
newly discovered Cernunnos-XLF proteins. XLF protein may be used to bridge 
XRCC4 and Ligase IV proteins. 
HR (see 1.5.2 for detail) (Author’s own adaptation) 

 

HR NHEJ 



  Chapter 1: General Introduction 

17 

 

The RAD52 protein recognises the broken DNA ends and processes the DNA 

ends into a 3’ single strand by nuecleolytic activities of the Mre11-Rad50-Nbs1 

complex. Then the formation of a nucleoprotein filament onto the 3’ single strand 

DNA is carried out by RAD51 by polymerization and with the aid of a single 

strand DNA binding protein, replication protein A (RPA) and RAD52. The RAD51 

nucleoprotein filament searches for homologous duplex DNA after which the 

DNA strand exchange generates a joint molecule between the homologous 

damaged and undamaged duplex. BRCA2 helps to load RAD51 onto the ssDNA 

molecule, whereas BRCA1 is required as a regulatory mechanism. After branch 

migration and holliday junction formation, DNA synthesis takes place where DNA 

polymerases and accessory factors fill the gap and DNA Ligase IV, XRCC4 

relegate the DSB. BRCA1 deficiency confers sensitivity to ionizing radiation as 

well as sensitivity to DNA cross linking agents such as mitomycin C (Powell and 

Kachnic 2003). Also a BRCA1 deficient human lymphoblastoid cell line shows an 

elevated level of chromosome end-to-end fusion that suggests a role of BRCA1 

in telomere capping (Al-Wahiby and Slijepcevic 2005). 

1.6 Artemis Protein Structure and Function 
 
The Artemis gene was found to be mutated in people suffering from RS-SCID 

syndrome (Radio Sensitive Severe-Combined Immunodeficiency) (Moshous et 

al., 2001). The Artemis protein is known to be involved in DNA DSB end 

processing, NHEJ (see section 1.5.1). It is encoded by a gene, known as 

DCLRE1C (DNA cross-link repair 1C), located on the short arm of chromosome 

10, and was described to be capable of cleaving hairpin junctions formed at 
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coding ends in the process of V(D)J recombination of immune B-cells and T-cells 

(Ma et al., 2002). Hence, people suffering from RS-SCID syndrome had their B-

cells and T-cells entering an early arrest during maturation, therefore resulting in 

the lack of functional B and T-cells. Initially, thirteen clinical cases of patients 

suffering from RS-SCID due to the Artemis defect were found, with the majority 

of the group linked to Athabaskan speaking Native Americans of Apache or 

Navajo tribes (Lanying Li, 2002, Li et al., 2002). However, four new cases of RS-

SCID were discovered with two novel mutations in the Artemis gene in a 

Japanese family (Kobayashi et al., 2003). Therefore, defects in the Artemis gene 

are not unique to one certain tribe of people and could be more widespread than 

previously thought. Here, a detailed review of the Artemis structure and function 

is presented, with a look at the main interaction of Artemis with DNA-PKcs and 

ATM. 

 

Figure 1.6. Schematic representation of Artemis mRNA.  
Artemis gene is composed of 14 exons (orange arrows) with the main open 
reading frame (coding region) compromising of 2079 bp (green arrow). The 3’ 
and 5’ untranslated region (UTR) is in yellow (left and right of ORF respectively) 
with polyA tails at the 3’ end. (Author’s own adaptation, using VectorNTI 
(Invitrogen))  
  

Artemis Human NM 001033855

3701 bp

PolyA S ignal5’ end 3’ end 
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1.6.1 Structure of Artemis 

 

Artemis is a protein made up of 692 amino acids (aa) with 14 exons ranging from 

52bp to 1160bp (Moshous et al., 2001) (Figure 1.6). The Artemis gene was 

mapped to the short arm of human chromosome 10p13  (Moshous et al., 2000). 

The Artemis protein has three regions: 1) a metallo β-lactamase (aa 1-155), 2) β-

CASP (aa 156-385), 3) C-Terminal (aa 386-692) (Poinsignon et al., 2004a). The 

metallo β-lactamase region of the Artemis protein shows homology to yeast 

PSO2 and murine SNM1 (Poinsignon et al, 2004b). This conserved homology 

with a catalytic activity alongside β-CASP is absolutely essential for the proper 

enzymatic functioning of the Artemis protein. The C terminal region of the 

Artemis protein contains eight Serine-glutamine(SQ)/threonine-glutamine(TQ) 

domains (refered to as SQ from here therein) required for phosphorylation, seven 

of which are conserved in humans and mice (Poinsignon et al, 2004b) (Figure 

1.7). The SQ sites are where ATM, ATR, and DNA-PKcs proteins carry out 

phosphorylation of Artemis. Serine645 is the main site of ATM phosphorylation 

(highlighted in dark green, in Figure 1.7). Moshous and colleagues initially 

identified eight mutations in 11 families in 2001, of which two had genomic 

deletion that involved exons 1-4 that produced no RNA, resulting in complete null 

allele, one genomic deletion in exons 5-6 with K96 frameshift, and the other 

genomic deletion was in exon 5-8 with the deletion of K96-Q219. Other mutations 

involved splice donors leading to frameshift deletion in three cases, or in-frame 

deletion in one case (Moshous et al. 2001). Two more novel mutations in the 

Artemis gene were found in four Japanese cases, with one having a genomic 
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deletion at exon 3 and skipping exon 4 (Kobayashi et al., 2003). Two other novel 

mutations in the Artemis gene found in 2003 were G118V and G135E that show 

the absence of T-cells and B-cells (Noordzij et al., 2003). Two other mutations in 

Artemis were described in 2005. One form of mutation involved the substitution 

of H35D that is found in the Omenn syndrome, with one null and one 

hypomorphic mutation with the latter releasing a low level of the wild type Artemis 

protein (Ege et al., 2005). 

MSSFEGQMAE YPTISIDRFD RENLRARAYF LSHCHKDHMK GLRAPTLKRR  50 

LECSLKVYLY CSPVTKELLL TSPKYRFWKK RIISIEIETP TQISLVDEAS 100 

GEKEEIVVTL LPAGHCPGSV MFLFQGNNGT VLYTGDFRLA QGEAARMELL 150 

HSGGRVKDIQ SVYLDTTFCD PRFYQIPSRE ECLSGVLELV RSWITRSPYH 200 

VVWLNCKAAY GYEYLFTNLS EELGVQVHVN KLDMFRNMPE ILHHLTTDRN 250 

TQIHACRHPK AEEYFQWSKL PCGITSRNRI PLHIISIKPS TMWFGERSRK 300 

TNVIVRTGES SYRACFSFHS SYSEIKDFLS YLCPVNAYPN VIPVGTTMDK 350 

VVEILKPLCR SSQSTEPKYK PLGKLKRART VHRDSEEEDD YLFDDPLPIP 400 

LRHKVPYPET FHPEVFSMTA VSEKQPEKLR QTPGCCRAEC MQSSRFTNFV 450 

DCEESNSESE EEVGIPASLQ GDLGSVLHLQ KADGDVPQWE VFFKRNDEIT 500 

DESLENFPSS TVAGGSQSPK LFSDSDGEST HISSQNSSQS THITEQGSQG 550 

WDSQSDTVLL SSQERNSGDI TSLDKADYRP TIKENIPASL MEQNVICPKD 600 

TYSDLKSRDK DVTIVPSTGE PTTLSSETHI PEEKSLLNLS TNADSQSSSD 650 
FEVPSTPEAE LPKREHLQYL YEKLATGESI AVKKRKCSLL DT 692 

 
Key: 

MS β-lactamase 
VK β-CASP 
EE C-Terminal 
SQ Serine-glutamine/threonine-glutamine  
SQ Serine 645 main site of ATM phosphorylation 

Figure 1.7. Amino Acid sequence of the Artemis gene.  
The three regions of the Artemis protein are highlighted alongside the 8 SQ 
motifs (7 red highlights and one dark green highlight) and a site of ATM 
phosphorylation (green highlight). Source 
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=71153325. 
Accession Number: Q96SD1, Gene Name: DCLRE1C, OMIM: 602450. 
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1.6.2 Function of Artemis 

 

The Artemis gene is known to show exonulease and endonuclease activities 

when in the presence of DNA-PKcs and ATP. Artemis is a DNA repair protein 

that is also required for V(D)J recombination during T-cell and B-cell 

development. In a subset of T- B-  severe combined immune deficiency syndrome 

(SCID) the defect is not caused by mutation in the recombinase activating genes 

(RAG)1 and RAG 2, but is caused by the defective Artemis gene that encodes for 

a key protein responsible for V(D)J recombination and DNA double strand breaks 

(Kobayashi et al., 2003). This subset of T- B- SCID caused by the Artemis gene 

mutation also shows radiosensitivity and is known as RS-SCID (Moshous et al., 

2001, Moshous et al., 2000). The Artemis gene is an important component of 

DNA DSB repair machinery, specifically in response to ionising radiation or 

radiomimetic drugs such as bleomycin, and is also important in genome integrity 

(Poinsignon et al, 2004b).  

During the development of B-cells and T-cells, the immunoglobulin goes through 

a recombination stage where each segment of variable domain exons are 

assembled to form the V(D)J recombination (Janeway, 2004). In order to get 

each segment to join together DNA must form DSB and rejoin again, cutting out 

the introns. This naturally occurring DSB in a DNA molecule is repaired through 

the NHEJ repair pathway. The two ends of the broken DNA molecule generated 

by DSB are rarely compatible (Ma et al., 2002). Artemis is therefore capable of 

creating a hairpin opening which is one of the crucial stages of V(D)J 

recombination (hairpins are formed immediately after the excision of the dsDNA 
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molecule). Artemis, in its unphosphorylated form possesses single strand 5’ to 3’ 

exonuclease activity. However, when in the presence of DNA-PKcs and ATP it is 

phosphorylated and acts as endonucleases. Artemis:DNA-PKcs complex works 

as a hairpin opening in V(D)J recombination and overhang processing in NHEJ 

(Ma et al., 2004, Ma et al., 2005). 

1.6.3 Artemis is Phosphorylated by DNA-PKcs 

 

DNA-PKcs has many critical roles, ranging from protecting the ends of 

chromosomes from being treated as DSB by the cells, to functioning as a DNA 

damage sensor in the NHEJ pathway during the occurrence of DSB in a DNA 

molecule. DNA-PK has been found to be present at telomeres and it is involved 

in capping chromosomal ends and preventing them from being attacked by the 

NHEJ machinery by mistaking them for DSB (Burma and Chen, 2004). DNA-

PKcs is also involved in signalling cell death by triggering apoptosis in response 

to severe DNA damage and in mounting an innate immune response to bacterial 

DNA and viral infection (Burma and Chen, 2004) (see table 1.2).  

Ma et al (2002) reported that a 469kDa component of the DNA-PKcs 

phosphorylates Artemis when involved in the Ku70/Ku80 complex in response to 

DSB and in the NHEJ repair pathway. In a separate research reported in 2005 it 

was shown that endonucleatic activity of Artemis:DNA-PKcs in the presence of 

ATP removes 3’ overhangs produced as a result of DSB and processes 

heterologous loops, flaps, gaps, and stem-loops generated during the religation 

of DSB (Ma et al., 2005). The endonucleatic activity of Artemis:DNA-PKcs is also 
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important in the nicking of the DNA molecule in hairpin structures generated 

during V(D)J recombination in formation of antigen T-cell receptors and B-cells. 

The arrest in hairpin nick can result in the incomplete formation of T-cells and B-

cells, resulting in RS-SCID (Ma et al., 2005). 

Table 1.2. Summary of DNA-PK function in mammalian cells. (Adapted from 
Burma and Chen, 2004). 
DNA-PK component are involved in the following areas of mammalian cell  

DNA Repair (NHEJ) Telomeres Apoptosis Innate Immunity 

1. Synapsis of DNA end 

2. Autophosphorylation 

3. Recruitment and 
phosphorylation of DNA 
repair protein including 
Artemis 

1. Telomere 
Capping 

2. Telomere 
Length 
maintenance 

1. Phosphorylation 
of p53 

2. Induction of 
program cell death 

1. Bacterial DNA: 
Phoshphorylation of IKK and 
induction of IL-6 and IL-12 

2. Viral Infection: 

Phosphorylation of IRF3 and 
induction of IFN α and β 

 

1.6.4 Artemis and ATM 

 

ATM (ataxia telangiectasia mutated) is a serine/threonine protein kinase that is 

activated and recruited by DNA DSB and the MRN complex 

(Mre11/Rad50/Nbs1). It belongs to the group phosphoinositol-3-kinase related 

kinase (PIKK) family that includes (ART, DNA-PKcs, ATX/SMG1, mTOR/FRAP 

and TRRAP) (Shiloh, 2003). ATM resides in the nucleus of cells as inactive 

dimers and in the presence of DSB it autophosphorylates and becomes active. 

ATM then acts as a signal transducer to phosphorylate other effectors to bring 

about a cell cycle arrest (p53 activation, p21), DNA repair (BRCA1, NBS1), and 

apoptosis. ATM is a protein that is mutated in ataxia telangiectasia (AT) patients. 
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AT is a devastating disorder with critical clinical features such as progressive 

ataxia and neurodegeneration, chronic dilation of blood vessels in the skin and 

eye, clinical radiosensitivity, and predisposition to cancer with impaired immune 

response (Jeggo and Löbrich, 2005, Lobrich and Jeggo, 2005). The relation 

between Artemis and ATM was explained in 2004 by Riballo and colleagues. 

They suggested that ATM phosphorylates Artemis in response to IR induced 

DSBs (Riballo et al., 2004). Artemis is recruited to sites of DSBs to process the 

broken ends before religation by ligase IV. However, damage sensor proteins 

such as MRN complex, 53BP1, and γH2AX are also phosphorylated by ATM and 

recruited to the site of DBS. γH2AX is phosphorylated within minutes of DBS 

recognition by ATM and eventually other effectors are phosphorylated and this 

brings about cell cycle arrest. Once the cell cycle is arrested, the NHEJ 

components are involved and repair 90 percent of the DSB induced by IR (Jeggo 

and Löbrich, 2005). The remaining 10 percent of unrepaired DSB induced by IR 

is repaired in an ATM dependent manner through NHEJ(Riballo et al., 2004). In 

other words, evidence suggests that the two processes of ATM activation and 

NHEJ recruitment to sites of DSB occur independently for a subset of DNA DSB 

repair. According to Jeggo and Löbrich, (2005) ”…Artemis represents a novel 

ATM-substrate required for the processing of a fraction of DNA ends prior to 

rejoining.” This shows that Artemis is a downstream effector of ATM-dependent 

signalling, uniquely affecting ATM’s role in DSB repair (Riballo et al., 2004). But 

the situation is reversed when comes to V(D)J recombination, where DNA-PK is 

indispensable and ATM is dispensable during hairpin opening by Artemis. Both 
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DNA-PK and ATM are required for Artemis function in DSB repair (Riballo et al., 

2004). The presence of γH2AX and 53BP1 at the site of DSB may serve as a 

“scaffold” for proper functioning of Artemis and Mre11 and Nbs1 may also be 

required for efficient Artemis phosphorylation (Riballo et al., 2004) (see table 1.3 

for summary of Artemis function). 

1.6.5 Artemis and Telomeres 

 

The involvement of DNA-PKcs, Ku70, and Ku86, (components of DNA-PK) in 

telomeric end capping from studies using fluorescence in-situ hybridization 

(FISH) probes detecting telomeres, published in a paper by Bailey et al in 1999,  

showed that telomere shortening was not the cause of telomeric fusion in cells 

mutated in the above proteins. Instead telomere fusion was suggested to be due 

to the loss of telomere end-capping function and this was proven by the presence 

of telomeric DNA signals at points of telomeric fusion (Bailey et al., 1999). 

Knocking out the XRCC4 gene (another NHEJ protein) in mice contributed to 

elevated telomeric chromosomal end to end fusion (Bailey, 2004a). Rooney and 

colleagues in 2003 showed that Artemis deficient mouse embryonic stem (ES) 

cell lines have a higher degree of chromosomal instability in comparison to 

control cells. Interestingly, they found increased incidence of telomeric fusions 

(Rooney et al., 2003) pointing to the possibility that defective Artemis may affect 

telomere function. In 2006, two labs reported that a new protein that interacts 

with TRF2 has close homology to the Artemis and named it Apollo (Lenain et al., 

2006, van Overbeek and de Lange, 2006). Apollo, also known as hSNM1B, has 

found to act upstream of ATM in response to IR, by phosphorylating ATM and 
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hence playing a critical role in the maintenance of genome integrity (Demuth et 

al., 2008). Apollo defective cells exhibited increased levels of telomeric fusions 

thus clearly indicating the role of this close homolog of Artemis is directly 

involved in telomere maintenance. 

To date, 19 DNA damage response proteins have been found to be involved in 

telomere maintenance, either through affecting telomere length or telomere 

capping function, with three of these DNA damage response proteins involved in 

the NHEJ processes of DNA repair (DNA-PKcs, Ku70/80, ERCC1) (Slijepcevic, 

2006, Gitte De Boeck, 2009). 

Given that Artemis defective mouse cells show elevated levels of telomeric 

fusions and that its close homolog, Apollo, is directly involved in telomere 

maintenance (interacts with TRF2 and affects telomere capping function) it 

seems reasonable to  examine whether Artemis defect in human cells will have 

any effects on telomere maintenance. 

Table 1.3 Summary of Artemis function in mammalian cells 
Artemis protein is involved in the following areas: 

DNA Repair (NHEJ) V(D)J recombination ATM Telomere length 

1. Overhang processing of 
DNA DSB (5’-3- 
exonuclease activity) 

2. Endonuclease activity 
on 5’ and 3’ overhangs 
and hairpins  in the 
presence of DNA-PKcs 

3. If mutated, cells exhibit 
radiation sensitivity. 

1. In creating hairpin 
opening  

2.  Overhang 
processing in the 
presence of DNA-PKcs 
(through endonuclease 
activity) 

3. Mutation of Artemis  
leads to SCID 
syndrome with radio-
sensitivity 

1. Repair of subset of 
DNA DSBs (around 
10%) requires action 
of both ATM and 
Artemis 

1. Defective Artemis 
causes accelerated 
telomere shortening in 
primary fibroblast cells 
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1.6.6 Aim and outline of PhD 

 

The aim of this PhD project is to search for evidence of chromosomal 

abnormalities in Artemis defective human cells that reflect telomere dysfunction. 

This can be achieved through; a) cytological analysis using both a classical 

Giemsa staining method and FISH with a telomere specific probe, and b) through 

analysis of telomere function using a recently developed immunocytochemistry 

based protocol. 

Moreover, we are proposing to assess the relationship between DNA-PKcs and 

Artemis in telomere maintenance by inhibiting of DNA-PKcs in Artemis defective 

human cell lines. Finally, we aim to examine further the Artemis:DNA-PKcs 

relationship from the perspective of telomere maintenance in DNA-PKcs deficient 

human glioblastoma cell lines. 
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2.1 Cell lines and tissue culture methodology 

2.1.1 Primary Human Fibroblasts 

 

Two primary human fibroblast cell lines that were defective in the Artemis protein 

were derived from two different patients suffering from Radiosensitive-Severe 

Combined Immunodeficiency syndrome (RS-SCID) and provided to us by Dr. 

P.A. Jeggo, University of Sussex, Brighton, UK (see Table 2.1). The two Artemis 

defective cell lines CJ179 and F01-240 have genomic deletions within Artemis 

gene with CJ179 producing no Artemis transcript (Riballo et al., 2004). 

A normal primary fibroblast cell line was purchased from the National Institute of 

General Medical Sciences (NIGMS) Coriell Institute for Medical Research in the 

United States (Table 2.1). 

2.1.2 Human Glioblastoma cell lines 

 

Human glioblastoma cell lines were kindly provided by Dr. Chris Parris from 

Brunel Institute of Cancer Genetics and Pharmacogenomics. MO59K and MO59J 

(Table 2.1) were both derived from the same tumor with MO59J exhibiting 

hypersensitivity to ionising radiation and a lack of functional DNA-Protein Kinase 

catalytic subunit (DNA-PKcs). MO59K exhibited normal DNA-PKcs and was not 

radiosensitive. Both cell lines were near pentaploid and had multiple copies of 

chromosome 8 (The PRKDC gene that codes for DNA-PKcs is located on this 

chromosome) (Anderson et al, 2001). 
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2.1.3 Mouse Lymphoma cell lines 

 

Mouse lymphoma LY-R (radio-resistant) and LY-S (radio-sensitive) cells (Table 

2.1) were used as a reference for cytological testing of DNA-PKcs inhibitory drug 

(IC86621, sigma) and telomeric measurements using FLOW-FISH techniques.  

2.1.4 Tissue Culture 

 

All cell lines were kept frozen in liquid nitrogen. When required vials of frozen 

cells were thawed and set up in either a 25cm2 flask or 75cm2 flask with filter 

head (Nunc) to avoid fungus contamination. All primary human fibroblast cell 

lines were cultured in Dulbecco’s modified Eagle medium (D-MEM) 

(Gibco/invitrogen) supplemented with 10% fetal calf serum (Gibco/invitrogen) at 

37°C with 10% CO2,  and incubated in a HeraCell 150 (Heraeus, Germany) 

incubator. A HeraSafe safety cabinet class II (Heraeus, Germany) hood was 

used at all times. All primary fibroblast cell lines were subcultured 1:3 by gentle 

trypsinization with trypsin-EDTA (Gibco/invitrogen) for five minutes at least every 

three to four days at 80 percent confluence. Prior to trypsinization the cells were 

washed with 3ml of D-PBS (Gibco/invitrogen). After trypsinization the cells were 

spun down in a centrifuge (Megafuge 1.0, Heraeus) at 1200rpm for five minutes. 

All solutions were brought to room temperature prior to trypsinising using a 

waterbath (Techne) with a monitor (Tempette Junior TE-8J) to keep the 

temperature at a constant 37ºC. The waterbath was constantly cleaned and 

disinfected alongside the incubator and the hood to avoid spreading any fungus 

or bacterial infection. Supernatants were removed and the cell pellets were
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Table 2.1 Summary of cell lines 
 

Cell Line Cell type Syndrome/Defect 
protein 

Estimated 
Population 
doubling 
(PD) 

Sensitivity Cellular 
Sensitivity 

References 

F01-240 Human/Fibroblast RS-SCID/Artemis 4 Ionising 
radiation 

Ionising 
radiation 

Riballo et al 2004 

CJ179 Human/Fibroblast RS-SCID/Artemis +10 Ionising 
radiation 

Ionising 
radiation 

Riballo et al 2004 

GM08399 Human/Fibroblast None/Normal 5 Normal Normal http://locus.umdnj.ed
u/nigms/ 

LY-R Mouse/Lymphoma  None/Normal  Normal Normal  

LY-S Mouse/Lymphoma SCID/Not known  Ionising 
radiation 

Ionising 
radiation 

 

MO59K Human/ 

Glioblastoma 

Glioblastoma 
multiform/Normal 

4 Normal Normal Anderson et al 2001 

MO59J Human/ 

Glioblastoma 

Glioblastoma 
multiform /DNA-
PKcs 

4 Ionising 
radiation 

Ionising 
radiation 

Anderson et al 2001 
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re-suspended by gentle flicking in the fresh medium. One ml of suspended cells 

was then put in a new flask with the fresh medium. Human glioma-derived 

MO59K and MO59J cell lines were cultured in DMEM (Gibco/invitrogen) with 

10% FCS (Gibco/invitrogen) at 37⁰C with 5 percent CO2 incubated as above. 

Cells were sub-cultured 1:3 as mentioned above.  

