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Abstract 

This work describes the design, development and testing of a portable charge-coupled 

device detector system to be used for the simultaneous collection of X-ray diffraction 

and X-ray fluorescence data from powdered samples. The detector was designed for 

both terrestrial and extra-terrestrial applications that require in-situ analysis of 

samples, where access to a laboratory instrument is restricted. The detector system 

incorporates 4 e2v technologies CCD30-11 devices, employing multi-phase pinned 

technology for low noise operation. Geometrical calculations and thermal studies 

concerning the design of the detector are presented, with particular emphasis on 

motivations for the chosen geometry. Initial characterisation and calibration of the 

detector was performed in a laboratory environment using a purpose built test facility. 

The test facility included a high brightness X-ray micro-source from Bede Scientific 

Instruments, coupled with an XOS polycapillary collimating optic, which was used to 

deliver a focused beam of low divergent X-rays to the sample. The design of the test 

facility is discussed and the spectra and flux produced by the X-ray micro-source are 

investigated. The operational performance of the detector is highlighted and the use of 

the instrument in different applications is described, namely the planetary sciences 

and pharmaceuticals sector. Finally, based on the knowledge gained from initial 

testing of the instrument, improvements to the detector design are outlined, which 

greatly enhance the combined X-ray diffraction/X-ray fluorescence performance of 

the instrument.  
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Chapter 1 : Introduction 

1.1 X-ray Spectroscopy using Charge Coupled Devices   

The use of the charge-coupled device (CCD) for X-ray spectroscopy applications has 

become very widespread in recent years. Although CCDs were initially designed to 

perform in the optical range, technological advances have allowed CCDs to be used 

for detecting soft X-rays in the 0.1 keV − 10 keV range. Combined with high 

quantum efficiency (QE), low noise and high energy resolution, CCDs are well 

established as one of the most popular X-ray detector technologies of the modern day. 

Relatively small pixel sizes (e.g. 13 µm)2 have also enhanced the spatial resolution of 

CCDs, drawing interest from the astronomy field [Lumb et al. 1991]. CCDs are also 

attractive to the X-ray imaging/spectroscopy detector market due to their small size   

(~ 400 mm2) and low power consumption (< 1 W). The advent of advanced inverted 

mode operation (AIMO) has allowed CCDs to operate with dark current values of less 

than 1 ē per/pixel/second (p/p/s) at ~ -20 °C [e2v technologies 2007]. AIMO CCDs 

can be cooled using thermo electric coolers (TECs) enabling a new generation of 

portable CCD instruments for planetary and scientific applications. Recent years have 

seen a rapid increase in the number of CCDs being used on planetary exploration 

rovers [Bell et al. 2004] and space based telescopes [Bruijne 2007]. The production of 

back illuminated (BI) CCDs has led to further improvements in the low energy X-ray 

response ranging from 0.1 – 3 keV [Castelli 1991]. The key to using CCDs for X-ray 

spectroscopy applications is collecting isolated X-ray events or events that are 

contained within a single pixel.  Deep depletion CCDs allow an increase in isolated 

events for higher X-ray energies ranging from 3 – 10 keV. The production of BI 

CCDs fabricated on high resistivity silicon (Si) has ensured that CCDs are one of the 

most popular detectors for X-ray spectroscopy applications in the modern day. 

The study presented in this thesis is related to the design of a CCD-based detector 

system [Intisar et al. 2008]. The purpose of the detector is to simultaneously collect 

X-ray diffraction (XRD) and X-ray fluorescence (XRF) data from powdered samples. 

The ability of the CCD to determine the energy of single photons and discriminate the 

spatial position of X-ray photons makes it an ideal detector for XRF and XRD 

respectively [Cornaby et al. 2000]. CCDs can offer spatial resolutions of 6.5 µm and 

energy resolutions of < 130 eV at 5898 eV. The use of CCD detectors for XRD 



2 

analysis allows the entire powder diffraction pattern to be collected at once and    

read-out quickly, which greatly reduces data collection times in comparison to 

traditional scanning point detectors. The detector designed for this work uses 4 CCDs 

tiled in a curved geometry. The CCDs are tiled along the curvature of a 120 mm 

circle, where the point of sample irradiation represents the centre point. A reflective 

XRD geometry is used with a 4° angle of incidence to achieve a higher signal to noise 

ratio (SNR) in comparison to transmission geometries. Using a large sample to 

detector distance results in very high spatial resolution (0.012°) and the use of 4 

CCDs provides large angular coverage from approximately 4 − 64°. Figure 1.1 depicts 

the concept of the detector, from here on referred to as the ‘CCD-Array’, intercepting 

diffracted and characteristic X-rays from a powder sample. The intended use of the 

CCD-Array is in the planetary sciences sector where unknown rock samples can be 

classified based on their mineralogical and chemical content using XRD and XRF 

respectively [Vaniman et al. 2000]. The CCD-Array can also be utilised in many 

terrestrial markets for phase identification and the analysis of contaminants.  

 

 

Figure 1.1: Detector concept – XRD/XRF data being emitted from a powder sample 

         and simultaneously collected by the CCD-Array  

Sample holder 

CCD-Array 

Diffraction ring Characteristic X-ray 
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1.2 X-ray Diffraction 

X-ray diffraction (XRD) is one of the most widely used material characterisation 

methods in the world [Cullity 1978]. It is a non-destructive technique that can reveal 

the composition and crystallographic structure of natural and manufactured materials. 

XRD is applicable to many fields such as pharmaceuticals, forensics, crystallography, 

geology and material sciences. However, the focus of this thesis is the use of XRD for 

the mineralogical analysis of powdered rock samples. XRD can be used for the 

qualitative analysis of these minerals as well as for determining the mineral 

abundances of multi-phase mixtures (i.e. quantitative analysis).  

Almost 95% of solid matter can be classified as being crystalline. Atoms inside these 

crystals are arranged in a periodic structure in 3 dimensions, located on repeating 

planes. Figure 1.2 shows a cross section of a crystal lattice.   

 

Figure 1.2: Geometry of Bragg’s law required for XRD 

When X-rays interact with such crystals, they can either be partly transmitted, 

absorbed, scattered or diffracted. The diffraction of X-rays from a crystal lattice 

occurs because the distance between lattice planes d, is comparable in size to the 

wavelength of X-rays (1 × 10-10 m). The lattice acts as a diffraction grating with peaks 

located at specific angles, known as Bragg angles. These Bragg angles are detected 

when the following condition is met: 

( )θλ dSinn 2= ,     (1.1) 

where λ is the wavelength of the incident X-rays and θ is the angle of incidence of the 

incoming X-ray beam with respect to the lattice plane. The condition states that the 

extra distance travelled by the diffracted beam (2x), must be an integral (n) multiple of 
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wavelengths (λ) for the beams to be in phase. Under such conditions, coherent 

scattering of the beam takes place, resulting in a Bragg peak. XRD can be used for the 

classification of rocks because the d-spacing for every sample is unique. Each sample 

therefore has its own unique fingerprint. Currently, over 600,000 (including over 

10,000 minerals) diffraction patterns have been collected and stored as reference 

materials in the International Centre for Diffraction Data (ICDD) Powder Diffraction 

Files (PDFs). Diffraction data can be collected and then compared to ICDD PDFs for 

qualitative analysis, by comparing the 2θ positions of the 3 largest peaks.  

This thesis is concerned with the X-ray powder diffraction (XRPD) technique. XRPD 

involves grinding samples into fine grained powders (usually less than 10 µm grains) 

and exposing these grains to a monochromatic beam of collimated X-rays. When the 

sample has been ground to a fine powder, all possible planes of reflection are present, 

revealing all the possible diffraction peaks. An example XRPD pattern of aragonite 

(CaCO3) taken by a CCD detector is shown in figure 1.3, clearly displaying multiple 

Bragg peaks located at various 2θ positions.  

 

 

 

 

 

 

 

 

Figure 1.3: XRPD pattern of CaCO3 taken with a CCD detector  

 This is the major advantage of using powder diffraction as opposed to single crystal 

methods, which involves varying the angle of incidence manually for each 2θ step. 

The major disadvantage of XRPD, in comparison to single crystal methods, is peak 
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overlapping, which is caused from the overcrowding of peaks in the XRD pattern. 

This can cause complications in the peak identification process and hence, qualitative 

analysis.  

The main features of the XRPD technique are listed below:   

� qualitative analysis - identification of minerals, rocks and soils, 

� quantitative analysis - identification of mineral abundances in a multi-phase 

sample, 

� determination of the crystal structure and unit cell dimensions for crystalline 

samples,  

� determination of crystallite size from peak broadening, 

� determination of crystallite shape from peak symmetry, and 

� ideally suited to applications where only small quantities of the samples are 

available for analysis (e.g. < 10 mg). 

The simplicity of grinding a rock into fine grains and exposing them to a 

monochromatic beam of collimated X-rays has enabled X-ray powder diffraction to 

become one of the most widespread tools for the identification of rocks and minerals. 

With constant improvements in X-ray detectors and analysis techniques, XRPD is 

becoming more attractive to many different industries for material characterisation.   

1.3 X-ray Fluorescence  

X-ray Fluorescence (XRF) is another non-destructive technique that is used in 

determining the elemental (i.e. chemical) composition of a sample. XRF is a more 

versatile technique than XRD as it can be applied to solids and liquids as well as 

powdered grains and has gained much interest from applications that need to identify 

impurities or contaminants. Example applications include forensics, printed circuit 

board quality control and gold karat analysis (jewellery industry).  

The process of XRF is based on the photoelectric effect. The photoelectric effect takes 

place when an incident X-ray photon imparts all of its energy to an electron in the 
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atom of the target material [Hall 1936]. If the incoming photon has sufficient energy 

to release a bound electron, a photoelectron is ejected from the atom and a vacancy is 

created. To create a vacancy, the incoming X-ray photon must have an energy greater 

than the absorption edge of the given shell, also known as the electron binding energy 

EB. The energy of the emitted photoelectron E, has a magnitude given by:  

                    BEhfE −= ,                      (1.2) 

where h is Planck’s constant and f is the frequency of the incoming photon (Hz). For 

example, the K shell binding energy of the copper (Cu) atom is 8979 eV            

[Fuggle & Martensson 1980], therefore any incident X-ray photon with an energy less 

than 8979 eV, cannot produce a K sell vacancy in the Cu atom. Once the vacancy is 

created, the atom de-excites by allowing an electron from a higher energy shell to fill 

the vacancy and release a characteristic photon. The energy of the photon emitted by 

an atom depends on the electron energy configuration within the atom. The energy 

levels which electrons occupy within an atom can be described using the Bohr model. 

In 1913 Niels Bohr suggested variations to the classical theory of mechanics in order 

to explain how radiation emitted from different atoms was unique [Beiser 1995]. 

Similar to previous principles, Bohr’s model states that electrons rotate in a circular 

orbit around the nucleus, bound by Coulomb attraction (between electron and 

nucleus). However, Bohr’s model states that electrons exist on discrete energy levels 

known as K, L, M and N shells. Electrons that are orbiting the nucleus do not give rise 

to any radiating energy as they remain on the same energy level. Radiation is emitted 

from the atom when electrons from a higher energy state fill vacancies in lower 

energy states (e.g. L shell electron fills a K shell vacancy).  

Electron shells are composed of subshells labelled as s, p, d and f. The s, p, d and f 

subshells can hold 2, 6, 10 and 14 electrons respectively. The first shell, K, contains 

one subshell and can hold 2 electrons (1s2). The second shell, L, contains 2 subshells 

and can hold 8 electrons (2s2, 2p6). For example, the electron configuration of the Cu 

atom, which contains 29 electrons, can be expressed as: 

      1s2 2s2 2p6 3s2 3p6 3d10 4s1 
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The energy of characteristic photons produced by an atom depends on which one of 

these shells, the electron filling the vacancy has originated from. Figure 1.4 shows the 

names of different types of photons produced based on the interacting electron shells.  

 

 

 

 

 

 

 

 

 

Figure 1.4: Characteristic X-rays produced from different electron shell  

     interactions 

The energy released by a characteristic X-ray is equal to the difference between the 2 

energy levels. For example, the energy of a Cu Kα1 X-ray is the difference between 

the K shell binding energy (8979 eV) and L3 shell binding energy (932 eV), which 

results in the emission of an 8047 eV photon [Bearden 1967][Krause & Oliver 1979].  

The relationship between the frequency of a particular characteristic X-ray emission 

fc, and the atomic number Z, can be expressed using Moseley’s Law as [Moseley 

1913, 1914]: 

( )sc ZCf σ−= ,         (1.3) 

where C is a constant depending on the type of shell (K, L, M, N) and σs is the 

shielding constant which also depends on the type of shell (σs has a value of 1 for the 

K shell and a value of 7.4 for the L shell). Figure 1.5 shows the relationship between 
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the energy of characteristic X-rays and atomic number Z, ranging from 1 − 10 keV.  

The work in this thesis is concerned with the core elements found in rocks/minerals, 

which produce characteristic X-rays with energies found in the soft X-ray range from 

0.1 – 10 keV (Z < 30). The only emissions with any measurable probability in this 

range originate from K shells, namely Kα and Kβ. The separation in eV between the 

Kα1 and Kα2 characteristic X-rays from elements in the soft X-ray range is too small 

to be distinguished by CCD detectors.  

 

 

 

 

 

 

 

 

 

Figure 1.5: Relationship between energy and atomic number of characteristic X-rays 

Once a K shell electron has been filled by an electron from a higher energy shell, 2 

processes can occur. Either the de-excitation of the atom causes the release of a 

characteristic X-ray photon, or the energy is emitted as an Auger electron. The 

fluorescence yield wi, can be approximated using the expression [Krause 1979]:    

 
4

4

ZA

Z
w

i
i +

=  ,       (1.4) 

where Ai is a constant with a value of ~ 106 for the K shell and 108 for the L shell. The 

yield of Auger electrons for a given shell is 1 minus the fluorescence yield and is 

shown in figure 1.6.  
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Figure 1.6:  Fractional yield of characteristic X-ray photons and Auger electrons  

At lower Z elements, K shell Auger electrons are more predominant than K shell 

characteristic photons.  By exciting atoms in powder grains with high energy X-rays, 

the emission of characteristic photons can be detected by the CCD and XRF analysis 

can be performed [Lumb & Holland 1998]. Figure 1.7 shows the detection of multiple 

characteristic X-rays from elements in peridotite collected with a CCD.  

 

 

 

 

 

 

 

 

Figure 1.7: XRF spectrum of peridotite powder collected with a CCD  
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1.4 Combined XRD/XRF 

In recent years there has been an increase in demand for instruments that can collect 

both XRD and XRF information simultaneously, especially in the planetary sciences 

sector [Blake et al. 1992, 2000] [Cornaby et al. 2001]. The difficulty in spatial 

calibration of XRD equipment as well as a need for high X-ray flux and intensive 

sample preparation has prevented the use of XRD for planetary science. To date, an 

XRD instrument has never been deployed for any planetary mission. However, 

research into combined XRD/XRF instruments has been widespread in recent years 

especially in Europe [Marinangeli et al. 2007] and the USA [Sarrazin et al. 2005]. The 

National Aeronautics and Space Administration (NASA) has announced the presence 

of a combined XRD/XRF instrument called Chemin (see Section 1.6), on the 2011 

Mars Science Laboratory (MSL). The European Space Agency (ESA) has also 

announced a combined XRD/XRF instrument to be used on the 2016 ExoMars rover. 

Both of these missions aim to identify the mineralogy and chemical composition of 

the Martian surface, which may indicate the presence of past or present life. Both 

instruments will include CCD detectors, which further highlights the recognition of 

CCDs as X-ray spectroscopy detectors.  

Various in-situ XRF instruments have been successfully deployed on Mars missions 

(Viking 1 and 2, Mars Pathfinder). These instruments revealed vast amounts of 

chemical information regarding the measured samples. Aided by less critical 

equipment geometry (compared to XRD) and lower X-ray excitation flux, XRF has 

always prevailed a more conducive technique for the classification of rocks than 

XRD.  

XRF only reveals the chemical composition of the sample and does not yield a 

definitive mineralogical solution. For example, calcium carbonate (CaCO3) exists in 

many different forms such as aragonite, limestone and chalk. Bombarding these 

samples with X-rays and measuring the energy of characteristic X-rays would simply 

reveal calcium (Ca), carbon (C) and oxygen (O) for all 3 samples. The chemical data 

provides multiple possibilities for the mineralogy and cannot definitively identify the 

analysed sample.  
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For this reason, combining XRD is important to clarify any uncertainties from XRF 

data. Both techniques should complement each other in their findings and reveal both 

chemical and mineralogical information regarding the sample under investigation. 

Using the example of CaCO3, XRD techniques can find the position of the 3 largest 

diffraction peaks to be that of aragonite, with the use of the ICCD PDFs. Applying 

XRF analysis would reveal the presence of Ca, C and O characteristic X-rays which 

would compliment the data obtained from the XRD observations. All future 

references to CaCO3 refer to aragonite powder samples.    

1.5 In-situ X-ray Spectroscopy on Mars 

The first attempts of Mars exploration began in the 1960’s when several USSR probes 

failed to reach the red planet such as Marsinik 1, 2 and Sputnik 22, 24. The first 

successful mission to Mars occurred on July 14th 1965 when NASA’s Mariner 4  

returned 22 images of the Martian surface revealing distinct crater formations. These 

images suggested that water played a significant role in shaping the Martian landscape 

[Kargel 2004]. Since water is the key ingredient in determining if life ever arose on 

the red planet [McKay 1986], the exploration of Mars is easily justified           

[Harland 2005]. Applying X-ray spectroscopy on the Martian surface is vital in 

detecting the presence of rocks and minerals that contain, or have been altered by 

water.  

XRF chemical data has been collected by various surface landers on Mars. XRF 

instruments have been used on 2 Viking landers, the Mars Pathfinder and the Mars 

Exploration Rover (MER). XRD techniques have never been used for planetary 

exploration, however an XRD instrument was proposed for analysis of the Lunar 

surface [Blake 2000] in the late 1960s.  Combined XRD/XRF will be attempted for 

the first time in 2011 on Mars with the use of Chemin [Blake et al. 1992b]. This 

instrument is similar to the CCD-Array as both instruments use CCD detectors. The 

next section briefly describes the XRF instruments that have been mentioned above, 

with particular emphasis on their detector capabilities.  

1.5.1 Viking XRF Spectrometer 

In 1976, 2 Viking landers reached Mars landing 6500 km apart. Both landers 

contained an XRF spectrometer (XRFS) which became the first instruments to 
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perform in-situ chemical analysis of the Martian surface [Clark et al. 1977]. X-ray 

generation was achieved using 2 radioactive Fe55 and Cd109 sources, which produced 

characteristic X-rays at 5.9, 22.2 and 87.7 keV. The use of Cd109 allowed the majority 

of elements to be analysed. The characteristic X-rays were detected using 4 gas 

proportional counters (GPCs) with a FWHM capability of 1.2 keV at 5.9 keV. 

Although solid-state detectors provided much higher energy resolution, GPCs were 

used because they required no cooling and could operate at ambient Martian 

temperatures. 

Due to window sensitivity and detector properties, the low energy detection limit of 

the instrument was limited to Na Kα X-rays (1041 eV). Due to the poor energy 

resolution of GPCs, accurate quantitative results were difficult to achieve, however 

computer modelling of the data suggested the main composition of the surface 

consisted of SiO2 (45%), Fe2O3 (18%), Al2O3 (5%), MgO (8%), CaO (5%) and SO3 

(8%) [Clark et al. 1982]. 

1.5.2 Mars Pathfinder – APXS 

The Alpha Proton X-ray Spectrometer (APXS) was one of 3 instruments on board the 

Mars Pathfinder Rover, called Sojourner, which landed on July 4th, 1997. The APXS 

operated in 3 modes using alpha particles, protons and X-rays to excite Martian rocks 

and soils [Rieder et al. 1997]. Three solid-state detectors were used for each mode of 

operation. The characteristic X-rays emitted from the sample in XRF mode were 

detected using a Si PIN detector (Amptek XR-100T). The detector operated at 

ambient Martian temperatures, achieving a resolution of ~ 250 eV at 6403 eV    

[Redus et al. 2001]. 

Data in XRF mode was collected at night for periods of 10 hours. Due to poor energy 

resolution, many X-ray peaks overlapped such as Na Kα, Mg Kα, Al Kα and Si Kα 

and peak fitting algorithms were required for quantitative results. The APXS sensor 

analysed 6 soils and 5 rocks, however the data obtained in the alpha and proton mode 

was corrupted due to high levels of CO2 in the Martian atmosphere. The data obtained 

in XRF mode provided the most credible results, portraying the Martian landscape to 

be richer in Silica (SiO2) than measurements made by the Viking XRFS. A summary 

of elemental abundances from 3 soils and 2 rocks are shown in table 1.1  
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Table 1.1: Preliminary results of elemental abundances of 3 soils and 2 rocks    

       measured by the Pathfinder APXS on Mars  

1.5.3 MER – APXS 

In 2004, 2 rovers named Spirit and Opportunity successfully landed on Mars.  Since a 

proton mode was not included in the new APXS sensor, the sensor was known as the 

Alpha Particle X-ray Spectrometer [Rieder et al. 2003]. The major improvement in 

the sensor was the detector, which was now a Si drift detector [Lechner et al. 2004]. 

This detector achieved a 160 eV FWHM at 5898 eV, which was a significant 

improvement on the pathfinder APXS. Due to this increased resolution, elements 

between 1 − 2 keV were uniquely identified without the need for complex peak fitting 

algorithms. X-ray excitation was provided using a radioactive Cm244 source and data 

was collected for periods of 2 − 4 hours in the Martian night. The Si drift detector has 

provided the highest energy resolution of any XRF detector on Mars to date.  

1.6 Chemin 

Chemin is named after its ability to collect both chemical (“chem”) and mineralogical 

(“min”) information from powder samples simultaneously. Chemin is a miniaturised 

XRD/XRF instrument [Bish et al. 1998, 2007], which will be part of NASA’s MSL, 

planned for launch in 2011. During MSL’s 1 Martian year lifetime (687 Earth days), 

Chemin will analyse up to 74 samples, with data collection times of up to 10 hours for 

each sample.  Data will be transferred back to Earth for further processing and 

analysis.  