Mouse lymphoma LY-R and LY-S cell lines were grown in suspension under 

standard tissue culture conditions as mentioned above using RPMI 1640 medium 

(Gibco/invitrogen) and 10 % fetal calf serum at 37⁰C in the atmosphere of 10 % 

CO2. Cells were sub-cultured at the ratio of 1:10 every two or three days, 

preferably before the medium colour changed to yellow.   

2.1.5 Cryopreservation of cells 

 

Cells were preserved in liquid nitrogen to avoid aging and contamination. After 

checking cells for contamination, cells were trypsinized as described above. Cell 

suspension was mixed with 1ml of freezing medium containing 90 % fetal calf 

serum (Gibco/invitrogen) and 10 % DMSO (dimethylsulfoxide, Sigma). The cell 

suspension was aliquoted into cryogenic vials for storage in liquid nitrogen. Prior 

to storage in liquid nitrogen the vials were kept in a Nalge nunc cooler for 24 

hours. This plastic holder was filled with Isopropyl alcohol (IPA). The specific heat 

of the coolant in the base insulates the container and gives a cooling rate of 

~1º/min in the cryotube. Finally the ampoules were transferred into liquid nitrogen 

for long-term storage. 

Thawing of Cryopreserved cells 
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The medium was aliquoted and warmed inside the incubator before the ampoule 

was taken out of the liquid nitrogen. The cryopreserved cells were handled with 

great care. The ampoules were thawed for two to three minutes and the content 

immediately put into the pre-warmed medium. Cells were transferred into 

appropriate flasks. After 24 hours the medium in flasks was changed to wash 

away any residual DMSO. 

2.1.6 Mycoplasma Screening of Cell Culture 

 

Mycoplasma is a form of bacteria which lacks a cell wall. It is therefore unaffected 

by many common antibiotics. It is important to regularly check cell lines for any 

signs of possible mycoplasma contamination. A quick way of testing for 

mycoplasma contamination involves a PCR-based method. Two rounds of PCR 

using nested primers were used routinely in our laboratory to detect any 

contaminant cell lines (Table 2.2 for detail of primer sequences). DNA was 

extracted from a sample cell line using a Wizard DNA extraction kit (Promega). 

The following 20µl reaction mixtures were made using mycoplasma primers and 

purified DNA from cell cultures:  

First round of PCR: 

- 1µl of 150ng of DNA 

- 1µl of Forward GPO1 primer (at 4µM) 

- 1µl of Reverse MGSO primer (at 4µM) 

- 17µl of ReddyMix Master Mix (Ab genes) 
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- Total 20µl 

Second round of PCR: 

- 1µl of product from first round of PCR 

- 1µl of Forward GPO2 primer (at 4µM) 

- 1µl of Reverse MGSO primer (at 4µM) 

- 17µl of ReddyMix Master Mix (Ab genes) 

- Total 20µl 

Both PCR amplification cycles were done at: 

95°C hot start for 30 seconds one cycle; 95°C for 30 seconds with 55°C 

annealing temperature for 30 seconds, and 72°C extension for one minute for 35 

cycles. 

Both PCR products were run on 1.5 percent agarose gel containing ethidium 

bromide (See RT-PCR section for detail on how to make the gel, chapter 2.5.4). 

A strong positive sample gave two bands; one at 720bp from the first PCR and 

one at 145bp from the second PCR. A weak positive sample gave one band only 

at 145bp on the second PCR. Image below (Figure 2.1) shows a mycoplasma 

screening performed on several cell lines with no positive sign of mycoplasma 

contamination. B 

B 
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Table 2.2. Mycoplasma screening primer sequence 

Primer Orientatio
n 

Sequence 

Mycoplasma GPO1 Forward 5´-ACTCCTACGGGAGGCAGCAGTA-3´ 

Mycoplasma GPO2 Forward 5´-CTTAAAGCAATTGACGGGAACCCG -
3´ 

Mycoplasma MGSO Reverse 5´-
TGCACCATCTGTCACTCTGTTAACCTC-
3´ 

 

2.1.7 Conversion of passage number into population doubling 

 

Population doubling (PD) is a two-fold increase in the total number of cells in a 

culture. However, during tissue culturing passage numbers were recorded that 

reflected the number of times a cell culture had been trypsinized and split with a 

constant dilution factor (i.e. 1:3, 1:4, or 1:10) depending on cell type and cell 

Figure 2.1. Mycoplasma PCR screening.  
A| First round of PCR. lane 1: F01-240, lane2: CJ179, lane 3: GM08399, 
lane 4: positive control, lane 5: negative control. B| only one positive band 
on lane 4. 

A B 
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growth rate. This kept all cells in the logarithmic growth phase. In order to convert 

the passage number into PD one of two formulas was used: 

Formula 1: 

2n = dilution factor   [1],  where n = PD 

Taking log of [1] and rearrange it 

PD = Log dilution factor / Log 2 x passage number 

Formula 2:  

PD = (Log N1/Log 2) – (Log N1/Log 2) 

Where; N0 is the total number of cells at the beginning of cell culture 

 N1 is the total number of cells at the end of cell culture period 

2.1.8 Irradiation of cells  

 

A higher activity Cobalt-60 source was used to irradiate cells with ionising 

radiation. Cells were grown up to 80-90 percent confluent level either in non-

filtered tissue culture flask (Nunc, Fisher) for metaphase preparation, or on poly-

prep slides (Sigma) for assays that required use of antibodies (see 2.3.1). 

Datasheets were used to calculate dosages of radiation measured in Gray (Gy) 

per minute (See appendix 1). In our studies cells were only subjected to low 

doses of radiation i.e. 0.1 Gy, 0.5 Gy and 1.0 Gy, with a maximum dose of 3.0Gy 

that was tested once only. 
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2.2 Cytogenetic Analysis 

2.2.1 Metaphase Preparation using fibroblast cell lines 

 

A high mitotic index is important in scoring a large number of metaphases in a 

short time and it is also important to get high quality metaphase spreads. Twenty 

four hours after irradiation (i.e. ~ one cell cycle), the semi-confluent flask (80-90 

percent) was treated with colcemid (10µg/ml) (Sigma-aldrich). Colcemid was 

used to arrest cells in metaphase by inhibiting spindle formation. Initially cells 

were treated for four hours with colcemid (10µg/ml) prior to trypsinization and 

harvesting. This method gave a low mitotic index when using primary fibroblast 

cell lines and it was time-consuming if a large number of metaphases were 

needed for the analysis. The following changes were implemented to yield a 

higher mitotic index: 

1. Colcemid time was increased from four hours to seven hours of treatment. 

This ensured that most cells reached M-phase of cell cycle, therefore 

increasing the mitotic index.  

2. A mock flask was used without adding colcemid as a control to check the 

number of dividing cells. This method gave us a rough idea of when to stop 

the colcemid’s action. 

3. During harvesting, culture supernatant were retained to collect mitotic cells in 

suspension and spun down in a centrifuge at 1000rpm for five minutes and 
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before each spin a fresh fixative solution was added. This ensured that 

metaphases were not lost.  

4. Greater care was taken in handling the cells in the culture. For instance, cells 

were subcultured when reaching 60-70 percent confluence rather than 80-90 

percent as in previous experiments. This ensured that cells were kept healthy 

and in the exponential growth phase. 

After roughly seven hours of treatment with colcemid, cells were washed in PBS, 

trypsinized, and spun down at 1000rpm for five minutes. Cells were then treated 

with 10ml of hypotonic buffer (75mM of KCl) for 15 minutes in a 37ºC waterbath. 

Fixation was followed using methanol-glacial acidic acid (3:1) as fixative. The 

process of fixation was carried out two times and each time a 1ml of fresh fixative 

was added dropwise, followed by the addition of 2ml of extra fixative. The cells 

were left at room temperature for 10 minutes and 30 minutes respectively. 

Finally, the cell pellets were re-suspended in fresh fixative and 15µl of cell 

suspension was dropped onto pre-cleaned slides. The fresh fixative ensured that 

cells were spread over the surface of slide. Once the slides were dried they were 

checked under a phase contrast microscope.  

Treatment of microscope slides with Methanol/HCl 

Microscope slides were washed in a combination of 70 percent (v/v) methanol 

and 3 percent (v/v) of concentrated HCl for about 24 hours and rinsed in four 

liters of ddH2O before spreading. Slides were stored in the fridge suspended in 
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dH2O. However, prior to spreading, the slides were kept at room temperature for 

few minutes since cold slides did not produce high quality spreads. 

2.2.2 Metaphase preparation of other cell lines 

 

Preparation of metaphases from other cell lines (i.e.Human glioblastoma and 

mouse LY-R and LY-S) were performed as described above (2.2.1) but with 

maximum colcemid (10µg/ml) (Sigma-aldrich) incubation of four hours only. 

These cell lines grow at faster rate than human primary fibroblasts and therefore 

did not require the changes described above (2.2.1). The remaining protocol was 

the same as described above.   

2.2.3 Giemsa Staining 

 

Slides were stained with 8 percent (v/v) giemsa (Sigma-Aldrich) for five minutes 

in 50ml of ddH20. Giemsa stain was filtered with standard filter paper (3MM 

Watman paper) for purity. After staining, slides were rinsed quickly with ddH20 

and left to air dry while covered with paper to prevent dust settling onto the slide. 

Slides were mounted with DPX mountant (BDH laboratories), covered with cover 

slips, and left overnight to dry. DPX is a neutral solution of Polystyrene Plasticizer 

in Xylene. By applying this solution the coverslips were permanently attached 

onto the slides. A clean dust free and evenly stained slide with high mitotic index 

was selected for analysis using conventional microscopy (Zeiss Axioplan2) 

equipped with CCD camera and MetaSystem software. 

2.2.4 Telomeric-Fluorescence in situ hybridization (Telo-FISH) 
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Twenty µl of cells were spread on a pre-cleaned slide with fresh fixative (3:1 

methanol to acetic acid glacial) and then subjected to a previously published 

protocol for telomere analysis (Al-Wahiby and Slijepcevic 2005). There were four 

stages in the preparation of the Telo-FISH slides.  

Solution and slide preparation  

All solutions were made fresh on the day of experiments. Four percent (v/v) of 

formaldehyde (Sigma-Aldrich) was made using a mixture containing four ml of 

formaldehyde and 96ml of distilled H2O. Five hundred µl of pepsin stock (Sigma) 

(10 percent pepsin in water) was mixed in 50ml of acidified ddH2O (pH2). The 

acidified water was made by adding 500µl of concentrated HCl (BDH 

laboratories). The pepsin was kept in a waterbath set at 37°C throughout the day 

(pepsin needs to be defrosted first and used immediately). Final solution 

preparation involved 70 percent formamide (Fisher Scientific UK) that was made 

by mixing 70ml of formamide with 10ml of 20 X sodium chloride sodium citric acid 

(20X SSC) and 20 ml of ddH2O.  

Slides with metaphase cells were aged overnight at 55°C. Alternatively, slides 

were aged at room temperature for three to four days before an overnight 

incubation at 55⁰C. 

Pre-hybridization Washes 

Slides were washed for 15 minutes with phosphate buffer saline (PBS) on the 

shaker set at mark two (200rpm/minute).  Fixation was done in 4 percent 
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formaldehyde for two minutes and washed again with fresh PBS three times, five 

minutes each time. Slides were incubated in pepsin at 37°C in a waterbath for 10 

minutes. Finally a round of fixation was completed with 4 percent formaldehyde 

for two minutes. Slides were then dehydrated in an ethanol series starting with 

70%, 90%, and 100% concentration for five minutes each. Slides were then left 

to air dry on a slide rack at room temperature. 

Denaturing and hybridization 

Slides were denatured for two to three minutes at 70-75°C using a heater block 

with digital display and hybridized with 15µl of synthetic peptide nucleic acid 

(PNA) telomeric oligonucleotides (CCCTAA)3 (Applied Biosystems), labeled with 

cyanine-3 (Cy-3), and left in the dark for two hours in a damp container. Post 

hybridization washes involved washing twice with a 70 percent (v/v) formamide 

for 15 minutes in coupling jars, plus three times with PBS for five minutes each. 

Slides were then dehydrated in ethanol (starting with 70%, 90%, and 100% 

respectively) for five minutes each. Fifteen µl of Vecta-shield, an anti-fade DAPI 

mounting medium (Vector Laboratories), was added to each slide and then they 

were mounted with cover slips and sealed with clear nail varnish. The metaphase 

cells were analyzed using the computerized Axioskop 2 Zeiss fluorescence 

microscope equipped with a CCD camera and MetaSystems software. 
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2.3 Immunofluorescence and Telo-FISH 

2.3.1 Immunofluorescence Telomere dysfunction Induced Foci (IF-TIF) 

assay 

 

The TIF assay described here is based on the combination of antibody detection 

and hybridization with synthetic telomeric PNA. The original TIF technique was 

first described in 2003 by Takai et al, in which co-localization between two 

antibodies were analyzed. One antibody binds to a DNA damage response 

protein such as 53BP1 and the second antibody binds to a telomere repeat 

binding protein (TRF1). A co-localization between the two antibodies was then 

detected and the site of co-localization represents DNA damage at a telomere 

and it is called TIF. However, in our experiments a modified version of TIF is 

described based on immunofluorescence and FISH techniques hence we termed 

it IF-TIF (see chapter 4 for more detail) 

This technique was developed after seven weeks of trial experiments testing 

different reagents and hybridization methods to find the optimal condition with the 

least amount of fluorescence background.  

Cells were grown in tissue culture flasks two days prior to experiments and after 

cells reached 80-90 % confluence, they were trypsinized and 1ml of cell 

suspension (containing roughly 50,000 cells) were added onto poly-prep slides 

(Sigma) and placed inside a petri dish (to minimize infection). Cells were left to 

grow for 24 hours at 37⁰C in the atmosphere of 10% CO2. If irradiating the cells 

was necessary, five mls of pre-warmed medium was added into petri dishes 

before transferring the cells to the irradiation room. All of the procedure was done 
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at room temperature unless stated otherwise. After cells were irradiated with the 

required dose, slides were incubated for between 30 minutes and 24h at 37⁰C 

before further processing. After that slides were rinsed in PBS and fixed in 4 

percent formaldehyde for 15 minutes. Cells were then permeabilized in 0.2 

percent of Triton-X in dH2O at +4.0ºC for 10 minutes followed by blocking with 

0.5 percent BSA (Bovine Serum Albumin) in PBS for 30 minutes and covered 

with parafilm. One hundred µl of γH2AX antibody (Upstate) solution was added 

(dilution of 1:500 with 0.5 percent BSA) for one hour in dark, damp conditions 

after which slides were washed with TBST for three minutes twice on a shaker. 

Then, 100µl FITC secondary anti-goat antibody was added (diluted 1:400 with 

0.5% BSA) for one hour in dark, damp conditions then washed with TBST for five 

minutes, three times in a dark coplin jar and on an orbital shaker. Cells were fixed 

again with 4 percent formaldehyde for 20 minutes with no shaking in a dark place 

and this second fixation prevents bleaching of the fluorescence signals. At this 

point the slides can be analysed for the presence of γH2AX signals if necessary 

or the protocol can be continued to detect telomeres.   

For telomere detection slides were dehydrated with an ethanol series (70%, 90% 

and 100% concentration) for five minutes each and then air dried. After this, 

slides were hybridized for two to three minutes at 70° C with PNA telomeric 

oligonucleotides (CCCTAA)3, labeled with Cy-3 (Applied Biosystems), and left for 

two hours in dark and damp conditions. Post hybridization washes were 

performed using 70% formamide for 10 minutes, twice, and then finally washed 

with TBST for 10 more minutes before adding 15µl Vecta-shield anti-fade DAPI 
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mounting medium (Vector Laboratories). The slides were analysed using the 

computerized Axioskop 2 Zeiss fluorescence microscope equipped with a CCD 

camera and MetaSystems software.  

2.3.2 Immunofluorescence/Immunohistochemistry 

 

This protocol is performed to visualize various protein localizations in-vitro in 

various cell lines. Cells are grown on poly-prep slides (sigma) for 24 hours before 

fixation in 4% formaldehyde in PBS for 15 minutes. Then cells are permeabilized 

in 0.2 percent Triton-X 100 (Sigma) for 10 minutes at 4°C. Cells are then blocked 

with 0.5 percent BSA (Bovine Serum Albumin) in PBS for 30 minutes and 

covered in parafilm in humid containers. Primary antibody is added at the 

relevant concentration (see Table 2.5 for summary of antibodies that were used 

in this research), for one hour in humid containers covered with parafilm. Slides 

were washed with three times for two minutes each in PBS. Secondary antibody 

was added at relevant concentrations for one hour in a dark and humid container. 

Finally slides were washed in PBS for five minutes three times and dehydrated 

with serial ethanol as previously mentioned, and DAPI vectashield was added 

and cover slides are sealed with nail varnish. 

2.4 Telomere length measurement using fluorescence activated cell 
sorting (FACS) 

2.4.1 Flow-FISH 

 

Telomere length measurement in-vitro can be done using various methods and 

protocols. One such high throughput method is based on flow-cytometry and it 

utilizes a fluorescence tag hybridized to the telomeric repetitive sequence of 
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(CCCTAA)3. The method is named Flow-FISH and a modified version described 

by Cabuy et al (2004) is used here.  

Cells were grown as described and 5x105 cells were collected in suspension, 

washed in PBS once, and spun down at 1,500 rpm for five minutes. Supernatant 

was discarded carefully and the cells were re-suspended in the remaining PBS 

solution. Cells were then hybridized using a hybridization mixture containing five 

hundred µl of hybridization mixture of 70 percent formamide, 20mM Tris-HCl pH 

7.0, 1 percent BSA made in PBS, and 0.3µg/ml of Fluorescein isothiocyanate 

(FITC) conjugated peptide nucleic acid (PNA) probe (CCCTAA)3. The 

hybridization mixture was heated at 80°C to denature the DNA for 10 minutes. 

Samples without the PNA telomeric probe were used as negative controls. The 

samples were then left in the dark at room temperature for two hours. Post-

hybridization washes mixtures contained 70 percent formamide, 10mM Tris-HCl, 

0.1 percent BSA in PBS and 0.1 percent Tween 20. This would ensure that 

excess and unbound probe is washed away thus reducing the background 

fluorescence. After each wash samples were centrifuged at 3,000 rpm for five 

minutes to collect cells and the supernatants were discarded. Second washes 

were done again twice using a 500µl solution containing PBS, 0.1 percent BSA 

and 0.1 percent Tween-20 and cells were centrifuged at 2000rpm for five 

minutes. A second incubation was done with propidium iodide (PI) (Sigma) to 

quantitatively assess the DNA content of cells. PI is a widely used fluorescence 

dye that binds directly to DNA by intercalating between the bases. PI also binds 

to RNA so it is therefore important to digest all RNA in the sample by treating it 
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with RNase A (Invitrogen). The second incubation solution contained PBS, 0.1 

percent BSA, 10µg/ml of RNase A, and 0.1µg/ml of PI. The samples were 

incubated in the dark for 45 minutes to one hour at 4°C. The samples were kept 

on ice all the time prior to the measurement with the FACS machine.   

FACSCoulter EPICS XL (Becton Dickinson) was calibrated using flow-check 

fluorospheres (Beckman Coulter) to check laser alignment on all four channels. 

Flow-check was conducted before each measurement. The software was 

calibrated to measure the FITC telomeric signal on the FL1 channel, and the PI 

signal on FL3 channel. Cells were electronically gated for the G0/G1 phase of 

cell cycles form the FL3 histogram window. The Telomeric fluorescence intensity 

(TFI) of cells in the G0/G1 stage was recorded. TFI from the negative control 

cells was also measured and subtracted from the main sample reading to remove 

the background reading. TFI readings from a minimum of 5,000 cells and a 

maximum of 20,000 cells were recorded and TFI units were converted into base 

pairs using the formula y = 4.13x + 2.56 (R2 = 1) (McIlrath et al., 2001). The 

accuracy of this formula was tested using LY-R and LY-S mouse cell lines. 

2.5 Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

2.5.1 RNA extraction using TRIZOL reagent 

 

Trizol (Invitrogen) is a ready to use mono-phase solution of phenol and guanidine 

isothiocyanate that maintains the integrity of RNA while disrupting cells and 

dissolving cell components during homogenization or the lysis step. 
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Cell homogenization: 

Total RNA is extracted using an Invitrogen Trizol reagent from primary fibroblast 

cell lines growing in a 60mm petri dish. Cells were washed at 80 to 90% 

confluence twice with 10ml of cold PBS. Two ml of the Trizol reagent is added 

and left for at least two minutes at room temperature to the cell sample. The 

lysate is gently retropipetted two to three times and used immediately or stored –

at -80°C for long-term storage.  

Phase separation: 

The homogenized samples were incubated for five minutes at room temperature. 

Two hundred µl of molecular biology grade chloroform (Sigma) was added per 

1ml of Trizol. Samples were shaked vigorously for 15 seconds at arm’s length to 

avoid any possible eye contact followed by incubating samples for 2-3 minutes at 

room temperature, then centrifuged at 12,000 g or (13,000 rpm) for 30 minutes at 

2-8°C (preferably 4°C) in a temperature controlled  ultra mini centrifuge. The 

chloroform causes the trizol to separate into a colorless aqueous phase and an 

organic phase (containing phenol and chloroform). RNA remains exclusively in 

an upper aqueous phase. DNA and protein can be extracted from the organic 

phase by further precipitation. 

RNA precipitation, wash, and re-dissolving: 

The aqueous phase was transferred into a separate Eppendorf tube taking care 

not to mix any of the red phenol with the colourless aqueous phase. A total of 
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750µl of molecular biology grade isopropyl alcohol (Sigma) per ml of trizol was 

added to the aqueous phase and mixed gently. The sample was incubated at 

room temperature for 10-15 minutes and centrifuged at 12,000 g (13,000 rpm) for 

20 minutes at 2-8°C (preferably 4°C). The addition of isopropyl alcohol 

precipitates RNA and forms a visible mass at the bottom of the Eppendorf tube 

after the centrifugation. The RNA pellet should be gently removed by tipping off 

the isopropyl alcohol (making sure RNA is still at the bottom of the Eppendorf 

tube) followed by washing with 1ml of 75 percent ethanol per ml of initial trizol 

reagent used in the homogenization step. It is recommended to dissolve 75ml of 

pure ethanol with 25ml of nuclease-free water (Dharmacon) or a diethyl 

pyrocarbonate (DEPC) treated nuclease free water. Samples should be mixed by 

vortexing for about 10 seconds and centrifuged at 7,500g (8,000rpm) for five 

minutes at 2-8°C (preferably 4°C). The ethanol should be carefully removed as 

the RNA pellet may detach at this stage. The sample should be left to air dry for 

about 10-15 minutes at room temperature. It is important not to let the pellet dry 

completely as this will reduce the solubility. Partly dissolved RNA samples have 

A260/280nm ratio <1.6.  The RNA pellet should be re-dissolve in 20µl of nuclease 

free water and retropipetted several times. The sample should be left on ice for at 

least one hour. RNA must be stored at -80°C.  

The absorbance of RNA is read using a spectrophotometer (Eppendorf) 

absorbance reader at 260nm wavelength using a cuvette (Invitrogen) diluted 

100X (i.e. 1µl of total RNA plus 99µl of nuclease free water) with nuclease free 

water (Table 2.3). The absorbance reader is blanked against 100µl of nuclease 
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free water. The table below represents the readings from the total RNA extraction 

from one of the experiments.  

Table 2.3 Sample readings from total RNA extraction. 
Sample name A260/280nm ratio RNA concentration (ng/µl) RNA concentration (µg/µl) 

GM08399 
(WT) 

1.64 2632.7 2.6327 

F01-240 (Art) 1.62 1365.2 1.3652 

CJ179 (Art) 1.64 1080.1 1.0801 

 
 

2.5.2 Reverse Transcription 

 

Deoxyribonuclease I, amplification grade treatment 

Four µg of total RNA is treated with DNase I, amp grade (Invitrogen) and RNase-

Out (Invitrogen) to remove any gDNA (genomic) and inhibit RNase enzymes 

respectively. Following reagents were added in a 15µl of 4µg of total RNA: 

- 2µl of DNase I, amp grade, 1U/µl 

- 0.5µl of RNase Out 

- 2µl of 10x reaction Buffer 

- Nuclease free water to 20µl 

The sample should be left at room temperature for 30minutes to one hour. 

DNase I reaction should be stopped by adding 2µl of 25mM EDTA solution to the 

reaction mixture followed by heating for 10 minutes at 65°C. The RNA sample is 

now ready for reverse transcription. The sample can be stored at -80°C for future 
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use. Five µl of DNase I treated total RNA is used in the reverse transcription 

step, giving 1µg of total RNA. 

First Strand cDNA Synthesis with SuperScript III (Invitrogen) 

The first strand cDNA synthesis was done using Invitrogen superscript III 

recommended protocol. Superscript III can be used on total RNA with Oligo(dT), 

random primers (Invitrogen), or a gene-specific primer.   

The following reaction reagents were added in a 200µl eppendurf tube: 

- 5µl of 4µg DNase I treated total RNA  

- 1µl of gene specific reverse primer (diluted 1:200 

from the original stock in nuclease free water) 

- 1µl of 10mM dNTP mix (10mM each of dATP, dGTP, 

dTTP, dCTP at neutral pH) (Invitrogen) 

- Nuclease free water to 12µl 

The tube was incubated at 65°C for five minutes and quickly chilled on ice for at 

least one minute. This step opens up the 3D configuration of RNA and allows the 

primer(s) to bind along the RNA molecule. The content is collected and the 

following mixture is added: 

- 4µl of 5x First Strand Buffer  

- 2µl of 0.1M DTT (Dithiothreitol) 

- 0.5µl of RNase Out 

- 1µl of (40U/µl) of Superscript III  
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The tube was mixed gently and centrifuged briefly to collect the content. The 

sample was heated at 55°C for 50 minutes for a gene specific primer, or 50°C for 

50 minutes for random primers, or Oligo(dT) primers followed by 15 minutes at 

70°C to inactivate the reaction. The first strand of cDNA is now ready for 

amplification by PCR. 

2.5.3 Polymerase Chain Reaction (PCR) 

 

One to 5 µl of cDNA can be used for amplification using ReddyMix PCR Master 

Mix (ABgene) containing 15mM MgCl2. A 20µl reaction is made using the 

following reagents: 

- 1-5µl of cDNA 

- 1µl of forward primer of gene of interest (10pmol) 

- 1µl of reverse primer of gene of interest (10pmol) 

- 17µl of ReddyMix Master Mix (ABgene) 

The sample was gently mixed and briefly centrifuged to collect it. The tube was 

placed into a thermal cycle PCR machine configured with the following program: 

 

 Temperature Time No. of Cycles 

Initial Denaturation 95°C 5 minutes 1cycle  

Denaturation 95°C 15 seconds 
30-40 cycles 

Annealing 55°C 45 seconds 

Final Extension 72°C 5 minutes 1 cycle 
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A PCR optimization must be performed to find the correct annealing temperature 

for each primer set to reduce primer dimer and unspecific primer binding. 

2.5.4 Agarose gel electrophoresis 

 

To visualize the PCR product, a 1.5 percent agarose gel made with 1X Tris-

borate EDTA buffer solution (Sigma) was prepared. One µl of 10mg/ml of 

ethidium bromide is added per 100ml of molten agarose gel before pouring the 

gel into an agarose gel electrophoresis tank. Once the agarose gel is set, 300ml 

of 1xTBE (tris-borate EDTA) buffer was added and each PCR sample loaded into 

appropriate wells in the gel. A suitable molecular weight ladder was used to 

accurately size the PCR product. The gel was run at 70V for at least one hour or 

until the PCR product is run three quarters of the way into the gel. The PCR 

product can now be visualized using an Alphaimager under U.V. light. A single 

band should be seen in a positive lane, and no band should be seen in a 

negative control lane. The size of the PCR product must match the expected 

product size. 

 

2.5.5 Primer Design 

 

The primers are designed using Applied Biosystems (AB) ABI Prism primer 

express version 2.0. Primer parameters are set as follows: 

- Primer Tm (melting temperature): min (57°C) – max (63°C), optimum (60°C) 

- Primer length: min (18bp) – max (22) bp, optimum (20)  
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- Primer GC% content: min (45%) – max (55%) 

- Amplicon product size: min (150bp) – max (200bp) 

The FASTA sequence of mRNA of interest was downloaded from National 

Centre for Biotechnology Information (NCBI) and loaded into the primer express 

software. The chosen primer pair sequences were then BLASTED in NCBI 

website to check for specificity of each primer. 

The sequence of all primer sets are detailed below: 

 

Table 2.4 Human primer sequences for RT-PCR and real-time PCR 
Gene Name Orientation Sequence 

GAPDH (house keeping 
gene) 

Forward 5´-GAAGGTGAAGGTCGGAGT-3´ 

GAPDH (house keeping 
gene) 

Reverse 5´-GAAGATGGTGATGGGATTTC-3´ 

PRKCD (DNA-PKcs) Forward 5´-CCGGACGGACCTACTACGACT-
3´ 

PRKDC (DNA-PKcs) Reverse 5´-AGAACGACCTGGGCATCCT-3´ 

DCLRE1C (Artemis) Forward 5´-ATCTCCATAGACCGCTTCGAT-3´ 

DCLRE1C (Artemis) Reverse 5´-AGCTGCACTCCAACCTTCTTT-3´ 

 

2.6 Real-Time quantitative Reverse Transcription PCR (Real-Time 
qRT-PCR) 
 
A two step RT-PCR can be performed using SYBR Green I dye (Applied 

Biosystems) to detect in “real time” direct measurements of PCR products with 

an ABI prism 7900HT Sequence detection system (Applied Biosystems). SYBR 
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Green I dye is attached directly to the double stranded DNA and the release of 

fluorescence is measured and recorded by the real time machine.  

Reverse transcription was performed as described above and once cDNA is 

made, 1µl of cDNA was added to the SYBR Green PCR master mix as follows: 

- 12.5µl of SYBR Green master mix (2x concentration) 

- 1µl of forward and reverse primer 

- 1µl of cDNA 

- nuclease free water to 25µl 

The above reaction dilutes the original stock of 2x concentration of SYBR Green 

to 1x concentration reaction mix. The reaction mix was then added to a 

MicroAmp optical 96-well reaction plate (Applied Biosystems) in triplicate. The 

reaction plate was sealed with an ABI-prism optical adhesive cover (Applied 

Biosystems), briefly centrifuged for 30 seconds to collect the sample, and run in 

the real time machine.  

The programs used for real time PCR were: 

 Temperature Time No. of Cycles 

Hot Start 95°C 5 minutes 1 cycle 

Denaturation 95°C 15 seconds 
30-40 cycles 

Annealing 60°C 45 seconds 
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Dissociation curve analysis was performed immediately after the PCR run to 

check and verify results. The dissociation curve allows the check for primer dimer 

and non-specific amplification that may affect the quality of the data. Dissociation 

was always performed at the end of the PCR reaction. The PCR amplicons were 

dissociated at 95°C and allowed to slowly re-anneal. The change in fluorescence 

was plotted against the temperature. The change in fluorescence is due to a dye 

or probe interacting with the double-stranded DNA. Consequently, the 

quantitative PCR product can be run on an agarose gel to check for a clean 

single band at the estimated band size. 

2.6.1 Optimizing primer concentration 

 

Each set of primers must be optimized individually to determine the minimum 

primer concentrations that gives the lowest threshold cycle (Ct) and maximum 

∆Rn while minimizing non-specific amplification. 

Primer optimization studies:  

Four different concentrations of forward and reverse primers were tested to find 

the optimized primer concentration. Figure 2.2 shows a primer concentration 

optimization test performed on human primary fibroblast (GM08399, F01-240, 

and CJ179) with the following concentrations of primers: 10pmol, 5pmol, 

2.5pmol, and 1pmol. 
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DNA-PKcs annealing temperature optimization 

Annealing temperature optimization was done to find the optimum temperature 

that would give the highest PCR product yield without the formation of secondary 

products or primer dimer formation. 

 

 

B A GM08399 (WT) F01-240 (Art) CJ179 (Art) 

65°   67°    69°     70°       72°     NC 

GM08399 

Figure 2.2 Sample gel electrophoresis 
A| Expression of GAPDH in the GM08399 control cell line. Lanes 1 and 6 are 
markers. Lane 2: 1pmol, Lane 3: 2.5pmol, Lane 4: 5pmol, Lane 5: 10pmol. B| 
Expression of GAPDH in the F01-240 cell line (left) and the CJ179 cell line 
(right) at different concentrations of forward and reserve primers. Lanes 1 and 6 
are markers. Lane 2, 7:1pmol, Lane 3, 8:2.5pmol, Lane 4, 9:5pmol, Lane 5, 
10:10pmol. 

Figure 2.3 Optimizing primer annealing temperature 
PCR image of PRKDC gene (DNA-PKcs), showing 
different annealing temperatures of DNA-PKcs in the 
GM08399 cell line. 
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From the above experiment (Figure 2.3) the optimum annealing temperature of 

primers designed to amplify the PRKDC gene (DNA-PKcs) was 67°C.  

Real time RT-PCR optimization 

After the PCR primer optimization was completed, the next step was to test the 

primer concentration using real-time RT-PCR. Figure 2.4 represents the 

amplification curve from real-time PCR showing the effect of the primer 

concentration on the efficiency of amplification. 

  

 

Primer dimer optimization 

One of the biggest problems associated with the PCR technique is finding the 

best set of primers that would only amplify the product of interest with no or a 

minimal amount of primer-dimer formation. Often primers anneal to their own 3’ 

end or with 3’ end of the other primer and this is usually visible as a low weight 

molecular band in gel electrophoresis.  Primer dimer normally interferes and 

A B 

Figure 2.4 Real time PCR amplification curve.  
A| Amplification curve for GAPDH primers at various concentrations. 10pmol of 
primer has reduced the amplification efficiency of GAPDH (arrow). B|
Amplification curve for PRKDC gene (DNA-PKcs) primers at various primer 
concentrations. In both cases the control GM08399 cell line was used. 
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often competes with the DNA fragment of interest and hence may distort the final 

PCR product. In real-time PCR technology, formation of primer dimers can distort 

the final fluorescence reading and must be removed completely from the 

reaction.  Figure 2.5 show examples of reactions with and without primer dimer 

formation. 

 

 
 
 
 
 
 
 

2.7 Western blot 
 
Western blot is a technique used to specifically detect and quantify protein from a 

tissue or cell samples. It uses gel electrophoresis to separate proteins according 

to size and mobility. Proteins are then transferred to a Polyvinylidene Fluoride 

(PVDF) membrane in a wet blot condition and the primary antibody detects and 

A B 

Figure 2.5 Dissociation curve 
A| GAPDH showing a clean PCR product amplified under real time conditions. 
There are no signs of primer dimmer formation or secondary products. 
B| DNA-PKcs primer with primer dimer formation. The extra peak on the left is a 
sign that extra product has been made (confirmed on gel electrophoresis yellow 
arrow). Therefore this specific DNA-PKcs primer set was not optimum and not 
used for analysis 
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binds to the specific target. Chemiluminescent dye is used to detect the 

Horseradish peroxidase (HRP) conjugated secondary antibody that is bound to 

the specific primary antibody and the protein of interest is detected on an X-ray 

film.   

2.7.1 Protein Sample Preparation 

 

Cells were grown to 80-90 percent confluence and the plate was rinsed six times 

with cold PBS. All the excess liquid was removed and 900µl of a 5x sample 

buffer (SB) containing 10 percent (v/v) sodium dodecyl sulfate (SDS), 250mM 

Tris pH 8.0, 50 percent (v/v) glycerol and 0.01 percent (w/v) bromophenol blue 

plus 50µl of protease Inhibitor and 50µl of beta-mercaptoethanol (BME) were 

added for at least one minute onto the plate. Cells were then scraped off using a 

cell scraper. Samples were collected into an Eppendorf tube and were stored at -

20°C for long-term storage. The sample was thawed and mechanically sheared 

ten times using a 1ml syringe and a 23g needle. The samples were kept on ice at 

this stage at all times to prevent protein denaturing. The samples were then spun 

at 13,000rpm for five minutes and the supernatant was aliquoted and transferred 

to a clean Eppendorf tube and stored at -20°C. It is recommended to avoid 

repeated thawing and freezing of the protein sample as this reduces the quality of 

the protein band and can denature the proteins.  

2.7.2 Protein Quantification 

 

Each protein in the sample was quantified using a RC DC-protein assay (Bio-

rad). This assay was used since it was compatible with reagents in the sample 
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buffer and had a mainly high concentration of SDS and a strong reducing agent 

such as beta-mercaptoethanol.  The assay was performed according to 

manufacturer’s recommended protocol. In short, a serial dilution of 0.2mg/ml – 

1.6mg/ml of protein standard was made using bovine serum albumin (BSA) 

diluted in sample buffer. This was used to construct a standard curve where all 

unknown sample protein concentration was measured against the standard 

curve.  

One hundred and twenty five µl of reagent I was added to 25µl of each protein 

standard and protein sample vortexed and left for one minute. One hundred and 

twenty five µl of reagent II was added to the sample tube vortexed briefly and 

centrifuged at 15,000xg (13,000rpm) for five minutes at room temperature. The 

supernatant was discarded by tipping it onto a dry paper tissue. 127µ of reagent 

A’, made earlier by 5µl of DC reagent S to 250µl of DC reagent A, was added to 

the tube and left for five minutes after a brief vortexing. It normally takes longer 

than five minutes for all the proteins to dissolve completely, as some surface 

membrane proteins are insoluble and difficult to dissolve. With a regular vortexing 

for 15 minutes all proteins were dissolved. At this point 1ml of DC reagent B was 

added to the tube, vortexed, and left for 15 minutes to incubate at room 

temperature. After 15 minutes absorbance was read at 750nm wavelength using 

a spectrophotometer (Eppendorf). The absorbance of protein standard was 

recorded first and a standard curve of protein concentration in mg/ml against 

absorbance was constructed (Figure 2.6). Absorbance of each protein sample 
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was read using the spectrophotometer and the concentration of each protein 

sample was calculated from the standard curve. 

 

Figure 2.6. Standard curve used in protein quantification analysis. 
 

2.7.3 Protein Gel Electrophoresis 

 

An equal concentration of 50µg/50µl of each protein sample was diluted down in 

a sample buffer from its original concentration. Forty µl of the above protein 

sample was mixed with 20µl of the sample buffer, 1.5µl of protease inhibitor, and 

1.0µl of beta-mercaptoethanol. The lid of the eppendurf tube was pierced and the 

protein sample was heated up to 95°C for five minutes to denature the globular 

structure of the proteins.  

Thirty µl of the prepared samples and 10µl of a high molecular weight protein 

marker (Invitrogen) was added to each well of a ready-made 4 percent precast 

gel (Bio-Rad). The lower the molecular weight of a protein of interest, the higher 
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the percentage of gel that is required. For example, a 10% gel will be sufficient 

for the separation of protein of 250KDalton (kDa) or less. In our experiments 

where heavy proteins such as DNA-PKcs (molecular weight of 460kDa) were 

involved, a 4 percent gel was used. The gel was bought ready-made or was 

made using the following ingredients: 

-4.9ml distilled water (DW) 

-6.0ml 30 percent acrylamide mix (protogel EC890) 

-3.8ml 1.5M Tris pH 8.8 (36.3g Tris/200ml) 

-150µl 10 percent SDS 

-150µl 10 percent ammonium persulphate (APS) 
freshly made 

-10µl TEMED 

The above formula will give a 12 percent gel that is poured into the gel tank plate. 

The gel tank plate was set up following the manufacturer’s protocol. The above 

gel was loaded immediately onto the gel plate, topped with water for even 

distribution, and left for 30 minutes to set. The stacking gel was then made with 

the following reagents: 

-2.7ml DW 

-670µl 30 percent Acrylamide mix 

-500µl 1M Tris pH 6.8 (24.2g Tris/200ml) 

-40µl 10 percent SDS 

-40µl 10 percent APS 

-6µl TEMED 
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The stacking gel was poured onto the gel (the excess water was blotted off first) 

and left to set for at least 15 minutes with a separation comb in place. Eventually 

the comb was removed and 30µl of prepared protein sample was loaded 

carefully onto each well. The protein marker was normally loaded on the first and 

last wells. The interior and exterior of the tank was filled with 1x running buffer 

made with 3.0g (w/v) of tris base, 14.4g (w/v) of glycine, 1g of SDS, distilled 

water to 1 liter. The samples were initially run at 100V until proteins were evenly 

located in the gel and the power was switched to 150V for approximately 45 

minutes. The samples were checked regularly to prevent running off of the 

protein samples. 

2.7.4 Blotting and transfer 
 
Once proteins were separated in the gel based on their size and mobility (heavier 

proteins move slower and hence were at the top of the gel, whereas smaller 

proteins move faster and were found near the bottom of the gel), proteins were 

transferred onto a blotting paper. Polyvinylidine fluoride (PVDF) is a non-reactive 

membrane that has a non-specific affinity to amino acids. PVDF was activated by 

soaking in 100 percent methanol for 10 seconds. A sandwich of filter pad, 3mm 

filter paper, activated PVDF membrane, gel, 3mm filter paper, and filter pad was 

assembled according to the manufacturer’s protocol (Bio-Rad). A small magnetic 

stirrer was placed in the tank, topped with 1x transfer buffer made with 11.25g 

(w/v) of glycine, 2.42g (w/v) of tris base, 200ml (v/v) of methanol and distilled 

water to 1 liter. The blotter was placed inside the tank and the tank was run at 

100V for at least 90 minutes on a magnetic stirrer to create an even distribution 
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of the electrolysis. An ice pack was also placed inside the tank to prevent 

overheating of the buffer solution. 

2.7.5 Blocking and antibody incubation 

 

Once the transfer of protein from gel onto the PVDF membrane was complete 

(always check that protein markers were transferred onto the membrane) the 

proteins must be blocked with 5% blocking reagent containing 5g (w/v) of semi-

skimmed milk (Marvel) in 100ml of Tris buffer saline-Tween (TBST) made with 

16g (w/v) of NaCl, 0.2g (w/v) KCl, 3g (w/v) of Tris base, 0.1 percent (v/v) Tween-

20 added to 800ml of distilled water adjusted pH to 7.6, and distilled water added 

to 1 liter. The membrane was left in 30ml of blocking solution for about one hour 

on a shaker at RT. The milk mixture blocks the unspecific binding of an antibody 

with the membrane. After one hour of blocking, the membrane was rinsed with 

TSBT and the primary antibody was added. The primary antibody was diluted 

down according to the manufacturer’s recommendation and was further 

optimized by the user. Table 2.5 below shows all antibodies used in our 

experiment with optimized dilution ranges. 

Primary antibody was diluted in a one in five dilution of 5 % blocking buffer in 1x 

TBST and added onto the membrane overnight on a shaker set at medium pace 

(200rpm/minute) at 4°C. The following day the membrane was washed twice with 

1x TBST for 15 minutes each and incubated with a secondary antibody diluted in 

one in five dilution of 5 % blocking buffer on a shaker at RT for a minimum of one 

hour. 



  Chapter 2: Materials and Methods 

65 

 

2.7.6 Protein detection with chemiluminescence 

 

After one hour incubation with a secondary antibody the membrane was washed 

twice in 1x TBST for 15 minutes. Meanwhile ECL plus (Enhanced 

chemiluminescence) kit (GE Healthcare) was taken out of the fridge and left at 

RT to warm up. The amount of ECL required for detection was based on the size 

of the membrane and was recommended by the manufacturer to be of a final 

volume of 0.125m/cm2 of membrane. The manufacturer’s protocol was consulted 

for the exact mixture of chemical A and chemical B. As a rule of thumb, 2ml of 

reagent A was mixed with 50µl of reagent B. That is 1 part of reagent A mixed 

with 40 parts of reagent B. The ECL mixture was added onto the membrane and 

covered with saran wrap for five minutes in a dark room. The excess of the ECL 

was tipped off onto a paper towel, wrapped in the membrane facing down onto a 

piece of clean Saran wrap and placed in an x-ray cassette. 

Table 2.5 Summary of primary and secondary antibodies used in western blot. 
Antibody  Manufacturer Source Clonality Dilution 

(µl) 
 

DNA-PKcs Neomarker (Ab-4) Mouse Monoclonal 1:500 primary 

Artemis Santa Cruz (sc-
23099) 

Goat Polyclonal 1:100 primary 

Artemis Abcam (ab3834) Goat Polyclonal 1:500 primary 

Beta-actin Abcam (ab8224) Mouse Monoclonal 1.25:1000 primary 

GAPDH Abcam (ab8245) Mouse Monoclonal 1:5000 primary 

Anti-goat Abcam Rabbit HRP-conjugated 1:2000 secondary 

Anti-
mouse 

Abcam Rabbit HRP-conjugated 1:5000 secondary 
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Unexposed ECL plus hyperfilm (GE healthcare) was put on top of the membrane 

and the cassette closed and left for exposure for five minutes. The x-ray films 

were developed either manually in developer first (Kodak) and fixer (Kodak), or 

using an automatic machine (Xograph). The exposure time was assessed 

accordingly depending on the size of the exposed bands. If the protein bands 

were faint and could not be visualized then a second film was exposed for a 

longer period. The ECL chemiluminescence was active for at least one hour. 

2.8 Ribonucleic Acid interference (RNAi) 

2.8.1 Short interfering RNA (siRNA) 

  

Since the discovery of RNAi in 1998 by Fire and Mello using C. Elegans (Fire et 

al., 1998), a whole range of small RNA molecules have been identified including 

microRNA (miRNA), small interfering RNA (siRNA), and Piwi-interacting RNA 

(piRNA) (Ghildiyal and Zamore, 2009) (for latest review). Each class of these 

RNAs differ in their modes of target regulation, their biogeneses, and in the 

biological pathways they regulate. RNAi was described by Fire and Mello to be a 

form of post-transcriptional gene silencing, whereby a dsRNA induces the 

degradation of homologous endogenous transcript, either reducing or totally 

inactivating the mRNA transcript of a specific gene (Fire et al., 1998).  

In essence, a dsRNA is subjected into a cell with the aid of either a modified 

transfection medium in a passive manner (Dharmacon Accell delivery medium), 

or by lipofectamine coating or electroporation (in an active insertion). Depending 

on the mode of entry into a cell, dsRNAs are cleaved into short interfering RNA 
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(siRNA) duplexes by dicers that are part of the RNase III family of ds-RNA 

specific endonucleases (Nature Review online Animation, 2004. RNAi). Duplexes 

of siRNA then form a ribonucleoprotein complex known as RNAi silencing 

complex or RISC. RISC mediates the unwinding of siRNA duplexes, creating 

single stranded siRNA. These single stranded siRNA coupled with RISC then 

bind to target mRNA in a sequence specific manner and cleave the sites of 

mRNA binding. The cleaved mRNA section is recognised by the cell as aberrant 

and hence is destroyed. By destroying sections of mRNA of interest, translation 

is therefore prevented and hence the expression of the gene from which the 

mRNA was transcribed is silenced (Nature Review online Animation, 2004 RNAi 

http://www.nature.com/focus/rnai/animations/index.html).  

This method of post-transcriptional gene silencing is transient and the expression 

of the specific mRNA will revert back to normal in human cells within 7 to 10 days 

post transfection.  