Elements Symbol A - 2 soil A - 4 soil A - 5 soil "Barnicle Bill" - rock "Yogi" - rock
carbon C - - - - -
oxygen O 42.5 43.9 43.2 45 44.6
sodium Na 3.2 3.8 2.6 3.1 1.9
magnesium Mg 5.3 5.5 5.2 1.9 3.8
aluminium Al 4.2 5.5 5.4 6.6 6
silicon Si 21.6 20.2 20.5 25.7 23.8
phosphorus P - 1.5 1 0.9 0.9
sulphur S 1.7 2.5 2.2 0.9 1.7
chlorine Cl - 0.6 0.6 0.5 0.6
potassium K 0.5 0.6 0.6 1.2 0.9
calcium Ca 4.5 3.4 3.8 3.3 4.2
titanium Ti 0.6 0.7 0.4 0.4 0.5
chromium Cr 0.2 0.3 0.3 0.1 0
manganese Mn 0.4 0.4 0.5 0.7 0.4
iron Fe 15.2 11.2 13.6 9.9 10.7
nickel Ni - - 0.1 - -
Sum 100 100 100 100 100
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The purpose of the CCD-Array built for this thesis and the Chemin instrument are 

identical. The aim of both instruments is to simultaneously collect both XRD and 

XRF information from powder samples using CCDs. The original Chemin geometry 

was in reflective mode, which was more suited to XRF analysis. However, Chemin 

now employs the transmission geometry, which is not conducive to XRF analysis 

since the incident beam is highly absorbed at the detector side of the sample and 

therefore, the flux of characteristic X-rays produced on the detector side is very low. 

XRF analysis with the Chemin instrument is now performed on a ‘best efforts’ basis. 

Figure 1.8 shows the geometry of the Chemin instrument.  

 

 

 

 

 

 

 

Figure 1.8: Transmission geometry of the Chemin instrument (image courtesy of  

        NASA) 

The X-ray source is Oxford Instruments ApogeeTM micro-focus tube with a        

Cobalt (Co) anode and 50 µm spot size. As shown in figure 1.8, a 30 µm spot of the 

sample is irradiated using a pinhole to improve the resolution of the diffracted beams. 

The X-rays produced by the source are characteristic Co Kα (6903 eV),                    

Co Kβ (7649 eV) and continuous X-rays with a maximum energy dependant on the 

applied voltage (usually operated at 40 kV resulting in 40 keV photons). The CCD 

used is e2v technologies CCD224, which is a deep depletion, frame transfer device 

with a 600 × 582 imaging area and (40 µm)2 pixels. This device produces a 50 µm 

depletion depth which increases the amount of isolated events detected by the CCD in 

comparison to a standard device.  The use of larger pixels also increases the detection 



15 

of isolated events as fewer X-ray ionise in between pixel boundaries resulting in split 

events. To eliminate dark current the CCD is cooled between -60 °C and -100 °C 

using a cryocooler. The top electrode structure of the device has also been thinned 

over portions of the pixel area, to increase the QE at lower X-ray energies. To 

increase the detectors opacity to light, a 0.15 µm Al film supported by a 0.2 µm 

polyimide film is placed in front of the CCD.  

Samples are delivered to the Chemin instrument from the Sample Acquisition/Sample 

Handling and Processing (SA/SPaH) system, through a funnel. Powder samples are 

placed in a sample wheel which contains 27 reusable ‘cells’, and 5 cells pre loaded 

with standard reference materials (SRMs) for calibration. The funnel contains a 1 mm 

mesh, although powder grains will be pre sorted to < 150 µm by the SP/SPAH, prior 

to entering the Chemin funnel. If grains with a diameter between 1 mm and 150 µm 

pass through the funnel, they will remain in the upper reservoir section of the sample 

cell until the cell is rotated 180° clockwise, where the sample will be dumped into the 

sump. The funnel receives 65 mm3 of sample, 10 mm3 of which is required to fill the 

sample cell. Each sample cell is a circular disc with an 8 mm diameter and 175 µm 

thickness. During the filling of the sample cells, piezoelectric actuators are used to 

ensure the sample cell is tightly filled with grains and during emptying of the sample 

cells, the actuators ensure any grains stuck to any part of the cell are removed. The 

piezoelectric actuators are also used during analysis to vibrate the sample and increase 

the random orientation of powder grains. The sides of the sample cells (where the 

incident beam enters and diffracted X-rays depart) contain either 6 µm of Mylar or 

Kapton to hold the samples in place. Mylar contains a very low diffraction 

background in comparison to Kapton, which contains a diffraction peak at 6° − 7° 2θ. 

This can be problematic when analysing clay minerals, which contains low angle 

peaks in this range. Kapton is however more durable than Mylar, which is important 

when analysing acidic samples, therefore 14 sample cells are equipped with Mylar 

windows, and 13 cells contains Kapton. Once the sample has been loaded, the 

incident X-ray beam irradiates the centre of the 8 mm disc. Once all exposures have 

been collected, data is transmitted back to Earth and once a satisfactory analysis has 

taken place, the sample wheel is rotated 180° and the analysed sample is dumped.  
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By applying the single photon counting technique, the Chemin CCD detector can 

distinguish the energy of incident X-rays (energy resolution of 240 eV at 6.4 keV) as 

well as determine the spatial position of diffracted X-rays (40 µm spatial resolution). 

This technique requires an exposure time which does not allow the CCD to become 

saturated with charge, and thereby prevent > 1 photon being detected by a single 

pixel. By determining the position of all isolated Co Kα X-rays detected in all 

exposures, a 2-dimensional diffraction pattern can be generated, as shown in figure 

1.9. This image is a 600 × 582 array, where each pixel contains a number Ndiff, which 

represents the number of diffracted photons collected in that pixel over all exposures. 

Figure 1.9 shows the XRD pattern of non-purified silver behenate collected by the 

Chemin instrument.  

 

 

 

 

 

 

 

 

 

Figure 1.9: XRPD pattern of non-purified silver behenate collected by the Chemin  

         instrument (image courtesy of NASA) 

Once the 2-dimensional image has been generated, the diffraction rings are radially 

integrated to produce the 2θ vs. intensity diffractogram. Both qualitative and 

quantitative analysis can then be performed. A beam stop is used to prevent the 

incident beam from being detected by the CCD. Its location is at the bottom centre of 

the CCD and can be seen in figure 1.9.  
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Parameter Information
X-ray source Microfocus source, Co anode
Sample irradiation spot size 30 µm
XRD/XRF geometry Transmission
2θ  angular range 5 - 55º
2θ FWHM resolution 0.26º
Spatial resolution 40 µm
CCD CCD224
CCD Format FI, deep depletion, frame transfer
CCD Operating temperature (- 60 ºC) - (- 100 ºC)
CCD imaging area 600 × 582 pixels
XRF energy resolution (at 6.4 keV) 240 eV FWHM
CCD energy range 1 - 15 keV
Single exposure times 5 - 30 s
Typical number of exposures 60 - 10,000
Typical data collection time 10 hours

By accumulating all isolated events collected in all exposures, a histogram is 

generated which contains the elemental/chemical information. Due to the 6 µm 

sample cell window and Al film covering the detector, the low energy detection limit 

are elements with an atomic number > 11 (> Na Kα (1041 eV)). The higher energy 

detection limit is dependant on the operating voltage of the 40 kV X-ray source, 

however even when operated at 10 kV, all elements with a K shell emission in the soft 

X-ray range can be detected. A summary of the Chemin instruments specifications are 

given in table 1.2.  

 

 

 

 

 

 

 

Table 1.2: Summary of Chemin specifications 

Chemin will be the first in-situ X-ray diffractometer ever used for planetary 

exploration and will attempt to unequivocally determine the Martian mineralogy.  The 

Chemin instrument was successfully tested in Badwaters Flat, Death Valley, 

California in May 2004 [Sarrazin et al. 2005].  

1.7 Terra 

Terra is a commercial model of the Chemin instrument, designed by inXitu. Terra is 

the first portable XRD/XRF analyser, which can be used for in-situ analysis on the 

field. The entire assembly including battery, X-ray source, sample holder and CCD 

detector is held within a briefcase weighing less than 15 kg. The geometry of the 

Terra instrument is similar to the Chemin flight model, however samples are loaded 

manually into a removable sample holder. Sample are ground to < 150 µm grains and 
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Parameter Information
Wieght 14.5 kg, with 4 batteries
Size 48.5 cm × 39.2 cm × 19.2 cm
XRD FWHM resolution 0.26º
XRD angular range 5 - 55º 2θ
Detector Peltier cooled CCD
Detector image area 1024 × 256 pixels
XRF energy resolution 230 eV at 5898 eV
XRF energy range 3 - 25 keV
Sample grain size 150 µm grains
Sample quantity < 15 mg
X-ray target material Cobalt 
X-ray tube voltage 30 kV
X-ray tube power 10 W
Battery lifetime ~ 4 hours 
Power consumption 85 - 90 W
Data storage 40 Gb internal hard drive
Wireless connectivity 802.11 b
Operating temperature (-20º C) - (+35º C)
Enclosure Rugged case

then loaded into the single sample cell, which is vibrated during data collection using 

piezoelectric actuators to vary orientations of particles within the incident X-ray 

beam. The sample holder is then refitted into the instrument and locked in place. 

The Co X-ray source is operated at 30 kV, 300 µA and allows the detection of 

characteristic X-rays from Ca (Z = 20) to Uranium (Z = 92). The low energy detection 

limit of the instrument is currently not optimised [Chipera et al. 2009], since some of 

the key elements found in rocks ranging from 1 − 2 keV are too highly absorbed to be 

detected. The background spectrum also contains characteristic X-ray peaks from Cu, 

Fe and Zn due to the components within the instrument, which must be subtracted 

from the XRF spectrum. The device can be powered using an AC adapter, or can be 

operated for ~ 4 hours with the use of 4 Lithium-ion batteries that are contained 

within the 15 kg instrument. The data collection process is initiated through the digital 

display, which can be accessed wirelessly using any 802.11b compliant device. Some 

of the key properties of the Terra device are listed in table 1.3.  

 

 

 

 

 

 

 

 

 

Table 1.3: Summary of Terra instrument specifications 

Terra is geared towards applications that require on site analysis, such as 

pharmaceuticals, forensics, archaeology, geology and material sciences. Data is 
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collected in a similar manner to the Chemin flight model and qualitative XRD 

analysis can be performed in seconds [Chipera et al. 2009]. Quantitative analysis can 

be performed on the 2θ vs. intensity pattern after data collection using programs such 

as GSAS [Larson & Von Dreele 1994].   

1.8 Research Goals 

The main aim of the project was to design and develop a novel CCD array detector, 

capable of simultaneously collecting combined XRD/XRF data from powder samples. 

A test facility was designed for initial testing of the portable detector. Particular 

emphasis was based on optimising the geometry of the CCDs in relation to the 

sample, which determined the resolution and angular range achieved by the detector 

for XRD applications. Based on the lessons learned from testing the CCD-Array in a 

laboratory environment, recommendations for a 2nd generation CCD-Array would be 

suggested.  

The second goal of the project was based on characterisation and testing. Accurate 

qualitative analysis required spatial calibration of the CCD-Array and intensity 

calibration of the CCDs was required for accurate quantitative analysis. Thermal 

characterisation of the detector was also required to determine the TECs performance 

in cooling the CCDs. The operational performance of the CCD30-11 was also 

investigated which included characterisation of the dark current, readout noise, 

energy/angular resolution, depletion depth and QE performance. The temperature and 

power requirements of the CCD-Array to perform combined XRD/XRF analysis were 

also investigated.  

The final aim of the project was to determine the ability of the CCD-Array to meet the 

science requirements of different applications, namely in the planetary sciences and 

pharmaceuticals sector. The use of the CCD-Array in such applications is discussed 

and optimisation of the geometry is suggested.  

The work carried out for this thesis was funded by a Co-operative Award in Science 

and Engineering (CASE) studentship from the Engineering and Physical Sciences 

Research Council (EPSRC) in collaboration with e2v technologies (formerly Marconi, 

formerly EEV) of Chelmsford, Essex, UK.  
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1.9 Thesis Organisation 

This thesis is organised into 6 further chapters. Chapter 2 discusses the geometry 

options available for XRD analysis, namely the parallel beam and Bragg-Brentano 

geometry. The options are compared in terms of resolution and flux and the 

geometries most suited to portability and testing are outlined.  

Chapter 3 describes the structure and operation of CCDs and the different noise 

sources that limit their performance for X-ray spectroscopy applications. The ability 

of the CCD to detect X-rays in the soft X-ray range is also discussed, which includes 

features such as energy resolution, charge transfer efficiency, charge diffusion and 

QE. Chapter 3 also presents theory governing the production of X-rays. A model of a 

typical X-ray spectrum is generated using relevant theory and compared to actual 

spectra collected with the Bede micro-source. It is shown the X-ray spectra produced 

from the source without X-ray optics, resembles a blackbody curve with intense      

Cu Kα and Cu Kβ characteristic X-rays. The advantages of using X-ray polycapillary 

optics for XRPD applications are highlighted. The flux produced by the Bede     

micro-source with respect to tube voltage and current is also calibrated, and the 

background spectra produced in XRD and XRF patterns are presented.  

Chapter 4 discusses the design of the CCD-Array and test facility. Each of the 

individual components of the detector are described, including the on-board 

headboard electronics and X-ray window. A thermal study is also presented, which 

calculates the different heat loads (passive/active) within the CCD-Array during 

cooling and confirms these calculations through thermal measurements. The ability of 

the test facility to absorb and dissipate heat using a circulating coolant is discussed. 

The designed geometry of the CCD-Array is presented and confirmed with the use of 

SRMs. The main components of the test facility are reviewed with particular 

emphasis on the collimation and monochromation process.  

Chapter 5 describes the data collection, analysis and modelling of combined 

XRD/XRF data using CCDs. Since XRD analysis using CCD detectors is a relatively 

new technique, the majority of this chapter focuses on XRD. Since the key to 

collecting XRD/XRF data is detecting isolated X-ray events, the initial section of this 

chapter confirms the depletion depth of the CCD30-11 devices using X-ray spread 
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event analysis and comparative measurements with devices of known resistivity. The 

data collection process is investigated and methods of reducing XRD noise in CCD 

images are presented. The advantages and disadvantages of different CCD 

architectures for XRD analysis are also discussed. The final section presents results 

from a novel modelling program, designed to simulate the collection of XRPD data 

using CCDs. The results are shown to be in very good agreement with the 

experimental data. The model allows users to pre-calculate optimised CCD integration 

times, calculate total diffracted events, determine pixel event statistics and understand 

the effect of CCD binning during data collection.  

Chapter 6 is concerned with the operational performance of the CCD-Array. Problems 

that may be encountered by a portable instrument are discussed, which include sample 

preparation issues, power consumption and the CCD operating temperature required 

to perform combined XRD/XRF analysis. The application of the CCD-Array in the 

planetary sciences sector and the pharmaceuticals industry is also discussed.   

Chapter 7 outlines the main conclusions of this thesis and describes possible future 

work.  

A table containing information about the test samples mentioned in this thesis can be 

found in Appendix A.  

1.10 Publications 

The following publications feature work presented in this thesis: 

Intisar, A., Hutchinson, I., Holland, A., Simpson, D.J., Pool, P., 2008. Development 

of a CCD-Array detector for combined XRD/XRF applications. Proc. SPIE, Vol. 

7021. 
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Chapter 2 : XRD Geometry Design 

This chapter presents the different geometries available for the CCD-Array to perform 

XRD analysis. The advantages and disadvantages of the different geometries are 

presented and the optimum arrangement for testing the CCD-Array is determined. For 

a portable instrument, the main factor dictating the type of XRD geometry used is the 

X-ray source. Traditionally, radioactive sources have been utilised by portable 

spectrometers, due to their small size, low mass and the fact that they can operate 

without any power consumption or external electronics. The fluorescence yield of 

elements from 1 − 10 keV ranges from approximately 0.01 − 0.54 [Krause 1979], 

which is a reasonably efficient process. However, XRD efficiencies range from       

10-6 − 10-3. XRD experiments therefore require a higher flux of incident X-rays to 

achieve a similar throughput to XRF experiments. For this reason, research into low 

power X-ray tubes for in-situ combined XRD/XRF analysis has been widespread in 

recent years [Cornaby 2002], however, this requires increased instrument volume, 

mass and power consumption. Divergent X-rays produced from a radioactive source 

or miniature X-ray tube can be used to provide a geometry known as Bragg-Brentano 

(BB). If a miniature X-ray tube with special X-ray optics is used (usually a 

polycapillary collimating optic for XRD applications), then an alternative geometry 

known as parallel beam (PB) can be used. Both options are considered and a 

comparison in terms of flux and resolution is presented.  

2.1 XRD Geometries 

2.1.1 Bragg-Brentano 

The most popular arrangement used in the majority of laboratory diffractometers is 

the reflective BB geometry and is shown in figure 2.1. In BB geometry, X-rays 

diverge from the source, irradiate the sample and are diffracted back onto the focusing 

circle, with a radius denoted by Rfc. In traditional BB diffractometers, the X-ray 

source and point detector are moved along the measuring circle and as the angle of 

incidence of the X-ray source θinc, increases at a given step size (e.g. 0.02°), the 

resulting diffraction peak at an angle θ (in relation to the sample holder and 2θ in 

relation to the incident beam axis), is captured by the detector. The resolution 

achieved in this geometry is determined by the size of the receiving slits at the 
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detector. This geometry requires very precise and correlated movement of the X-ray 

source and detector along the measuring circle. It is therefore critical that the X-ray 

source to sample distance Rss, and the sample to detector distance Rsd, are identical. 

The sample must also be aligned exactly along the curvature of the focusing circle, 

which requires high precision alignment to prevent common sample related errors 

such as flat specimen and sample displacement error.  

 

 

 

 

 

 

 

 

Figure 2.1: Traditional BB reflective geometry (Rss = Rsd) 

For a portable instrument, precise movement of the X-ray source and detector along 

the measuring circle is very difficult to implement and requires extra components and 

complexity. For portability, the X-ray source and detector positions are fixed and the 

diffracted X-rays are detected either along the focusing circle or on the measuring 

circle, without any variation in θinc.  

Due to difficulties in placing CCDs along the focusing circle (for reasons discussed in 

Section 2.3), arranging the CCDs along the measuring circle is most suited to a 

portable instrument. As shown in figure 2.4, this geometry results in a decrease in 

resolution of the diffracted X-ray peaks, since the X-rays are no longer detected on the 

focusing circle. Since the X-rays are detected by an array of CCDs, receiving slits 

cannot be used to limit the size of the diffracted beams. Although this geometry 

results in decreased resolution, a major advantage is that Rss is not required to be the 
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same as Rsd, which results in less alignment errors and easier sample preparation. Data 

collection times are also greatly reduced since the entire XRD pattern is collected at 

once using an area detector as opposed to a scanning point detector. The 3 variations 

to the BB geometry are from this point forward referred to in the format listed in table 

2.1.   

Geometry Alignment Detector location θ inc

BB1 Rss  ≠  Rsd Focusing circle Fixed

BB2 Rss  ≠   Rsd Measuring circle Fixed

BB3 Rss  =   Rsd Measuring circle Varied  

Table 2.1: Summary of BB geometries and labelling format 

The use of the BB2 geometry is most suited to portability, however, applications of 

the BB1 geometry are discussed in Section 2.3. The majority of laboratory 

diffractometers use the BB3 arrangement and achieve the highest resolution of the 3 

geometries but require increased size, precision and sample alignment.  

The divergence of the incident X-rays and the length of sample irradiated (Lirr ) are 

limited using a collimator. Assuming a collimator of length Lcoll, is placed between an 

X-ray source producing divergent X-rays and a sample, with a pinhole size Pob, the 

angular divergence αBB, can be calculated using the expression: 

  .
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For example, a collimator of ~ 60 mm length, with a 100 µm pinhole, will reduce the 

divergence of X-rays to < 0.1° (1.7 mrad). Figure 2.2 shows the sample irradiation 

process in the reflective XRD geometry, which can be used to calculate the sample 

irradiation length in both BB2 and PB geometries. The only difference between the 

two geometries is αdiv, the angular divergence of the incident beam, which is αBB in the 

BB2 geometry (depends on equation 2.1) and αPB in the parallel beam geometry 

(usually ~ 0.2° at 8 keV). By increasing Lcoll, αBB can be reduced to the desired 

divergence, whereas αPB remains fixed by the critical angle of the incident X-rays. 

This usually means that more sample is irradiated in PB geometry since αPB > αBB. 

However, if the pinhole to sample distance Lps, is small (< 5 mm), then Lirr  is 

approximately equal in both BB2 and PB geometry.   
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Figure 2.2: Geometry of sample irradiation process in reflective XRD geometry 

In figure 2.2, Lirr2 can be calculated using the expression:  
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and Ls3 can be calculated as: 
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and Ls4 can be expressed as: 

( ) ( )divspss LLL αsin34 ×+= .                                   (2.4) 

The sample irradiated to the right of the sample centre Lirr3, can then be calculated as: 
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3 .                                          (2.5) 

Since the sample area located to the right of the sample holder centre is further away 

from the pinhole than the sample area at the left, Lirr3 will be much greater than Lirr1, 

especially at low angles of incidence.  
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Since Ls1 is approximately equal to Ls2 and Ls3, Ls5 can be expressed as: 

( )divspss LLL αsin)2( 35 ×−= ,                                      (2.6) 

and Lirr1 can then be calculated as: 

( )inc

s
irr

L
L

θsin
5

1 = .                                                 (2.7) 

Finally, the overall sample irradiation length can be determined as: 

 321 irrirrirrirr LLLL ++= .                                        (2.8) 

For high resolution applications, Pob is minimised to reduce Lirr , however this reduces 

the flux incident on the sample and results in increased data collection times. 

Assuming Pob is minimised to increase resolution, the main factor dictating the 

resolution of the diffracted beam is θinc. Figure 2.3 shows the variation in the overall 

sample irradiation length Lirr , with increasing angles of incidence. To minimise Lirr , 

the pinhole should be placed as close as possible to the sample holder. Figure 2.3 also 

shows the increase in Lirr  when Lps is increased by 10 mm.  

 

 

 

 

 

 

 

 

 

Figure 2.3: Variation in Lirr  with increasing θinc  
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Figure 2.3 emphasises the trade-off between low angle coverage and Lirr in the 

reflective geometry. As θinc is reduced, Lirr  increases, thereby increasing the size of the 

diffracted X-ray beams. Figure 2.4 shows the variation in resolution achieved in BB2 

geometry on different measuring circles.  

 

 

 

 

 

 

 

 

 

Figure 2.4: Resolution achieved with increasing Rsd in BB2 geometry (Rss ≠ Rsd) 

The key features of the BB2 geometry can be summarised as follows: 

� Rss  ≠  Rsd, therefore sample alignment is much easier, 

� a decrease in θinc and increase in Pob, Lps or αBB, results in an increase in Lirr . 

An increase in Lirr  will increase the size of the diffracted beams and thereby 

reduce the resolution, RBB, and 

� increasing Rsd will improve the resolution achieved across the detector (the 

measuring circle ‘Rsd 3’ in figure 2.4 provides the best resolution, ‘RBB 3’), but 

will subsequently degrade the low angle detection limit (θinc 3 > θinc 2 > θinc 1). 

The resolution in BB2 geometry is therefore limited by the angle of incidence. 

The angle of incidence should always be equal to the half the angle of lowest 

required 2θ peak.  
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Figure 2.5 summarises the resolution achieved (FWHM) on a 120 mm measuring 

circle for different angles of incidence in the BB2 geometry. These resolutions do not 

include any broadening effects from the sample. 