2.8.2 Effective controls for RNAi Experiment 

 

The selection of the proper controls in any RNAi experiment with an analysis of  

loss of function (LOF) of a target gene is key to the reliability, effectiveness, and 

efficacy of the specific RNAi experiment (Huppi et al., 2005). There are several 

criteria that should be met for an acceptable LOF analysis through RNAi 

experiment for publication that editors of Nature Cell Biology suggested in 2003. 

In short these criteria are as follows: 

1. Mismatched or scrambled RNA (Also known as non-targeting siRNA)  
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2. Basic controls: Reduction in the expression level must be measured at the 

mRNA and protein levels, as well as the functional read outs whenever possible. 

3. Quantitative control: A titration of siRNA is recommended to detect the lowest 

minimal concentration of siRNA for the required effect.  

4. Multiplicity control: To be confident in the RNAi data is to demonstrate that the 

desired effect can be achieved with two or more siRNAs targeted to different 

sites in the message under study (Editorial, Nature Cell Biology 2003). 

2.8.3 Experimental Procedure 

2.8.3.1 Re-suspension of siRNA 
 

The siRNA oligonucleotides (Accell smartpool) were purchased from Dharmacon 

(Thermo Scientific) and were re-suspended according to the manufacturer’s 

recommended protocol. All siRNA oligonucleotides were delivered in a dry 

powder form and re-suspended in a siRNA re-suspension buffer provided by the 

manufacturer (Table 2.6). 

All siRNAs were briefly centrifuged in a tube to collect the siRNA pellet at the 

bottom. According to the amount of siRNA, all the siRNA stock was diluted to a 

final concentration of 100µM/µl in 5x siRNA re-suspension buffer (Dharmacon), 

containing 20mMKCl, 6mM HEPES-pH 7.5, and 0.2 mM MgCl2, diluted down to a  
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Table 2.6 Summary of controls in RNA Inhibition experiments 
Control Type Function Products used 

Positive Control Optimizes and monitors 
efficiency of siRNA 
delivery into cells 

Accell GAPD siRNA 

Negative Control Distinguishes sequence 
specific silencing from 
non-specific effects 

Accell Non-targeting 
siRNA 

Transfection Control Determines optimal 
delivery condition 

Accell  Green Non-
targeting siRNA 

Untreated Control Determines baseline cell 
viability phenotype and 
target gene level 

Cells cultured without any 
siRNA treatment 

Multiplicity Control More than one siRNA is 
targeted to different sites 
of mRNA 

Accell siRNA pool (with 
four siRNAs) 

 
 
1x siRNA buffer with RNase free water (Dharmacon). Fifty µl of 1x siRNA buffer 

was added to 5nmol siRNA tube to give a final concentration of 100µm/µl. The 

solution was resuspended with a pipette three to five times to avoid introducing 

any bubbles. The solution was left on an orbital shaker set at 200rpm/minute for 

30 minutes at RT. Then the solution was briefly centrifuged and the quality and 

concentration of siRNA was verified using an ultra violet (UV) spectrophotometer 

(Eppendorf) at 260nm. Table 2.7 summarizes the purity, quality, and total 

concentration of all siRNAs used in our experiments. 

2.8.3.2 Accell siRNA delivery 
The delivery of Accell siRNAs was unique in a sense that no transfection reagent 

was necessary for the uptake of the siRNAs into the cell. The modified Accell 

siRNA protocol works with the Accell delivery medium that was provided by the 



 

 

company (Dharmacon). Due to its unique passive delivery method, a higher 

concentration of siRNAs 

minimal disruption of the expression profile. Little or no delivery optimization was 

needed. 

The schematic below (Figure

used in all siRNA experiments. 

Figure 2.7. Work-flow and plate set up diagram 
 
All siRNA experiments were performed using a 24

duplicates for each time point. For example, two wells were extracted for the 

assessment at 72, 96 hours, etc., post incubation. Cells were trypsinized and 

plated at a density of 0.045x10

all wells 24 hours prior to incubation at 37°C with 10 

in a laminar flow cell culture

The stock solution of 100µM siRNA

delivery medium (Dharmacon) the day prior to the incubation period. 
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company (Dharmacon). Due to its unique passive delivery method, a higher 

 was needed compared to conventional siRNA, with 

minimal disruption of the expression profile. Little or no delivery optimization was 

Figure 2.7) represents the exact experimental procedure 

used in all siRNA experiments.  

low and plate set up diagram of RNAi experiments

All siRNA experiments were performed using a 24-well plate (Nunc) with 

duplicates for each time point. For example, two wells were extracted for the 

96 hours, etc., post incubation. Cells were trypsinized and 

plated at a density of 0.045x106 cells/1/2ml (roughly at 40 percent confluency) for 

all wells 24 hours prior to incubation at 37°C with 10 % CO2. All steps were done 

in a laminar flow cell culture hood using sterile techniques.  

100µM siRNAs was diluted down to 1µM with an Accell 

delivery medium (Dharmacon) the day prior to the incubation period.  

pter 2: Materials and Methods 

company (Dharmacon). Due to its unique passive delivery method, a higher 

was needed compared to conventional siRNA, with 

minimal disruption of the expression profile. Little or no delivery optimization was 

the exact experimental procedure 

RNAi experiments 

well plate (Nunc) with 

duplicates for each time point. For example, two wells were extracted for the 

96 hours, etc., post incubation. Cells were trypsinized and 

cells/1/2ml (roughly at 40 percent confluency) for 

. All steps were done 

was diluted down to 1µM with an Accell 
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Table 2.7. Summary of Accell short interfering RNA used in RNA inhibition experiments.  
siRNA Company/

Type 
Stock 
Quantity 

Working 
Quantity 
Concentration 

Working 
Volume of 1x 
re-
suspension 
buffer 

Recommended 
Concentration 

A260/280 
(>2.0 is pure) 

GAPDH 
(Housekeepin
g gene) 

D
ha

rm
ac

on
/A

cc
el

l s
m

ar
t P

oo
l 5nM 100µM 50µL 1µM 2.10 

Non-Targeting 
(Scrambled) 

5nM 100µM 50µL 1µM 2.20 

Green Non-
Targeting 
(FITC 
conjugated 

5nM 100µM 50µL 1µM N/A 

PRKDC 
(DNA-PKcs) 50nM 100µM 500µl 1µM 2.17 

DCLRE1C 
(Artemis) 50nM 100µM 500µl 1µM 2.09 
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A 2ml of Accell delivery medium containing 1µM final concentration of siRNA was 

added to each well after the removal of the growth medium. The cells were then left 

to incubate with the Accell delivery medium for at least 72 hours before the medium 

was replaced with standard growth medium (DMEM with 10%FCS). The mRNA and 

protein levels were assessed post each incubation. Proteins were extracted using a 

sample buffer and the total RNA was extracted using a Trizol reagent. 

2.9 Statistical Analysis 
 
Basic statistical analysis such as descriptive measurements and graphical display 

were done using Microsoft Excel 2007 software. In cases where comparative 

analysis between means were required, more advanced statistical software such as 

Minitab version 13 was used. All t-tests were done at 95 percent significance with α 

set at 0.05. In some cases SPSS version 13 software package was used. 
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Chapter 3 :  

Analysis of chromosomal aberrations in 

Artemis defective human cell lines 
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3.1 Introduction 
 
Telomeres are specialized structures found at the end of most eukaryotic and all of 

mammalian chromosomes. The combined action of telomeric DNA, telomere 

associated proteins, and telomerase, facilitate the protection, degradation, and in 

pathological cases fusion of mammalian chromosomal ends (de Lange, 2006). The 

discovery of telomeres by Muller and McClintock based on their cytological 

experiments, showed that broken chromosome ends, induced by ionizing radiation 

(IR), fuse together in contrast to natural chromosomes ends (telomeres) which 

remain intact (Muller 1938, McClintock 1941). Today it is well understood that IR 

causes double strand breaks (DSBs) in cellular DNA. These DSBs are largely 

responsible for generating chromosomal aberrations (CAs), including what Muller 

and McClintock referred to as “broken chromosome ends”, whereas telomeres are 

thought to act as protectors against CAs (de Lange, 2006). Studies have also shown 

that critically short telomeres behave as DSBs  and this in turn activates the DNA 

damage response pathway and propagation of apoptosis/senescence via p53 

activation (Smith and de Lange, 2000). It is likely that telomere shortening alters 

telomere structure leading to telomere deprotection or chromosome un-capping, a 

process in which the T-loop structure (see Chapter 1) collapses and the end of 

chromosome becomes, in effect, a DNA DSB.  Therefore, the currently accepted 

view is that telomeres hide natural chromosomal DNA ends from cellular processes 

that recognize and repair DSBs. 

 One of the objectives of this thesis is to examine further the relationship between 

telomere maintenance and processes involved in DSB repair. As explained earlier 

(Chapter 1), mammalian cells use two mechanisms for DSB repair: HR and NHEJ. 
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Previous studies have shown that two NHEJ proteins, Ku and DNA-PKcs, if 

dysfunctional, will cause telomere deprotection or chromosome un-capping which 

manifest as the presence of high numbers of chromosome end-to-end fusions or 

telomeric fusions in affected cells (de Lange, 2006). Follow up studies have 

conclusively demonstrated that both proteins are actually present at telomeres thus 

establishing that telomere maintenance and NHEJ are inter-related processes. It is 

therefore of interest to examine whether other NHEJ proteins affect telomere 

maintenance.  

In this chapter a detailed analysis of spontaneous and radiation induced CAs in 

primary fibroblast cell lines from two RS-SCID patients have been carried out. RS 

SCID is a human syndrome cause by defective Artemis, one of the proteins involved 

in NHEJ. 

3.2 Results 
 

3.2.1 Analysis of CAs induced by IR using classical cytological methods 

 

Artemis defective human cell lines show elevated frequencies of radiation induced 

CAs, in particular chromosome breaks (Darroudi et al., 2007). We used primary 

fibroblast cell lines from two RS-SCID patients (F01-240 and CJ179) in which 

defects with Artemis transcript have been well characterized (Riballo et al., 2004) 

(see section 2.1.1) and a normal human primary fibroblast cell line (GM08399) to 

check whether IR induced CAs show previously published pattern (Darroudi et al., 

2007). All three cell lines were subjected to 0.5Gy and 1.0Gy of gamma rays. We 

used the classical Giemsa staining method to detect CAs and recorded chromosome 

breaks, dicentric and ring chromosomes. Complex CAs were also noted. Two 

independent experiments were performed and in each experiment at least 100 
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metaphase cells were analyzed totalling 200 in some groups (see table 3.1) (except 

in CJ179 and GM08399 where 65 and 72 metaphase spreads were recorded 

respectively at the dose of 0.5Gy). In total, 1,396 metaphase cells were analysed. A 

summary of cell numbers analyzed and distribution of individual CAs are given in 

Table 3.1. The same results accompanied by the statistical analysis are presented in 

a graphical format in Figure 3.1. Examples of CAs observed are given in Figure 3.2. 

The frequencies of spontaneously occurring CAs were similar in all three cell lines 

(Table 3.1and Figure. 3.1). When cells were subjected to IR exposure, the two 

Artemis defective cell lines showed ~3.5 fold increase in frequencies of IR induced 

chromosome breaks at the dose of 1.0 Gy compared to the normal cell line. At the 

dose of 0.5 Gy only one cell line (CJ179) showed significantly higher level of 

chromosome breaks relative to the control line. The difference between the two 

Artemis defective lines at the dose of 0.5 Gy can be attributed to different mutations 

that may cause quantitatively different effects at low doses. A similar situation with 

different Artemis defective cell lines was noted by (Musio et al., 2005). However, our 

results show a slight difference in comparison with those of Darroudi et al. (2007) 

when analyzing frequencies of dicentric and ring chromosomes. We observed a 

small but significant increase in frequencies of dicentric and ring chromosomes at 

the dose of 1.0 Gy in Artemis defective cell lines relative to the control line. In 

contrast, Darroudi et al., (2007) found no difference in frequencies of either IR 

induced dicentric/ring chromosomes nor other IR induced exchange CAs such as 

translocations between Artemis defective and control cell lines. 
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Table 3.1 Classical cytological analysis of CA. 
Results from the two sets of experiments based on the classical cytological (giemsa 
staining) method of analyzing CAs. (Numbers in brackets refer to event per cell.) 
Cell line Metaphase 

cells 
analysed 

Chromosome 
breaks 

Ring 
chromosomes 

Dicentric 
chromosomes 

Complex 
CAs 

CJ179 (Artemis 
defective) 

          

Control 201 13 (0.065) 5 (0.025) 1 (0.005) 6 (0.030) 

0.5 Gy 65  19 (0.290) 1 (0.015) 3 (0.046) 4 (0.060) 

1 Gy 188 65 (0.350) 22 (0.117) 14 (0.074) 4 (0.021) 

F01-240 
(Artemis 
defective) 

     

Control 184 9 (0.049) 4 (0.022) 0 (0.000) 6 (0.033) 

0.5 Gy 191 19 (0.099) 16 (0.084) 5 (0.026) 5 (0.026) 

1 Gy 126 36 (0.286) 12 (0.095) 2 (0.016) 8 (0.063) 

GM08399 
(normal control 
cell line) 

     

Control 211 12 (0.057) 9 (0.043) 2 (0.009) 4 (0.019) 

0.5 Gy 72 8 (0.111) 4 (0.060) 0 (0.000) 2 (0.030) 

1 Gy 100 10 (0.100) 5 (0.050) 1 (0.010) 4 (0.040) 

 

We attribute the difference between our results and results of Darroudi et al. (2007) 

to either a different quality of IR used in two studies or the fact that the numbers of 

dicentric and ring chromosomes observed are relatively low and different statistical 

methods used in two studies may give different results.  

Taken together our results show that Artemis defective human cell lines have higher 

levels of IR induced chromosome breaks, compared to the control cell line. This 

finding confirms the published results in particular those of Darroudi et al. (2007) and 

are also similar to that of Musio et al., (2005). However, we also observed increase 
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in IR induced dicentric/ring chromosomes in Artemis defective cells in contrast to 

Darroudi et al. (2007).  

 

Figure 3.1 CAs induced by IR in Artemis defective and control cell lines.  
Based on the two sets of independent experiments. Error bars indicate SD. 
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A B C 

Figure 3.2 Examples of radiation induced CAs in Artemis defective cell line.  
CJ179 cell line were exposed to 1.0Gy of gamma radiation. A| A complex structural aberration – Triradial. B| Chromosome and 
chromatid breaks and a small ring chromosome. C| Dicentric chromosome. 



  Chapter 3: CA in Artemis cells 

80 

 

3.2.2 Analysis of CAs involving telomeres by FISH 

 

Having established that the two Artemis defective cell lines show elevated frequencies 

of IR induced CAs we wanted to find out whether the same cell lines show any 

evidence of telomere dysfunction at the cytological level. The easiest way to test for 

this possibility is to apply the FISH method that detects telomeric sequences using a 

highly efficient telomeric peptide nucleic acid (PNA) probe (see Chapter 2). We will 

refer to this method as Telo-FISH in the rest of the text.  

The clearest evidence of telomere dysfunction at the cytological level is the presence 

of end-to-end chromosome fusions or associations in affected cells. The analysis of 

spontaneous CAs in Artemis defective cell lines by classical cytological methods 

(Table 3.1 and Figure 3.1) did not reveal any evidence of telomeric fusions which 

manifest as end-to-end chromosome fusions which are in effect dicentric 

chromosomes lacking chromosome fragments. However, classical cytological staining 

methods would miss more subtle telomere defects such as single chromatid 

fusions/associations or fusions involving acrocentric chromosomes.  

Furthermore, elevated levels of telomeric fusions were observed by Rooney et al. 

(2003), in Artemis deficient mouse embryonic stem (ES) cells after extensive FISH 

analysis. For those reasons we resorted to the Telo-FISH methodology to find out 

whether Artemis defective human cell lines show any evidence of telomere 

dysfunction at the cytological level. 

3.2.2.1 Spontaneous chromosome fusions in Artemis defective lines 
 
We started by analyzing spontaneous chromosome fusions by Telo-FISH (Table 3.2).  

We classified chromosome fusions into two categories: Type 1 and Type 2 (Figure 

3.3). Type 1 chromosome fusions are true telomeric fusions and they represent a clear 
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sign of telomere dysfunction (see Figure 3.3). Type 2 chromosome fusions largely 

represent IR induced exchange CAs such as dicentrics and translocations (see Figure 

3.3). Therefore, Type 2 fusion does not constitute CAs caused by telomere 

dysfunction.   

The total number of chromosome fusions, chromosome breaks, and missing 

chromatid signals (MCS) were recorded.  In four separate experiments a total of 478 

metaphase cells were analysed (Table 3.2). Spontaneous chromosome or chromatid 

breaks can occur at a very low frequency in primary fibroblast cells (see section 3.2.1). 

These can arise endogenously as a result of failed V(D)J recombination processes in 

formation of immune cells and in meiosis during cross over and DNA replication 

(Riballo et al., 2004). We observed no significant differences between the frequency of 

spontaneous chromosome breaks and fragments in any of the three cell lines, 

therefore confirming our findings from the previous section (3.2.1) and published data 

(Darroudi et al., 2007).  

 

 

1 2 

Figure 3.3 Schematic representation of Type 1 and Type 2 chromosome fusions.  
1| Type 1 chromosome fusion occurs when telomeres fuse or associate together (a| 
chromosome type, b| chromatid type, c| sister chromatid union, d| ring chromosome). 
Type 1 fusion is easily recognized by the presence of telomeric signal (red) at fusion 
points. 2| Type 2 chromsome fusion occurs without the presence of telomeres at 
fusion points. (a & b| chromosome and chromatid type, c| sister chromatid union, d| 
ring chromosome, e| acentric/chromosome fragment. Type 2 chromsome fusion 
included IR induced CAs. 
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Table 3.2 Spontaneous chromosome fusions in Artemis defective cell lines.  
(Numbers in bracket indicate event per cell.) 
Cell Line Metaphase 

cells 
analysed 

Chromosome
/Chromatic 
Breaks 

Telomere Fusions 
(Type 1) 

Missing chromatid 
signals 

CJ179 (Art) 193 3 (0.016) 13 (0.067) 181 (0.94) 
 

F01-240 (Art) 174 7 (0.040) 14 (0.080) 202 (1.17) 
 

GM08399 (WT) 111 3 (0.027) 2 (0.018) 201 (1.8) 
 

 

The total number of Type 1 telomeric fusions, however, was significantly higher in the 

two Artemis defective lines compared to a normal control line (p<0.001) (Table 3.2, 

Figure 3.4) Both Artemis defective lines, on average, were four times more likely to 

have Type 1 fusions indicative of dysfunctional telomeres than the normal control cell 

line. Most Type 1 fusions observed were of chromatid type. We have not observed any 

Type 2 chromosome fusion. Therefore, our results show low levels of spontaneous 

Type 1 chromosome fusions in Artemis defective human cell lines (Table 3.2, Figure 

3.4). We found no significant differences in the observed number of MCS between cell 

lines.  

 

Figure 3.4: Spontaneous Type 1 chromosome fusions in Artemis defective cell lines. 
Error bars represents SD. 
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3.2.2.2 Radiation induced telomere dysfunction in Artemis defective lines 
 
We next examined whether the frequency of Type 1 chromosome fusions is elevated 

following exposure of Artemis deficient cell lines to IR. We performed three 

independent experiments using does of 0.5Gy and 1.0Gy gamma rays. 

Table 3.5 (Appendix I) represents the summary of all three experiments. Both Type 1 

and Type 2 chromosome fusions were recorded (Table 3.3, Figure 3.5). In total, 1,168 

metaphases were analysed (Table 3.3). It is important to note that Type 2 fusion 

represents IR induced dicentric and ring chromosomes. The frequencies of Type 2 

fusions should, therefore, match frequencies of dicentric and ring chromosomes 

observed after the classical cytological analysis presented in Table 3.1, Figure 3.1. As 

expected this was roughly the case. For example, the CJ179 showed 0.14 Type 2 

fusions per cell at the dose of 1.0 Gy almost whereas we observed 0.19 dicentrics/cell 

using the Giemsa staining (Table 3.1, Figure 3.1). Given that Type 2 fusions are not 

relevant for telomere function as they are caused by DSBs occurring at interstitial 

chromosome locations they have not been considered in further analysis.  

Interestingly, the level of Type 1 fusions, which represent genuine telomeric fusions 

and therefore signify a telomere associated defect, were significantly higher in both 

Artemis defective lines than in the control line (p < 0.001) at the dose of 1.0 Gy (Table 

3.3). However, only the CJ179 cell line showed statistically significant difference in 

Type 1 fusions relative to the control line at both doses (0.5 and 1.0 Gy). Relative 

insensitivity of the F01-240 cell line to Type 1 fusions at 0.5 Gy can be attributed to 

different mutations that cause quantitatively different effects as discussed earlier. 

Therefore, our results suggest that IR induced CAs that affect telomeres in Artemis 

defective cell lines are slightly, but significantly, elevated in comparison to their 
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counterparts in the control cell line. This further indicates the presence of a mild 

telomere dysfunction phenotype as a result of Artemis deficiency in human cells. 

Telo-FISH have also confirmed  that the two Artemis defective cell lines showed 

higher frequencies of IR induced chromosome breaks compared to the normal control 

cell line, and the difference was significant (p <0.001) (Figure 3.5). This was similar to 

our data from classical cytogenetic studies (Table 3.1, Figure 3.1) and results 

published by(Darroudi et al., 2007).  

 

 

Figure 3.5. Graphical representation of IR induced chromosome fusions.  
A| Type 1 chromosome fusions B| Type 2 chromosome fusions C| Type 1 and Type 2 
chromosome fusions. The error bars indicates SD. 
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Table 3.3. Summary of IR induced CAs.  
Missing chromatid signals (MCS) from each metaphase cells were also noted.  (Numbers in bracket indicate events per cell.) 

Cell Line Radiation 

Dose (Gy) 

Metaphase cells 

analysed 

Chromosome/Chromatid 

Breaks 

Type 1 & 2 chromosome 

fusions 

Type 1 chromosome fusions MCS 

CJ179 (Art) 0 131 11 (0.084) 5 (0.038) 4 (0.031) (1.473) 

 0.5 100 14 (0.140) 20 (0.200) 14 (0.140) (1.700) 

 1.0 110 42 (0.382) 33 (0.300) 18 (0.164) (1.345) 

F01-240 (Art) 0 151 14 (0.093) 4 (0.027) 2 (0.013) (0.331) 

 0.5 128 28 (0.219) 8 (0.063) 2 (0.016) (0.891) 

 1.0 102 43 (0.422) 32 (0.314) 13 (0.128) (0.941) 

GM08399 (WT) 0 187 2 (0.011) 2 (0.011) 2 (0.011) (1.219) 

 0.5 115 5 (0.043) 6 (0.052) 4 (0.035) (0.983) 

 1.0 144 14 (0.097) 9 (0.063) 7 (0.049) (1.194) 
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3.3 Discussion 
 
The first evidence of chromosomal abnormalities in Artemis defective cells that result 

from telomere dysfunction was presented by Rooney et al. (2003). Their analysis of 

mouse ES cells that lack functional Artemis revealed significantly higher levels of 

telomeric fusions in comparison to the control cell line.  

A B 

C 

D 

Figure 3.6 Examples of chromosome abnormalities observed after Telo-FISH. 
A| A metaphase spread from an Artemis defective cell line (F01-240) with multiple 
chromosome breaks (red arrow), a chromatid type 1 telomeric fusion (yellow arrow), 
and a sister chromatid union without a telomeric signal (blue arrow). B|
Chromosome type dicentric type 1 telomeric fusion (green arrow). Please note the 
fusion of telomeres in the middle of the Dicentric chromosome (inner pictures). C|
Appearance of sister chromatid union as Type 1 fusion (red arrow). D| Another 
example of a chromosome type Dicentric with telomeric fusion (Type 1) (red arrow). 
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In contrast, two published studies that used Artemis defective human cell lines 

(Darroudi et al. 2007, Musio et al. 2005) reported no evidence of either spontaneous 

or IR induced CAs resulting from telomere dysfunction.  However, these studies 

were not designed to specifically probe for telomere dysfunction in Artemis defective 

cell lines. Telomere dysfunction at the cytological level can be conclusively identified 

only by Telo-FISH as shown by Rooney et al. (2003). None of the above mentioned 

studies using Artemis defective human cell lines employed the Telo-FISH method. 

The aim of our study was, therefore, to employ the Telo-FISH method with the 

purpose of identifying subtle chromosome abnormalities resulting from telomere 

dysfunction in Artemis defective cell lines that cannot be detected by classical 

cytological methods. In line with Rooney et al. (2003) our results revealed a slight but 

significant increase in both spontaneous and IR induced telomeric fusions in Artemis 

defective cell lines relative to the control cell line. It is important to stress that most of 

telomeric fusions observed were of chromatid type. 

Previous studies have shown that two more NHEJ proteins, namely Ku and DNA-

PKcs, affect telomere function. For example, Ku and DNA-PKcs defective mouse 

cells show high levels of telomeric fusions (Bailey et al,. 1999). In many instances 

multiple telomeric fusions were present in a single cell (Bailey et al,. 1999 and 2004). 

In contrast, frequencies of telomeric fusions in Artemis defective mouse cells were 

much lower than in Ku or DNA-PKcs defective cells as reported by Rooney et al. 

(2003). For example, Rooney et al. (2003) found 8 spontaneous telomeric fusions in 

130 analyzed mouse ES cells (0.06/ cell). This is remarkably similar to our results. 

We found, on average, 0.05 spontaneous telomeric fusion/cell in two Artemis 

defective human cell lines. In contrast, the levels of spontaneous telomere fusions in 
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Ku or DNA-PKcs defective cells were > 10 times higher (Bailey et al., 1999). This 

suggests that the effect of dysfunctional Artemis on telomeres in mammalian cells is 

much milder in comparison with Ku or DNA-PKcs defects. In that sense, the Artemis 

effect on telomeres is more similar to another DSB repair protein, namely RAD54. 

Mice defective in this protein show slightly but significantly elevated levels of 

telomeric fusions in comparison with cells from control mice (Jaco et al., 2003). 

It is interesting that we have also found increased incidence of IR induced telomeric 

fusions in Artemis defective cell lines (Table 3.3 and Figure 3.5). This finding 

suggests that IR can destabilize further telomeres in Artemis defective cells and 

probably convert them into DSBs which then can interact with other destabilized 

telomeres or DSBs located at interstitial chromosome locations to produce either true 

telomeric fusions (end-to-end chromosome fusions) or exchange CAs such as 

translocations. Our Telo-FISH method was not able to distinguish between the above 

two types of events. A method called CO-FISH (chromosome orientation FISH) can 

make distinction between end-to-end chromsome fusions and exchange CAs such 

as translocations that involve telomeres. Using this method Bailey et al. (2004) 

demonstrated two types of CAs involving telomeres in mouse DNA-PKcs defective 

cells: end-to-end chromosome fusions and translocations. Observed end-to-end 

chromosome fusions were mostly of chromatid type as in our case. Therefore, our 

results reveal a potential similarity between Artemis and DNA-PKcs effects on 

telomeres, namely elevated levels of chromatid type telomeric fusions following 

exposure of cells to IR.  

An obvious question to ask is how exactly Artemis causes telomere dysfunction in 

mammalian cells. There are two potential scenarios here. It is well documented that 
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DNA-PKcs and Artemis functionally interact during the NHEJ process. Artemis is one 

of the DNA-PKcs phosphorylation targets (Ma et al., 2004, Ma et al., 2005). Given 

that DNA-PKcs associate with telomeres through associations with the shelterin 

complex (Hsu et al., 1999 & 2000, Song et al., 2000, d’Adda di Fagagna et al., 2001) 

it is possible that dysfunctional Artemis may affect this association. The 

consequence would be the induction of alterations in molecular structure of 

telomeres and subsequent telomere deprotection or chromosome un-capping.   

Alternatively, Artemis could affect telomere maintenance true interactions with a 

protein called Apollo. This protein, which is a close homologue of Artemis, directly 

interacts with TRF2 (Lenain et al., 2006, van Overbeek and de Lange, 2006). 

Furthermore, the Apollo defect in human cells leads to increase in telomeric fusions 

(Lenain et al., 2006). Apollo is also involved in DNA damage response. For example. 

Apollo defective mouse cells show sensitivity to IR suggesting a deficiency in DNA 

damage response (van Overbeek and de Lange, 2006). Given a close homology 

between Artemis and Apollo they may functionally interact during cellular DNA 

damage response and these interactions may have effects on telomere 

maintenance. In this sense it is of interest to examine biochemical associations 

between Artemis and shelterin. Unfortunately, examination of these interactions was 

beyond the scope of this thesis. 

In conclusion, we have shown that Artemis defect in human cell lines causes a mild 

telomere dysfunction phenotype detectable at the cytological level. The nature of 

telomere dysfunction phenotype appears to be similar to that observed in DNA-PKcs 

defective cells as exemplified by the presence IR induced chromatid telomeric 
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fusions in both cell types. However, mechanisms by which dysfunctional Artemis 

affects telomeres remain unclear. 
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Chapter 4 : Analysis of telomere function in 

Artemis defective cell lines using TIF assay 
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4.1 Introduction 
 
In the previous chapter we have shown that Artemis defective human cell lines show 

mild telomere dysfunction which manifests as the presence of higher frequencies of 

Type 1 chromosome fusions in comparison with the control normal cell line. This 

finding is significant as it implies that Artemis, which is essentially a NHEJ protein, 

may directly or indirectly, affect telomere function. The role of Artemis in telomere 

function was not unanticipated. A study employing mouse ES cells lacking functional 

Artemis reported elevated frequencies of telomeric fusions (Rooney et al., 2003). 

Similarly, one of the Artemis defective cell lines (F01-240) used in this study was 

shown earlier to have accelerated telomere shortening (Cabuy et al., 2005). 

Accelerated telomere shortening is usually associated with the subsequent loss of 

telomere function (Cabuy et al., 2005). Furthermore, a protein called Apollo, which is 

a close relative of Artemis, has recently been shown to affect telomere maintenance. 

Cells lacking Apollo show elevated frequencies of telomeric fusions (Lenain et al., 

2006). Apollo itself was found to be associated with TRF2, a telomeric protein which 

constitutes a part of the shelterin complex (Lenain et al., 2006, van Overbeek and de 

Lange, 2006) 

It is of interest to examine this mild telomere dysfunction phenotype in Artemis 

defective cells in more detail. A relatively quick way of analyzing telomere function in 

human cells is through the use of a recently developed method called Telomere 

dysfunction Induced Foci (TIF) (Takai et al., 2003). When telomeres become 

dysfunctional they are no longer able to provide chromosome “capping” function, 

most likely as a result of the collapse of the T-loop structure. This, in turn, exposes 

natural chromosomal ends, normally hidden by the T-loop structure, as ordinary 
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DSBs and  leads to activation of DNA damage response (d’Adda di Fagagna et al., 

2003, Takai et al., 2003).  Therefore, the TIF protocol must rely on the combination 

of markers that simultaneously detect a) DNA damage including DNA DSBs and b) 

telomeres. A common marker of DNA damage in mammalian cells is the 

phosphorylated form of histone γH2AX (Jeggo & Lobrich, 2005). Another suitable 

marker is 53BP1 (Takai et al., 2003). Antibodies against both proteins have been 

used in the original TIF protocol with equal success (Takai et al., 2003, van 

Overbeek & de Lange 2006, Dimitrova & de Lange, 2006). In the original TIF 

protocol telomeres have been detected using antibody against TRF2 (Takai et al., 

2003). When two antibodies (first antibody: marker of DNA damage; second antibody 

telomere marker) are combined simultaneously they should be labelled with different 

fluorochromes so that the actual site of a DSB at a telomere can be recognized as 

an overlap between two colours. 

Our aim in this chapter is to describe a) development of a modified TIF protocol and 

b) analysis of telomere function by this protocol in Artemis defective cell lines. In our 

modified protocol a marker for detecting telomeres is no longer an antibody but 

rather a highly sensitive telomeric PNA probe (Landsdorp, 1996). Therefore, our 

modified protocol is based on a combination of immunocytochemistry and FISH and 

it is an example of an increasingly used set of protocols referred to as immuno-FISH. 

The key reason for replacing telomeric antibody with a probe is sensitivity. The 

assumed resolution of PNA FISH is ~200 base pairs (Landsdorp, 1996, Poon and 

Landsdorp 2001). This length of DNA is far beyond antibody detection. The 

advantage of a modified TIF is that it can detect telomeres more reliably than an 

antibody against telomeric proteins which could miss very short telomeres. 
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4.2 Results 
 

4.2.1 Setting up a modified TIF assay protocol 

 

The original TIF method described by Takai et al., (2003) was sensitive enough but 

had a serious disadvantage. It relied on detecting telomeres using an antibody 

against a telomeric protein. Currently, there are no commercially available antibodies 

against telomeric proteins that can be used reliably to detect telomeres on 

cytological preparations. Takai et al (2003) used their own high quality antibody 

which is not commercially available. Furthermore, use of antibodies to detect short 

DNA sequences such as telomeres is questionable as the shortest telomeres would 

be undetectable. For these two reasons we decided that in our modified TIF protocol 

the telomeric antibody will be replaced by the telomeric PNA probe which can 

reliable detect very short telomeric DNA sequences (i.e. 200 b.p.). Detection of DNA 

damage remains unchanged and it relies on an antibody against γH2AX. Therefore, 

our modified protocol is an example of immuno-FISH.  

The biggest problem in immuno-FISH is to establish conditions which will allow 

preservation of antigens following a harsh treatment of cells by FISH protocols which 

effectively destroy proteins and preclude their subsequent detection. The usual 

procedure is to a) detect desired antigens by an appropriate primary antibody, b) 

apply additional fixative treatment designed to protect bound antibody against the 

subsequent FISH related treatment, c) perform FISH and d) detect the primary 

antibody by an appropriate fluorochrome attached secondary antibody (Herbig et al., 

2004).  We have spent almost seven weeks setting up the modified TIF protocol. 

Table 4.1 summarizes all the experiments carried out with the outcome from each 

experiment until a reliable protocol was established.  
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A similar protocol was published by Herbig et al (2004). However, we needed to 

modify this protocol to suit fibroblast cell lines. We also received invaluable practical 

advice from Dr. Julio Masabanda, a research fellow from Division of Biosciences at 

Brunel University. All experiments listed in Table 4.1 have been performed on the 

normal primary fibroblast cell line (GM08399). 

Table 4.1. Establishment of TIF assay protocol.  
All experiments were performed on normal human primary fibroblasts (GM08399) 
grown on poly-prep slides (See Chapter 2 for methodology). In each experiment 
duplicate slides were incubated, one as a control slide and one exposed to 
Bleomycine to induce  DNA-damage. 
Experiment No: Aim Method used Change(s) to the 

method 
Outcome 

Experiment 1 
 

To test the new 
antibody (γH2AX) 

Immunohistochemistry N/A Positive 

Experiment 2 Simultaneous FISH 
and 
immunocytochemistry 

PNA was added after 
antibody addition and 
hybridized for two 
minutes 

PBS was used to 
wash after each 
part 

No visible  γH2AX 
signal. Clearly 
visible telomeric 
PNA signal 

Experiment 3 FISH before addition 
of γH2AX antibody. 

Hybridize with PNA for 
two minutes,   wash 
with PBS and add 
γH2AX 

PNA followed by 
γH2AX. Extra 
fixation. 

Negative – No 
γH2AX or 
telomeric signal. 

Experiment 4 Complete 
Immunohistochemistry 
followed by FISH 

Immunohistochemistry 
and then Hybridization 
with PNA (Telo-FISH 
protocol) 

Extra fixation with 
4% formaldehyde 
after hybridization 

Negative – weak 
signals from both 
γH2AX and 
Telomeric PNA 

Experiment 5 Modified Experiment 4 
protocol4. 

Immunohistochemistry 
and then Hybridization 
with PNA (Telo-FISH 
protocol) 

Increase 
concentration of 
Triton-X from 
0.1percent to 
0.2%. 

PNA signal 
positive; γH2AX 
signal weak 

Experiment 6 Modified experiment 5 
protocol 

Immunohistochemistry 
and then Hybridization 
with PNA (Telo-FISH 
protocol) 

Washing with 
TBST instead of 
PBS 

Positive γH2AX 
signal; positive 
telomeric PNA 
signal. Protocol 
suitable for further 
experiments 

 
Previous studies have established that normal untreated human cells have a) 

approximately 0.5-1 γH2AX positive spot per nuclei and b) a large majority of all 

telomeres detectable by PNA FISH (Riballo et al., 2004, Jeggo & Lobrich, 2005).  

Therefore, the main criteria required from the modified TIF protocol to pass as 



 

 

acceptable for our purpose were: a) that the frequency and quality of 

foci before and after FISH are the same and b) that the frequency of detected 

telomeres after immuno-FISH matches that of FISH only. Examples of images 

produced using the modified TIF protocol are given in Figure 4.1. In the rest of the 

text we will refer to the modified TIF protocol as immuno

 
Figure 4.1 Examples of images generated by IF TIF. 
Cells were incubated with prim
synthetic Peptide Nucleic Acid (PNA) telomeric sequence (
with a cy-3 fluorescence label (middle image)
of the γH2AX foci and telomeres 
overlaps between two colours have been scored as TIFs

4.2.2 Study of telomere dysfunction in 

using IF TIF protocol 

 

The normal fibroblast cell line, GM08399, has consistently shown approximately 0.52 

γH2AX positive spot per cell and a large majority of telomeres de

The work in Prof. P. Jeggo’s 

TIF reliably detects dysfunctional telome

personal communication). Therefore, we were satisfied that the IF TIF protocol is 

suitable for   testing telomere function in Artemis defective cell lines. 
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acceptable for our purpose were: a) that the frequency and quality of γH2AX

foci before and after FISH are the same and b) that the frequency of detected 

FISH matches that of FISH only. Examples of images 

produced using the modified TIF protocol are given in Figure 4.1. In the rest of the 

ill refer to the modified TIF protocol as immuno-FISH TIF (IF TIF).

Examples of images generated by IF TIF.  
ated with primary γH2AX antibody (Upstate) and hybridyzed with 

Acid (PNA) telomeric sequence (CCCTAA)3

3 fluorescence label (middle image) (Applied Biosystems). Co
elomeres represent a TIF. Please note that only complete 

between two colours have been scored as TIFs.  

telomere dysfunction in Artemis defective human cell lines 

The normal fibroblast cell line, GM08399, has consistently shown approximately 0.52 

positive spot per cell and a large majority of telomeres detected after IF TIF. 

P. Jeggo’s laboratory (University of Sussex) has confirmed that IF 

TIF reliably detects dysfunctional telomeres in different cell lines (Slijepcevic

ersonal communication). Therefore, we were satisfied that the IF TIF protocol is 

suitable for   testing telomere function in Artemis defective cell lines.  

Merged 
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foci before and after FISH are the same and b) that the frequency of detected 

FISH matches that of FISH only. Examples of images 

produced using the modified TIF protocol are given in Figure 4.1. In the rest of the 

FISH TIF (IF TIF). 

 

ridyzed with 
3 conjugated 

. Co-localization 
at only complete 

Artemis defective human cell lines 

The normal fibroblast cell line, GM08399, has consistently shown approximately 0.52 

tected after IF TIF. 

has confirmed that IF 

Slijepcevic P., 

ersonal communication). Therefore, we were satisfied that the IF TIF protocol is 
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4.2.2.1 Analysis of telomere function in untreated cells 
 
We started by analyzing telomere function in untreated (non-irradiated) Artemis 

defective cell lines relative to the control cell line. Given that telomeres shorten in 

proliferating primary human fibroblasts (Hayflick, 1960, de Lange et al., 1990, Harley 

et al., 1990, Huffman et al., 2000) and that this shortening can affect telomere 

function (Harrington and Robinson, 2002, Campisi, 2005, Shay and Wright, 2005) we 

decided to analyze cells relatively early in their proliferative history (“younger” cells) 

as well as cells which are relatively late in their proliferative history (“older” cells). We 

estimated replicative history of cells as described in Chapter 2 and this is expressed 

as population doubling (PD) number. The Artemis defective cell lines (obtained from 

the laboratory of Prof. Jeggo) have already undergone a significant number of PDs. 

We therefore decided to use cells with PD value below 16 (range 12-18) as 

“younger” cells and cells with PD value in the range of 19-37 (indicated as PD +32 

therein) as “older” cells. It is important to note that the “older” cells have not shown 

significant signs of cell cycle arrest as a result of cell senescence which occurs in 

fibroblasts typically after 45-50 PDs (Allsopp et al 1995, Kipling et al 1999). 

Results of our analysis are shown in Figure 4.2. It is clear that frequencies of γH2AX 

positive foci were similar in all cell lines and were in line with published studies. For 

example, Artemis defective and normal “younger” cells had similar frequencies of 

γH2AX positive foci (Figure 4.2 A) and this is in line with published data (Riballo et 

al., 2004).  However, γH2AX positive foci increased in both Artemis defective and 

normal “older” cells relative to “younger” cells (Figure 4.2 B). This finding is in line 

with results observed in the same Artemis defective cell lines in other laboratories 

(Prof. Jeggo, personal communication). Interestingly, the difference in frequencies of 
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γH2AX positive foci between Artemis defective and normal “older” cells was 

statistically significant suggesting that a higher proportion of spontaneous DSBs 

remain unrepaired in Artemis defective cells than in normal cells. This could indicate 

that older Artemis defective cells are less efficient in repairing the endogenous DNA 

DSBs than the normal control cells of the same age. 

The results of IF TIF analysis show no difference between Artemis defective and 

normal “younger” cells (Figure 4.2 C). Therefore, the observed mild spontaneous 

telomere dysfunction in Artemis defective cells, which manifests itself as an elevated 

level of Type 1 fusions (see Chapter 3) cannot be linked to results of IF TIF analysis. 

However, it is important to note that the average PD of cells used in experiments 

described in chapter 3 was PD24 (range 19 – 32). Therefore, it is possible that the 

observed mild spontaneous telomere dysfunction (Chapter 3) only occurs in “older” 

cells. In line with this possibility our IF TIF results in “older” cells revealed a 

significantly higher frequency of TIFs in Artemis defective cells relative to normal 

cells. Based on these results it seems reasonable to argue that telomere dysfunction 

in Artemis defective cells increases with PD number. When Artemis defective cells 

are relatively “young” (low PDs) they show functional telomeres (Figure 4.2 C and E). 

However, when Artemis defective cells become “older” (PD 32+) but not senescent 

yet, they show a small but significant increase in TIF frequency relative to normal 

cells of similar age (p<0.001) (Figure 4.2 D and F). 
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Figure 4.2 Frequencies of γH2AX positive foci and TIFs in untreated “Younger” and 
“Older” cells.  
A| Average γH2AX foci/cell in untreated (non-irradiated) “Younger” cells (PD<16, 
range 12-18). B| Average γH2AX foci/cell in untreated (non-irradiated) “Older” cells 
(PD>32, range 19-37). C| Average TIF/cell in untreated “Younger cells). D| Average 
TIF/cell in untreated “Older cells”. The error bars are SEM. 

4.2.2.2. Analysis of telomere function following exposure to low doses of IR 

Given that we observed an increase in Type 1 telomeric fusions in Artemis defective 

cells relative to control cells after exposure to IR (Chapter 3), we next examine
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whether IF TIF will show any difference between Artemis defective and normal cells 

after exposure to IR. IF TIF can also be used to monitor repair kinetics of both total 

DSBs and DSBs occurring within telomeric sequences or TIFs. We decided to 

expose both “younger” and “older” cells to 1.0 Gy gamma rays and follow levels of 

γH2AX positive foci, as well as TIFs immediately after irradiation, 5 h and 24 h after 

irradiation. The numbers of performed experiments and analyzed cells are shown in 

Table 4.2 and Table 4.4 (Appendix I). Figures 4.3 and 4.4 show actual results 

expressed as frequencies of events per cells, as well as repair kinetics of both 

γH2AX foci and TIFs. 

Table 4.2. Summary of TIF experiments 
Five independent IF TIF experiments were carried out including a pilot experiment 
(non-induced). In all experiments three time points were selected for analysis of 
γH2AX and TIF foci except experiments 4 and 5, where four time points were used. 
In each experiment at least 200 cell nuclei were captured and the number of γH2AX 
and TIFs were captured and recorded. 
Name of 
Experiment 

Irradiation 
dose (Gy) 

Repair Time 
(in Hour) 

Cell lines and PD Number of cells 
scored/cell line 

Experiment 1 
(Pilot test) 

No N/A CJ179 (PD19),  
F01-240 (PD19), 
GM08399 (PD27) 

200 cells/point 

Experiment 2  0.1, 0.5, 1.0 0.05, 5, 24 CJ179 (PD21, PD30),  
F01-240 (PD12. PD18), 
GM08399 (PD27, PD37)

200 cells/point 

Experiment 3 0.1, 0.5, 1.0 0.05, 5, 24 CJ179 (PD22),  
F01-240 (PD14), 
GM08399 (PD27) 

200 cells/point 

Experiment 4 0.1, 0.5, 1.0 0.05, 5, 24, 48 CJ179 (PD24),  
F01-240 (PD15), 
GM08399 (PD32) 

200 cells/point 

Experiment 5 0.1, 0.5,1.0 0.05, 5, 24, 48 CJ179 (PD24), 200 cells/point 

Artemis defective and normal “younger” cells showed expected kinetics of DSB 

repair. For example, Figure 4.3 shows that “younger” Artemis defective cells had a 

higher proportion of unrepaired DSBs 24 h after IR relative to normal “younger” cells. 

This finding is in line with published studies (Riballo et al., 2004, Wang et al., 2005, 
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Krempler et al., 2007).  However, the IF TIF results were slightly different in that only 

one “younger” Artemis defective cell line (CJ179) have shown elevated levels of TIFs 

at all time points after IR relative to the “younger” control line (Fig. 4.4A). The other 

“younger” Artemis defective cell line (F01-240) exhibited results was very similar to 

those observed in the “younger” normal control line. Therefore, these results are 

inconclusive; we cannot say with certainty whether Artemis defective “younger” cells 

show elevated level of IR induced TIFs relative to control cells.  

Interestingly, “older” Artemis defective cells behaved differently from the “younger” 

Artemis defective cells as shown in Figure 4.4B. It is important to note that 

frequencies of γH2AX foci immediately after irradiation were lower in “older” than 

“younger” cells (Figures 4.3 A and Figures 4.3 C). This difference can be attributed 

to differences in irradiation protocols used. We first irradiated “older” cells and used 

the protocol designed in our laboratory as follows. Cells seeded on poly-prep slides 

were irradiated, transported to a cell culture incubator immediately after IR exposure 

and kept there only briefly (5-10 min) before applying IF TIF protocol. When we 

completed these experiments we met Prof. Jeggo and her PhD student and 

compared results of γH2AX frequencies from their laboratory employing the same 

cell lines. Kinetic results were similar (i.e. γH2AX frequencies at 5 and 24 h post IR) 

(see figure 4.5). However, their protocol generated higher frequencies of γH2AX 

positive foci immediately after IR for the reason that they incubated cells in the 

standard tissue culture conditions for at least 30 min after exposure to IR and then 

proceeded with immunocytochemistry. This technique would allow maximum number 

of γH2AX foci to appear. 
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Figure 4.3 Summary of γH2AX results. 
A| Average γH2AX foci frequency per cell after 0.05 (i.e. 30 minutes), 5, and 24 hours post irradiation at 0.1 Gy, 0.5 Gy, and 
1.0Gy gamma radiation in two Artemis defective (CJ179 in red line, F01-240 in green line) and a normal control (GM08399 in blue 
line). B| Average γH2AX foci frequency per cell in induced Artemis defective and control cell lines with IR at 0 (i.e. 5 minutes), 5 
and 24hrs. Error bars represent SEM for figure B-D and SD for figure A. 200 nuclei were scored for each point in three-four 
independent experiments. 
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Figure 4.4 Summary of TIF results. 
 A| Average number of TIF per cell in irradiated cell lines after 0.05 (i.e. 30 minutes), 5, and 24 hours post irradiation. B| Average 
TIF frequency per cell in non-irradiated cell lines. Error bars represents SEM. Two hundred nuclei were scored for each point in 
three-four independent experiments. Blue bar represents GM08399 (WT), red bar CJ179 (Art), and green bar F01-240 (Art). 