 

 

 

 

 

 

 

 

 

Figure 2.5: Resolution achieved in BB2 geometry on a 120 mm measuring circle with 

         varying θinc. Pob = 100 µm 

2.1.2 Parallel Beam 

An alternative geometry to BB2 can be achieved with the use of X-ray pollycapillary 

collimating optics, known as parallel beam (PB) geometry. For example, if a 

polycapillary collimating optic was fitted to a miniature X-ray tube, the divergent    

X-rays could be collected over a large solid angle and focused to produce a low 

divergent beam of quasi-parallel X-rays. This would result in a very large intensity 

gain and reduce data collection times. Since the X-ray beam is self-focused, there are 

no focusing circles in this geometry, therefore Rss is not required to be the same as Rsd, 

which results in less precise sample alignment requirements. This eliminates the 

common sample transparency and flat specimen errors caused in BB3 geometry. In PB 

geometry, the angle of incidence is fixed and the CCDs are aligned on the measuring 

circle, so that they are orthogonal to the diffracted beams. Figure 2.6 shows the 

arrangement of the PB geometry. 
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Figure 2.6: Parallel beam geometry (Rss ≠ Rsd) 

The geometry of the diffracted beam is shown in figure 2.7. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Geometry of diffracted beam in PB arrangement 
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Similar to BB2 geometry, the resolution in PB geometry is directly related to Lirr      

(Lirr  is related to θinc and Pob). The length of sample irradiated in PB geometry can be 

calculated using equation 2.8. 

RPB1 is related to Lirr  and the diffraction angle θ, through the expression: 

( )θ−×= 90cos1 irrPB LR .            (2.9) 

X-rays diffracted from the right of the sample holder centre (as shown in figure 2.7) 

travel a shorter path to reach the measuring circle in comparison to X-rays diffracted 

from the left , therefore RPB2 > RPB3. Lt1   can be calculated using the expression:  

( )
2

90sin
1

θ−
= irr

t

L
L ,                                           (2.10) 

and RPB3 can then be calculated using the expression: 

( ) ( )13 tan tsdPBPB LRR −×= α ,                                  (2.11) 

and Lt2 can be evaluated as: 

( ) irrt LL ×−= θ90sin2 ,                                        (2.12)                                   

and RPB2 can then be calculated using the expression: 

( ) ( )22 tan tsdPBPB LRR −×= α .                                  (2.13) 

Finally, the overall resolution of the diffracted beam RPB, can be expressed as: 

321 PBPBPBPB RRRR ++= .                                       (2.14) 

The typical FWHM divergence of X-rays from a polycapillary optic is ~ 3.5 mrad     

(~ 0.2°) at Cu Kα (8047 eV).  

Figure 2.8 summarises the FWHM resolution achieved in PB geometry with 

increasing Pob. These resolutions do not include any broadening effects from the 

sample.  
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Figure 2.8: Variation in resolution with increasing Pob in PB geometry. αPB = 0.2°, 

          θinc = 4° and Rsd = 120 mm 

The key features of the PB geometry can be summarised as follows: 

� Rss ≠  Rsd, therefore sample alignment is much easier, 

� by using X-ray polycapillary collimating optics, a highly divergent beam of  

X-rays can be focused into a quasi-parallel beam (the X-rays are termed 

‘quasi-parallel’ since the emission angle of X-rays is not perfectly parallel to 

the optic, but at very small angles (2 − 3.5 mrad)) and results in an increased 

gain in intensity of the diffracted X-rays, and 

� a decrease in θinc results in an increase in Lirr . RPB is proportional to Lirr , 

therefore for low angle coverage, the resolution achieved across the detector 

decreases, as shown in figure 2.9. Larger beam sizes increase the incident flux 

irradiating the sample, but cause an increase in Lirr , and hence, a reduction in 

resolution. 

Figure 2.9 shows the trade-off between low angle coverage and resolution in the 

PB geometry, with a beam diameter of 50 µm.  
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Figure 2.9: Variation in resolution with increasing angle of incidence in PB geometry 

2.2 Portable X-ray sources 

As previously mentioned, the main factor dictating the XRD geometry for a portable 

instrument is the X-ray source. Three main sources can be considered, which consist 

of a radioactive source, a miniature source producing divergent X-rays and a 

miniature source with X-ray optics producing collimated focused X-rays. Ideally, a 

miniature X-ray tube would be utilised on a portable diffractometer. This would 

produce higher flux than a radioactive source and could also be used with or without 

X-ray optics to provide PB or BB2 geometry respectively, dependant on the 

application requirements. However, volume, mass and power consumption are crucial 

considerations for a portable instrument. Radioactive sources are small, lightweight 

and consume no power, but produce low flux for XRD applications resulting in longer 

data collection times. A flux comparison is made between the 3 sources by estimating 

the flux in a 100 µm diameter spot, 40 mm from the X-ray source output.  

2.2.1 Radioactive Source 

Fe55 radioactive sources can produce 3.7 × 109 becquerels (Bq) of radioactivity at full 

life. These sources have a half life (the time after which the flux is reduced to half of 
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the original flux) of 2.7 years. Radioactive sources are usually replaced between their 

2nd and 3rd half life, which means Fe55 sources can be used for 5 − 6 years. One Bq 

represents a single spontaneous nuclear disintegration per second. For an Fe55 

radioactive source, 0.28 photons are emitted [Grieken & Markowicz 2001] per 

disintegration, resulting in a total flux of ~ 1 × 109 photons/s. Two characteristic 

manganese (Mn) K shell emissions are produced each disintegration, namely Mn Kα 

(5898 eV) and Mn Kβ (6490 eV), which have an intensity ratio of 1:0.17 respectively        

[Krause 1979]. Assuming this flux is isotropic and emitted in a sphere, the flux 

produced with respect to Rss is shown in figure 2.10.  

 

 

 

 

 

 

 

 

 

Figure 2.10: Reduction in flux from a radioactive source in a 100 µm spot with   

          increasing X-ray source to sample distance 

2.2.2 Miniature X-ray Tubes 

In recent years, miniature X-ray tubes (produced by companies such as Oxford 

Instrument, Moxtek and Amptek) have slowly replaced radioactive sources on 

portable XRF instrument to reduce data collection times. The flux produced by these 

types of X-ray tubes is now calculated by considering the ‘Mini-X’ source 

manufactured by Amptek. The source produces 1 × 106 counts/s in a 1 mm diameter 

spot, 40 cm from the X-ray output [Amptek 2008]. The Mini-X operates at a 
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maximum of 40 kV, 100 µA and emits X-rays in a 120° output cone. The flux is 

reasonably isotropic across the output cone angles of +20° and -20° [Amptek 2008]. 

At a distance of 40 cm, the 120° output cone has a diameter of 138 cm. The flux 

contained within ± 20° is isotropic and at a distance of 40 cm, this covers ~ 30 mm. 

The flux within a 100 µm spot can therefore be calculated as ~ 10% of the flux 

contained within the 1 mm spot.  The X-ray spectrum at 40 kV, 100 µA, contains 3 

tungsten characteristic X-ray lines (W Lα1 (8397 eV), W Lβ1 (9672 eV) and W Lγ1 

(11,285 eV)) and continuous X-rays up to 40 kV, as shown in figure 2.11. The flux 

includes absorption by a 500 µm Be window and 40 cm of air. The unfiltered 

spectrum would greatly reduce data collection times for XRF analysis, however, it is 

not ideal for XRD analysis since a monochromatic spectrum is required. This can be 

achieved by using a 25 µm Cu filter, which contains an absorption edge (8979 eV) 

between the W Lα and W Lβ/W Lγ X-ray lines. This isolates the W Lα X-rays and 

produces a more monochromatic X-ray spectrum for XRD analysis, but greatly 

reduces the flux of the W Lα line, as shown in figure 2.11. 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Approximate spectrum produced by Mini-X at 40 kV, 100 µA (through 

          a 100 µm diameter spot) 
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Total Flux W L α1 W Lβ1 W Lγ1

Unfiltered (40 mm air, 500 µm Be) 1.36 × 105 1.4 × 104 1.24 × 104 5.8 × 103

Filtered (40 mm air, 500 µm Be, 25 µm Cu) 3.9 × 104 7.1 × 103 53 154

Total flux Main characteristic line flux 
Radioactive Fe55 source 1.4 × 103 1.18 × 103

Portable X-ray source (unfiltered) 1.36 × 105 1.4 × 104

Portable X-ray source (filtered) 3.9 × 104 7.1 × 103

Portable source with X-ray optic (filtered) 9 x 104 7.1 × 104

A summary of the estimated flux produced by the Mini-X is outlined in table 2.2.  

  

 

Table 2.2: Estimated flux produced by the Mini-X portable X-ray source at 40 kV, 

       100 µA, at a distance of 40 mm in a 100 µm spot (all fluxes in counts/s) 

Currently, no portable X-ray tubes containing polycapillary collimating optics are 

commercially available. Estimating the flux that would be contained within a 100 µm 

spot, 40 mm from the X-ray source, is therefore difficult to estimate. However, if 

coupled to the Mini-X tube, the divergent X-rays could be collected over a large solid 

angle and transformed into a low divergent beam of focused X-rays, thereby 

increasing the flux of incident X-rays. It is estimated that the flux produced within the 

100 µm spot would be at least 1 order of magnitude larger than flux produced by the 

Mini-X divergent source, although increased gains of 100 have been reported     

[Yiming & Gibson 2002]. Another advantage of polycapillary optics (see Section 

3.15) is the ability to reduce high energy continuous X-rays [McDonald 1996]. If an 

optic was coupled to the Mini-X source and a 25 µm Cu filter was used to eliminate 

the unwanted characteristic X-rays, the spectrum produced would be almost entirely 

monochromatic (W Lα1). Table 2.3 summarises the estimated flux produced by the 3 

X-ray sources.  

 

 

 

Table 2.3: Summary of flux produced by a radioactive Fe55 source, a portable X-ray 

       tube producing divergent X-rays (Mini-X) and a portable tube coupled  

       with an X-ray polycapillary collimating optic. Flux values represent the 

       counts/s contained within a 100 µm spot, 40 mm from the sample 
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Incident flux N diff  E rr Exposure required 
Radioactive Fe55 source 1.18 × 103 1.2 1.10 8,333 (2 hrs,18 min)
Portable X-ray source (filtered) 7.1. × 103 7.1 2.66 1,851 (30 min)
Portable source with X-ray optic (filtered) 7.1 × 104 71 8.43 185 (3 min)

The data collection times of the 3 sources can be compared as follows. The number of 

diffracted photons incident on the detector during each exposure Ndiff, has a 

Poissonian distribution with an error Err, given by the expression: 

.diffrr NE =                                                  (2.15) 

In order to reduce the error to 1%, at a 68% confidence level, 1 × 104 diffracted 

photons must be collected. If the sample has an efficiency of 0.001 (every 1 × 103 

incident photons produces 1 diffracted photon), the data collection times required by 

the 3 portable X-ray sources to reduce the Poissonian errors on the X-ray peak to 1%, 

can be summarised as shown in table  2.4.   

  

  

Table 2.4: Summary of the data collection times required by the 3 portable sources to 

       achieve a counting error of 1% (all fluxes in counts/s) 

The major advantage of the X-ray polycapillary optic is evident from table 2.4, as an 

intensity error of 1% can be achieved in less than 3 minutes. The PB configuration is 

ideal for ‘quick’ analysis, as qualitative results can be achieved in minutes. For 

portability with power and instrument volume restrictions, the radioactive source is 

ideal, however much longer exposures times are required to reduce intensity errors.  

2.3 Optimised Geometry  

The optimum geometry for XRD analysis is entirely dependant on the application. 

Both BB and PB geometries have advantages and disadvantages based on the 

requirements of the analysis. This section compares the different geometries discussed 

in this chapter in relation to resolution, flux and angular range, and determines which 

geometry is more suited to portability and which is suited to testing.  

For optimum resolution, the CCDs should be placed along the focusing circle in the 

BB1 geometry to detect the focused X-rays, but this is restricted by two main issues. 

Since Rfc >> Rsd, an impractical number of CCDs are required to cover a similar 

angular range to the BB2 geometry. Figure 2.12 shows the number of 26 µm pixels 
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required to cover an angular range from 5 − 65°, with varying angles of incidence, for 

a measuring circle radius of 50 mm and 120 mm.    

 

 

 

 

 

 

 

 

 

 

Figure 2.12: Number of (26 µm)2 CCD pixels required to cover an angular range    

          from 5 − 65° 2θ in BB1 geometry 

As shown in figure 2.12, when Rsd is 120 mm, ~ 50 CCD30-11s are required to cover 

an angular range from 5 − 65° on the focusing circle, whereas only 4 CCDs would be 

required on a 120 mm measuring circle. Even when reducing Rsd to 50 mm, ~ 20 

CCDs are required, however, the BB1 geometry can be used for certain applications. 

For example, an application may require a angular coverage ranging from 12 − 68° 

but need the best possible resolution between 12 − 20°. The designed geometry has no 

size restrictions. Figure 2.13 shows a possible solution using the both BB1 and BB2 

geometries.    

By placing two CCDs in BB1 geometry between 12 − 20°, higher resolution is 

achieved in comparison to placing the CCDs on the measuring circle. Since the 

resolution requirements are less crucial from 20 − 68°, the CCDs can be placed in BB2 

geometry to reduce the volume of the detector. Intensity corrections would be 
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required with the CCDs in BB1 geometry, since the sample to detector distance is 

larger. This geometry requires an additional 56 mm length in comparison to a 

geometry in which all the CCDs are located on the measuring circle, and also requires 

an additional CCD.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13:  Ideal geometry to provide angular coverage from 12 − 68° θ, with the              

           highest possible resolution between 12 − 20°, using both BB1 and            

           BB2 geometries. CCD length is 26.6 mm (CCD30-11) 

Another problem in BB1 geometry is shown in figure 2.14. In BB2 geometry, the 

imaging areas of the CCDs are almost entirely orthogonal to the diffracted X-rays. In 

BB1 geometry, diffracted X-rays are detected by the CCDs at very sharp angles. This 

is particularly true at low 2θ angles, as shown in figure 2.14. For example, consider 

two peaks of identical intensities, one located at the centre of CCD 1 and the other at 

the centre of CCD 3. Assume the depletion depth of the devices xp, is 12 µm. If 100 

Cu Kα X-rays (~ 8 keV) are detected orthogonally to the CCDs, ~ 16 will be absorbed 

in the CCD’s depletion region. However, if these X-rays are detected at a θ angle of 
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7° (CCD 1), then the effective depletion depth will increase to 98 µm (12 µm/sin(7°)). 

Similarly, for CCD 3, the effective depletion depth will increase to 46 µm. The two 

identical peaks located on CCD 1 and CCD 3 will therefore differ by ~ 35%.  These 

errors can be accounted for in the XRD pattern and reduced, however this requires 

additional processing. This variation in QE and the impractical number of CCDs 

required to cover a reasonable angular range, restricts the use of BB1 geometry for the 

majority of applications.  

 

 

 

 

 

 

 

 

 

Figure 2.14: Geometry of 3 CCDs on a focusing circle with a radius of 287 mm.       

           Rsd = 100 mm and θinc = 5°  

As outlined in Section 2.1, the resolutions achieved in PB and BB2 geometries are 

limited by the same factors, namely the angle of incidence, size of the irradiating 

beam and the radius of the measuring circle. Figure 2.15 compares the resolution 

achieved in both geometries with a 4° incident angle and 120 mm measuring circle.  

For a beam size of 100 µm, it is clear that BB2 geometry provides better resolution. 

Even when Pob is reduced to 25 µm in the PB geometry, the BB2 arrangement 

provides better resolution at angles < 78°.  However, the PB geometry can greatly 

reduce data collection times (see table 2.4) and provide higher SNR for a given 
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Resolution Flux Angular Range Data collection time Sample preperation Portability
BB 2  - RS 8 3 10 2 6 10

BB 2 - PXT 8 5 10 6 6 3
PB - PXT 4 10 10 10 10 3
BB 1  - RS 10 3 1 2 6 1

BB 1  - PXT 10 5 1 6 6 1

exposure time. The major advantage of both geometries is Rss does not equal Rsd, 

therefore sample alignment is easier in comparison to the BB3 geometry. 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Comparison of resolution achieved in PB and BB2 geometry 

Table 2.5 summarises the performance of the geometries discussed in this chapter 

(excluding BB3), by a simple marking system out of 10 for the performance 

parameters of resolution, flux, angular range, data collection times, sample 

preparation and portability.  

 

  

 

Table 2.5: Summary of XRD geometry scores (out of 10) based on resolution, flux 

       angular range, data collection times, sample preparation and portability. 

       ‘RS’ represents a radioactive source and ‘PXT’ represents a portable X-ray 

       tube 



41 

2.4 CCD-Array Testing Geometry 

The geometry used in testing the CCD-Array was determined as follows. In order to 

cover a reasonable angular range (~ 60°), which is required for the majority of 

applications, with a practical number of CCDs, the BB1
 geometry can be eliminated. 

Since the initial focus of the work was based on testing and calibrating the           

CCD-Array, reducing data collection times was given priority over achieving the best 

resolution, therefore PB geometry was selected over BB2 geometry. Another 

consideration was the radius of the measuring circle. Figure 2.16 shows the increase 

in spatial resolution achieved by a CCD (with 26 µm pixels) with increasing Rsd, and 

the resulting decrease in resolution of the diffracted beam in PB geometry.   

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Increase in spatial resolution (assuming 26 µm pixels) and reduction in 

           RPB with increasing sample to detector distance  

Figure 2.16 shows that when Rsd is increased from 20 mm to 120 mm, a 430% 

increase in spatial resolution can be achieved, whilst the reduction in RPB is ~ 50%. 

This measuring circle radius was expected to provide excellent spatial resolution 

(0.012°) for XRD analysis, similar to that achieved by laboratory instruments 
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Parameter Information
Geometry Parallel Beam
P ob 50 - 150 µm
Angular coverage 4 - 64º 2θ
Number of CCDs 4
R sd 120 mm
Spatial resolution 0.012º
R PB  at 10º, 30º, 60º 2θ  (Pob = 50 µm) 0.18º, 0.26º,  0.34º

θ inc 4º
Sampe irradiation length (50 µm beam) 0.91 mm
L ps  (typical) 5 mm

α PB  (at Cu Kα) 0.2º FWHM

(typically 0.01°). By taking a survey of samples relevant to various fields of research 

(geology, pharmaceuticals, etc.), an angular range from 4 − 64° was expected to cover 

the major peaks in the majority of samples [Cressey 2006]. A summary of the 

designed CCD-Array geometry for testing is summarised in table 2.6.  

 

 

 

 

 

 

Table 2.6: Summary of geometry designed for testing of the CCD-Array 

2.5 Discussion 

This chapter has compared the different geometries available to the CCD-Array for 

performing XRD analysis. The geometries have been compared in terms of flux and 

resolution and the advantages and disadvantages of different portable X-ray sources 

have been highlighted. It was found that aligning the CCDs along the focusing circle 

in BB1 geometry provided the highest resolution but this required an impractical 

number of CCDs to cover a large angular range. By comparing the BB2 and PB 

geometry, it was found that for a given beam size, the BB2 arrangement provided 

higher resolution. The resolution achieved in both geometries was limited by the 

angle of incidence and diameter of the irradiating beam. The main trade-off in both 

geometries was between the angle of incidence and resolution. The major advantage 

of the PB geometry was the increase in flux that can be achieved with the use of 

polycapillary collimating optics. However, unlike the BB3 geometry, which controls 

the resolution of the diffracted beams using receiving slits, both BB2 and PB 

geometries result in defocusing of the diffracted X-rays. For testing, it was concluded 

that the PB geometry would provide an ideal arrangement, as data collection times 

would be greatly reduced.  
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Chapter 3  : The Charge-Coupled Device / X-ray Gene ration 

3.1 Introduction 

This chapter describes the principles behind the semiconductor imaging device used 

for this project, the CCD. The structure and operation of the CCD is discussed in 

detail as well as the fundamental building block of the CCD, the metal oxide 

semiconductor (MOS) capacitor. The operational and readout procedures are also 

explained, including the different noise sources that limit the performance of the 

detector for scientific applications. The physical processes involved in the detection of 

X-ray photons by the CCD are also investigated and the different CCD architectures 

available for increased quantum efficiency in the soft X-ray range (0.1 − 10 keV) are 

reviewed. The characteristics of the Bede micro-source (spectra and flux) are 

described and the advantages of using polycapillary optics for XRD applications are 

highlighted.  

3.2 The Charge-Coupled Device 

The CCD was invented in Bell Laboratories in 1969 by G. Smith and W. Boyle 

[Boyle & Smith 1970]. The CCD is a photon sensitive device that produces charge 

when exposed to light. The charge generated is proportional to the energy of the 

incoming photon. Initially the CCD was designed as a memory device, but its ability 

to convert light to electrons with such high linearity made it ideally suited to the 

commercial imaging market. Over the last decade, the CCD has been at the forefront 

of digital camera technologies and digital video recording. Commercial CCDs 

consume little power, offer very high resolution, and are relatively inexpensive. The 

focus of this work however, is the use of CCDs for scientific applications. Scientific 

CCDs are designed for much lower noise performance, increased quantum efficiency 

and are almost completely free of cosmetic defects. The operation and performance of 

such scientific CCDs is now discussed.  

3.3 Device Structure  

The CCD is composed of a 2-dimensional array of closely spaced MOS capacitors. 

Figure 3.1 shows the structure of the MOS capacitor, which represents a single CCD 

pixel. The MOS capacitor is so called as it contains a metal contact (electrode), an 

oxide (SiO2) and a semiconductor (p-type Si). The active region of the CCD is known 
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as the epitaxial region and is made by doping the Si with boron, thereby forming a    

p-type semiconductor. The doping concentration of the p-type layer is expressed as 

Na, and is usually between 1 × 1013 – 1 × 1016 cm-3. Modern day CCDs are based on 

the buried channel MOS capacitor, which involves implanting an n-type layer (Si 

doped with phosphorus) into the epitaxial region. The reason for the implementation 

of this additional n-type layer is discussed in Section 3.4.2. The standard thickness of 

the buried channel for e2v devices is approximately 1 µm. The doping of the n-type 

layer is expressed as Nd, and has a value of 1 × 1016 cm-3 for e2v devices [Burt 2006]. 

Figure 3.1 shows a cross section view of a standard p-type CCD.  

 

 

 

 

 

 

 

Figure 3.1: Structure of a buried channel CCD – Cross section 

The epitaxial layer is grown on top of a highly doped p-type material which forms the 

substrate. An oxide layer (SiO2) lies directly beneath the electrode structure and acts 

as an insulator between the electrode and the underlying Si. A layer of Si nitride 

(Si3N4) is also added to prevent further non-uniform growth of the oxide and improve 

the electrical insulation between the electrodes and underlying Si. Although not 

shown in figure 3.1, an additional layer of SiO2 is located around the electrodes to 

insulate them from particle contamination.  