0

1

2

3

4

0.5 5 24

T
IF

/c
e

ll

Repair Time (hr)

Average TIF/cell at 1.0Gy

Younger Cells

GM08399 (Normal Control) CJ179 (Artemis defective) F01-240 (Artemis defective)

0

0.5

1

1.5

2

0 5 24

E
v

e
n

t 
 p

e
r 

ce
ll

TIF /cell at 1.0Gy

Older cells

GM08399 (WT) CJ179 (Art) F01-240 (Art)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 5 24

E
v

e
n

t 
p

e
r 

ce
ll

TIF /cell at 0.1Gy

Older cells

GM08399 (WT) CJ179 (Art) F01-240 (Art)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 5 24
E

v
e

n
t 

P
e

r 
C

e
ll

TIF /cell at 0.5Gy

Older cells

GM08399 (WT) CJ179 (Art) F01-240 (Art)

B A 

C D 



  Chapter 4: TIF assay  

104 

 

Therefore, short time incubation after IR exposure (5-10 min) in our protocol did not 

allow “expression” of all γH2AX positive foci and resulted in the observed lower 

frequencies of γH2AX immediately after IR in “older” cells than in “younger” cells. 

When performing experiments on “younger” cells (chronologically later in our study) 

we decided to adopt Prof. Jeggo’s protocol and incubate cells at least 30 min at 37°C 

following IR. Please note that no difference in γH2AX frequencies were observed at 

time points 5 and 24 h after IR in either “younger” or “older” cells between our 

protocol and the protocol used in Prof. Jeggo laboratory. Results of γH2AX kinetics 

obtained for “younger” cells were in line with published results from Jeggo’s 

laboratory (Evans et al., 2006) i.e. similar levels of DSBs in Artemis and normal 

“younger” cells immediately after IR and higher level of unrepaired DSBs in Artemis 

defective cells 24h post IR (Evans et., 2006, Krempler et al., 2007).  

Most importantly, normal and Artemis defective “older” cells showed the same level 

of TIFs immediately after IR and 24 h after IR suggesting that no repair of DNA 

damage has taken place within the telomeric sequences within this time frame 

(Figure 4.4 B). It is interesting that Artemis defective cells have shown a dip in TIF 

frequencies 5 h after IR. These results argue that repair kinetics of TIFs in “older” 

cells is impaired relative to “younger” cells. To verify this observation further we 

exposed “older” cells to two more low doses of IR: 0.1 and 0.5 Gy and observed 

expected (i.e. a clear difference between repair kinetics in the two wArtemis 

defective cell lines and the normal control) frequencies of γH2AX foci (Fig 4.3. C and 

D) but persistence of TIFs in all cell lines (Figure 4.4 C and D).  

However, the level of TIFs in Artemis defective “older” cells at 24hrs was clearly 

much higher than in normal cells. For example, at the dose of 1.0 Gy normal “older” 
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cells had approximately 0.6 TIFs/cell (Figure 4.4 A). Two Artemis defective cell lines 

had 1.4 and 1.5 TIFs/cell respectively. When the level of spontaneous TIFs (0.3 in 

normal and 0.5 in Artemis defective “older” cells is deducted from the above values 

the difference in the frequency of IR induced TIFs is approximately three-fold higher 

in Artemis defective “older” cells than in their normal counterparts. 

Figure 4.6A shows the percentage of unrepaired TIFs in all three “older” cell lines 

24h after irradiation at all three doses relative to total percentage of DSBs (as 

detected by γH2AX staining) induced by IR. Figure 6.6A shows the 22% of γH2AX 

were located within telomeres in normal cells at all doses. In Artemis defective cells 

the frequency of IR induced DSBs located at telomeres were approximately 10% 

higher i.e. approximately 32%. The difference, however, is not statistically significant 

(P<0.052).  

 

Figure 4.5 Repair kinetics 24 hrs post irradiation.  
An example of an Artemis defective line (F01-240) at three time points after 0.5Gy 
of irradiation. The reduction in frequency of γH2AX foci was clearly evident. But 
note the levels of persistent TIFs 24hrs post IR.  



  Chapter 4: TIF assay  

106 

 

 
 

 

Figure 4.6 Relative frequency of unrepaired TIFs 24hrs post irradiation in Artemis 
defective cell lines.  
A| Each bar represents the percentage of unrepaired TIFs in both Artemis defective 
cell lines (left and middle) and the normal control line (right) induced at three doses 
of IR; 0.1Gy (green bars), 0.5Gy (red bars), and 1.0Gy (blue bars). B| The maximum 
number of induced unrepaired TIFs induced in control lines accounts for ~22 
percent of the overall DSBs (yellow foci in B and black dotted line in A). This 
represents the baseline threshold frequency of expected un-repaired TIFs. The two 
Artemis defective cell lines have a higher percentage of un-repaired TIFs well above 
the 22 percent baseline threshold by about 10 percent on average ~32 percent 
remained co-localized as TIFs (red dotted line on A).  
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4.3 Discussion 
 
In this chapter we presented two novel findings. First, “older” cells, irrespective 

whether they are Artemis defective or normal, cannot efficiently repair DNA damage 

at telomeres as shown by the presence of equal levels of TIFs immediately after IR 

and 24 h after IR (Figure 4.4). Second, the level of IR induced DNA damage at 

telomeres, as observed by scoring TIFs, was significantly higher in Artemis defective 

“older” cells than in their normal counterparts.  

4.3.1 Repair of DNA damage at telomeres 

 

A number of studies have reported differences in sensitivity to DNA damaging 

agents between telomeric sequences and the rest of the genome. Alvarez et al. 

(1993) reported that IR induced CAs tend to localize within interstitial telomeric 

sequences in Chinese hamster chromosomes significantly more frequently than 

expected based on the size of these sequences within the Chinese hamster 

genome. Follow up studies confirmed this finding and, in addition, demonstrated that 

interstitial telomeric sequences in Chinese hamster chromosomes are frequent sites 

of spontaneous chromosome breakage (Balajee et al. 1994; Slijepcevic et al. 1996). 

These studies suggested that interstitial telomeric sequences (a) may behave as 

chromosome fragile sites and (b) repair of DSBs within these sequences may be 

less efficient than in an average genomic DNA sequence.  

It has recently been demonstrated conclusively that mammalian telomeric 

sequences indeed behave as fragile sites. Sfeir et al. (2009) reported that telomeric 

sequences pose a significant challenge to DNA replication machinery causing 

replication-dependent abnormalities very similar to aphidicolin-induced fragile sites. 

Indeed, direct exposure of wild type mouse cells to aphidicolin resulted in a 
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significant fragility at telomeres which became even more elevated after conditional 

deletion of TRF1 (Sfeir et al. 2009). Our observation of persistent DNA damage at 

telomeres is certainly in line with the notion that telomeres behave as fragile sites. It 

would appear that the presence of a DSB within telomeric sequences would cause a 

problem for repair mechanisms leading to the persistence of TIFs for at least 24 h 

following their induction. It is of interest to examine for how long DSBs within 

telomeres remain unrepaired. To answer this question we did perform one 

experiment in which we followed the fate of TIFs for 48 h after irradiation but we did 

not have time to repeat this experiment. Preliminary data suggest that TIFs persist 

on “older” cell lines for up to 48hrs post IR and we observed a difference between 

one Artemis defective (F01-240) and normal control cell lines. Although this 

experiment must be repeated and statistically verified. 

Apart from our results there are no other published studies examining directly DSB 

repair within telomeric sequences. However, Kruk et al. (1995) examined repair of 

UV induced DNA damage at telomeres. They found that UV induced damage at 

telomeres was repaired less efficiently than in active genes but more efficiently that 

in other non-coding DNA sequences. More importantly for us Kruk et al. (1995) found 

that DNA repair efficiency in cells from older donors was lower than in cells from 

younger donors. This is similar to our observation that TIFs persist at telomeres up to 

24 h after IR only in “older” non-senescent cells (PD > 32). In contrast, “younger” 

cells repair IR induced damage at telomeres efficiently. 

4.3.2 IR induced TIFs are elevated in Artemis defective cells 

 

In Chapter 3 we described elevated frequencies of spontaneous and IR induced 

telomeric fusions in Artemis defective cell lines and characterized this as a mild 
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telomere dysfunction phenotype. From results presented in this chapter it is clear 

that this telomere dysfunction phenotype is present only in cells that underwent a 

significant number of PDs (32+) but are not senescent yet. Although IR induced TIFs 

persist in both Artemis defective and normal “older” cells the level of TIFs is 

significantly higher in Artemis defective cells as shown in Figure 4.4. From published 

studies it is known that IR induced DSBs are not repaired uniformly by the same set 

of NHEJ proteins. For example, ~90% of IR induced DSBs are repaired relatively 

quickly and require Ku, DNA-PKcs and LIG-4/XRCC4 (Riballo et al. 2004). The 

remaining fractions of 10% DSBs are repaired by the combined action of ATM 

(ataxia telangiectasia mutated) and Artemis (Riballo et al. 2004). Since Artemis has 

a single strand specific endonuclease activity it is reasonable to assume that this 

fraction of 10% DSBs could have single stranded tails. It is also important to stress 

that Artemis is only active in its phosphorylated form and that DNA-PKcs provides 

this phosphorylation. 

It is not clear as to why defective Artemis causes telomere dysfunction only in “older” 

cells. Given the fact that Artemis is involved in the repair of a subset of 10% DSBs, 

together with ATM (Riballo 2004), it is possible that the biochemical environment of 

an “older” cell creates difficulties for Artemis specific repair processes. Interestingly, 

a recent study revealed that the subset of 10 % DSBs repaired by ATM and Artemis 

are DSBs occurring within heterochromatic regions of the genome (Goodarzi et al. 

2008).  Telomeres are typical heterochromatic parts of the genome (Garcia-Cao et 

al, 2004, Gonzalo and Blasco, 2005). It is possible that Artemis and ATM are 

required specifically for repair of DSBs occurring within telomeric sequences. If this 

is true than we can argue that when Artemis is defective, as in the case of two cell 
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lines used in this study, DSBs at telomeres cannot be repaired efficiently resulting in 

the observed increased frequencies of TIFs in Artemis defective cells relative to 

control cells (Figure 4.4).  

In this context it is also important to understand the role of ATM at telomeres. ATM 

defective cells show increased fragility at telomeres as exemplified by the presence 

of extrachromosomal telomeric fragments in affected cells and accelerated telomere 

shortening (Hande et al., 2001). Given that telomere shortening is a physiological 

mechanism occurring in all primary proliferating human cells (Harley et al 1990, 

Allspopp et al 1995) one may expect that a phenotype similar to ATM defective cells 

could occur when perfectly normal cells undergo a substantial number of PDs on 

their way to become senescent as a result of telomere shortening. This possibility is 

in line with our observation that normal “older” cells show persistent TIFs 24 h after 

exposure to IR in contrast to normal “younger” cells. 

In conclusion, we have demonstrated in this chapter that (a) DNA damage occurring 

within the telomeric DNA is difficult to repair or irreparable in older cells and that (b) 

Artemis defective “older” cells show higher proportion of DNA damage at telomeres 

than their normal counterparts.  
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Chapter 5 :  
Effects of DNA-PKcs inhibition on telomeres in 
Artemis defective cell lines 
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5.1 Introduction 
 
Results presented so far indicate that defective Artemis causes a mild telomere 

dysfunction phenotype. This phenotype manifests in two forms. First, Artemis 

defective cells show elevated frequencies of telomeric fusions. Second, Artemis 

defective cells that underwent a significant numbers of PDs (32+) but are not 

senescent yet show elevated frequencies of IR induced TIFs in comparison to 

normal control cells that underwent similar numbers of PDs. However, the 

mechanism(s) by which Artemis affects telomere maintenance are not clear. Artemis 

is a component of the NHEJ machinery and it is required for the repair of only a 

~10% subset of DSBs most likely in an ATM dependent manner (Lobrich and Jeggo, 

2005, Lobrich and Jeggo, 2007, Riballo et al., 2004). In terms of molecular properties 

Artemis is a single-strand specific endonuclease that is regulated by another NHEJ 

component, DNA-PKcs, which actively targets Artemis by phosphorylation (Ma et al., 

2002, Ma et al., 2005). Phosphorylated Artemis processes DSBs by removing 5’ and 

3’ overhangs to make ends ready for ligase IV/XLF-Cernunnos mediated ligation 

(Buck et al., 2006, Lieber, 2008). 

It is interesting that DNA-PKcs plays an active role in telomere maintenance. DNA-

PKcs forms, through interaction with shelterin, a protective ‘cap’ at telomeres the 

function of which is to prevent formation of end-to-end chromosome fusions (Bailey, 

2004, Bailey et al., 2004). Even a partial deficiency of DNA-PKcs causes telomere 

dysfunction phenotype (Peng et al., 2002, Zhang et al., 2007). There are no 

published data that examine combined effect of defective Artemis and defective 

DNA-PKcs on telomere maintenance. Examination of this double defective 

phenotype may shed some light on the mechanisms by which Artemis affects 
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telomere maintenance. In this chapter we set out to inhibit DNA-PKcs in Artemis 

defective cell lines and therefore create a cellular environment with a double NHEJ 

deficiency. We used a well characterized and highly specific inhibitor of DNA-PKcs, 

IC86621 (Bailey et al., 2004). We verified the levels of DNA-PKcs through western 

blot analysis and assessed effects of the double deficiency on telomeres by IF TIF.  

5.2 Results 
 
There are five different synthetically produced inhibitors of DNA-PKcs that have 

shown to reduce levels of DNA-PKcs activity. Two such inhibitors, NU7026 (2-

(Morpholin-4-yl)-benzo[h]chromen-4-one) and IC86621 (1-(2-Hydroxy-4-morpholin-4-

yl-phenyl)ethanone), have been shown to generate telomere dysfunction phenotypes 

in mammalian cells by directly affecting DNA-PKcs (Williams et al., 2009, Zhang et 

al., 2007). In our study we used IC86621 (Sigma-Aldrich, Inc.). 

In order to demonstrate that IC86621 can generate telomere dysfunction phenotype 

in a mammalian cell environment we first used a pair of mouse lymphoma cell lines 

L5178Y (LY-R) and L5178Y-S (LY-S). These cell lines are easy to maintain in vitro. 

Furthermore, mouse cells have large telomeres, a possibility which allows fast 

identification of any potential telomere dysfunction phenotype. Our intention was to 

show that IC86621 can cause telomere dysfunction phenotype in mouse cells before 

examining effects of DNA-PKcs inhibition (DNA-PKcsi) on telomeres in Artemis 

defective cell lines. 

5.2.1 Inhibition of DNA-PKcs in mouse cell lines 

 

Despite the fact that human and mouse telomeres have many common features, 

such as conserved telomeric repeat sequences, similar shelterin proteins, and 

similar telomeric structure (de Lange, 2006) , there are two observable differences 
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between human and mouse telomeres. On average, human telomeres range in 

length from 10kb-15kb, whereas the telomere length in Mus musculus, ranges from 

40kb-80kb (Blasco et al., 1997, de Lange, 2006). Telomerase, the enzyme that 

regulates telomere length (Greider and Blackburn, 1985), is found to be expressed at 

high levels in human germline cells, but at low levels in somatic cells, with the 

exception of activated leukocytes and tissue stem cells (Masutomi et al., 2003, 

Newbold, 1997). In murine cells however, levels of telomerase activity are higher in 

somatic tissues relative to  human counterparts (de Lange, 2006).  

LY-R and LY-S have been well characterized in terms of DNA damage response 

capacities and telomere maintenance. LY-R cells show normal sensitivity to IR and 

have telomeres typical of mouse cells i.e. 40-50 kb (McIlrath et al, 2001, Wong and 

Slijepcevic, 2004). In contrast LY-S cells show IR sensitivity and have much shorter 

telomeres which are in the region of ~ 7 kb (McIlrath et al. 2001, Wong and 

Slijepcevic, 2004). The mechanism(s) of increased IR sensitivity in LY-S cells are not 

known. It has been suggested that this radiosensitivity is due to a deficiency in the 

DSB repair machinery (Wlodek and Hittelman, 1987). However, DNA-PKcs and all 

known components of NHEJ pathway known at the time (Ku70/80) were functional in 

both cell lines (Jaworska et al., 2001, McIlrath et al., 2001). The only component of 

NHEJ not examined in these cell lines is a recently discovered protein 

XLF/Cernunnos.  

We exposed LY-R and and LY-S cells to IC86621 for 24 h and analyzed cytologically 

visible CAs using Telo-FISH (Table 5.1).  
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Table 5.1 Summary of two DNA-PKcsi experiments using mouse lymphoma LY-R 
and LY-S cell lines.  
Cell lines were incubated with 20µM of IC86621 for 24 hours. Levels of 
Robertsonian fusion (RB), Type 1 telomeric fusion, and chromosome breaks were 
recorded. Numbers represent event/cell. 
 
   

Cell Line Metaphases 
Scored 

Rb fusion  Telomeric 
Fusion 

Breaks/Fragments 

LY-R cell line   Events per cell  

Control 213 0.037 0.075 0.056 

Treated 201 0.088 0.279 0.277 

LY-S cell line     

Control 189 0.159 0.126 0.14 

Treated 200 0.249 0.410 0.212 

 
 
LY-S cells showed elevated levels of spontaneous RB fusion, possibly as a result of 

shorter telomeres and higher levels of missing telomeric signals (McIlrath et al., 

2001). We observed a four-fold increase in spontaneous levels of RB fusion, a 1.7-

fold increase in Type 1 telomere fusion, and a 2.5-fold increase in levels of 

chromosome breaks in LY-S relative to LY-R cells (Table 5.1 and Figure 5.1). The 

elevated levels of endogenous chromosome breaks observed in the LY-S cell line 

probably reflect lack of functional DSB repair machinery in these cells.  

DNA-PKcsi caused significant increase in all types of CAs analyzed in both cell lines 

(Table 5.1 and Figure 5.1). A 3-fold increase in Type 1 chromosome fusions in both 

LY-R and LY-S treated cell lines is indicative of telomere dysfunction resulting from 

DNA-PKcsi (Bailey et al., 2004). Therefore, these results demonstrate that DNA-

PKcsi with 20µM of the IC86621 causes telomere dysfunction phenotype observable 

at the cytological level in both LY-S and LY-R cell lines. Examples of CAs observed 

are shown in Figure 5.2. 



Chapter 5: DNA-PKcs inhibition  

116 

 

 

Figure 5.1 CAs frequenceis in LY-R and LY-S cells after Telo-FISH.  
Error Bars indicate SEM. Asterisk (*) indicates statistically significant differences 
between treated and untreated cells.  

5.2.1.2 DNA-PKcsi causes telomere shortening  
 

As mentioned above, LY-R and LY-S cells have varying telomere lengths (McIlrath et 

al., 2001). The radioresistant LY-R cell line has an average telomere length of 48kb 

and the radiosensitive LY-S cell line has telomere length of 7kb as measured using 

quantitative FISH (Q-FISH) (Alexander, 1961, McIlrath et al., 2001). Q-FISH 

measurements have been confirmed with the use of fluorescence activated cell 

sorting (FACS) based method to measure telomere length known as  Flow-FISH 

(Cabuy et al., 2004). The Flow-FISH technique is a fast and reliable method for 

analyzing telomere length dynamics through the measurement of the average 

telomere length in a given cell population. We measured the average telomere 

length in LY-R and LY-S cell lines using Flow-FISH before and after DNA-PKcsi 

(Figures 5.3 and 5.4). A total of six separate experiments were performed and the 
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A B C 

Figure 5.2 . Examples of CAs observed in LY-R and LY-S cells.  
Metaphase spreads were probed with the  telomeric probe (red) and stained with DAPI (Blue). A| Untreated LY-R cell with no sign 
of telomeric fusion. B| A Robertsonian fusion (white arrow) and Telomeric fusion (red arrow) in a treated LY-S cell. C| Telomeric 
fusion (red arrow) in a treated LY-R cell. 
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differences in telomere length between treated and untreated cell lines were 

calculated.  

 

 

 

  

LY-R LY-S 

Figure 5.3 Examples of a typical flow cytometry profile of untreated LY-R (left) and 
untreated LY-S (right) cell lines.  
FL1 versus FL3 dot plot distinguishes each population of cells (top panels). A 
histogram of a cell cycle was then plotted and only cells in the G0/G1 phase were 
gated for telomere measurement (middle panels). TFI (Telomere Fluorescence 
Intensity) units were measured within the middle part of the histogram on the FL1 
channel (bottom panels). Twenty thousand cells were detected in five minutes and 
on average at least 1,000 cells were used to measure TFI units. 
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Table 5.2 and Figure 5.4 show the summary of telomere length measurements. Our 

results show ~ 5-fold difference in telomere length between untreated LY-R and LY-

S cells. This is different from ~ 6.9-fold difference between the same lines observed 

by McIlrath et al. (2001) after Q-FISH analysis. The difference may be explained by 

natural variation of telomere length in these two cell lines. For example, Cabuy et al. 

(2004) found that average telomere length in LY-R cells vary 40-60%. We confirmed 

this fluctuation in LY-R cells as shown in Figure 5.5. DNA-PKcsi caused a reduction 

in average telomere length by around 27% and 21% in LY-S and LY-R cell lines 

respectively relative to their untreated counterparts following a twenty-four hour 

treatment with DNA-PKcsi. The percentage difference in telomere length between 

treated and untreated cell lines was statistically significant (p<0.05) (Figure 5.4). 

Therefore, our results show that DNA-PKcsi, through exposure of cells to IC86621, 

causes not only loss of telomere function (Table 5.1 and Figure 5.1) but also 

telomere shortening in mouse LY-R and LY-S cells.    

 

Figure 5.4. Average TFI in treated and untreated LY-R and LY-S cell lines. The 
difference in TFI was statistically significant. The error bars represent SD, n=6-7  
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Figure 5.5 TFI values from each experiment in untreated LYR and LYS cell lines.  
 

LY-S Cell line     
Experiment 
Number 

PD Untreated TFI Treated TFI % change in 
TFI 

1 N/A 0.5 0.4 20 
2 N/A 0.5 0.2 60 
3 N/A 0.4 0.4 0 
4 N/A 0.5 0.4 20 
5 2 0.6 0.4 40 
6 4 1.0 0.7 30 
 Mean 

SD 
0.58 0.42 27.60 

0.21 0.16 P<0.05 

LY-R Cell line     
Experiment 
Number 

PD Control TFI Treated TFI % change in 
TFI 

1 N/A 3.0 2.1 30 
2 N/A 2.3 1.8 21 
3 N/A 2.3 1.7 26 
4 2 5.6 4.2 25 
5 4 2.9 2.6 10 
6 8 2 1.5 25 
7 10 1.7 1.5 12 

Mean 
SD 

2.83 2.20 21.30 

1.3 0.96 P<0.05 
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Table 5.2. Summary of TFI in treated and untreated mouse cell lines 
Telomere length measurement using Flow-FISH in LY-S (top panel) and LY-R 
(bottom panel) cell line. Six continuous experiments were conducted to measure the 
average telomere fluorescence intensity (TFI) in treated and untreated LY-S and 
LY-R cell lines. The data below are based on, at minimum 5,000 and maximum of 
20,000 cells, depending on the cell population at the time of experiment. 



 

5.2.2 DNA-PKcsi in Artemis defective human cell lines

5.2.2.1 Western blot analysis
 
After the successful demonstration that DNA

generates both telomere dysfunction phenotype 

shortening (Figure 5.4) the attention was turned to DNA

defective in Artemis.  

Each of three human primary fibroblast cell lines (two Artemis defective and one 

normal) were subjected to DNA

and levels of DNA-PKcs were quantified using western blot (Figure 5.6). DNA

resulted in 45 % reduction in DNA

image Quant 5.0 densitometry analysis of Western blot i

level of DNA-PKcs was quantified relative to the level of beta

western blot technique, quantitation, primary and secondary antibodies, see Chapter 

2.7. 

Figure 5.6. Western blot in three human cell lines before and after DNA

5.2.2.2 DNA-PKcsi generates increased levels of telomeric fusion in Artemis 
defective cell lines 
We next analysed levels of Type 1 chromosome fusion, representative of telomeric 

dysfunction, in all three human primary cell lines subjected to DNA

analysis, shown in Table 5.3, was based on two independent experiments.
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PKcsi in Artemis defective human cell lines 

5.2.2.1 Western blot analysis 

After the successful demonstration that DNA-PKcsi in mouse lymphoma cell lines 

generates both telomere dysfunction phenotype (Figure 5.1) and telomere 

) the attention was turned to DNA-PKcsi in human cell lines 

Each of three human primary fibroblast cell lines (two Artemis defective and one 

subjected to DNA-PKcsi (20µM of IC86621) for a period of 24 hours 

PKcs were quantified using western blot (Figure 5.6). DNA

resulted in 45 % reduction in DNA-PKcs levels in all three cell lines as seen after 

image Quant 5.0 densitometry analysis of Western blot images. Reduction in the 

PKcs was quantified relative to the level of beta-actin. For details of the 

western blot technique, quantitation, primary and secondary antibodies, see Chapter 

. Western blot in three human cell lines before and after DNA-

PKcsi generates increased levels of telomeric fusion in Artemis 

We next analysed levels of Type 1 chromosome fusion, representative of telomeric 

sfunction, in all three human primary cell lines subjected to DNA

, was based on two independent experiments.

PKcs inhibition  

PKcsi in mouse lymphoma cell lines 

(Figure 5.1) and telomere 

PKcsi in human cell lines 

Each of three human primary fibroblast cell lines (two Artemis defective and one 

period of 24 hours 

PKcs were quantified using western blot (Figure 5.6). DNA-PKcsi 

PKcs levels in all three cell lines as seen after 

Reduction in the 

actin. For details of the 

western blot technique, quantitation, primary and secondary antibodies, see Chapter 

 

-PKcsi.  

PKcsi generates increased levels of telomeric fusion in Artemis 

We next analysed levels of Type 1 chromosome fusion, representative of telomeric 

sfunction, in all three human primary cell lines subjected to DNA-PKcsi. Our 

, was based on two independent experiments. 
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The levels of Type 1 chromosome fusions in untreated cell lines (Figure 5.7A) were 

similar to those observed in Chapter 3.2.1., (Figure 3.4). There was a significant 

increase in frequencies of Type 1 chromosome fusions in all cell lines following DNA-

PKcsi relative to their untreated counterparts (p<0.05) (Figure 5.7B). Also there was 

a similar increase in levels of chromosome breaks (Figure 5.7 B). The majority of 

Type 1 chromosome fusions observed in treated cell lines was of chromatid type 

similar to results of Bailey et al. (2004) (Figure 5.7 C). 

Table 5.3 Summary of telomeric fusion in human cell lines. 
Type 1 chromosome fusions and chromosome breaks in individual cell lines. Two 
independent experiments were performed.  The frequencies shown represent 
number of events per cell. 

    Metaphase 
cells 

analyzed 

Type 1 
chromsome 

fusions 

Breaks/Fragments 

GM08399 (WT) Untreated 111 0.018 0.000 
 Treated 150 0.087 0.067 
     
CJ179 (Art) Untreated 194 0.067 0.015 
 Treated 182 0.203 0.104 
     
F01/240 (Art) Untreated 174 0.081 0.017 
 Treated 140 0.136 0.157 
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Figure 5.7. Type 1 chromosome fusions in three cell lines.  
A| Levels of type 1 chromosome fusion and chromosome breaks in untreated cell lines. B| The frequency of Type 1 chromosome 
fusion and chromosome breaks in treated cell lines. C| Telo-FISH image of a metaphase cell from the CJ179 cel line (Artemis 
defective) showing  Type 1 chromosome fusions of chromosome type (yellow arrow) and of chromatid type (white arrows). Error 
bars are SEM 
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5.2.3 Telomere length measurements of DNA-PKcs inhibited Artemis defective cell 

lines using flow-FISH 

 

The next experiment involved the measurement of telomere length in all three cell lines after 

DNA-PKcsi. We previously found that DNA-PKcsi in mouse lymphoma cell lines caused a 

marked decrease in telomere length, suggesting the importance of DNA-PKcs in telomere 

length regulation (section 5.2.1). A total of five experiments were carried out to measure 

telomere length in human primary fibroblast using the flow-FISH protocol (Table 5.4). 

Average telomere length values based on all experiments are presented in Figure 5.8 and 

Table 5.5). The treatment of all three cell lines with the DNA-PKcs inhibitor for a period of 24 

hour caused a reduction in the telomere length (Table 5.5, Figure 5.8). However, the 

difference in telomere length between untreated and treated cell lines was not significant 

(p<0.164 for GM08399, p<0.265 for CJ179) in contrast to mouse cell lines (see Figure 5.4).   

Table 5.4. Telomere length measurements after DNA-PKcsi.  
Telomere Length Fluorescence (TFI) 

       
 Exp 

Number 
Passage PD Untreated TFI Treated TFI % change 

(∆treated – 
untreated) 

F01-240 1 P14 22 1.9   - - 
CJ179 1 P+17 27 2   - - 

GM08399 1 P16 25 1.2   - - 
         
CJ179 2 P+20 32 0.9   0.5 44 

F01-240 2 P16 25 1   0.6 40 
GM08399 2 P18 29 1.1   0.7 36 
         

CJ179 3 P+23 36 0.7   0.4 43 
         
CJ179 4 P+25 40 -   0.6 - 

GM08399 4 P20 32 0.7   - - 
         
GM08399 5 P21 33 0.3   0.2 33 

CJ179 5 P+26 41 0.2   0.1 50 
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Figure 5.8. Telomere length in (TFI) units in treated versus untreated human primary cell 
lines. 
 
Table 5.5. Average telomere length in untreated and treated human primary cell lines 
inhibited with DNA-PKcs. 

 Telomere length in (kb)  
 Untreated Treated % change 
GM08399 
(WT) 

5.97 4.42 26 

CJ179 (Art) 5 3.94 21 
F01-240 (Art) 6.69 5.04 25 

 

5.2.4 IF TIF analysis following DNA-PKcsi 

 

We next examined levels of IR induced DNA damage before and after DNA-PKcsi. All three 

human cell lines were irradiated with 1.0 Gy of gamma rays after DNA-PKcsi that lasted for 

24 hours and frequencies of γH2AX positive foci, as well as TIFs were assessed (Figures 

5.9-5.11). All cell lines were at PDs ranging from 13-21 (“younger” cells) at the time of 

irradiation. (Table 5.11 Appendix I).  

Figure 5.9 shows frequencies of γH2AX positive foci in three cell lines up to 24 h after 

irradiation. In Table 5.6 we presented repair efficiencies of three cell lines before and after 

DNA-PKcsi as measured by calculating percentage of remaining γH2AX positive foci 24 h 
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after IR exposure relative to percentage of the same foci as observed immediately after IR 

(100%). From results observed in the normal control cell line it is clear that DNA-PKcsi 

caused delayed DSB repair as shown by 15 % difference in repair capacity when comparing 

γH2AX foci before the treatment and after incubation with DNA-PKcsi (Table 5.6). Artemis 

defective cells showed similar differences between DNA-PKcsi positive and DNA-PKcsi 

negative cells (9.8 – 12.6%) (see Table 5.6.).  Figure 5.9 also shows less efficient repair at 5 

h post IR in DNA-PKcsi positive cells relative to their DNA-PKcsi negative counterparts.  

Table 5.6. DNA DSB repair efficiency 
DSB repair efficiencies of treated and untreated cell lines as measured by subtracting % of 
γH2AX positive foci 24 h after IR from % of foci immediately after IR exposure (100%). 

Cell line DNA-PKcs 
inhibitor 

DNA DSB repair efficiency (%) of 
remaining DNA DSB 24 hrs post IR 

GM08399 (WT) 
Untreated 6.0 
Treated 21.5 

   

CJ179 (Art) 
Untreated 13.0 
Treated 25.6 

   

F01-240 (Art) 
Untreated 16.2 
Treated 26.0 

 

Differences between DSB repair efficiencies of (a) Artemis defective cell lines before and 

after DNA-PKcsi (p<0.013 for CJ179 treated and p<0.001 for F01-240) and (b) the normal 

cell line before and after DNA-PKcsi  p< 0.001) were statistically significant.  

5.2.4.2 DNA-PKcsi increases levels of TIF in Artemis defective cells 
 
Next, we examined frequencies of DNA damage at telomeres using IF TIF. Analysis of TIF 

frequencies before and after DNA-PKcsi but without exposure of cells to IR is shown in 

Figure 5.9. There was an increase in TIF frequencies after DNA-PKcsi in all cell lines but 

this effect was not statistically significant.  
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 Frequencies of TIFs after DNA-PKcsi and IR exposure are shown in Figure 5.11. The two 

Artemis defective cell lines (CJ179 and F01-240) repaired only 1 - 6 % of DSBs within 

telomeres compared to 41% repaired DSBs within telomeres in the normal cell line after 

DNA-PKcsi and five hours post IR. Twenty four hours post IR the two Artemis cell lines had 

an average of ~ 50 % of TIFs unrepaired, whereas in normal cell line 38 % of TIFs remained 

unrepaired after DNA-PKcsi. The difference in TIFs levels 24 hours post IR was statistically 

significant: (a) between the two Artemis defective treated and untreated cell lines and (b) 

normal control treated and untreated cells (P<0.001) (Figure 5.11).  

These results demonstrate two points. First, DNA-PKcsi increased levels of unrepaired TIFs 

24 hours post IR in both normal and Artemis defective cell lines. Second, DNA-PKcsi 

positive Artemis defective cell lines showed higher levels of TIFs than Artemis defective 

DNA-PKcsi negative cells or DNA-PKcsi positive normal cells, suggesting cumulative effects 

of DNA-PKcs and Artemis deficiencies on telomeres.  

 
 
Figure 5.9 Frequencies of TIFs in three cell lines before (untreated) and after (treated) 
DNA-PKcsi. Error bars represent S.D., n=3.
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Figure 5.10. DSB repair kinetics of in three cell lines before and after DNA-PKcsi (20µM IC86621).  
A| GM08399 (normal control). B| CJ179 (Artemis defective) C| F01-240 (Artemis defective) D| Examples of treated (top panel, i) 
and untreated (bottom panel, ii) cells stained with γH2AX antibody. Please note that the terms “Treated” and “Untreated” refer to 
treatment with IC86621.  
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Figure 5.11. Frequency of TIFs in treated (DNA-PKcsi) and untreated cell lines induced with 1.0Gy IR.  
A| GM08399 (normal control) B| CJ179 (Artemis defective). C| F01-240 (Artemis defective) D| Merged TIFs in treated (DNA-
PKcsi) normal control and two Artemis defective cell lines.  
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5.3 Discussion 
 
In this chapter we employed a highly specific inhibitor of DNA-PKcs, IC86621, to reduce 

DNA-PKcs levels in human fibroblast cell lines and to examine effects of this inhibition on 

telomeres in Artemis defective cell. Our results show that DNA-PKcsi caused (a) elevated 

frequencies of telomeric fusions and (b) telomere shortening in mouse LY-R and LY-S cell 

lines (Figures 5.1 and 5.3). Effect of DNA-PKcsi on telomeres in human cells caused similar 

effects with the exception that the observed telomere shortening was not statistically 

significant relative to untreated human cells (Figure 5.8). Therefore, these results are in line 

with results published by Bailey et al (2004) which revealed that the same inhibitor caused 

telomeric fusions in normal mouse embryonic fibroblasts. Similarly to Bailey et al. (2004) the 

large majority of telomeric fusions observed in our study were of chromatid type.  

There are no reports in the literature on the effects of DNA-PKcsi on telomere length. To the 

best of our knowledge telomere length analysis by flow-FISH after DNA-PKcsi (Figures 5.4 

and 5.8) is the first such report. We found that DNA-PKcsi causes telomere shortening in 

mouse and human cells (Figure 5.4 and 5.8), but the effect was statistically significant only 

in mouse cells. It seems likely that the treatment of human cells with IC86621 should be 

longer in order that telomere length values reach statistically significant differences when 

analyzing telomere length before and after DNA-PKcsi. Nevertheless, our results argue that 

DNA-PKcs has an effect on telomere length regulation in vitro. This is in line with previous 

studies which suggested that DNA-PKcs affects telomere length in vivo (Espejel et al., 

2002b). However, it is important to note that DNA-PKcs deficiency in vivo causes 

abnormally longer telomeres in mouse cells (Hande et al., 1999).  

Having established clear effects of DNA-PKcsi on telomeres in normal cells we analyzed 

behaviour of Artemis defective human cells subjected to DNA-PKcsi. Our results show that 
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DNA-PKcsi causes (a) increase in telomeric fusions in Artemis defective cell lines relative to 

both normal cell lines after DNA-PKcsi and Artemis cell lines without DNA-PKcsi and (b) 

elevated levels of DNA damage at telomeres (TIFs) following IR relative to both irradiated 

normal cells exposed to DNA-PKcsi and irradiated Artemis defective cells but not exposed 

to DNA-PKcsi. These results suggest that the effects of Artemis and DNA-PKcs on 

telomeres are cumulative. For example, analysis presented in Figure 5.11 show statistically 

significant differences between percentages of TIFs immediately after IR and 24 h after IR 

in relevant comparisons between cell lines. 

 What do these results mean from the perspective of mechanisms by which Artemis causes 

telomere dysfunction? We would like to argue that Artemis affects telomere maintenance 

independently of DNA-PKcs. This argument is based on the following observations. Both 

deficiencies cause similar levels of unrepaired TIFs 24 h after irradiation and when two 

deficiencies are present in the same cell environment their effect is cumulative. Given that 

DNA-PKcs regulates Artemis through phosphorylation and that Artemis defect on telomeres 

was still apparent after DNA-PKcsi it seems logical to conclude that DNA-PKcs is not 

required to mediate Artemis effect on telomeres. We would like to suggest that Artemis may 

exert its effect on telomere length either through an ATM dependent pathway, or through a 

pathway that involves its close homologue, Apollo. The two hypothetical scenarios are 

briefly discussed below. 

It has been conclusively demonstrated that ATM plays an active role at telomeres. ATM 

defective human or mouse cells show increased frequencies of telomeric fusions, 

accelerated telomere shortening relative to control cells and increased frequencies of extra-

chromosomal telomeric fragments which are most likely generated by DSBs occurring within 

telomeric sequences (Karlseder et al., 2004, Takata et al., 2004, Verdun et al., 2005, Guo X 
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et al., 2007). Biochemical characterization of ATM from the perspective of telomere 

maintenance revealed molecular interactions with TRF2, a protein that is part of shelterin. 

ATM phosphorylates TRF2 at T188 and that this phosphorylation plays a role in the fast 

repair of DSBs (Huda et al., 2009). It is also interesting to mention that TRF2 is involved in 

the repair of photo induced DSBs (Bradshaw et al., 2005). These observations highlight the 

importance of a functional interplay between DNA damage response pathways and 

pathways that regulate telomere maintenance. Given the fact that Artemis is involved in the 

repair of approximately 10% IR induced DSBs in an ATM dependent manner it is of interest 

to search for potential mechanisms by which Artemis affects telomeres in this context. 

Recent studies suggest that DSBs generated within the heterochromatic parts of the human 

genome are repaired much more slowly than DSBs generated within euchromatin and that 

ATM is required for the repair of heterochromatic DSBs (Goodarzi et al. 2008). Telomeres 

are typical heterochromatic parts of the human genome. This notion is supported by the 

observations that mammalian telomeric chromatin also has heterochromatin features 

(Garcia-Cao et al, 2004, Gonzalo and Blasco, 2005) and this influences telomere length 

regulation and telomere function (Schoeftner and Blasco, 2009). The fact that Artemis 

defective cells fail to repair IR induced TIFs as efficiently as normal cells argue that these 

cells have problems with repairing DSBs within telomeres. This could be due to specific 

heterochromatic organization of telomeres which may require functional ATM and functional 

Artemis for efficient DSB repair. It would be of interest to test this hypothesis in future 

studies. 

Alternatively, Artemis could affect telomere maintenance through its interactions with its 

close homologue, Apollo. Apollo is known to interact with TRF2 to protect telomeres during 

S-phase but its role in DNA damage response is somewhat conflicting (Lenain et al., 2006, 



Chapter 5: DNA-PKcs inhibition  

133 

 

van Overbeek and de Lange, 2006, Demuth et al., 2004, Bae et al., 2008). However, recent 

findings indicate that Apollo stimulates ATM in response to IR (Demuth et al., 2008) and 

functional interaction between Apollo and DNA damage response via ATR in UV induced 

damage have been described (Anders et al., 2009). The recent findings therefore, suggest 

a clearer role of Apollo in DNA damage response although its precise role is still unclear. 

Nevertheless, these findings on Apollo’s role in DNA damage response and telomeres can 

strengthen the scenario discussed in this chapter that Artemis and Apollo may interact in an 

ATM dependent manner in telomere maintenance. 
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Chapter 6 :  
Effects of DNA-PKcs and Artemis knock-down on 
telomeres in Artemis and DNA-PKcs defective 
cell lines  
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6.1 Introduction 
 
In the previous chapter we have shown that DNA-PKcsi resulted in increased levels of a) 

Type 1 chromosome fusions, indicative of telomere dysfunction and b) increased IR 

induced TIF frequencies in Artemis defective cells relative to normal control cells. Given 

cumulative effects of Artemis and DNA-PKcs deficiencies on TIF frequencies it is 

possible that DNA-PKcs and Artemis affect telomere function independently of each 

other.  

Using the quantitative western blot technique (section 5.2.2.1) we found only partial 

reduction in the level of the DNA-PKcs protein after DNA-PKcsi (45% reduction, Figure 

5.6). To generate a stronger reduction of the DNA-PKcs protein, in this chapter we 

employed short interfering RNA (siRNA) to target, bind and degrade the product of the 

PRKDC gene. Moreover, we knocked-down Artemis in a DNA-PKcs defective human 

glioblastoma cell line. This cell line has a frameshift mutation in exon 32 corresponding to 

the first nucleotide codon 1351 (ACC,Thr) with the consequence of early termination of 

the PRKDC gene in exon 33 (Anderson et al., 2001).  

By investigating effects a) DNA-PKcs knock-down in Artemis defective cell lines and b) 

Artemis knock-down in DNA-PKcs defective cells it is hoped that mechanisms by which 

Artemis affects telomere dysfunction will be probed further.  

6.2 Results and discussion 

6.2.1 Knock-down of human PRKDC (DNA-PKcs) expression using short 

interfering RNA (siRNA) technology in an Artemis defective human cell line 

 

DNA-PKcsi using a synthetic drug IC86621 and effects of this inhibition on Artemis 

defective cells was described in the previous section (5.2). However, only a 45% 

inhibition of DNA-PKcs was achieved. In this section we employed a different technique 
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to reduce the level of DNA-PKcs protein - short interfering RNA (siRNA). The entire 

protocol used in this section has been described in chapter 2. A pool of four separate 

siRNA binding to four separate locations within the DNA-PKcs mRNA (Table 6.1) was 

purchased from Dharmacon. We quantified mRNA levels of DNA-PKcs gene using real-

time qPCR technique. In all experiments, dissociation curves were plotted to check 

quality of each primer set (Figure 6.3B). 

Table 6.1 Summary of DNA-PKcs siRNA 
Sequences of Dharmacon Accell smart pool siRNA targeting four regions of the human 
DNA-PKcs gene. Human GAPDH siRNA was used to test the efficiency and viability of 
the Accell transfection medium 

Dharmacon Accell 
Smart Pool  

Target Sequence  

Human PRKDC 
(DNA-Pkcs) Seq. 1  

UCUUGUGUUUAUUGGAUC 

Human PRKDC 
(DNA-Pkcs) Seq. 2 

GGAAGAAGCUCAUUUGAUU 

Human PRKDC 
(DNA-Pkcs) Seq. 3 

CGAUCAACACGGAAUUAUU 

Human PRKDC 
(DNA-Pkcs) Seq. 4 

CUUUUACAUAGCAUGGUUA 

Human GAPDH GUGUGAACCAUGAGAAGUA 

 
 
We started with a pilot experiment using only GAPDH siRNA and quantified GAPDH at 

three separate time points, 3 days, 5 days and 7 days post transfection. As can be seen 

from Figure 6.1A, on average an 80% reduction in GAPDH level was achieved over a 

three days period. We next used GAPDH siRNA and PRKDC pool siRNA together and 

quantified levels of proteins at four separate time points (3 days, 5 days, 7 days and 9 

days post transfection) in two independent experiments. Again, over 70% knock-down of 

target mRNAs was achieved over three days (Figure 6.2).  
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A scrambled siRNA was used as a negative control to show that the knock-down was not 

random and was due to degradation of target mRNA.  

Lowest levels of DNA-PKcs were measured 3 days after transfection and the percentage 

of knock-downs were between 70% and 78% (Figure 6.2). Levels of DNA-PKcs mRNA 

stayed low for 7 days post transfection before a recovery by day 9 measuring between 

85% and 95% of the endogenous DNA-PKcs levels. To verify qPCR results we employed 

another technique, immunocytochemistry. A DNA-PKcs specific antibody (Neomarker) 

was used to detect levels of DNA-PKcs in cell lines transfected with PRKDC siRNA and 

in untransfected control cells Figure 6.3 C-E. Results (Figure 6.3 C-E) showed complete 

or partial reduction in DNA-PKcs levels in cell nuclei from transfected samples confirming 

that knock-down of DNA-PKcs gene has resulted in reduction of DNA-PKcs protein.  

6.2.1.2 Delayed repair of endogenous DNA-damage in DNA-PKcs Knock-down 
Artemis defective cells 
 

We next examined effects of DNA-PKcs knock-down on TIF frequencies. For this 

purpose we used only one Artemis defective cell line. Furthermore, the price of siRNA 

oligonucleotides and other reagents required prevented us from generating repair 

kinetics curves after exposure of cells to IR as in previous chapters. We observed 

increased frequencies of γH2AX foci in normal cells 3 days post transfection only, 

whereas Artemis defective cells exhibited more sustained and longer lasting effect 

showing elevated frequencies of γH2AX foci 3, 5 and 7 days after transfection (Figure 

6.4). The difference in average frequencies of γH2AX foci per cell 5 days post 

transfection between Artemis defective and normal cell lines were significant (p<0.001), 

but not significant for 3 and 7 days post transfection (p<0.0263 and p<0.086 

respectively).