Bias voltages are applied to the electrode structure, which is usually constructed from 

strips of overlapping polysilicon. Most devices constructed by e2v are 3-phase 

devices (i.e. 3 electrodes per pixel). All electrodes lie parallel to one another, where 

the width of 3 of these electrodes defines the size of each pixel (as illustrated in figure 
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3.2). Standard device pixel sizes include (13.5 µm)² and (26 µm)², with a standard 

electrode thickness of approximately 0.085 µm.  

The electrode structure lies orthogonally on top of p+ potential barriers known as 

channel stops. The channel stops are implanted into the epitaxial region and are held 

at 0 V potential to confine charge in the lateral direction. During the integration of the 

image the second electrode Iø2 is usually held at the biasing voltage, whilst Iø1 and 

Iø3 are held at 0 V. This resembles the behaviour of the channel stops but in the 

orthogonal direction to form potential barriers, known as barrier phases. These 2 

features prevent the leakage of signal electrons to neighbouring pixels during 

integration.   

Once the charge has been integrated, the charge packets are transferred from electrode 

to electrode until the charge from each column is passed into the readout register. This 

is the final clocking stage of the signal electrons, which are transferred sequentially to 

an output amplifier located on the CCD. The headboard circuit provides additional 

gain to the output signal, which is then digitised by an ADC (analogue to digital 

converter) and displayed as a 2-dimensional image on the computer screen. The 

process of charge measurement is discussed in Section 3.6.  

 

 

 

 

 

 

 

 

 

Figure 3.2: Structure of a standard 3-phase CCD – top view  
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3.4 Potentials in Silicon 

The MOS capacitor is the main building block of the CCD and performs the 2 vital 

procedures of collecting and transferring charge. The potentials of the surface channel 

and buried channel MOS capacitors are now discussed.  

3.4.1 Surface Channel Structure 

The structure of the surface channel MOS capacitor is the same as the buried channel 

capacitor shown in figure 3.1, but without the n-type layer located between the 

electrode and epitaxial layer. The epitaxial layer of the device is fabricated on p-type 

Si in which the majority carriers are holes. When a positive voltage is applied to the 

electrode, the majority carriers in the epitaxial layer are repelled from the surface and 

a depletion region forms. When an X-ray ionises in the Si and produces electron hole 

pairs, the electrons are attracted to the surface and the holes are repelled towards the 

back substrate. This type of MOS capacitor is known as surface channel because the 

electrons are stored at the surface.  

The potential profile through the depletion region of p-type Si can be expressed using 

Poisson’s equation as: 

SI

aqN

dx

Vd

ε
=

2

2

,       (3.1) 

where q is the charge of an electron (1.6 × 10-19 C) and εSI is the permittivity of Si 

(1.04 × 10-12 F/cm).  By integrating equation 3.1 with the boundary condition that the 

electric field is zero at the depletion depth xp, equation 3.2 gives an expression for the 

electric field through the device: 

)( p
SI

a xx
qN

dx

dV −=
ε

.          (3.2) 

Integrating equation 3.2 with respect to x, gives an expression for the change in 

potential through the Si, at a given distance x, from the surface: 

          ( )2

2 p
SI

a xx
qN

V −=
ε

.        (3.3) 
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At the surface of the device (x = 0), the applied voltage V, equals the surface voltage, 

VS. Using equation 3.3, the relationship between the surface voltage and depletion 

depth can be expressed as: 

SI

pa
S

xqN
V

ε2

2

= .       (3.4) 

In the surface channel MOS capacitor, signal electrons generated by incident X-rays 

are stored and transferred at the Si-SiO2 interface. Some signal electrons become 

trapped at the Si-SiO2 interface and are left behind during the clocking process, which 

severely degrades charge transfer efficiency. This problem was solved with the 

integration of buried channel MOS capacitors into the CCD architecture. 

3.4.2 Buried Channel Structure 

Buried channel CCDs introduce an extra layer of n-type material ‘buried’ underneath 

the Si-SiO2 interface. The introduction of this layer changes the shape of the potential 

curve seen in a surface channel device. A potential well is produced just below the  

Si-SiO2 interface, where signal electrons collect and this eliminates trapping at the 

surface. 

The buried channel structure forms a pn junction which is reverse biased by applying 

a positive voltage on the gate electrode (VG) and a negative voltage on the back 

substrate [Bertolini & Coche 1968]. Before the junction is reverse biased, mobile 

holes from the p side diffuse across the junction to the n side. Similarly, mobile 

electrons from the n side diffuse onto the p side. This process continues until enough 

fixed lattice charges build up to repel the migration of charge carriers across the 

junction. The application of a positive gate voltage and lower substrate voltage (VSS) 

increases the width of the naturally formed depletion region. Mobile electrons in the 

buried channel are attracted to the positive charges at the gate electrode and mobile 

holes are repelled and pushed down to the more negative substrate. The resulting area 

is depleted of majority carriers and defines the region where signal electrons are 

generated and collected. The n-type buried channel on e2v devices is usually ~ 1 µm 

thick and allows the storage of signal electrons approximately 0.5 µm beneath the    

Si-SiO2 interface. During the read out process this prevents any charge trapping at the 

Si-SiO2 interface. Standard e2v devices are fabricated on 100 Ω.cm resistivity Si 
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which corresponds to a doping concentration Na, of approximately 1 × 1014 cm-3. The 

doping concentration of the n-buried layer is approximately 1 × 1016 cm-3. The 

resistivity Rs, of the Si (Ω.cm) and doping concentration are related through the 

expression [Castelli 1991]:  

                                   
a

s N
R

161025.1 ×= .                           (3.5) 

Figure 3.3 shows the potential gradient of a standard buried channel CCD. The 

thickness of the buried channel t, is 1 µm and the values of Na and Nd are                    

1 × 1015 cm-3 and 1 × 1016 cm-3 respectively. The oxide thickness dox, has a value of 

0.1 µm. The potential gradient of the buried channel structure can be calculated in 3 

stages which describe the electric field through the oxide, n-channel and p-channel 

respectively. The potential through the oxide VOX, at a given distance x, between the 

oxide surface and n-buried channel is given as [Janesick 2001]: 

)( oxOXFBGOX dxEVVV +−−= ,              (3.6) 

where VFB is the flatband voltage, EOX is the electric field through the oxide (V/cm) 

and VG is the voltage applied to the gate electrode. The potential through the n-buried 

channel Vn, at a distance x can be expressed as [Janesick 2001]: 

( )2
max 2 n

SI

d
n xx

qN
VV −−=

ε
,             (3.7) 

where xn is location of the potential maxima and Vmax is the maximum channel 

potential. The potential through the p channel at a given distance x, can be expressed 

as [Janesick 2001]: 

               ( )2

2 p
SI

a
p xtx

qN
V −−=

ε
.           (3.8) 

The potential at the np junction VJ, without the application of a positive voltage at the 

gate electrode has a value of approximately 11 V for e2v CCDs.  

The maximum channel potential Vmax, can be calculated as [Janesick 2001]:  
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The location of the potential maxima xn, can be expressed as [Janesick 2001]: 
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The maximum depletion depth in the p channel xp, is given by: 

                
( )

a

SSGsi
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x

−= ε2
.       (3.11) 

Figure 3.3 shows the potential profile of a typical buried channel CCD for 4 different 

gate voltages, outlining the location of the potential maxima xn, and the width of the 

depletion region (xp + t).   

 

 

 

 

 

 

 

 

 

                                                                                                 

Figure 3.3: Potential profile in a buried channel CCD with varying gate potential    

        (curves generated using equations 3.6 − 3.11) 
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3.5 Charge Transfer  

Once charge is collected in the potential wells of the CCD, it is then ‘coupled’ from 

one pixel to another. Figure 3.4 shows the transfer process for a 3-phase CCD with a 

biasing voltage of 12 V. Once the image has been integrated, signal electrons collect 

in the nearest potential well, which is usually located underneath Iø2 and the readout 

process begins. Charge is moved by manipulating the voltages applied to the 3 

different electrodes in each pixel. The complete transfer of one pixel is illustrated in 

figure 3.4. During the serial readout process, occurring at t1, Iø2 is maintained at 12 V 

to hold the charge for each pixel. At t2, 12 V is applied to Iø3 in conjunction with Iø2, 

which results in electrons diffusing into the common potential well formed by both 

electrodes. At t3, the applied voltage is removed from Iø2 so all the signal electrons 

can be collected by the strong electric field produced by Iø3. At t4, Iø1 is biased high 

allowing charge to be shared from Iø3. At t5 Iø3 is biased low allowing all the signal 

charge to be transferred to Iø1. At t6, Iø2 is biased high and charge is coupled from 

Iø1 to Iø2. At t7, the charge is completely transferred to Iø2 and the transfer of charge 

through 3 electrodes (1 pixel) is complete. Another column has now been transferred 

to the serial register for amplification. This process continues NR times, where NR is 

the number of rows in the CCD image.  

 

 

 

 

 

 

Figure 3.4: Parallel charge transfer process for a 3 phase device  

3.6 Charge Measurement 

The final stage in the CCDs operation is the amplification and conversion of charge 

packets which is achieved with an on-chip amplification circuit. This conversion of 
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signal electrons to a voltage can introduce unwanted noise in the signal which is 

discussed in Section 3.8. Figure 3.5 shows the typical output circuit for a CCD, which 

consists of an output field effect transistor (FET) and a reset FET.  

 

 

 

 

 

 

 

 

Figure 3.5: Typical output circuit of a standard CCD 

The output gate in the serial register is connected to an output node, which is made of 

n-type Si. The output node is biased to form a deep potential well for signal electrons 

prior to their measurement by the output FET. The signal packets in the output node 

are sequentially either converted to an output voltage by the output FET, or drained 

away. This sequence is controlled by the reset clock, ØR. When the reset FET is 

biased low, the signal electrons from the output node cause a change in voltage at the 

gate of the output FET, VFET.  This change in voltage is proportional to the charge 

stored in the output node which is vital in maintaining the CCD’s linearity           

(photon → electrons → voltage). Assuming the output FET is operated in its linear 

region, the change in voltage at the output FET ∆VFET, can be expressed as: 

                     FET
FET

ON
FET G

C

Q
V =∆ ,                  (3.12) 

where QON is the charge contained in the output node, CFET is the capacitance of the 

output FET (~ 10 pF) and GFET is the gain of the output FET (~ 0.7 V). This change in 
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voltage controls the flow of current between the source and drain of the output FET   

(~ 5 mA). The output voltage is a measure of the voltage across an external load       

(5 − 10 kΩ) between source and drain, which is usually located off-chip on the 

headboard.  

Once the signal charge from the output node has been converted into an output 

voltage, the reset FET is biased high, so the charge in the output node is drained away 

by VRD and the output node is set to a reference voltage. The next group of signal 

electrons from the neighbouring pixel are then transferred from the last serial register 

pixel to the output node and the process is repeated until the entire CCD image has 

been converted to a voltage and amplified. The output gate is biased high during 

amplification of the signal packet to prevent electrons from the output node spilling 

back into the last serial register pixel. The sensitivity of a CCD output amplifier is 

measured in terms of the number of Volts assigned to each electron. Standard CCD 

sensitivities range from of 1 – 5 µV/e¯. For example, a single Fe55 X-ray will generate 

a voltage of approximately 4.8 mV for an output amplifier sensitivity of 3 µV/ē. 

3.7 CCD Architectures 

Two main architectures exist for CCD applications known as full frame and frame 

transfer CCDs. Full frame CCDs only contain an image section which is connected to 

the serial register. During the readout process, the CCD continues to accumulate 

charge since the image area is still exposed to incoming signal, which causes image 

smear. One way of preventing this image smearing is the use of frame transfer 

devices.  

In a frame transfer CCD, half of the CCD is covered using an opaque shield (usually 

aluminium), forming a ‘store’ section. Once the image has been integrated, it is 

quickly transferred to the store section by manipulating the parallel clocks (through 

the process described in Section 3.5). The image is then read out from the store 

section whilst a new image is integrated in the image section. This can allow much 

quicker integration of images and a large reduction in smearing. However, twice as 

much Si is needed to fabricate a frame transfer device. Section 5.5 demonstrates the 

effect of image smear when collecting XRPD data and the benefits of operating a full 

frame CCD in frame transfer mode.  
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3.8 Noise Sources in a CCD 

There are various sources for the generation of noise in a CCD, which limit the 

performance of the detector [Burt 1991]. These noise sources can originate from     

on-chip noise such as dark current, transfer noise and photon shot noise. The output 

amplifier on the CCD also generates noise such as transistor noise and pixel reset 

noise. External sources can also produce noise in the image such as electromagnetic 

interference (EMI) from nearby equipment and the leakage of light onto the CCD 

imaging area. The main constituents of CCD noise are now discussed. 

3.8.1 Dark Current 

Dark current is so called due to the ability of the CCD to produce current (charge) in 

the dark. Electrons in the Si atom require energy to bridge the gap between from 

valence band to the conduction band (1.11 eV). Upon receiving energy in the form of 

a photon or in the case of dark current, thermal energy, the electrons gain enough 

energy to move into the conduction band. Here they are able to move around and 

contribute to the signal collected by the CCD’s potential wells. Dark current forms 

part of the detected signal packet and constitutes as noise. Dark current is entirely 

dependant on the temperature of the Si. The dark current detected in each pixel of the 

CCD originates from 3 main sources, which are the depletion region, the field free 

region and the Si-SiO2 interface. The dark current at the buried channel Id, can be 

expressed as [Holland 1990]:  
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The first term is the dark current generated in the depletion region, where in is the 

intrinsic carrier concentration and τ is the effective lifetime in the depletion region.  

The second term is the leakage current in the field free region where Dn is the 

diffusion constant, Ln is the diffusion length (equation 5.7). The dark current 

generated in the field free region is approximately equal to the length of the epitaxial 

layer of the device and is expressed in pA/cm². The final term in the expression 

constitutes the majority of the dark current, which is at the Si-SiO2 interface. The 

symbol srv, represents the surface recombination velocity. The dark current 
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experienced in each pixel of the CCD has a Poissonian distribution with an error σDC, 

given by the square root of Id.  

Figure 6.19 shows the reduction in dark current achieved by AIMO CCDs. AIMO 

CCDs contain boron implants located underneath certain electrodes to form potential 

barriers. By applying 0 V gate voltage and ~ 8 − 9 V substrate voltage, holes 

accumulate at the Si-SiO2 interface and combine with the electrons. These holes 

effectively change the surface of the CCD from an n-type to p-type material, hence 

the term ‘inverted’. This practically eliminates the dark current generation at the 

surface of the device, resulting in a typical leakage current of ~ 10 pA/cm² at 20 °C 

for e2v devices. The disadvantage of this architecture is a reduced full well capacity 

and a smaller depletion depth since VG is 0 V during integration.   

3.8.2 Transfer Noise 

During the charge transfer process, no electrons should be left behind during the 

transfer of electrons between neighbouring pixels. This must be performed NR times, 

where NR is the number of rows in the CCD imaging area. When the charge packet 

reaches the output amplifier, the number of electrons at the output node should be the 

same as the number of electrons in the original potential well. This represents 100% 

charge transfer efficiency (CTE). This would ensure the output signal produced for 

the charge packet would be exactly proportional to the energy of the X-ray event that 

took place in the target pixel.  

Modern day scientific CCDs can achieve a CTE very close to 100%. All modern 

CCDs are based on the buried channel MOS capacitor device, which typically 

provides CTE in the region of 0.99999. This means that if 1 × 106 electrons are moved 

from one pixel to another, only 10 electrons will be left behind. Transfer noise is 

therefore the average number of electrons removed from a charge packet during the 

transfer of the charge between pixels. If ncp is the number of electrons in the charge 

packet, the average number of electrons lost σloss, during an entire readout of the CCD 

image can be expressed as:  

                   CTInN cpRloss =σ ,        (3.14) 

where CTI is the charge transfer inefficiency (1 – CTE).  
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3.8.3 Photon Shot Noise 

The absorption of an X-ray photon in the CCD results in the generation of electron 

hole pairs. There exists a statistical variation in the number of electron hole pairs 

produced which was characterised by U.Fano in 1947 and is known as the fano factor. 

Fano determined that some of the energy of the photon was lost to the Si lattice, 

resulting in a variation in the number of electron hole pairs produced. The mean 

number of electron hole pairs ne-h, produced by an X-ray of energy E, is described as: 

                 
ω
E

n he =− ,                   (3.15) 

where ω is ~ 3.67 eV at ~ +20 °C and varies with temperature (see Section 3.9) and 

represents the average energy required to produce a single electron hole pair in Si     

[Groom 2004]. With the introduction of the statistical variance, the error associated 

with the number of electron hole pairs generated can be expressed as:  

ω
σ FE

SN = ,                (3.16) 

where F is the fano factor [Fano 1947] and has a value of approximately 0.115       

[Alig et al. 1980]. 

3.8.4 Transistor Noise 

The noise induced from the output circuit has 2 main sources, flicker noise and 

Johnson noise. Flicker noise or ‘1/f’ noise arises from the trapping and releasing of 

signal charge in the drain to source channel in the output FET. Flicker noise is 

removed by the same process as removing pixel reset noise, which is known as 

correlated double sampling (CDS) [Hopkinson & Lumb 1982]. Flicker noise 

dominates at readout frequencies < 100 kHz.  

Johnson noise is caused by the random thermal motion of charge carriers in the 

conducting channel of the output FET. Readout frequencies higher than 100 kHz are 

dominated by Johnson noise. Typical readout noise values for e2v CCDs are in the 

range of 4 – 8 ē r.m.s. 
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3.8.5 Pixel Reset Noise 

Pixel reset noise is generated from the sequential resetting of the output node to a 

reference voltage VRD. This noise source induces a small variation in the applied 

reference voltage from pixel to pixel. The reset noise σreset, for a given Si temperature 

Tsi, is given by:  

                   
q

CkT Nsi
reset =σ ,      (3.17) 

where σreset is the r.m.s. reset noise in electrons, CN is the capacitance of the output 

node and k is the Boltzmann constant. Pixel reset noise can however be eliminated by 

the use of CDS. As mentioned previously, prior to signal electrons from a new pixel 

being transferred to the output node, the output node is set to a reference voltage VRD. 

This charge is then measured. The reset FET is then biased low and charge from last 

readout register is transferred to the output node. The new signal charge in the output 

node is measured which is a combination of the signal charge and the reference level. 

The actual signal is then computed as the difference between the 2 measurements. 

Using the CDS method, the fluctuations in the applied reference voltage are greatly 

reduced.  

The expression for the overall CCD noise can be expressed as: 

                   
222

SNDCRNtotal σσσσ ++= ,                  (3.18) 

where σRN  is the readout noise of the CCD in e¯ r.m.s., which can be measured using 

the serial-overscan pixels in the CCD image.  

3.9  Variation in electron-hole pair production in Si 

The value of ω, which represents the energy required to create a single electron hole 

pair, is dependant on the temperature of the CCD. The value of ω at lower 

temperatures, where CCDs are operated to eliminate dark current, vary from source to 

source. The indirect bandgap energy of Si for a given temperature Eg (Tsi), can be 

expressed as [Varshni 1967]: 
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where Eg(0) has a value of 1.1557 eV for Si, β has a value of  7.021 × 10-4  eV/K and γ 

has a value of 1108 K. At room temperature, Eg(300K) equates to 1.1108 eV. The 

variation in ω as a function of temperature can be expressed as [Groom 2004]: 

( ) ( ) ( )]300[ KETEaT gsigsi −=∆ω ,   (3.20) 

where a is a constant that has been measured by various sources [Groom 2004] and 

ranges from 2.12 − 2.87. Figure 3.6 shows the variation in ω for a given temperature 

Tsi, using 3 sources for the value of a. A good agreement of ~ 3.67 is seen at room 

temperature (+23 °C). The devices used for this work operate at an average 

temperature of -37.5 °C, therefore a value of  3.7 is used to approximate ω.  

 

 

 

 

 

  

 

 

 

Figure 3.6: Variation in ω as a function of Si temperature  

3.10 X-ray Absorption in Silicon 

In terms of CCD applications, 2 regions of the electromagnetic spectrum are of 

interest, light which ranges from 400 × 109− − 700 × 109− m and X-rays which range 
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from  10 × 108−  − 10 × 10 10−  m. Light photons create single electron hole pairs with a 

very small cloud diameter whereas X-rays create multiple electron hole pairs         

(100 − 1000) with larger charge clouds. The transmission of electromagnetic radiation 

through a material can be expressed as [Cullity 1976]:  

      
)( ρ
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oI eII
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= ,                      (3.21) 

where I I  is the intensity of the beam at a depth x into the material, Io the intensity of 

the beam at the surface, ρ is the density of the absorbing material (g/cm3) and µ/ρ is 

the mass attenuation coefficient [Hubbell & Seltzer 1995]. The product of the mass 

attenuation coefficient and the density of the material is the linear attenuation 

coefficient µ. The absorption length represents the depth at which 1/e (68%) of X-rays 

have been absorbed. The absorption length of X-rays ranging from 30 − 12,000 eV in 

Si is shown in figure 3.7 [Henke et al. 1993]. For X-ray spectroscopy applications, the 

important region to maximise the CCDs performance is between ~ 0.5 − 10 keV. 

Standard CCDs can detect X-rays up to ~ 15 keV and deep depletion sensors extend 

this limit to ~ 20 keV (QE of ~ 1%) 

 

 

 

 

 

 

 

 

 

Figure 3.7: Absorption length of 30 – 12,000 eV X-rays in Si 
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3.10.1 X-ray Detection in Silicon 

X-rays detected in the CCD interact with the inner K shell electrons in the Si atom 

[Kane 1962]. The incoming X-ray dislodges the K shell electron and produces a 

photo-electron with a kinetic energy equal to: 

KshellrayXElectron EEE −= −  ,               (3.22) 

where EKshell is the K shell binding energy of Si and has a value of 1.84 keV. If the 

incoming X-ray has an energy less than EKshell, then it interacts with an L shell 

electron. The ejected photo-electron produces a trail of ionising electron hole pairs 

through inelastic collisions. The number of electron hole pairs produced can be 

calculated using equation 3.15. For example, a Cu Kα X-ray which has an energy of 

8047 eV creates approximately 2192 electron hole pairs at room temperature. The    

X-ray forms an initial cloud of electrons and then travels to the potential wells with 

further spreading of the cloud based on where the X-ray ionised. The spreading of 

charge clouds based on X-ray interaction depths is explained in Section 3.11.  

The original atom where the X-ray interaction took place is left in an excited state 

(ionised). The de-excitation of this atom also contributes to the signal charge. The 

total number of electrons produced by the X-ray signal is therefore equal to:  

KLKshellrayXElectron EEEE →− +−= )( ,        (3.23) 

where the third term in the equation KLE → , represents the energy released during the 

de-excitation of the original atom where the X-ray interaction took place. This         

de-excitation can release energy in 2 main forms which are summarised below.  

3.10.1.1 Auger Electrons 

Once a K shell electron has been removed, the atom relaxes by allowing an L shell 

electron to fill the vacancy. This can result in the emission of a neighbouring L shell 

electron which will have an energy equal to LshellKshell EE − . For Si, LshellE  has a value 

of ~ 99 eV, which results in the value of KLE →  to equal 1.740 keV. For the Si atom, 

the probability of producing Auger electrons is very high (~ 95.3%), as shown in 

figure 1.6.   
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3.10.1.2 Fluorescent Si X-rays  

The transition of an L shell electron to the K shell can also release energy in the form 

of a fluorescent Si Kα X-ray, which will have the same energy as a K shell Auger 

electron. The probability of producing the Si Kα photon is low (~ 4.7%). Si Kα        

X-rays have a 1/e absorption length of approximately 10 µm [Henke et al. 1993] in Si. 

This usually results in the ionisation of the X-ray within the same pixel, however if 

absorbed in a different pixel, this would result in the third term in equation 3.23, 

KLE →  to equal 0. The X-ray would therefore produce less signal charge and would 

appear on the spectrum with an energy 1.740 keV less than the actual X-ray energy. 

These spectral features are known as ‘escape peaks’. The fluorescence of all elements 

within the CCD architecture such as O and nitrogen (N) is also possible. However, the 

fluorescence yield of these elements is very low and therefore very difficult to 

measure. This also includes the L shell emissions in the Si atom.   

3.10.2 Energy Resolution 

Normal operating mode for a CCD involves cooling the detector to practically 

eliminate dark current. AIMO devices provide leakage current of less than                  

1 ē  p/p/s at -20 °C. NIMO devices must be cooled to ~ -100 °C to provide 

comparable dark current. Assuming the CCD is operating with negligible dark 

current, the energy resolution of the detector is simply limited by the readout noise 

and can be expressed as: 

ω
σω

FE
eVFWHM RN += 235.2)( .        (3.24) 

From equation 3.24, the energy resolution of the detector varies depending on the 

readout noise of the CCD (assuming dark current has been practically eliminated 

through cooling) and the X-ray energy. The energy resolution is fano limited, which is 

the statistical uncertainty in the number of electron hole pairs produced by an X-ray of 

energy E. 

Figure 3.8 shows the variation in FWHM for 3, 6 and 9 ē  r.m.s. noise as a function of 

X-ray energy. The readout noise can be improved by reducing the readout speed of 

each pixel but this causes an increase in the total readout time of the device.  
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Figure 3.8: Variation in FWHM with X-ray energy for 3, 6 and 9 ē  r.m.s. readout 

          noise 

3.10.3 Quantum Efficiency 

The QE of a CCD represents its efficiency at collecting X-rays of different energies. 

The QE of standard front illuminated (FI) CCDs (such as the CCD30-11s used for this 

project) can be calculated in 2 stages. The first stage involves calculating the 

absorption of X-rays through the dead layer of the CCD TDL, which consists of the 

electrode structure, SiO2 and Si3N4 layers. This dead layer effects lower energy        

X-rays, which struggle to penetrate the initial layers of the CCD and reach the active 

depletion region. The second factor in the QE calculation is the percentage of X-rays 

collected in the depletion region of the CCD. Once X-rays penetrate the dead layer, 

some are collected in the CCD’s depletion region, which depends on the extent of the 

depletion region and the X-ray energy. The expression for QE is given by:  

( )dE Z
DL eTQE ×−−= λ1 ,                     (3.25) 

where λE is the linear attenuation coefficient in Si at X-ray energy E, and Zd is the 

thickness of the CCD’s depletion region. For a standard FI CCD, the transmission 

through the dead layer can be expressed as: 
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where ndl is the number of dead layers on the surface of the device, λL is the linear 

attenuation coefficient and tL is the thickness of layer L. Standard e2v devices are 

fabricated on 100 Ω.cm epitaxial Si with a thickness of 20 − 25 µm. Depending on 

biasing conditions, such device construction yields a depletion depth in the region of  

6 − 12 µm. Standard CCDs display a good QE in the 1– 5 keV range but a much 

lower response to X-rays ranging from 5 – 10 keV. Due to the surface layers of the 

device, X-rays less than ~ 1 keV experience severe attenuation that results in poor QE 

at low energies. These problems with QE have been greatly improved with the advent 

of deep depletion/high-rho and BI devices. These are now discussed.  

3.10.3.1 Deep Depletion and High-Rho CCDs 

A much higher response to X-rays in the 5 – 10 keV range can be achieved by the use 

of deep depletion CCDs. Deep depletion e2v CCDs are fabricated on                           

1000 − 1500 Ω.cm Si with an increased epitaxial layer thickness of ~ 50 µm         

[Pool 2005]. Deep depletion devices provide depletion depths of approximately         

20 – 33 µm, providing much higher QE than standard devices between 5 – 10 keV. 

These devices still suffer from poor low energy QE response due to the dead layer 

structure. Figure 3.9 shows the QE response of a deep depleted device in comparison 

to a standard FI and BI device.   

The highest response to soft X-rays can be achieved using e2v’s ‘high-rho’ CCDs 

[Murray et al. 2008]. These CCDs are fabricated using 8 kΩ.cm epitaxial Si, 

achieving a depletion depth of ~ 300 µm when biased at ~ 110 V. High-rho CCDs can 

achieve a QE of 80% at 10 keV.  

3.10.3.2 Back Illuminated CCDs 

In BI CCDs, the back substrate material is thinned and X-rays are detected from the 

rear of the CCD. This prevents lower energy X-rays from being absorbed by the 

electrode structure and greatly improves the QE at lower energies. A small oxide layer 

forms naturally on the back surface but its effects are minimal. X-rays therefore 

directly interact with the epitaxial layer. The QE of a BI CCD can be calculated using 
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equation 3.25, where TDL equates to the transmission through the SiO2 layer. Figure 

3.9 shows the increased QE achieved with a BI CCD in comparison to a FI CCD. 

Increased transmission of low energy X-rays can also be achieved through open 

electrode and electrode thinning techniques, but the response of BI CCDs shows the 

best improvement.  

 

 

 

 

 

 

 

 

 

 

Figure 3.9: QE of a standard FI, deep depleted and standard BI CCD 

X-ray spectroscopy is one of the many fields which has made use of the combination 

of BI CCDs fabricated on high resistivity Si [Jorden et al. 2006]. Such CCDs provide 

very high QE over the entire soft X-ray range 0.1 − 10 keV. 

3.11 Charge Diffusion in CCD Detectors 

The depth of the depletion region varies based on the voltage across the CCD and the 

doping concentration. Underneath the depletion layer lies a region where the electric 

field does not exist and results in charge diffusion [Pavlov & Nousek 1999]. The next 

section describes the process in calculating the charge cloud formed by an X-ray 

based on the interaction depth, z. The CCD is divided into the depletion region with a 
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depth represented by Zd, the field free region Zffr and Zs, which represents the depth of 

the CCD substrate.  

3.11.1 Initial Charge Cloud 

The process of X-ray interaction begins with the ionisation of the X-ray photon at a 

given depth in the CCD. An initial charge cloud forms, the size of which is related to 

the X-ray energy of the photon, but not related to where the interaction took place. 

The 1σ initial cloud radius (µm) is given by [Castelli 1991]: 

                   
75.10171.0 electroni ER = ,            (3.27) 

where electronE  is the X-ray photon energy in keV minus the K shell binding energy of 

Si (1.84 keV). The size of the initial charge cloud for soft X-rays is very small in 

comparison to the pixel size. A 10 keV X-ray generates an initial charge cloud of 

approximately 0.17 µm. The growth of the initial charge cloud based on interaction 

depth is now discussed.  

3.11.2 Diffusion in the Depletion Region 

The effects of radial diffusion in the depletion region are minimal as the electrons are 

quickly swept away by the electric field to the buried channel. If the X-ray interaction 

takes place at 0 > z < Zd, the 1σ radius of the charge cloud at the buried channel can be 

expressed as [Holland 1990]: 
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where Dn is the diffusion coefficient and is given by [Janesick 2001]: 

                  
q

kT
D sisi

n

µ= ,          (3.29) 

where µsi is the mobility of electrons in the Si and is related to the doping 

concentration (1500 cm2 V-1 s-1 for 100 Ω.cm device).  The 1σ cloud radius of X-rays 

reaching the buried channel is a combination of the initial cloud radius and the radial 

diffusion in the depletion region and is given by the expression:  
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di RRR += .        (3.30) 

Figure 3.10 shows the variation in 1σ cloud radius for X-rays interacting in a 12 µm 

and 33 µm depletion region. This represents a 100 Ω.cm and 1000 Ω.cm resistivity 

device biased with 12 V gate voltage and 0 V substrate voltage respectively. The size 

of the initial cloud radius formed by a K Kα (3313 eV) photons is also shown.   

 

 

 

 

 

 

 

 

 

Figure 3.10: 1σ cloud radius as a function of absorption depth for 100 and 1000 Ω.cm 

          CCDs 

Since a 1000 Ω.cm device will have a stronger electric field than a 100 Ω.cm device 

under similar biasing, the charge cloud will be swept away quicker with a reduction in 

spreading, which will results in an increase in isolated X-ray events.  

3.11.3 Diffusion in the Field Free Region 

If the X-ray interacts in the field free region (Zffr > z > Zd), the charge cloud radially 

diffuses until it reaches the depletion boundary [Hopkinson 1983]. Once at the 

depletion boundary, the charge cloud is influenced by the electric field and quickly 

swept away to the nearest potential well. By this time however, the charge cloud will 

have a very large radius (in comparison to charge clouds generated in the depletion 
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region) and will produce more split events than isolated events. The 1σ cloud radius at 

the depletion boundary is given by [Holland 1990]:  
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Due to the radial diffusion of X-rays in the field free region, Rffr is much larger than 

Rd. The 1σ cloud radius at the buried channel is a combination of the initial cloud 

radius, the spreading in the field free region and the further spreading in the depletion 

region and is expressed as:  

222
ffrdi RRRR ++= .            (3.32) 

If the X-rays interact in the p+ substrate, then charge loss through recombination is 

experienced as well as charge diffusion. Unlike events generated in the field free 

region, events that originate from the substrate cannot be summed to form the original 

X-ray event. The modelling of X-rays interacting in the substrate is further discussed 

in Section 5.6.1. 

3.12 Bede micro-source X-ray generator 

To characterise the CCD-Array with reasonable data collection times, a powerful     

X-ray source was required. Ideally, the X-ray source should irradiate a small spot on a 

powder sample with a high flux of high brightness and monochromatic X-rays. 

Without the presence of focusing optics, conventional X-ray tubes produce highly 

divergent X-rays with an intensity distribution spread across a large angular range. 

Using X-ray optics, small surfaces of the sample can be stimulated with an increased 

intensity gain. This project makes use of a Bede Scientific Instruments micro-source 

[Bede Scientific Instruments 2004], which consists of a conventional X-ray source 

coupled with an X-ray Optical Systems (XOS) polycapillary collimating optic. The 

process of X-ray generation within the micro-source is now discussed.  

3.13 X-ray Production 

In an X-ray tube, the initial stage of X-ray generation is the emission of electrons 

from the cathode. Through thermionic emission, electrons are emitted from the 
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electrically heated filament and if a large potential difference is applied between the 

cathode and anode, electrons are rapidly accelerated towards the anode. It is the 

bombardment of the electrons with the target material that generates the X-rays at the 

point of impact. The efficiency of X-ray generation during the electron and anode 

interaction is very low (~ 1%) and the generated X-rays radiate in all directions. 

Approximately 99% of the kinetic energy of the impacting electrons is converted to 

heat, so the anode in an X-ray tube must be constantly cooled to prevent the target 

melting. The dissipation of heat produced from the Bede micro-source is discussed in 

Section 4.3.3. Two types of X-rays are generated from the interaction of electrons 

with the anode, continuous and characteristic X-rays. These are now discussed. 

3.13.1 Continuous X-rays 

Continuous X-rays (also known as ‘bremsstrahlung’) are produced when electrons of 

sufficient kinetic energy are rapidly decelerated, resulting in the release of energy. 

The name bremsstrahlung is a German word meaning, “braking radiation”. As the 

incoming electron approaches the highly positively charged nucleus of the anode 

material, the electron is deflected and decelerates (‘brakes’) due to its smaller negative 

charge. Some electrons are stopped immediately and give up all their kinetic energy in 

the form of an X-ray photon. Some electrons are deflected from nucleus to nucleus 

and release their kinetic energy in stages. The kinetic energy (KE) of an electron, in 

Joules, at the point of impact is given as: 

eVKE = ,                                                 (3.33) 

where e is the charge of the electron and V is the potential difference across the anode 

and cathode. This is the maximum possible energy of any X-ray produced in the 

interaction of the electrons with the anode and defines the upper limit of the spectrum 

in eV.   

A model of continuous X-rays can be generated using Planck’s blackbody theory. 

Planck’s theory describes the intensity of radiation emitted by a blackbody as a 

function of wavelength for a given temperature. Planck’s law applies to all parts of the 

electromagnetic spectrum and can be used to describe the variation in continuous     

X-rays generated from an X-ray tube as a function of increasing tube voltage. As the 

tube voltage increases, the kinetic energy of the electrons accelerated towards the 
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anode increases. Since 99% of the interactions of the electrons with the anode are 

converted to heat, increasing the tube voltage causes an increase in the temperature of 

the anode (or radiating blackbody). Planck’s blackbody law is expressed as: 
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where I is the intensity of radiation as a function of wavelength λ (m) and blackbody 

temperature, T (K), h is Planck’s constant (4.13 × 10-15 eV s), c is the speed of light   

(3 × 108 m/s) and k is the Boltzmann constant (8.617 × 10-5 eV K-1 ). The temperature 

of a blackbody emitting X-rays ranges from 3 × 106 – 3 × 108 K. Using equation 3.34, 

the shape of the continuous spectrum for a given tube voltage can be generated and is 

shown in figure 3.11 (the spectra are shown as a function of photon energy (eV) as 

opposed to wavelength). The wavelength of electromagnetic radiation can expressed 

as a quantum of energy as:    
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Figure 3.11: Intensity of continuous X-ray spectra as a function of X-ray tube voltage  
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As outlined in equation 3.33, the maximum energy of a photon produced by an X-ray 

source will equal the maximum kinetic energy of the electrons being accelerated by 

the cathode. This maximum energy represents the tube voltage expressed in eV. 

Another feature of the continuous spectra is the shift of the peak at higher tube 

voltages. The apex of each of the spectra increases for higher values of tube voltage. 

The position of these peaks can be calculated using Wien’s law. This law describes 

the energy of the peak intensity distribution for a given blackbody temperature and 

can be expressed as as: 

3max 103 −×
= hcT

E ,     (3.36) 

where Emax represents the energy location of peak intensity of the continuous peak, as 

indicated in figure 3.11.    

3.13.2 Characteristic X-rays 

The intensity of characteristic X-rays can be hundreds of times stronger than the 

neighbouring continuous spectrum and it is the presence of these strong characteristic 

emissions in the incident spectrum that makes XRD analysis possible. The 

wavelength of the characteristic lines is dependant on the material of the anode. When 

the accelerating electrons have sufficient energy to dislodge an electron from the atom 

of the anode material, a photoelectron is produced. The characteristic X-rays produced 

by the Cu anode are Cu Kα at 8047 eV (1.54 × 10-10 m) and Cu Kβ at 8904 eV      

(1.39 × 10-10  m). The intensity of the characteristic K line IKline, produced by an X-ray 

source can be calculated using the expression [Cullity 1976]: 

        ( )n
KKline VVBiI −= ,     (3.37) 

where B is a constant dependant on the X-ray source, i is the X-ray tube current, V is 

the X-ray tube voltage, VK is the K shell excitation voltage and n is a constant ranging 

from 1 − 2.  Equation 3.37 dictates that the characteristic K shell X-rays of copper are 

only excited after the tube voltage exceeds the X-ray binding energy of the Cu K 

shell. The value of V/VK determines the increase in intensity of the characteristic     

X-rays. The maximum increase in intensity occurs when V/VK = ~ 6. For example, an 

X-ray tube containing a Cu anode should be operated at a maximum of 50 kV to 
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exploit the maximum possible intensity of the characteristic peaks. Exceeding the 

voltage beyond 50 kV (V/VK = ~ 6) allows the electrons bombarding the target to 

penetrate too far into the anode and internal absorption of the X-rays occurs.  

3.14 Bede Spectrum Without XOS Optic 

This section compares the spectra obtained from the Bede micro-source (without the 

focussing optic) to Planck’s blackbody distribution. The aim is to show the 

continuous spectra from the X-ray source can be reproduced by varying the 

temperature of the radiating blackbody in the region of 107 K [Kawaii & Ishii 2005].  

Figure 3.12 shows the spectrum collected from the Bede micro-source operated at     

40 kV, 0.01 mA using a Si Lithium (SiLi) detector. Due to the high flux, a 50 µm 

aluminium (Al) foil was used to attenuate the X-rays and reduce the ‘dead time’ of the 

detector. Using equation 3.34, the temperature parameter T, was set to approximately 

3 × 107 K (~ 40 kV) as a starting point to the fit. The 2 characteristic X-rays were 

modelled using Gaussian models with 3 degrees of freedom (intensity, FWHM and 

energy). The ratio of Cu Kα:Cu Kβ X-rays was expected to be 1:0.17 [Krause 1979]. 

 

 

 

  

 

 

 

 

 

Figure 3.12: Comparison of calculated and observed spectra at 40 kV operating  

            voltage, accompanied with experimental attenuation factors  
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The model is in good agreement with the experimental data from 15 − 40 keV. 

However, the attenuation at lower energies is significant and all 3 attenuation factors 

must be taken into account to reach a reasonable agreement. A least squares fit was 

applied to the calculated model and the experimental data with refineable parameters 

of air gap between sample and detector (± 5 mm), aluminium thickness (± 1 µm) and 

the temperature of the blackbody, T (± 0.1 × 107 K). Figure 3.13 shows the final fit 

between the calculated and experimental data, considering all attenuation factors. A 

poor agreement was still noticed at lower X-ray energies. It was expected that some of 

the generated X-rays were absorbed within the anode itself, resulting in higher 

attenuation at lower energies. Nevertheless, the results show that Planck’s blackbody 

distribution can be used to reproduce the continuous X-ray spectra.   

 

 

 

 

 

 

 

Figure 3.13: Comparison of calculated and observed spectra at 40 kV for (a)    

          continuous X-rays and (b) characteristic X-rays 

3.15 X-ray Polycapillary Optic 

This section presents a brief overview of the main principles of polycapillary optics. 

Various types of polycapillary optics exist for use in different applications  

[McDonald 1996]. This section describes the principles of optics designed for XRD 

applications, the polycapillary collimating optic. Polycapillary optics consists of 

thousands of hollow glass capillary tubes. The highly divergent X-rays produced from 

the X-ray source are collected by the entrance window of the optic and guided down 

the capillary tube by total external reflection (similar to how fibre optics transmit 
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light). The X-ray photons are reflected due to the difference in refractive indices of 

the 2 materials (glass and air). When an X-ray photon enters the optic with an angle of 

incidence (θi) smaller than the critical angle (θc) of the reflecting material (glass in the 

XOS optic), it undergoes total external reflection. X-rays satisfying this condition are 

effectively transported down the tube undergoing multiple reflections in order to exit 

the optic. X-rays leaving the output are transformed into a quasi-parallel beam of low 

divergent X-rays focused into a small spot. The critical angle is energy dependant and 

for glass capillary tubes is given by the expression:  

)(

32
)(

keVEnergy
mradc =θ .    (3.38) 

The divergence of the output beam is determined by two factors. The maximum angle 

at which an X-ray of a given energy can exit the optic is θc. However, this assumes 

the capillary that has transported the X-ray is perfectly straight. Minor defects in the 

capillary axis can also increase or decrease the angle of the emitted X-ray        

[Padiyar et al. 2000]. For polycapillary X-ray optics, the divergence at Cu Kα energies 

is usually ~ 3.5 mrad [Misture & Hailer 2000], as shown in figure 3.14.  

 

 

 

 

 

 

 

 

 

Figure 3.14: Divergence of Cu Kα X-rays from a polycapillary collimating optic,        

           which resembles a Gaussian distribution with a FWHM of 3.5 mrad 
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The advantages of X-ray polycapillary collimating optics are:  

� Increased intensity gain over sample (× 10 − 100) area resulting in reduced 

data collection times [Yiming & Gibson 2002],  

� sample is irradiated with a quasi-parallel beam,   

� X-rays are captured over large collection angle (~ 20°),  

� transmission efficiency is as high as 30% at Cu Kα energies (~ 8 keV),  

� low divergence ( < 4 mrad), and 

� suppression of high energy continuous X-rays resulting in a more 

monochromatic beam. 

3.15.1 XOS Polycapillary Optic    

Figure 3.15 shows an image of the X-ray beam produced by the XOS polycapillary 

optic coupled with the Bede micro-source. The image was taken using a dental CCD 

38-10 (e2v technologies). 

 

 

 

 

 

 

 

 

 

Figure 3.15: Energy distribution of X-ray beam produced from XOS optic 
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The energy distribution of the focused beam resembles a 3-dimensional Gaussian 

shape. The apex of the focussed beam represents the area of highest intensity and was 

utilised for sample irradiation. The alignment of the X-ray beam with the pinhole and 

sample is discussed in Section 4.9. The focussed beam was approximately 1 mm in 

diameter at a distance of 10 cm from the optic output, with a FWHM divergence of         

3.5 mrad. The application of the optic yields a very different spectrum to that 

presented in Section 3.14, which is now discussed.  

3.15.2 X-ray Optic Spectra 

In Section 3.14 the continuous spectrum from the Bede micro-source was shown to 

resemble a blackbody curve with the tube voltage corresponding to the temperature of 

the radiating blackbody. This was taken without the presence of the XOS 

polycapillary focusing optic. The optic was vital to the project as it allowed a high 

flux of X-rays to be focused onto a small surface area of the sample with very low 

divergence. The optic not only focused the highly divergent beam of X-rays produced 

from the source but also modified the spectrum in favour of XRD applications 

[Misture & Hailer 2000]. Spectra from the source were collected using a SiLi detector 

and are shown in figure 3.16 for varying tube voltages. All spectra were collected at 

0.01 mA using a 50 µm beam.  

 

 

 

 

 

 

Figure 3.16: (a) Continuous and (b) characteristic X-ray spectra produced by XOS 

            polycapillary optic with increasing tube voltage 

One main alteration is seen in the spectra with the X-ray optic in comparison to the 

normal blackbody spectrum. X-rays greater than approximately 10 keV are highly 
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attenuated by the optic. As shown in equation 3.38, the critical angle for total external 

reflection decreases with increasing X-ray energy. The probability of an X-ray being 

successfully guided through the optic is much higher for lower energy X-rays, which 

results in another advantage of using polycapillary collimating optics for XRD 

applications. One source of noise in a diffraction pattern is related to the ratio of 

characteristic X-rays to continuous X-rays. With the use of polycapillary focusing 

optics, applying a high voltage to the X-ray source can increase the intensity of the 

characteristic radiation whilst reducing the number of high energy bremsstrahlung   

X-rays generated. This feature of the optic proves very useful for XRD.   