 

Figure 6.1.Over 80% knock-down was achieved 
A| Showing relative percentage of GAPDH knock
siRNA sequence used as a negative control. 
siRNA. The image shows the cytoplasmic localization of NTC
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achieved in control GAPDH experiment.  
Showing relative percentage of GAPDH knock-down in all three cell lines transected for seven days. Scrambled siRNA is a non

siRNA sequence used as a negative control. B| Transfection efficiency was observed using a FITC-
shows the cytoplasmic localization of NTC (non-template control or scrambled control)

human primary fibroblast cell line (GM08399).C| Cells were plated initially at 30 – 40 % confluency and were transfected with 
siRNA of interest in Accell delivery medium for a period for three days (96 hours) 
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Figure 6.2. 80% knock-down in DNA-PKcs mRNA level were measured at 3-days post transfection.  
The knock-down levels were normalized against endogenous GAPDH mRNA level in two independent experiments. Please note 
that levels of PRKDC mRNA recovered 9 days post transfection. A negative control of non-targeting scrambled siRNA sequence 
was also used in all three experiments. Error bars indicate S.D. RQ: Relative quantification. 
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A 
B 

C control (mock transfection) D (3 days post transfection)
  

E (3 days post transfection) 

Figure 6.3 Immunofluorescence and real-time qPCR amplification curve showing reduced levels of PRKDC 
gene.  
A| Real-Time qPCR Amplification curve of CJ179 (Art) 3 days post-transfection. B| Dissociation curve of 
CJ179 (Art) from the above real-time amplification curve showing melting temperature and specificity of the 
GAPDH and PRKDC primers. C| Cell nuclei stained with anti-DNA-PKcs antibody conjugated with Cy3 
(red) showing nuclear localization of DNA-PKcs protein in mock transfection (control) and D| and E| 3 days 
post transfection showing reduced levels of DNA-PKcs protein in some nuclei and complete reduction of 
DNA-PKcs in others. Cell nuclei are stained with DAPI in (blue) DNA-PKcs is in (red).  
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Figure 6.4. Frequencies of γH2AX foci in Artemis defective cell lines before and 
after transfection.  
DNA-PKcs siRNA oligonucleotides were added in each sample in an Accell 
transfection medium for 3 days after which the medium was replaced with normal 
growth medium. A non-targeting (scrambled) siRNA was also used as a negative 
control alongside a mock transfection using Accell transfection medium only. The 
data are pooled results from two independent experiments with at least 100 nuclei 
scored per point per experiment. The error bars represent SEM.  

 
6.2.1.1 Increased levels of TIF in DNA-PKcs knock-down Artemis defective 
cells 

 

We next analyzed TIF frequencies in the two cell lines. Through analysis of at least 

100 cell nuclei per cell line in two independent experiments we found that TIF levels 

increased in normal cells only 3 days after transfection relative to control cells, 

whereas Artemis defective cells showed more sustained and longer lasting effect 

with TIF frequencies being higher 3 and 5 days post-transfection relative to TIF 

frequencies in a) control Artemis cells and b) DNA-PKcs knocked-down normal cells 

(Figure 6.5).  
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These results show that DNA-PKcs knock-down has a stronger effect on telomeres 

in Artemis defective cells than in normal cells.  

 

Figure 6.5. Frequencies of TIFs in DNA-PKcs knocked-down Artemis deficient and 
normal control cell lines.  
The data are pooled results from two independent experiments. Error bars represent 
SEM. The difference in TIF between the two lines are significant at 5 days post 
transfection (p<0.012). 
 

6.2.2  Human Glioblastoma cell line deficient in DNA-PKcs 

 

The two human glioblastoma cell lines (MO59K and MO59J) were derived from a 

glioblastoma multiform (GBM) patient (Anderson et al., 2001). It has been shown that 

MO59J is hypersensitive to IR and also to bleomycin, nitrogen mustard and N,N-

bis(2-chloroethyl)-N-nitrosourea (Allalunis-Turner et al., 1993), and that it lacks 

proper rejoining of DSBs (Lees-Miller et al., 1995), whereas MO59K was found to 

have normal DNA-PK activity and was not radiosensitive (Anderson et al., 2001).  
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6.2.2.2 Knock-down of DCLRE1C (Artemis) in MO59K and MO59J through 
siRNA 
 
The complete protocol for knock-down of DCLRE1C gene (Artemis) through siRNA 

has been described fully in chapter 2. A smart pool siRNA were purchased from 

Dharmacon and transfected using Accell delivery medium. Details of four siRNA 

oligonucleotides corresponding to the Artemis gene are listed in Table 6.2.  

Table 6.2. All four sequences of siRNA used in knock-down of Artemis gene 
(DCLRE1C) and the sequence of human GAPD siRNA used as a control. 

Dharmacon Accell 
Smart Pool  

Target Sequence  

Human DCLRE1C 
(Artemis) Seq. 1  

UCUUGUGUUUAUUGGAUC 

Human DCLRE1C 
(Artemis)  Seq. 2 

GGAAGAAGCUCAUUUGAUU 

Human DCLRE1C 
(Artemis) Seq. 3 

CGAUCAACACGGAAUUAUU 

Human DCLRE1C 
(Artemis) Seq. 4 

CUUUUACAUAGCAUGGUUA 

Human GAPDH GUGUGAACCAUGAGAAGUA 

 

The levels of Artemis mRNA were quantified using real-time qPCR and normalised 

against endogenous GAPDH. Four time points were selected and total mRNA 

extracted at each time point post-transfection (Figure 6.6C). In every qPCR 

experiments, dissociation curves were plotted to check quality of each primer set 

(Figure 6.6AB). We achieved a 76 % knock-down in MO59K (normal control) and 57 

% in MO59J (DNA-PKcs defective) three days post transfection (Figure 6.6C). We 

observed increase in the level of Artemis mRNA starting five days post transfection. 

This increase proves the fact that the knock-down was transient and that both cell 

lines were able to recover Artemis mRNA levels.  
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6.2.2.3 Preliminary analysis of endogenous γH2AX and TIF foci in Artemis 
knock-down DNA-PKcs defective cells 
 
We then recorded levels of endogenous γH2AX foci at three points post transfection 

(3 days, 5 days and 9 days). We would like to stress that because of time constrains 

experiments described in this session are performed only once and should be 

considered preliminary. 

Our analysis showed a significant difference in γH2AX frequencies between DNA-

PKcs defective cells (MO59J) compared to the normal control cells (MO59K) prior to 

transfection (Figure 6.6D). The four-fold difference in frequency of γH2AX foci is 

consistent with the published finding that MO59J cell line show reduced ability to 

rejoin DNA DSBs and increased radiosensitivity (Allalunis-Turner et al., 1993 & 

1995, Lees-Miller et al., 1995). Frequency of γH2AX increased three days post-

transfection in MO59J cells, but remained the same in MO59K cells relative to 

control cells throughout the experiment (Figure 6.6D) 

Furthermore, TIF levels increased in MO59J cells 3 days post transfection, whereas 

TIF remained at normal level in MO59K cells throughout the experiment (Figure 

6.6E). 
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Figure 6.6. Knock-down of the Artemis gene in MO59K and MO59J human glioblastoma cell lines.  
A| Real-time qPCR curve showing reduced levels of Artemis in both MO59K and MO59J cells. All results were normalised to 
endogenous GAPDH. B| Dissociation curve showing the specificity of the primer used in real-time qPCR. C| Graph showing 
relative percentage of Artemis mRNA in the two cell lines. A 76 % knock-down was achieved in the MO59K cell and 57 % in the 
MO59J cell line. D| Frequencies of γH2AX foci/cell in MO59K and MO59J cells before and after Artemis knock-down. E| 
Frequencies of TIF foci per cell in MO59K and MO59J cell lines. 100 nuclei were scored / point in one round of experiment. The 
error bars represent SD. Accell is transfection medium only incubated for three days as positive control.  
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Taken together, in this chapter we have shown that DNA-PKcs knock-down has greater 

effect in Artemis defective cells than normal control cells on a) spontaneous levels of 

DNA damage and b) frequencies of TIFs. This finding further supports our speculation 

that effects of DNA-PKcs and Artemis on telomeres are separate. If DNA-PKcs controls 

Artemis in telomere maintenance-related processes one may argue that knock-down of 

DNA-PKcs in Artemis defective cells should only cause the effect equivalent to that in 

Artemis proficient cells and the pattern of effect would be similar in both cell types. This is 

clearly not the case. DNA-PKcs knock-down causes elevated γH2AX and TIF levels in 

normal cells only 3 days post transfection (Figure 6.4, Figure 6.5). By contrast, γH2AX 

levels are elevated 3, 5 and 7 days post transfection whereas TIF levels are elevated 3 

and 5 days post-transfection in Artemis defective cells (Figure 6.6 D, E).  

Our speculation that Artemis and DNA-PKcs have separate effects on telomeres is 

further supported by a set of preliminary results employing Artemis specific siRNA 

oligonucleotides. However, these results have to be confirmed by further experiments. 
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7.1 General Discussion 
 
The work presented in this thesis aimed to examine whether Artemis, a protein 

involved in NHEJ, plays any role in telomere maintenance. The reasoning behind 

this was that at least two NHEJ proteins, Ku and DNA-PKcs, play active roles in 

telomere maintenance and that DNA-PKcs regulates Artemis through 

phosphorylation. Furthermore, a relatively high number of other DNA damage 

response proteins, not involved in NHEJ, seem to actively participate in telomere 

maintenance suggesting a close relationship between DNA damage response 

mechanisms and mechanisms that regulate telomere maintenance.  

This thesis generated three novel findings. Firstly, Artemis defective cells show mild 

telomere dysfunction suggesting the role of this protein in telomere maintenance. 

Secondly, Artemis defective cells show increased incidence of IR induced DNA 

damage at telomeres only when they undergo above 30 PD but do not reach 

senescence yet. Thirdly, DNA damage at telomeres following IR was also observed 

in normal “older” cells suggesting that cell ageing can potentially enhance DNA 

damage. These three findings are briefly discussed below. 

7.2 The role of Artemis at telomeres 
 
The mechanism of telomere maintenance is somewhat “paradoxical” (Slijepcevic, 

2006) given that telomeres are supposed to hide natural DNA ends from being 

recognized as DSBs and yet two key NHEJ proteins, DNA-PKcs and Ku, are 

physically present at telomeres and they interact with shelterin (de Lange, 2005). A 

recently proposed model suggests that telomere maintenance is an integral part of 

DNA damage response (Slijepcevic, 2006, Slijepcevic, 2008). This model makes a 

distinction between DNA repair, which can be viewed as the restoration of DNA 
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sequence integrity and fidelity,  and “chromosome repair” which represents 

restoration of chromosome structure and function, a part of which is de novo 

acquisition of telomeres and centromeres (Slijepcevic, 2008). The model predicts 

that NHEJ is not only a DNA repair process but also a process which contributes to 

restoring chromosome function (Slijepcevic 2006). The model also eliminates the 

above paradox as the presence of Ku and DNA-PKcs at telomeres may be required 

to initiate the acquisition of a new telomere at the site of DNA DSB that cannot be 

repaired by other means. There is clear evidence in the literature that de novo 

acquisition of telomeres or chromosome “healing” is operational in both yeast and 

humans (for review see Slijepcevic, 2006). One of the key molecules in this process 

is Ku which induces local chromatin condensation prior to chromosome healing 

(Fisher and Zakian, 2005) and recruits telomerase which will synthesize a new 

telomere. It has been postulated that DNA-PKcs is also involved in chromosome 

healing (Slijepcevic, 2006).  

Our observation that an Artemis defect causes a mild telomere dysfunction 

phenotype is in line with the above model. However, we do not have any evidence 

as to how exactly Artemis may affect telomere maintenance. In the case of Ku and 

DNA-PKcs it was conclusively demonstrated that cells or mice defective in these 

proteins show high frequencies of telomeric fusions and clear biochemical interaction 

between these two proteins and shelterin. We calculated that the level of telomeric 

fusions observed in Artemis defective cells is approximately 10 times lower than in 

Ku or DNA-PKcs defective cells. However, we have not carried out biochemical 

experiments to find out whether Artemis directly interacts with shelterin and this line 

of research should be pursued in the future. It is interesting in this context that a 
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close relative of Artemis, a protein recently named Apollo (in Greek mythology Apollo 

and Artemis are twins) directly interacts with shelterin, more specifically with TRF2.  

An obvious question is why Artemis is required for telomere maintenance? If the 

prediction that DNA-PKcs is required for “chromosome healing” (see above) is true 

and given that DNA-PKcs phosphorylates Artemis, a protein with endonucleolytic 

activity, it is tempting to speculate that Artemis may be required to prepare the 

substrate for telomerase before “chromosome healing” takes place. This seems to 

be an attractive scenario particularly in the view of the fact that telomerase requires a 

single strand DNA end to synthesize telomeric DNA. In this scenario Ku would be the 

key initiator of “chromosome healing” as suggested by experimental evidence 

(Fisher and Zakian, 2005). If the conventional NHEJ fails, Ku will a) 

“heterochromatinize” the site of DSB and b) recruit telomerase. As telomerase 

cannot operate on double stranded DNA, DNA-PKcs would need to activate Artemis 

which will process DSBs so that a single stranded DNA overhang is available for 

telomerase to act upon and synthesize new telomeric DNA. It is important to stress 

that telomerase does not need a high level of homology to the conventional telomeric 

sequence to start the synthesis.  When a new telomeric sequence at the site of 

chromosome break is synthesized Ku will recruit shelterin so that a functional 

telomere is generated.  

Given that we have no evidence that Artemis biochemically interacts with shelterin 

we have to consider an alternative scenario, namely that Artemis is not directly 

involved in telomere maintenance but that the mild telomere dysfunction phenotype 

observed is simply an indirect consequence of defective DNA repair. This possibility 

is supported by our earlier prediction (see Chapter 5) that the role of Artemis at 
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telomeres is independent from DNA-PKcs. However, the observation of telomere 

dysfunction phenotype in mice defective in Artemis (Rooney et al., 2003) argues 

against this possibility. 

In conclusion for this part, future research is required to establish, through 

biochemical experiments, whether Artemis interacts with shelterin and if so how 

exactly this protein affects telomere maintenance.    

7.2 Reduced DNA repair efficiency at telomeres 
 
In chapter 4.3 we presented and discussed two novel findings based on the IF-TIF 

assay. Firstly, “older” cells, whether normal or Artemis defective, cannot efficiently 

repair DNA damage at telomeres (Figure 4.4). Secondly, the level of DNA damage at 

telomeres after IR was significantly higher in Artemis defective “older” cells than in 

normal “older” cells. These findings suggest that DNA repair efficiency within 

telomeric DNA is lower in “older” cells than in “younger” cells. The finding is relevant 

for understanding how telomeres affect cellular ageing but also from the perspective 

of understanding efficiency of repair mechanisms in the context of cellular ageing. 

Previous works based on Chinese hamster cells have shown that interstitial 

telomeric sequences are hypersensitive to DNA damaging agents such as IR and 

prompted several authors to consider telomeres as fragile sites (see for example 

Balajee et al., 1994, Slijepcevic et al., 1996). A recent study has conclusively 

demonstrated that telomeres behave as classical fragile sites (Sfeir et al., 2009). A 

work by Kruk et al., (1995), has shown that DNA damage at telomeres induced by 

UV was repaired less efficiently than DNA damage induced in actively transcribed 

DNA. Importantly, Kruk et al., (1995) found that cells from older donors were less 

efficient in DNA repair than cells from younger donors, which is similar to our finding 
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that “older” cells process DNA damage at telomeres less efficiently than “younger” 

cells (Figure 4.4). Our finding therefore may further enhance the link between 

telomere maintenance and cellular aging (Slijepcevic, 2008). Almost all human 

syndromes characterized by defective DNA damage response show defective 

telomere maintenance (Slijepcevic, 2008). These include Ataxia telangiectaisa, 

Nijmegen brekage syndrome, Fanconi anemia, Bloom syndrome, RS-SCID, 

Xeroderma pigmentosum etc. All these syndromes are also characterized by signs of 

premature aging.  

However, it has been suggested that the cause of the fragility within telomeric DNA 

is altered packaging and/or condensation of the chromatin rather than the presence 

of DNA DSBs (Sfeir et al., 2009). If that is the case, then what is the cause of 

persistent TIFs, observed in “older” cells relative to “younger” cells (Figure 4.4)? We 

have not carried out experimental work to address this issue. However, given that 

telomeres are classical heterochromatic regions, one might speculate that if Artemis 

directly contributes to elevated TIFs observed in our study (Figure 4.4) this is likely to 

happen in an ATM dependent fashion. It has recently been shown that ATM and 

Artemis participate in a pathway responsible for repair of DSBs in heterochromatic 

regions of the genome (Goodarzi et al., 2008).  

It is interesting to note that Artemis defective cell lines showed accelerated rate of 

telomere shortening (Cabuy et al., 2005). Critically short telomeres activate DNA 

damage response which in turn can activate cellular senescence which is an 

evolutionary mechanism that prevents genome instability (d’Adda di Fagagna et al., 

2003, Shay et al., 1992). Therefore, one might argue that increased level of TIFs 

observed in “older” Artemis defective cells may have resulted from the activation of 
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DNA damage response due to accelerated telomere shortening rather than from the 

active role of Artemis at telomeres.  

7.1 7.3 Future research 
 

Results presented in this thesis open at least two interesting avenues for future 

research. The first avenue should focus on exploring biochemical characterization of 

Artemis relative to its interaction with shelterin. Assays that can be used to explore 

the above possibility include two yeast hybrid screen and chromatin 

immunoprecipitation (ChIP) assay. In a typical two yeast hybrid screen a known 

protein is selected which serves as a bait for the test protein. When examining 

shelterin interaction with other proteins the usual protein selected as shelterin 

representative is TRF2. If TRF2 proves to be the wrong candidate for interaction with 

Artemis all other shelterin proteins should be tested. Alternatively, the ChIP assay 

can be performed in which all proteins binding to a particular DNA sequence, in this 

case telomeric DNA, are detected.  

The second avenue should focus on how DNA damage is induced and processed 

within telomeric DNA relative to cell age status. The key assay here is IF TIF. A 

number of experiments can be designed to determine in several systems the repair 

efficiency of telomeric DNA in old versus young cells. In particular, it is important to 

use mouse cells in addition to human cells. Mouse cells have much longer telomeres 

and it is easier to induce higher levels of DNA damage at telomeres in mouse than in 

human cells, given the size of the mouse telomeres. Another important point is to 

use an assay that is different from IF TIF to verify our findings. We believe that the 

comet assay should be a good alternative given that a number of DNA probes can 

be used in parallel to the telomeric probe.  
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It will also be important to follow up analysis of telomere status in DNA-PKcs 

defective human cell lines at cytological level to look for evidence of telomere fusions 

occurring either spontaneously or as a result of exposure to IR. Furthermore, TIF 

analysis using DNA-PKcs defective cell lines with knocked-down Artemis should be 

repeated and if possible experiments carried out in which cells will be exposed to IR. 

These experiments may be critical for testing whether effects of DNA-PKcs and 

Artemis on telomere maintenance are independent or not. It will also be of interest to 

extend TIF analysis using Artemis defective cell lines and examine whether DNA 

damage at telomeres persists 48hrs and 72hrs post IR. By analysing TIFs for longer 

periods (2-3 days post IR) we may be able to understand the extent and efficiency of 

telomere repair kinetics in Artemis defective “older” cells. Understanding how 

damaged telomeres are repaired is important in aging and cancer. 

Finally, the link between ATM and Artemis needs to be further examined from the 

telomere prospective. It has been shown previously that a subset of 10% of DSBs is 

repaired by ATM and Artemis and these occur within heterochromatin regions 

(Goodarzi et al., 2008). Telomeres are typical heterochromatin regions and the use 

of an ATM inhibitor in an Artemis defective environment should provide important 

information about the link between Artemis and ATM in telomere maintenance.  
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Appendix I 

Table 3.3. Detail of CA experiments. 
Two sets of experiments were carried out using Giemsa stained techniques. In each 
experiment at least 100 metaphases were analysed whenever possible. 

Cytological 

Analysis  
Metaphase cells 

analyzed  

Experiment 1  759  

Experiment 2  637  

Total 1396 

 
 
Table 3.4. Summary of spontaneous and induced chromosomal aberration 
Experiments using Telo-FISH. 

  Metaphase cells 
Analysed 

 

Experiment 1 Spontaneous 478   

Experiment 2 Radiation Induced 
(0.5Gy and 1.0 Gy) 

401   

Experiment 3 Radiation Induced 
(0.5Gy and 1.0 Gy) 

450   

Experiment 4 Radiation Induced 
(0.5Gy and 1.0 Gy) 

317   

 Total: 1646 Metaphase Cells Analyzed 

 

Table 4.4. Summary of Experiments on early passage cell lines induced with 1.0Gy 
of gamma radiation. 
Name of 

Experiment 

Irradiation 

dose (Gy) 

Repair Time 

(in Hour) 

Cell lines and PD Number of cells 

scored/cell line 

Experiment 1 1.0 0.5, 5, 24 CJ179 (PD16),  
F01-240 (PD12), 
GM08399 (PD16) 

100 cells/point 

Experiment 2 1.0 0.5, 5, 24 CJ179 (PD21, PD16),  
GM08399 (PD27, 
PD16) 

100 cells/point 
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Table 5.11. TIF assay on DNA-PKcs inhibited Artemis and normal human primary 
cell lines induced with 1.0Gy of gamma radiation.  

Cell line Experiment 
Number 

PD Radiation dose and 
repair time point 

Cell counts 

GM08399 (WT) 1 16 1.0Gy 
0.5hr, 5hr, 24hr 

80 cells/time point CJ179 (Art) 1 17 1.0Gy 
0.5hr, 5hr, 24hr 

F01-240 (Art) 1 13 1.0Gy 
0.5hr, 5hr, 24hr, 48hr 

     
GM08399 (WT) 2 16 1.0Gy 

0.5hr, 5hr, 24hr 

80 cells/time point CJ179 (Art) 2 17 1.0Gy 
0.5hr, 5hr, 24hr 

F01-240 (Art) 2 13 1.0Gy 
0.5hr, 5hr, 24hr, 48hr 

     
GM08399 (WT) 3 21 1.0Gy 

0.5hr, 5hr, 24hr 

100 cells/time point CJ179 (Art) 3 16 1.0Gy 
0.5hr, 5hr, 24hr 

F01-240 (Art) 3 17 1.0Gy 
0.5hr, 5hr, 24hr 

 

Table 6.6.Quantification of GAPDH mRNA knock-down. 
Cell lines Endogenous 

GAPDH Ct 
Target  

GAPDH Ct 
∆Ct ∆Ct  SD Cell Viability 

%  (SD) 

GM08399      
Control 21.88 21.85 0  97.5% 

(±0.95) 
3 Days 21.76 21.66 -0.100 0.140 97% (±0.95) 
5 Days 21.70 24.47 2.760 0.130 98% (±0.5) 
7 Days 21.75 21.65 -0.100 0.050 98% (±0.5) 

Scrambled 21.85 20.53 -1.320 0.060 99% (±0.5) 
      

CJ179      
Control   -0.151   
3 Days   -0.207   
5 Days   2.160   
7 Days   0.741   

Scrambled      
      

F01-240      
Control      
3 Days   -0.431 0.150  
5 Days   4.067 0.170  
7 Days   5.218 0.146  

Scrambled   -1.144 0.139  
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Appendix II 

The conversion of the telomere fluorescence intensity (TFI) unit into base pairs was 

performed using the established formula y= 4.13 X + 2.56; where X=TFI (R2 = 

1)(Cabuy et al., 2004). This formula is based on correlation studies using the Q-FISH 

technique to measure telomere length and has previously been shown to be a valid 

formula in converting TFI units into base pairs when measuring telomere length 

using Flow-FISH (Cabuy et al., 2004, McIlrath et al., 2001). 

 