Similar to the spectra without the optic, the intensity of the characteristic X-rays is 

directly related to V/VK. Since V/VK is less than 5 at maximum tube voltage, the 

intensity of the characteristic X-rays is strongest at 40 kV. A summary of fluxes 

produced by the optic at different tube voltages is summarised in table 3.1.  

3.15.3 Monochromated X-ray Spectra 

As shown in figure 3.16, when operated at 40 kV the XOS optic almost completely 

suppressed higher energy bremsstrahlung photons greater than 10 keV. The perfect 

spectrum for XRD experiments would simply contain Cu Kα X-rays without Cu Kβ 

and continuous X-rays. A 15 µm sheet of nickel (Ni) was used to reduce the Cu Kβ to 

Cu Kα ratio and also reduce lower energy bremsstrahlung X-rays. The use of a filter 

would also reduce the flux of Cu Kα X-rays, however as the flux produced from the 

source was so high, the reduction of noise through incomplete monochromation was 

more important. 

The absorption of the Cu Kα and Cu Kβ characteristic X-rays through the 15 µm Ni 

filter is calculated in Section 4.7. Figure 3.17 shows the resulting spectrum with the 

use of the Ni filter. With the application of the XOS optic and the Ni filter, almost all 

continuous X-rays have been eliminated from the spectrum. Without the filter, the 

continuous X-rays accounted for 16% of the total spectrum flux. With the Ni filter, 

this was reduced to less than 6%. The Cu Kβ X-rays have been successfully 

eliminated to 1% of the total spectrum allowing the Cu Kα X-rays to dominate the 

spectrum at 93%. A summary of all fluxes is given in table 3.1. 
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Tube Voltage (kV ) Spot Size ( µm) CuKα CuKβ Continuous Total 
10 50 1.04 ×103 3.2 ×102 3.76 ×103 5.12 ×103

15 50 3.34 ×104 5.6 ×103 2.82 ×104 6.72 ×104

20 50 1.82 ×105 2.84 ×104 1.04 ×105 3.14 ×105

30 50 5.11 ×105 8 ×104 2.23 ×105 8.14 ×105

40 50 5.92 ×105 1.54 ×105 1.82 ×105 9.28 ×105

40 + 15 µm Ni filter 50 3.35 ×105 3.6 ×103 2.1 ×104 3.6 ×105

40 100 1.18 ×106 3.08 ×105 3.64 ×105 1.86 ×106

40 150 1.78 ×106 4.62 ×105 5.46 ×105 2.78 ×106

 

 

 

 

 

 

 

Figure 3.17: Reduction of (a) continuous and (b) characteristic X-ray flux by 15 µm 

           Ni filter and 180 mm air gap between optic and sample at 40 kV, 2 mA  

The calculations shown in equation 3.39 and 3.40 confirm the thickness of the Ni 

filter to be 15 µm. The Cu Kα and Cu Kβ X-rays were expected to be reduced to 52% 

and 2% respectively (see Section 4.7), which agrees with the calculations.  
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Assuming a linear increase in intensity with tube current, table 3.1 summarises the 

flux of X-rays at 2 mA for different tube voltages. 

 

 

 

 

 Table 3.1: Summary of flux produced in a 50 µm spot, at 2 mA for different  

        operating voltages. All fluxes in counts/s 
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Parameter Value Unit
X-ray tube voltage 40 kV
X-ray tube current 2 mA

Mylar thickness 20 µm
Filtration 15 µm Ni

R ss 180 mm

R sd 120 mm

θ inc 4 º 2θ

P ob 100 µm
CCD exposure time 1 s

Number of exposures 1000 - 2000
CCD readout time 1.6 s

CCD operating mode NIMO
I d 1 e- p/p/s

σ RN 7.4 e- r.m.s

Image area 256 × 1040 pixels

The X-ray flux produced by the micro-source at 80 W with the XOS polycapillary 

collimating optic has been documented elsewhere [Gibson & Gibson 2002]. 

According to the results published in this paper, the micro-source produces a flux of 

1.2 × 109 counts/s in a 1.5 mm beam. Assuming a Gaussian distribution of the beam, 

where 1.5 mm represents the 6σ width, the flux contained within a 50 µm spot is        

~ 8 × 106 counts/s. This is ~ 1 order of magnitude larger than the flux calculation of 

9.2 × 105 counts/s shown in table 3.1. Since the results in this paper were published by 

the manufacturers of the optic, XOS, it was expected that the X-ray flux was not 

perfectly linear with respect to tube current, and errors were caused from multiplying 

the spectra collected at 0.01 mA by a factor of 200 (to obtain the flux at 2 mA).  

3.16 Background Spectra 

3.16.1 XRF 

Figure 3.18 shows a background XRF spectrum collected under the normal 

experimental arrangement. The background spectrum represents X-rays scattered 

from an empty sample holder and other parts of the facility. Table 3.2 summarises the 

standard operating conditions used for combined XRD/XRF analysis. Unless 

otherwise stated, all spectra presented in this thesis were collected using the operating 

conditions listed in Table 3.2.   

 

 

  

 

 

 

 

Table 3.2: Summary of standard operating conditions used for combined XRD/XRF 

       analysis. NIMO refers to ‘non-inverted mode operation’ 
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Figure 3.18: Background XRF spectrum collected at 40 kV, 2 mA in (a) linear  

          intensity scale and (b) log intensity scale 

The spectrum shows the presence of 2 strong Cu K shell emissions from the Bede 

micro-source. The data was collected without the presence of the Ni filter to increase 

the incident flux. These characteristic X-rays have been generated through elastic 

scattering from the sample holder, air and other parts of the test facility. The spectrum 

also shows a Cu Kα escape peak with an intensity of ~ 0.01 of the main Cu Kα peak. 

The isolated continuous X-rays seen between 4 − 7.5 keV in the background spectrum 

can be seen in the incident spectrum shown in figure 3.16. Two Argon (Ar) Kα and 

Kβ peaks are also noticed in the background spectrum, which originate from the      

108 mm of air between the sample holder and CCD-Array. Table 3.3 lists the main 

components of air along with the fluorescence yield of their K shell emissions.  

 

 

Table 3.3: Elemental composition of air with corresponding characteristic K shell 

       emission energies and fluorescence yield 

The flux incident on the sample with an X-ray power of 80 W, within a 50 µm beam, 

was 9.28 × 105 counts/s (a ‘count’ represents a single X-ray event of any energy). 

With a fluorescent yield of 0.004 and 0.006 for N and O respectively, one would 

Component Volume (%) Symbol K α1 (eV) Kβ1 (eV) K shell Yield 
Nitrogen 78.084 N 392 - 0.004
Oxygen 20.947 O 523 - 0.006
Argon 0.934 Ar 2957 3192 0.115
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expect a large number of characteristic X-rays to be emitted from the sample. 

Although this is true, these X-rays experience severe attenuation from air prior to 

detection by the CCD. Consequently, elements with an atomic number Z, below 13 

(such as N and O) are very difficult to detect. Although the volume of Ar (Z = 18) in 

air is much smaller than N and O, the transmission of Ar Kα X-rays through 108 mm 

of air is sufficient to allow detection. Any X-rays with an energy greater than the K 

absorption edge of Ar (3203 eV) can cause K shell emissions in the Ar atom.   

3.16.2 XRD 

The background pattern produced in an XRPD pattern relates to the angular (2θ) 

scattering of Cu Kα X-rays. Equation 6.2 can be used to calculate the length a signal 

X-ray must travel to escape the sample. This equation highlights that the path length 

of an emitted photon is inversely proportional to the emission angle, θ (with respect to 

the sample holder and 2θ with respect to the incident beam axis). Therefore, signal   

X-rays must travel longer path lengths to escape the sample at lower 2θ angles, 

resulting in increased attenuation. The total attenuation depends on the energy of the 

signal X-rays generated in the sample and the characteristics of the sample (i.e. 

thickness and linear attenuation coefficient). 

Section 6.2.1 outlines the attenuation of signal X-rays from 0.1 − 10 keV through a 

basalt powder for varying emission angles. Figure 3.19 shows the XRD scattering 

profile of the energy discriminated and the combined XRD/XRF data of peridotite, a 

common igneous rock found on Earths mantle, comprising of the minerals olivine and 

pyroxene. The reason why the energy discriminated diffraction pattern in figure 3.19 

has a linear scattering profile is because Cu Kα (8047 eV) X-rays experience very 

little attenuation in the peridotite sample. If the CCD images are radially integrated 

without energy discriminated data (combined XRD/XRF), then the expected 

scattering profile is seen at lower 2θ angles. A reduction in scattering from ~ 0° − 30° 

is noticed due to increased attenuation of lower energy X-rays (<< 8047 eV). The 

energy discriminated data results in a higher SNR ratio in comparison to the raw data, 

which highlights the advantage of using energy discriminating detectors for XRD 

analysis.  
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Figure 3.19: Radial integration of energy discriminated (Cu Kα events only) and raw 

           data (combined XRD/XRF) for a peridotite powder sample 

3.17 Discussion 

This chapter has provided an overview of the underlying principles of scientific 

CCDs. The operation and structure of the CCD has been discussed as well as the 

processes of charge generation, collection, transfer and measurement. The noise 

sources, which limit the performance of the detector for X-ray spectroscopy 

applications, have also been presented. Different CCD architectures for increased QE 

in the soft X-ray range have also been reviewed. 

The process of X-ray generation by the Bede micro-source has been outlined using 

relevant theory and spectra have been collected using a SiLi detector. This chapter 

also introduced the concept of polycapillary collimating optics, which focus a highly 

divergent beam of X-rays into a small beam of low divergent quasi-parallel X-rays. It 

was shown that with the use of a 15 µm Ni filter and the Bede micro-source operated 

at 40 kV, the spectrum incident on the sample was almost an entirely monochromatic 

(93%) beam of Cu Kα X-rays. The incident beam irradiating the sample was ideal for 

XRD applications and the large flux produced ensured a high throughput of XRF data.  
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Chapter 4 : The CCD-Array and Test Facility 

4.1 Introduction 

This chapter describes the design of the detector built for this thesis work. The initial 

section describes the design and main building blocks of the CCD-Array, which 

includes the headboard electronics and X-ray window. Thermal results are also 

presented which describe the cooling of the CCDs using a TEC. The heat loads inside 

the CCD-Array during TEC cooling are determined through calculations and 

confirmed with measurements. Thermal simulations are used to provide a more 

accurate temperature profile across the shapal and CCD assembly. The ability of the 

test facility to dissipate heat through liquid cooling is also presented. The layout of the 

CCDs inside the detector was based on a precisely calculated geometry with respect to 

the sample. SRMs from the National Institute of Standards and Technology (NIST) 

were used to confirm the spatial geometry of the CCDs. Any inaccuracies caused 

from misalignments were identified and corrected. The other components in the test 

facility are also discussed with particular emphasis on the collimation and 

monochromation stages. 

4.2 The CCD-Array  

The CCD-Array was developed to be capable of simultaneously collecting combined 

XRD/XRF data from powdered rock samples. Initial testing was conducted in a 

laboratory environment, using a specially designed test facility. The key feature of the 

CCD-Array was the use of 4 CCDs in a curved arrangement. The CCDs lie on the 

edge of a 120 mm arc, where the centre point is represented by the point of sample 

irradiation on the sample holder. The geometry was such that the point of tangency 

was the central pixel on each of the CCDs. The geometry of the CCD-Array design is 

discussed further in Section 4.5.  

The design requirements of the CCD-Array can be summarised as follows:  

� The CCDs would lie along the curvature of a 120 mm circle resulting in very 

high spatial resolution. For XRD applications with less intense resolution 

requirements, the CCD image would be binned to reduce data collection times.  
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� The CCD-Array would provide an angular coverage of approximately 60° 2θ, 

ranging from ~ 4 − 64° for Cu Kα radiation.   

� A single TEC would be used to provide cooling to all 4 CCDs to reduce the 

size and power requirements of the detector. 

� A material of very high thermal conductivity and low thermal expansion 

would be used to couple the CCDs to the TEC. 

� AIMO CCDs would be used to relax cooling requirements at the expense of 

depletion depth. Reducing power requirements was crucial for portability.  

� Temperature sensors would be strategically glued to the CCDs and Shapal to 

perform thermal tests.  

� The CCD-Array would require high precision manufacturing (2 − 3 decimal 

places) to ensure accurate spatial calibration of the detector for qualitative 

XRD analysis. 

� The test facility would incorporate liquid cooling to absorb heat generated by 

the CCD-Array, X-ray source and coolant pipes. 

� Headboard electronics would form part of the detector for portability. 

� The detection of characteristic X-rays from 1 − 2 keV was crucial for accurate 

chemical/elemental analysis of rocks, therefore the chosen X-ray window 

would allow a high transmission of X-rays from 1 − 2 keV.  

� Ideally, the CCD-Array would be opaque to visible light. The only leakage of 

light into the detector would be caused from the X-ray window. The thickness 

of the X-ray window would be carefully selected to achieve reasonable 

opacity, whilst maintaining a high transmission of X-rays from 1 − 2 keV. For 

flexibility, a second sheet of the X-ray window material could be used to make 

the CCD-Array fully lightproof at the expense of X-ray transmission.  

The building blocks of the detector are labelled 1 – 9 in figure 4.1 and are now 

described.    
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Figure 4.1: Individual components of the CCD-Array  
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•••• Headboard Electronics (1) 

The headboard contained 4 connections to the feed through pins located on the back 

of the base plate (feature 2 in figure 4.1). Each of the feed through connectors 

comprised of 14 connections that allowed the headboard to be pushed through the 

feed through pins and fixed onto the base plate. Figure 4.2 shows the orientation of 

the CCD30-11 in relation to the headboard (rear view). The individual feed through 

connectors were labelled X2, X3, X4 and X5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Schematic of the CCD-Array headboard electronics (rear view) 

All 4 CCDs were glued to the Shapal ceramic with pin 1 (coloured red) located at the 

bottom left (looking from the back of the detector). The mini D-type connector 

provided all necessary sequencing and bias voltages, which were supplied by the 

CCD drive electronics. The signals in the feed through connectors were placed 

strategically to align with the CCD pins and minimise wiring. Table 4.1 summarises 

the function of each pin of the 4 feed through connectors. 
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 Table 4.1: Pin functions of feed through connectors 

The CCDs were sequenced simultaneously but read out independently at ~ 165 kHz 

through 4 outputs labelled VOUT 1 − 4, as shown in figure 4.2. The sensitivity of the 

on-chip amplifier of the CCD30-11 was 1.5 µV/e¯. The output voltage from the CCD 

was further amplified by the headboard by a factor of 11 to allow the charge packet to 

be detected by an ADC. A Cu Kα X-ray therefore produced an output voltage from 

the headboard of ~ 36 mV. Due to the high current required by the TEC (~ 6 A), 4 

feed through pins were used for each TEC terminal. Four platinum resistive 

thermometers (PRTs) were used to monitor the temperature inside the CCD-Array 

during operation.  

•••• Copper Base Plate (2) 

The copper base plate was zinc plated to prevent corrosion and all other components 

were either glued or bolted to the base plate. The TEC was centrally glued to the base 

plate using Hysol, a special non out-gassing glue (out-gassing involves the release of 

gases that are trapped inside the pores or cracks of a material which contaminate 

sensitive equipment in a vacuum). In order to absorb the heat generated by the hot 

side of the TEC, a liquid cooling channel was introduced along the outer edges of the 

base plate. Figure 4.3 shows the direction of cooling at the rear of the base plate. The 

location of the headboard is highlighted in green and was designed to slot inside the 

rear of the base plate. 

Pin # Function Pin # Function Pin # Function Pin # Function
1 N.C 1 N.C 1 N.C 1 N.C
2 IØ3 2 Gnd 2 SØ3 2 Gnd
3 IØ2 3 Vdd 3 SØ2 3 Vdd

4 IØ1 4 VSS 4 SØ1 4 VSS

5 VSS 5 Vrd 5 VSS 5 Vrd

6 ØR 6 Vod 1 6 ØR 6 Vod 2

7 RØ3 7 VOS 1 7 RØ3 7 VOS 3

8 RØ2 8 Vog 8 RØ2 8 Vog

9 RØ1 9 VOS 2 9 RØ1 9 VOS 4

10 N.C 10 N.C 10 N.C 10 N.C
11 TEC (-) 11 TEC (+) 11 PRT 1 (+) 11 PRT 3 (+)
12 TEC (-) 12 TEC (+) 12 PRT 1 (-) 12 PRT 3 (-)
13 TEC (-) 13 TEC (+) 13 PRT 2 (+) 13 PRT 4 (+)
14 TEC (-) 14 TEC (+) 14 PRT 2 (-) 14 PRT 4 (-)

              X2               X3               X4               X5 
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Figure 4.3: Copper base plate of the CCD-Array outlining the direction of cooling 

         and location of headboard electronics (all dimensions in mm) 

•••• Feed Through Pins (3) 

Four electrical feed through pins were glued into recessed slots at the rear of the base 

plate. Each of the feed through connectors contained 14 pins with a 2 A rating. The 

feed through pins provided the interface between the CCDs inside the vacuum         

and the headboard electronics at standard atmospheric pressure.  

•••• TEC (4) 

The TEC was chosen using Melcor’s Thermoelectric cooler selection software    

[Aztec 2005]. Since the heat sink for the TEC was a liquid cooled copper base plate, 

the thermal resistance of the heat sink was expected to be very low.  The heat loads 

inside the CCD-Array chamber were predicted to be approximately 4 – 5 W and the 

cold side temperature Tc, was set to -30 °C. The TEC chosen for the application was a 

3-stage 80 W TEC (3CP 085 065-71-31-17). The TEC was capable of a maximum 

temperature differential ∆Tmax (Th – Tc) of 97 °C and maximum heat pumping capacity 

of 15.5 W. The temperature of the hot side of the TEC (Th) was not expected to 
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increase more than 5 °C above the ambient temperature (+20 °C) at full operating 

power. The theoretical maximum Tc was therefore ~ -70 °C with no heat loads. 

Detailed calculations regarding the actual heat loads incident on the cold side of the 

TEC (Qc) are presented in Section 4.3.  

•••• Shapal Ceramic (5) 

A special ceramic known as Shapal was chosen to conduct heat from the CCDs to the 

TEC, due to its very high thermal conductivity (90 W/m K) and low thermal 

expansion (4.4 × 106− / °C). The curvature of the 4 CCDs was defined by the 

geometry of the Shapal ceramic, as shown in figure 4.4.  The conduction of heat is 

inversely proportional to length (see equation 4.6), therefore the length of the Shapal 

was minimised and designed to cover only half of CCD 1 and CCD 4.   

 

 

 

 

 

Figure 4.4: Geometry and symmetry of Shapal ceramic and 4 CCD30-11s 

•••• CCD30-11 (6) 

The CCDs supplied by e2v for the CCD-Array were 6 FI AIMO CCD30-11s. The 

CCD30-11 is an ideal X-ray spectroscopy detector [e2v technologies 2007]. Leakage 

current of less than 1 e¯ p/p/s can be achieved at -20 °C, combined with a low readout 

noise of ~ 5 ē r.m.s. at ~150 kHz readout speed. The CCD30-11 contains a 1040 

(columns) × 256 (rows) image area (16 pre-scan) with (26 µm)² pixels allowing very 

high spatial resolution for XRD experiments.  

•••• Chamber Front (7) 

The front of the chamber was made from aluminium and was designed with the same 

120 mm curvature as the CCDs to minimise instrument volume. The chamber front 

CCD 1 

Reduction in shapal length 

Symmetrical 

CCD 4 

CCD 2 CCD 3 
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was bolted onto the base plate with 10 M4 bolts. A 12-inch flexible vacuum pipe was 

glued into a 9.2 mm hole on the chamber front, which connected the CCD-Array to a 

vacuum pump. Approximately 30 − 45 seconds was required to create a vacuum       

of ~ 3 × 10-3 mbar inside the CCD-Array. A 2.3 mm deep recessed channel was also 

introduced around the backside of the chamber to accommodate an O-ring seal, 

ensuring the array was airtight.    

•••• Chamber Lid (8) 

The window on the chamber lid was designed with the same width as the imaging 

area of the CCD30-11 (6.7 mm). The edges of the window were rounded to reduce the 

stress imposed on the X-ray window under vacuum.  

•••• X-ray Window (9) 

The X-ray window consisted of a 20 µm thick sheet of aluminised Mylar 

(Polyethylene Terephthalate). The Mylar sheet was glued to the chamber lid and a 

vacuum test was performed to ensure the Mylar would sustain a vacuum in the range 

of 10-3 − 10-6 mbar. This test was performed prior to gluing the CCDs to the Shapal, 

since implosion of the X-ray window under vacuum could destroy the CCDs. 

The main advantage of Mylar as an X-ray window was the high transmission of       

X-rays from 1 − 10 keV (see figure 6.3). This was vital in the detection of X-rays 

from 1 − 2 keV which are commonly found in rocks, namely Na Kα (1041 eV),      

Mg Kα (1254 eV), Al Kα (1487 eV) and Si Kα (1740 eV). Another important 

function of the Mylar was to block visible light entering the CCD-Array. One sheet of 

Mylar (20 µm) was unable to make the detector fully lightproof. To make the device 

fully portable and lightproof, 2 sheets of Mylar were required, however, this was at 

the expense of X-ray transmission. To prevent light leakage when testing the       

CCD-Array using a single 20 µm sheet, the CCD-Array was placed in a lightproof 

box. An initial concern with the design of the detector was implosion of the Mylar   

X-ray window under vacuum, which could damage the CCDs. The deflection of the 

Mylar window Wdf, can be calculated as [Leonhardt & Mapes 1993]: 
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where Kc is a constant which has a value of 0.36 for rectangular windows, pw is the 

pressure applied to the window (Pa), aL is the length of the short side of the window 

(m), Ym is Young’s Modulus and tw is the thickness of the window (m). Using 

equation 4.1, the length of deflection of the Mylar window under vacuum was 

calculated to be 0.654 mm or 654 µm. This was based on an applied pressure of             

1 × 105 Pa, which represents the difference in pressure inside and outside the vacuum            

(~ 1 bar). The stress on the mylar S, can be expressed as [Timeoshenko 1959]: 
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where G is a geometric constant with a value of 0.34 for rectangular windows and 

0.27 for circular windows. Mylar has as a tensile strength of 190 × 106 Pa. Using 

equation 4.2 it can be calculated that the minimum thickness of Mylar required to 

sustain a vacuum of ~ 1 × 10-6 mbar inside the CCD-Array is ~ 2.5 µm. The actual 

thickness used (20 µm) exceeds this calculation by a factor of 8, due to the high risk 

of CCD damage assuming window failure. At the time of writing this thesis, the 

Mylar X-ray window had survived 25 months under vacuum without any signs of 

material degradation or fatigue.  

4.3 CCD-Array Thermal Characterisation 

The CCD30-11 detectors used in constructing the CCD-Array operated using AIMO, 

therefore produced dark current of ~ 1 e¯ p/p/s at -20 °C. The target temperature of the 

CCDs was therefore -20 °C, although it is shown in Section 6.4 that the CCDs can 

perform accurate combined XRD/XRF analysis at much higher temperatures. In order 

to measure temperatures, 5 PRTs were glued at specific locations inside the         

CCD-Array chamber. Theses locations were: 

• Copper Base plate: A PRT was glued ~ 5 mm from the TEC on the base plate to 

estimate Th.   

•     Shapal Ceramic: 2 PRTs were glued to the Shapal ceramic. One was glued to the 

base of the Shapal and was used to measure Tc. The second PRT was glued to the 

edge of the Shapal. This was to monitor the increase in temperature across the 
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Shapal ceramic. Since the properties of the Shapal were symmetrical, only 2 PRTs 

were needed for the thermal test.  

•   CCDs: Due to the symmetry of the Shapal, the properties (exposed surface area, 

temperature, dark current) of CCD 1 and CCD 4 were identical, as were the 

properties of CCD 2 and CCD 3. One PRT was glued to the ceramic of CCD 1 

and a second was glued to the ceramic of CCD 2. 

4.3.1 CCD Cooling: Vacuum vs. Nitrogen Gas Environm ent 

Two environments inside the CCD chamber were considered for the cooling process. 

One method involved filling the CCD chamber with nitrogen gas (N2) and the second 

method involved creating a vacuum (~ 10-3 mbar) inside the CCD chamber. Both 

methods ensured the removal of water vapour in the air which would freeze at low 

temperatures to form ice. The preferred method for cooling was to use N2 as this 

would not cause any stress on the Mylar X-ray window. The main heat loads from the 

N2 and vacuum experiments were convective and radiative heat loads respectively. 

The amount of heat transferred to an object through radiative heat transfer QRad , can 

be expressed as [Young 1992]: 

( )44)( ARsfRad TTAeWQ −= σ  ,                 (4.3) 

where e is the emissivity of the body emitting the radiation (0 − 1), σsf is Stefan’s 

constant (5.67 × 10-8 W/m² K4), A is the surface area of the body receiving the 

radiation (m²), TA is the temperature (°C) of the body receiving the radiation and TR is 

the temperature (°C) of the radiating body (a warmer object radiates heat through 

electromagnetic radiation to a colder object). The emissivity of the CCD ceramic was 

found to be 0.8 [The Engineering Toolbox 2005] and the emissivity of the Shapal was 

expected to be 0.85 [Precision Ceramics 2007]. 

The amount of heat transferred to a body through convective heat transfer Qcv, can be 

expressed as [Young 1992]:  

( ) ( )Aambtccv TTAhWQ −= ,          (4.4) 

where htc is the heat transfer coefficient and Tamb is the ambient temperature (°C). The 

value of htc is between 10 − 30 for normal convection and greater than 30 for forced 
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CCD1 CCD2 CCD3 CCD4 Shapal Total
Surface area (m²) 1.6 × 10-3 1.46 × 10-3 1.46 × 10-3 1.6 × 10-3 2.07 × 10-3 8.26 × 10-3

QRad (W) 0.294 0.280 0.280 0.294 0.529 1.677
Qcv (W) 0.898 0.878 0.878 0.898 1.720 5.272

convection. The value of htc for N2 was estimated to be ~ 10. Table 4.2 summarises 

the calculated radiative and convective heat loads.  

 

 

Table 4.2: Summary of radiative/convective heat loads on CCDs and Shapal ceramic 

As shown in table 4.2, the amount of heat transfer from convection far exceeds the 

radiative heat transfer. The effect of radiative heat transfer was negligible in the N2 

experiment as the temperature of the N2 and chamber walls was very similar. Based 

on the calculations shown in table 4.2, the performance of the TEC under vacuum was 

expected to be much better than with N2. Figure 4.5 shows the response of the various 

PRTs with respect to increasing TEC power.   

 

 

 

 

 

 

 
 

 

 

 

Figure 4.5:  CCD-Array thermal results in N2 and vacuum cooling environments 

Both methods showed a similar increase in the temperature of the copper base which 

peaked at approximately 20 °C at full TEC power. Figure 4.5 highlights the increased 
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convective heat load on the CCDs and Shapal assembly using the N2 cooling method. 

The experimental results and heat load calculations emphasised the need to operate 

the detector under vacuum during cooling. For portability, the CCD-Array could also 

be sealed once under vacuum. The results also draw attention to the high thermal 

conductivity of the Shapal ceramic (90 W/m K). The increase in temperature from the 

centre of the Shapal ceramic to the edge, was found to be only 3 °C at full operating 

power (when under vacuum). A similar increase in temperature was also noticed with 

the CCDs.  

The relationship between Qc and Tc at 6 A operating current can be approximated 

using the expression [Aztec 2005]: 

( ) ( ) 507.111598.0 +×= cc TWQ .                (4.5) 

The Qc for the radiative and convective experiments was calculated to be 1.695 W and 

5.43 W respectively, using equation 4.5. The expected values of Qc based on Tc are in 

very close agreement with the calculations outlined in table 4.2. The calculations 

highlight that the transfer of radiative heat between chamber walls and CCDs/Shapal 

is close to 100%. This was to be expected since the assembly was inside a vacuum 

and there is no attenuation of the electromagnetic waves transferring the heat.  

Equation 4.5 also confirms the value of 10 for the heat transfer coefficient of N2, was 

a very good approximation.  

4.3.1.1 Thermal Simulations 

A thermal modelling program was used to determine a more accurate temperature 

profile of the CCDs and Shapal, since the PRTs only provided the temperature profile 

at 4 distinct locations. The CCD ceramic of the CCD30-11 was constructed from 

alumina (Al2O3) as opposed to aluminium nitride (AlN), which is used by e2v for 

CCDs that require higher precession flatness [Pool 2005]. Table 4.3 lists the 

properties of the Shapal and CCD ceramic used in the simulations. 

 

 

Table 4.3: Properties of Shapal and CCD ceramic used for thermal simulation 

Parameter Shapal CCDs (Al 2O3)
Specific heat (J/Kg K) 790 880
Density (g/cm3) 2.9 3.69
Thermal conductivity (W/m K) 90 28
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                    Vacuum                  Nitrogen
Expected Simulated Expected Simulated

Shapal base (°C) -61.4 -62.1 -38.0 -43.3
Shapal edge (°C) -57.4 -58.1 -25.8 -29.8

CCD 1 (°C) -54.7 -55.5 -18.1 -22.9
CCD 2 (°C) -58.4 -58.0 -29.1 -34.2

Th was calculated to be + 25 °C [Aztec 2005] with the TEC operated at 6 A. The 

theoretical temperature of Tc without any heat loads was approximately – 70 °C       

(25 °C – ∆Tmax). Radiative and convective heat loads were added to the CCDs and 

Shapal assembly and the temperature profiles were monitored in steady state (separate 

simulations). The resulting temperature profile of the CCD and Shapal assembly after 

radiative heat loads is shown in figure 4.6.    

 

 

 

 

 

 

 

 

Figure 4.6: Resulting temperature profile of CCD-Array after radiative heat loads 

Results from the thermal simulations are shown in table 4.4, compared with the PRT 

measurements shown in figure 4.5.  

 

 

 

Table 4.4: Comparison between simulated and experimental temperatures of shapal 

        and CCDs at steady state    

For the vacuum environment, a good agreement was seen between the PRT 

measurements and the simulated temperature profile with errors of < 2%. An 

important result obtained from the thermal simulations was the temperature of the 
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bottom CCD ceramic packaging, or Si temperature. Maximum temperature deviations 

across the Si imaging area were calculated to be < 1.2 °C for all 4 CCDs. This was not 

expected to cause measurable variations in dark current across the image area, as the 

dark current was < 1 e¯ p/p/s at temperatures < -20 °C. The results also confirm the 

advantage in design of reducing the length of the shapal ceramic (covers only half of 

CCD 1 and CCD 4), as this increased the conduction of heat, whilst causing negligible 

effects on the dark current.   

Errors of ~ 14% were recorded for the N2 environment simulation, however both 

experimental measurements and calculations confirmed that creating a vacuum inside 

the CCD-Array was more conducive to CCD cooling. Figure 4.21 shows the Tc vs. Qc 

performance of the TEC, displaying the final measurements for QRad and Qcv.  

4.3.2 Thermal Performance under Normal Operation 

When the CCDs were wired to the feed through connectors and the electrical 

headboard was connected, a very large drop in thermal performance was recorded on 

all PRTs. Power dissipated from the CCDs during operation also caused an increase in 

temperature of the CCDs. The magnitude and effect of the heat loads from electrical 

wiring and CCD power dissipation are now described.   

4.3.2.1 Electrical Wiring 

Since the temperature of the feed through pins was comparable to the temperature of 

the vacuum base (~ 19 °C), heat was conducted from the feed through pins to the 

CCDs. The amount of heat conducted through a material, Qcnd, can be expressed as 

[Young 1992]: 

( ) 
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AkWQ ,                (4.6) 

where kt is the thermal conductivity of the material (W/m K), A is the cross sectional 

area of the conducting material (m²), TW is the temperature of the body where heat is 

being conducted from (°C), TB is temperature of the body where heat is being 

conducted (°C) and Lm is the length of the conducting material (m). The electrical 

wiring consisted of 0.5 mm diameter copper and a PVC insulating material. The 

thermal conductivity of PVC (0.19 W/m K) is insignificant in comparison to that of 
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copper (400 W/m K) and was therefore not considered in the calculations. The 

average length of the wires was calculated to be approximately 62 mm by direct 

measurement. Using equation 4.6, the total heat load on each CCD pin was calculated 

to be 0.104 W and on the total array was approximately 2.9 W (0.104 W × 29 wires).  

4.3.2.2 Active CCD load 

During data collection, all 4 CCDs were integrated and read out continuously. Power 

was dissipated by all 4 CCDs during this process and converted to heat. This section 

estimates the heat dissipation from each CCD during operation.   

•••• Parallel Clocking Power Dissipation 

The time taken Tcp, to charge a capacitor is expressed as, Tcp = Rcp × Ccp, where Rcp is 

the resistance (Ω) and Ccp is the capacitance (F) of the capacitor. Therefore, the time 

taken τp, to charge a CCD pixel is the multiplication of the electrode series resistance 

(Rp) and the capacitance of each 3-phase pixel (Cp). For the CCD30-11, Rp is ~ 23 Ω 

and Cp is ~ 8 nF [Burt 2006], therefore τp equates to 0.18 µs (5.4 MHz). The parallel 

clocking power dissipation in the CCD can be expressed as [Jorden et al. 2003]:  

  
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,          (4.7) 

where V is amplitude of the clock swing (12 V), tr is the pixel transfer time (13 µs), Tp 

is the time taken to transfer all rows to the serial register (256 × tr), ftr is the pixel 

transfer frequency and TT is the total time between readout cycles (1.61 s). Using 

equation 4.7, PPCD was calculated to be ~ 0.01 mW.  

•••• Serial Clocking Power Dissipation 

The serial clocking power dissipation can also be calculated using equation 4.7 where 

τp is 0.92 seconds, tr is 6 µs, ftr is 165 kHz, Cp is 40 pF, Tp is 1.6 seconds and TT is   

2.6 seconds. The serial clock power dissipation PSCD, was calculated to be ~ 0.37 mW.  

The total clocking power dissipation PCD, for the CCD-Array was, 4 × (PPCD + PSCD) 

which equates to 1.52 mW. Since tr >> τp, the power dissipated by clocking the CCD 

is negligible. The effect of power dissipation through clocking is insignificant unless 

the CCD is being readout at TV rates (MHz). 
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•••• Output Amplifier Power Dissipation 

The power dissipated in the load resistor can be expressed as Vos × I, where Vos is the 

potential difference across the 10 kΩ load resistor and I is the current flow from 

source to drain (~ 5 mA). This results in a total power dissipation in the load resistor 

of ~ 25 mW. However, the load resistors for the 4 CCD30-11s were located off-chip, 

therefore this was not considered as a heat load. The output node FET also draws 

current [McFee 2000] resulting in a power dissipation PFET, expressed as,                

(Vod – Vos) × I, which equates to ~ 75 mW. For all 4 CCD30-11 outputs, PFET was          

~ 300 mW. The total power dissipation by the 4 CCDs QCCD, was the combination of 

PCD and PFET, which was a total of 301.52 mW.  

Figure 4.7 shows the steady state temperature of all PRTs at full TEC power with all 

passive (radiative - chamber walls, conductive – electrical wiring) and active (CCD) 

heat loads.  

  

 

 

 

 

 

 

 

 

 

 

Figure 4.7:  Temperature profile of CCDs and Shapal under normal operation 

This represents the temperature profile of the CCD-Array under standard operating 

conditions. The total value of Qc was a combination of QRad, Qcnd and QCCD which was 
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~ 4.8 W. This value was based on calculations using equations listed in Section 4.3.1. 

The final value of Tc under normal operation was ~ -47.5 °C. By using equation 4.5, 

the expected value of Qc equates to 4.316 W, which is in very good agreement with 

the calculated value. 

The difference in temperature between CCDs 1 & 4 and CCDs 2 & 3 was 

approximately 5 °C, however this amounts to a difference in dark current of less than 

1 ē  p/p/s (see figure 6.19). Figure 4.21 summarises the performance of the TEC with 

the different heat loads discussed in Section 4.3. The normal operation of the      

CCD-Array is represented as QRad + Qcnd + QCCD with Tc equal to -45 °C. 

4.3.3 Heat Dissipation by Liquid Cooling 

The heat generated by the CCD-Array and other features of the test facility was 

absorbed by a re-circulating coolant, known as Hexid. The total heat load from the 

backside of the TEC Qh, can be expressed as: 

TECTECch IVQQ ×+= ,            (4.8) 

where VTEC × ITEC is the operating power of the TEC. The total heat load Qh, from the 

CCD-Array under normal operating conditions was ~ 55 W. The test facility consisted 

of 2 other heat loads, which originated from the Bede micro-source (QX-ray) and the 

coolant pipes (QP). The normal operating power of the Bede micro-source was 80 W, 

99% of which was converted to heat. The coolant pipes were manufactured from 

Polyurethane, which is an exceptionally good insulator with a thermal conductivity of 

0.02 W/m K [Young 1992]. Although the thermal conductivity of the polyutherane 

was very low, the coolant was required to flow through approximately 6.5 m to 

complete 1 cycle. Due to the large length of piping, the heat conducted from the 

ambient air (~ 22 °C) to the coolant (15 °C) was calculated over the 6.5 m coolant 

flow distance. Using equation 4.6, the total heat load from the pipes was calculated to 

be 7.5 W. The total heat from the entire facility QT, can be expressed as: 

   PrayXhT QQQWQ ++= −)( .              (4.9) 

This results in a total heat load of ~ 140 W that was absorbed by the coolant. The 

ability of the coolant to absorb QT depended on the flow rate FC (cm3/s), and the 
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specific heat capacity of the coolant, SH (J/Kg K). The value of FC was adjusted using 

a pressure gauge in the chiller, which was factory set to 650 mL/min or 10.8 cm3/s. 

The heat required (∆Q) to increase the temperature (∆T) of a unit quantity of mass of a 

substance ms, with a specific heat capacity SH, by 1 °C can be calculated using the 

expression:  

   
hx

Hs

t

TSm
Q

∆××=∆  .            (4.10) 

The Hexid solution used to absorb heat from the test facility had a specific heat 

capacity of 3780 J/Kg K and a density of 1.02 g/cm3. The volume and mass of Hexid 

inside the total facility was calculated to be 50 cm3 and 0.051 kg respectively. The 

time taken thx, for the Hexid solution to complete 1 cycle through the facility at a flow 

rate of 10.8 cm3/s was 4.6 seconds. The increase in temperature of the Hexid solution 

after 1 complete cycle was calculated to be 3.36 °C using equation 4.10, where ∆Q is 

140 W (the total heat load in the test facility). 

The maximum heat that can be absorbed by the coolant QHex (W), for a given coolant 

temperature THex (°C), can be approximated using the expression: 

     3007)( += HexHex TWQ .                       (4.11) 

The expression is a valid approximation between the ranges -25 °C > THex < +25 °C. 

By using equation 4.11, it can be calculated that at a coolant temperature of  15 °C, 

the maximum heat load that can be absorbed is ~ 400 W. THex was set to the dew point 

of water (typically 15 °C in the laboratory) to prevent water condensing on the coolant 

pipes, as electrical wiring was widespread across the test facility. 

By re-arranging equation 4.10, the maximum increase in temperature (∆T) of the 

Hexid was calculated to be ~ 10 °C, where ∆Q represents the maximum allowable 

heat load (400 W) at 15 °C. Since the increase of temperature of the Hexid was only 

3.36 °C (FC = 10.8 cm3/s), FC was reduced allowing a larger increase in the 

temperature of the Hexid. Figure 4.8 shows the minimum flow rate required to ensure 

∆T  < 10  °C.  
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Figure 4.8: Minimum coolant flow rate required to dissipate 140 W 

4.4 CCD-Array Portability  

In order to determine the suitability of the CCD-Array as a portable instrument, an air 

leak test was performed to monitor the increase in pressure inside the CCD-Array, 

when unassisted by a vacuum pump. In order to isolate the CCD-Array from the 

vacuum pump, a valve was placed between the two, along with a gauge to monitor the 

increase in pressure inside the CCD-Array. Figure 4.9 shows the phase diagram of 

water with respect to temperature (°C) and pressure (mbars). The diagram also 

indicates the increase in pressure inside the CCD-array at given time after switching 

off the vacuum pump.  

The results show that when operating at the coldest possible CCD temperature (-40 °C 

for CCD 2 and CCD 3 at full TEC power), the CCD-Array can only operate for 20 

minutes, however, it is shown in Section 6.4, that the performance of the CCD30-11 is 

very similar at -10 °C when operating under AIMO. Therefore, the CCD-Array can be 

used remotely at -10 °C for 180 hours (> 7 days). Combined XRD/XRF data for 

typical samples is usually collected over a period of 3 hours. Assuming the CCDs are 

operated at -10 °C, the CCD-Array can analyse over 50 samples, before the danger of 

water vapour freezing on the CCDs and causing electrical damage.  
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Figure 4.9: Phase diagram of water with respect to temperature and pressure. The 

          times represent the maximum period over which the CCD-Array can be 

         cooled at a given temperature 

4.5 CCD-Array Angular Geometry  

The performance of the CCD-Array as an XRD detector was dependant on 2 criteria. 

The CCD-Array was required to determine the exact position of diffracted X-rays and 

recognise these events as XRD data. The accuracy of determining peak positions was 

related to both the angular coverage and angular resolution. This section explains the 

designed geometry of the CCD-Array, outlining the calculations performed in the 2θ 

angular calibration of each of the CCDs.  

4.5.1 CCD Angular Range 

As previously mentioned, the CCDs were designed to lie along the curvature of a   

120 mm circle, where the centre point was the point of sample irradiation. Since the 

CCDs were rectangular, the centre of each of the CCDs represented the point of 

tangency. Figure 4.10 shows the geometry of CCD 1 and CCD 2 in relation to the 

sample holder. The angle of each of the CCDs in relation to the sample was 

determined by the design of the Shapal ceramic. Since the distance between the CCDs 

and the sample holder was identical, all 4 CCDs covered the same angular range. This 
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can be understood by visualising CCD 1 in figure 4.10 being rotated around the        

120 mm radius circle. The angular positioning of the CCD changes but the angular 

coverage (2θ) remains the same.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Geometry of CCD 1 and CCD 2 in relation to the sample holder (all    

            dimensions in mm)  

The length of the CCD30-11 was 32.89 mm with an imaging area of 26.6 mm. Figure 

4.10 shows the centre of the imaging area forming a right angle with the sample 

holder at a distance of 120 mm. The angular coverage of θ can be expressed as:   








= − mm
120

3.13
tan 1θ .                   (4.12) 

The total angular coverage (2θ) of each of the 4 CCDs was therefore 12.65°. Since the 

CCD imaging area did not lie perfectly on the 120 mm circle due to their rectangular 

shape, this caused a variation in resolution across the CCD, which is shown in figure 

4.11. The spatial resolution improved away from the centre of the CCDs, as pixels 
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toward the edges were further away from the sample (> 120 mm). However, this 

variation in spatial resolution was calculated to be 0.00015° and was not expected to 

cause any errors in qualitative analysis.  

 

 

 

 

 

 

 

 

 

Figure 4.11: Variation in spatial resolution across each CCD 30-11 

With the angular coverage of the CCDs calculated, the next stage was to determine 

the angular position of each of the CCDs, along with the position of the CCD gaps. 

These gaps represented the distance between the active CCD imaging areas.  

4.5.2 Angular Position 

For the CCDs to satisfy the 120 mm geometry with the sample holder, the CCD-Array 

was tilted at the correct angle (B) and lifted to the correct height (C), as shown in 

figure 4.12. The height of the base determined the lower and upper angular coverage 

limits of the CCD-Array. The angle of the inclination block was determined as 

follows. The angle required by CCD 1 to cover an angular range beginning at ~ 4.5° 

2θ was 83.20°. The angle between CCD 1 and bottom of the CCD-Array was 66.30°. 

The angle of the inclination block, B, was therefore 30.50° (180° - (83.2° + 66.30°)). 

The height of the CCD-Array holder (C) was constrained by the height of the sample 

holder (184.5 mm) and was determined to be 65.57 mm. The distance between the 



103 

CCD-Array and sample holder was adjustable through the pivot screws indicated in 

figure 4.12. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Geometry of entire CCD-Array assembly in relation to sample holder 

Based on the geometrical calculations, the CCD-Array coverage ranged from       

4.48° − 63.95° with 3 gaps in angular coverage. The angular coverage of each gap 

was 2.96°. The exact angular position of each CCD and CCD gap is listed in table 4.5. 

CCD1 Gap1 CCD2 Gap2 CCD3 Gap3 CCD4
Bottom Position (°2 θ ) 4.48 17.14 20.09 32.74 35.69 48.35 51.30
Top Position (°2 θ ) 17.13 20.08 32.73 35.68 48.34 51.29 63.95  

Table 4.5: Angular coverage of CCD-Array active area and gaps  

The presence of 3 gaps in angular coverage can cause peak loss in XRD experiments. 

The detector designed for this thesis was built as a prototype instrument. In Section 

7.2, improvements to the CCD-Array design are presented, which includes a very 

large reduction in angular ‘dead zones’. The main improvement is that the CCD 
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Binning Mode Pixels (v) Pixels (h) Spatial Resolution (°) Readout Time (s)
1 × 1 1024 256 0.012 2.6
2 × 2 512 128 0.024 1.4
4 × 4 256 64 0.049 1.2
8 × 8 128 32 0.099 1.1

ceramic packaging in the 2nd generation instrument will be laser cut to allow the 

imaging areas on each of the CCDs to almost touch one another. This will reduce the 

angular coverage of the gaps from 2.96° to ~ 0.2°. Since the standard width (± 3 

standard deviations) of diffraction peaks under normal operating conditions is greater 

than 0.2°, the complete loss of diffraction peaks due to gaps in angular coverage will 

be eliminated. For this reason, if an XRD peak was located in one of the gaps, the 

CCD-Array was simply moved along the curvature of the 120 mm measuring circle to 

bring the XRD peak into coverage. The effect of gaps in angular coverage is not 

discussed in this thesis, as this was an only an issue with the prototype instrument.  

4.5.3 Spatial Resolution  

The CCD30-11 consisted of 1040 (columns) × 256 (rows) pixels. The 256 pixels    

(6.7 mm) determined the fraction of the diffraction ring collected by the CCDs. The 

spatial resolution of the detector was defined by the number of pixels intercepting the 

12.65° angular coverage. This was represented by the 1040 pixels in the vertical 

direction that included 16 over-scan pixels. The spatial resolution was therefore 

approximately 0.012° (12.65°/1024).  

With the benefit of CCD binning, faster readout times could be achieved at the 

expense of spatial resolution. Table 4.6 lists the readout times and spatial resolution of 

different CCD binning modes. The total readout times include a 1 s CCD exposure 

time at a readout speed of 165 kHz per pixel. 

 

 

 

Table 4.6: Readout time and spatial resolution of different CCD binning modes 

For XRD experiments with less resolution requirements, CCD binning has various 

advantages. Data collection times are greatly reduced when collecting a large number 

of exposures. For example, collecting 2000 exposures of 1 s each can be achieved in 1 

hour and 26 minutes in full resolution mode. With 2 × 2 binning the total data 

collection time is reduced to approximately 46 minutes. 
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4.6 Confirmation of CCD-Array Spatial Geometry Usin g NIST SRMs 

This section investigates the accuracy of the designed geometry using NIST SRMs. 

Using SRMs, any inaccuracies in the designed geometry, which may have occurred 

during assembly of the CCD-Array could be identified. The intensities of peaks across 

all 4 CCDs were also investigated in order to determine any varying QE problems. A 

variation in QE across a CCD would cause errors in calculating the relative intensities 

of diffraction rings.  

4.6.1 Spatial Calibration – SRM 660a/SRM 675 

In order to perform accurate XRD analysis and exploit the high spatial resolution of 

the CCD-Array, it was essential to confirm the accuracy of the designed 2θ geometry. 

For the spatial calibration of the detector, SRM 660a (lanthanum hexaboride powder) 

was used. This powder consisted of peaks starting from 21°, which allowed the 

calibration of CCDs 2 − 4. CCD 1, which covers an angular range from 4.48° to 

17.13°, was calibrated using a separate low angle SRM 675, known as 

fluorophlogopite mica powder. Figure 4.13 shows the XRD patterns collected from 

both powders. The CCD was exposed for 1 s and 1500 exposures were collected.  

 

 

 

 

 

 

 

 

 

Figure 4.13: Spatial calibration of CCD-Array using SRM 660a and SRM 675  
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 Peak CCD SRM 2θ  NIST (°) 2 θ CCD-Array  (°) Error (°)
Pk1 1 675 8.8530 8.8612 -0.008
Pk2 2 660a 21.3578 21.3614 -0.004
Pk3 2 660a 30.3847 30.3968 -0.012
Pk4 3 660a 37.4417 37.4382 0.003
Pk5 3 660a 43.5064 43.4954 0.011
Pk6 4 660a 53.9886 53.9786 0.010
Pk7 4 660a 63.2183 63.2291 -0.011

The initial XRD pattern, without altering the geometry contained errors of ~ 0.07° and 

was approximately 5 − 6 pixels misaligned. Using the pivot screws, the geometry was 

aligned as best as possible with SRM 660a and SRM 675. The errors on all 7 peaks 

were then calculated and are shown in table 4.7. The peak positions were calculated 

by fitting the experimental peaks with Gaussians models, and refining the position of 

the mean to find the best least squared fit.  

 

 

 

 

 

Table 4.7: Summary of CCD-Array spatial calibration errors using NIST SRMs 

The largest recorded error was 0.012°, located on CCD 2. This represents a 

misalignment of approximately 1 pixel. These minor inaccuracies can be attributed to 

gluing and manufacturing imperfections. The magnitude of these errors was not 

expected to influence qualitative XRD analysis, therefore no offsets were 

implemented during the post-processing stage.   

4.6.2 Intensity Calibration - SRM 674b 

For quantitative analysis, the intensity of XRD peaks is the crucial parameter. It was 

therefore essential to ensure that the QE response of each of the CCDs was identical 

(identical QEs were expected since all CCDs were CCD30-11s with an identical 

resistivity, biased to the same potential). This was investigated by collecting 

diffraction data from NIST SRM 674b.  

Various factors can affect the intensity of an observed diffraction ring, the most 

important of which is sample quality. The sample quality can severely affect the 

measured line intensity through processes such as preferred orientation and 

absorption. The key feature of the SRM 674b set is that it eliminates these effects, 

which ensures any intensity discrepancies can be attributed to instrumental errors. 
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SRM CCD1 error ( ± %) CCD2 error (± %) CCD3 error (± %) CCD4 error (± %)
ZnO 8.43 4.20 9.92 16.12
TiO2 6.75 1.30 8.00 13.39

Cr2O3 6.84 0.45 6.77 15.60
CeO2 6.23 2.83 8.62 16.86

Average Error 7.06 2.20 8.33 15.49

This will highlight any intensity errors across the CCD-Array and isolate problematic 

CCDs. The 4 powders contained within the SRM 674b set are zinc oxide (ZnO), 

titanium dioxide (TiO2), chromium (III) oxide (Cr2O3) and ceric oxide (CeO2). XRD 

patterns from all 4 samples were collected using the CCD-Array and scaled to 100 

according to the intensity of the largest peak. 

Since some peaks were located in between CCD gaps and no peaks were present on 

CCD 1, for certain samples the CCD-Array was moved along the curvature of the  

120 mm measuring circle to detect specific peaks. This was achieved by increasing 

the height and angle of the CCD-Array base and inclination block respectively, with 

the use of angled blocks. The intensity errors were calculated by fitting the observed 

peaks with Gaussian models and comparing the peak height intensity with the 

expected peak heights. A minimum of 10,000 counts was detected in each peak 

resulting in counting errors of 2%, at a 95% confidence level. The average error (%) 

was calculated for each CCD using all 4 SRMs and is listed in table 4.8.  

  

 

 

Table 4.8: Summary of intensity calibration errors using NIST SRM 674b 

CCD 4 displayed the largest errors with an average intensity error of ± 15.49%. These 

errors were then taken into account during post-processing of the XRD data and XRD 

patterns from the 4 SRMs were collected again. Figure 4.14 shows the reduction in 

intensity errors after the calibration from 45 − 63.95° 2θ.    

As can be seen from figure 4.14, a much better agreement was reached between the 

observed and expected intensities after the introduction of the error offsets. Average 

errors on CCD 4 were reduced from 15.49% to 2.47%. The 3 other CCDs showed 

similar improvements and maximum intensity errors due to instrumental effects were 

determined to be 3.2%.  
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Figure 4.14: XRD intensity errors before and after calibration from 45 −  63.95° 2θ 

4.7 The Test Facility 

A purpose built test facility was created for testing the CCD-Array. Figure 4.15 shows 

an image of the test facility with all major components labelled 1 − 8.  

 

Figure 4.15: Image of the test facility including CCD-Array 
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The equipment shown in figure 4.15 was enclosed inside a radiation safety enclosure 

that is not shown, but is represented as feature 9. The test facility was designed to 

operate in the following manner. The Bede micro-source (1) produced a very small   

(~ 1 mm) beam of focussed X-rays that contained both continuous and characteristic 

Cu X-rays. A stainless steel X-ray collimator performed X-ray monochromation (3a) 

through a 15 µm Ni filter and collimated (3b) the direct X-ray beam to less than     

150 µm. Samples were ground into very fine powders (less than 10 µm) and spread 

across the entire sample holder surface (4). A beam of collimated low divergent       

X-rays irradiated the sample at an incident angle of 4°. Diffracted and fluoresced      

X-rays were collected by the CCD-Array (5) which was operated in single photon 

counting mode. The CCD-Array holder (6) was designed to allow the CCD-Array to 

form a precise geometry with the sample holder. An X-ray beam stop (8) prevented 

the direct X-ray beam from escaping through the X-ray enclosure. The X-ray safety 

enclosure (9) contained sliding doors with magnetic interlocks, which prevented the 

X-ray shutter from opening whilst the doors were open. Sliding doors allowed easy 

access to the equipment for changing samples and positing the CCD-Array. When a 

single sheet of Mylar was used as an X-ray window, the equipment was covered using 

a lightproof box made from Al. An explanation of the individual components of the 

test facility is now described.  

•••• Bede Micro-source (1) 

The Bede micro-source consists of a conventional X-ray tube coupled with a 

polycapillary focusing optic. Electrons were generated within the X-ray head though 

thermionic emission and an electron gun accelerated the electrons towards a Cu 

anode. An electronically controlled shutter prohibited the emission of X-rays through 

the optic. The shutter consisted of a 3 mm piece of tungsten, which was powered 

using a 12 V solenoid and controlled using software or the X-ray controller head.  

When the shutter was opened, a rectangular 5 mm hole moved into position in front of 

the Cu anode and allowed the generated X-rays to be collected and emitted by the    

optic.  

•••• Bede Micro-source Holder (2) 

The holder for the Bede micro-source was manufactured from 10 mm thick 

aluminium to support the weight of the X-ray head (~ 8 kg). The micro-source was 
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bolted to the holder using two 6 mm bolts. The holder was designed with a 4° angle of 

incidence (86° from the optics table) that enabled a reflective geometry for XRD 

experiments.  

•••• Stainless Steel Collimator (3) 

In order to optimise the angular resolution of the XRD experiments, a very small 

focussed beam of X-rays was used to irradiate the sample. The direct output from the 

Bede micro-source was a 1 mm circular beam of continuous X-rays with 2 strong    

Cu Kα and Cu Kβ characteristic X-rays. The aim of the monochromation process was 

to isolate the strongest characteristic emission in the spectrum (Cu Kα X-rays). The 

collimation stage reduced the 1 mm beam of the Bede micro-source to a small spot 

(less than 150 µm in diameter).  

•••• Collimation (3a) 

A 25 mm square sheet of 0.1 mm thick tungsten was used for the collimation process. 

Circular discs with a 2 mm diameter were laser cut from the W sheet by Micrometrics 

ltd. Pinholes were cut centrally into the discs with various diameters (50, 80, 100, and 

150 µm). Figure 4.16 (a) shows a scanning electron microscope (SEM) image of an 

80 µm pinhole in the tungsten disc. 

 

 

 

 

 

 

 

Figure 4.16 (a): SEM image of 2 mm wide tungsten disc with an 80 µm pinhole and 

          the (b) comparison of a 50 µm and 150 µm incident beam on the FWHM     

          and intensity of 2 CaCO3 XRD peaks 
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Larger pinholes transmit a higher flux of X-rays onto the sample but cause a decrease 

in the angular resolution of diffraction peaks. For XRD applications with high 

resolution requirements, smaller pinholes were used (e.g. 50, 80 µm) at the expense of 

X-ray flux. Consequently, such experiments require longer total exposure times to 

achieve similar SNR as larger pinholes. Figure 4.16 (b) shows a comparison of a      

50 µm and 150 µm incident beam on the intensity and resolution of 2 XRD peaks. 

The expected resolutions of the peaks are also shown, which were calculated using 

equation 2.14.    

Notches were laser cut into the outer circumference of the discs to identify the 

different sizes. The tungsten sheets were placed at the front of the collimator using 

specially designed copper holders. A 0.5 mm hole was drilled through the copper 

holder to allow transmission of the main beam. Two copper holders were inserted into 

the collimator in the locations labelled 3a and 3b in figure 4.15. Figure 4.17 shows the 

dimensions of the copper holder. 

 

 

 

 

 

 

 

Figure 4.17: Schematic of Cu holders inserted into collimator to provide     

           monochromation and collimation (all dimensions in mm) 

Figure 4.17 shows the 150 µm deep recessed circular hole (2 mm wide) which was 

designed to allow gluing of tungsten/Ni discs. The copper holders used for 

collimation were placed at the front of the collimator to minimise divergence of the 

main beam prior to sample irradiation.  
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•••• Monochromation (3b) 

Circular discs were also cut out of a 15 µm thick Ni sheet and glued into the recessed 

holes in the copper holder. The Bede micro-source produced characteristic               

Cu Kα (8047 eV) and Cu Kβ (8904 eV) X-rays. The Ni filter was used to reduce the 

Cu Kβ to Cu Kα ratio. Figure 4.18 shows the transmission of X-rays from 6 – 10 keV 

through the 15 µm Ni filter. The location of the K absorption edge of Ni is located 

between the Cu Kα and Cu Kβ energies at 8107 eV, causing a large drop in 

transmission of X-rays greater than 8107 eV. Using equation 3.21, the transmission of 

the 2 characteristic X-rays through the filter was calculated as: 

52.0)( )0015.0()92.8()2.49( == ××−eCuK
I

I

o

x α      (4.13) 

02.0)( )0015.0()92.8()286( == ××−eCuK
I

I
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x β     (4.14) 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Transmission of X-rays from 6 – 10 keV through a 15 µm Ni filter 
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Since the CCD30-11 can perform single photon counting (easily distinguishing Cu Kα 

and Cu Kβ X-ray peaks), XRD analysis can also be performed without the use of a Ni 

filter. By focusing the raw spectrum produced by the optic onto the sample, both     

Cu Kα and Cu Kβ X-rays will be diffracted. The 2θ position of the diffracted Cu Kα 

and Cu Kβ X-rays will differ however, based on equation 1.1. For samples with many 

peaks, overlapping of Cu Kα and Cu Kβ XRD peaks is inevitable. If the diffraction 

efficiency of the sample is low, the probability of the 2 characteristic X-rays 

interacting is also low (probability will increase with binning). The advantage of this 

technique is that the incident flux of Cu Kα X-rays is not reduced by almost 50%, 

therefore approximately double the amount of diffracted photons are generated from 

the sample. However, samples with a high diffraction efficiency and a large number 

of peaks, will cause some interference between the characteristic Kα and Kβ peaks 

(e.g. a pixel containing a Cu Kα photon may also detect a Cu Kβ photon, or a Cu Kβ 

photon may be detected in a neighbouring pixel thereby preventing detection of the 

Cu Kα X-ray as an isolated XRD event). Generally, when using a laboratory X-ray 

source with high flux (as used in this project), monochromation is used to practically 

eliminate diffracted Kβ X-rays. Where less X-ray flux is available (such as a 

radioactive X-ray source), it is more beneficial to operate the CCD is photon counting 

mode to discriminate the intended Kα X-rays and reject Kβ X-rays.   

•••• Powder Sample Holder (4) 

The powder samples were placed on top of a 13.6 mm diameter zero background 

mount (ZBM), which was glued to a sample holder. The ZBM eliminated background 

scattering from the sample holder when analysing samples with a small linear 

attenuation coefficient (e.g. organics). Samples were grinded using a mortar and 

pestle to 1 − 10 µm grains. The sample holder was designed on top of a d.c. motor  

(20 r.p.m.) which allowed sample rotation during data collection to reduce preferred 

orientation. The sample holder was fixed to the breadboard through an XYZ 

translator, which allowed easy calibration of the sample with the incident beam. The 

geometry of the sample irradiation process has been discussed in section 2.1.  

•••• Optics Table (7) 

The optics table contained a pitch of 25 mm to allow components of the test facility to 

be easily translated.  
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•••• Lead Beam Stop (8) 

The lead beam stop consisted of 2.5 mm of lead (Pb) enclosed between two 2 mm 

thick steel plates. The beam stop attenuated the main beam to acceptable background 

levels.  

•••• Radiation Safety Enclosure (9) 

The equipment shown in figure 4.15 was contained inside a radiation safety enclosure 

with magnetic interlocking doors. The interlocking doors prevented the possibility of 

X-ray emission whilst doors were open. Sliding transparent doors allowed easy and 

safe access to the test facility for changing samples and pinholes. The doors were 

equivalent to 2.3 mm of Pb, ensuring any scattered X-rays from the source would be 

contained within the enclosure.  

4.8 Experimental Arrangement 

Figure 4.19 shows the experimental arrangement of the test facility. 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Experimental arrangement of test facility  
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The CCDs were controlled using 3rd party CCD drive and readout electronics (XCAM 

ltd.). An oscilloscope was used to confirm valid CCD biasing, clock waveforms and 

CCD outputs. Each of the 4 CCD outputs were readout individually and the resulting 

images were displayed on a laptop via a high-speed USB interface. Outputs from the 

PRTs were connected to a temperature sensor. The TEC and motorised sample holder 

were powered using a D.C. power supply. A 12-inch vacuum pipe connected the   

CCD-Array to a vacuum pump, which maintained a pressure of ~ 10-3 mbar inside the 

CCD-Array during cooling. A water chiller provided cooling to both the CCD-Array 

and the X-ray source at a flow rate of approximately 650 mL/min. A flow rate meter 

ensured a minimum flow rate of 300 mL/min passed through the X-ray head. If the 

flow rate dropped below this threshold, a signal was sent to the X-ray controller to 

suppress the generation of X-rays. The emission of X-rays was also controlled by the 

magnetic door interlocks of the radiation safety enclosure. An emergency footswitch 

allowed users to immediately place the X-ray system in standby in case of emergency. 

The operation of the X-ray source was controlled using software.   

4.9 Experimental Alignment 

The alignment of the system was performed in several individual stages. The 

sequence of alignment steps are summarised below: 

micro-source → X-ray optic → collimator → pinhole → sample → detector 

The first 3 stages in the alignment procedure involved imaging the X-ray beam from 

the micro-source using a dental CCD (e2v’s CCD38-10). The CCD was fixed to the 

optics breadboard and centrally aligned with the micro-source optic. The first step was 

the alignment between the X-ray shutter within the micro-source and the X-ray optic. 

This involved adjusting the XYZ position of the optic in relation to the X-ray shutter. 

The position of the optic was varied until the maximum intensity was seen in the 

beam.  The next stage was to align the collimator with the X-ray optic. Any pinholes 

were removed from the collimator during this process. The collimator was centrally 

aligned with the optic and tilted 4° (initially by eye) to allow the focused ~ 1 mm 

beam to travel through the collimator. This resulting beam was imaged by the dental 

CCD. The angle and position of the collimator was adjusted using XYZ translation 

stages (1 µm sensitivity) until the X-ray beam was centralised in the ~ 5 mm 
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collimator outlet. Next, the dental CCD image was analysed and the pixel location of 

peak intensity was noted. This was always approximately in the centre of the X-ray 

beam as the energy distribution resembled a 3-dimensional Gaussian shape. With the 

pixel location of peak intensity noted, the required pinhole was placed into the 

collimator using the copper holder. The position of the collimator was adjusted until 

the noted pixel location (of maximum intensity) was centralised in the pinhole. This 

ensured the beam produced from the collimation process contained the maximum 

possible flux. The penultimate stage in the alignment process involved aligning the 

pinhole with the powder sample. This was achieved with the use of very bright light 

emitting diode (LED). The LED was placed between the X-ray optic and collimator 

which allowed the intense beam of light to pass the through the pinhole and illuminate 

the powder grains. The sample holder was adjusted using XYZ translation stages until 

the incident beam was centralised in sample holder. The final stage of alignment was 

between the axis of the X-ray beam and the centre of the CCDs. This alignment 

procedure was completed during post processing of the CCD images through the use 

software. Once the alignment procedure was completed, samples were simply 

interchanged and the facility remained entirely aligned and calibrated. 

4.10 Discussion 

This chapter has described the design and characterisation of the CCD-Array. The 

CCD-Array was designed to collect combined XRD/XRF data from powdered rocks 

samples. A large 12 cm distance between  the sample and detector allowed very high 

spatial resolution of 0.012° and the use of 4 CCDs provided large angular coverage 

from 4.48° − 63.95° 2θ. The detector was designed for portability with the use of a 

single TEC for CCD cooling and on-board CCD headboard electronics. Calculations 

have been outlined which determined that only 2.5 µm of Mylar was required to 

sustain the stress (~ 105 Pa) induced from creating a pressure of ~ 10-3 mbars inside 

the CCD-Array. The actual thickness used (20 µm), exceeds this requirement by a 

factor of 8 due to the high risk of CCD damage post window failure.  

Thermal studies were performed on the CCD-Array outlining the ability of the TEC to 

cool the CCDs with heat loads of ~ 4.5 W. Calculations, measurements and thermal 

simulations revealed that operating the CCDs within a vacuum as opposed to N2, 

resulted in a reduced heat load on the cold side of the TEC. Additional heat loads in 
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the form of conduction from electrical wiring and heat dissipation from the CCDs, 

further reduced the TECs cooling performance. The largest heat load in the         

CCD-Array was generated from the 0.52 mm thick electrical wiring. This was one of 

the major design flaws with the CCD-Array, as such thick wiring was not required for 

electrical purposes. The maximum current drawn by the CCD30-11 during operation 

was by Vod, in the range of 5 − 10 mA. A current of 5 − 10 mA can be achieved with 

0.05 mm wiring. Approximately 29 wires allowed the transfer of heat from the copper 

base to the CCDs during operation. Figure 4.20 shows the reduction in heat transfer 

achieved with smaller diameter wiring.  

 

 

 

 

 

 

 

 

 

 

Figure 4.20: Reduced conductive heat load from thinner electrical wiring  

The total heat load on the CCDs from the electrical wiring in the current configuration 

was ~ 2.9 W (29 wires × 0.104 W). By using 0.05 mm thick wiring, this total heat 

load can be reduced to ~ 0.029 W. This represents a significant decrease in Qcnd. With 

Qc reduced to 1.6 W, Tc would be approximately -62 °C as opposed to -45 °C. Figure 

4.21 shows the performance of the TEC (Tc vs. Qc) with the use of 0.05 mm wiring 
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(dashed red line) along with other heat loads which have been described in Section 

4.3.  

 

 

 

 

 

 

 

 

 

Figure 4.21: Tc vs. Qc performance of TEC with different heat loads  

Explanation of the CCD-Array’s geometry with respect to the sample holder has also 

been discussed in this chapter. The calibration of each CCD in the spatial domain has 

been calculated and these calculations have been confirmed with the use of SRMs 

from NIST. Minor inaccuracies in the spatial calibration of the detector have been 

identified to be approximately 1 pixel (0.012°). Intensity errors have also been 

identified and corrected with maximum instrumental errors in peak intensity expected 

to be less than 3.2% (assuming at least 10,000 diffracted counts). The test facility 

designed for testing the CCD-Array has also been discussed with particular emphasis 

on the monochromation and collimation process. The next chapter describes the 

process of collecting, analysing and modelling XRPD/XRF data using CCDs.  

 

 



119 

Chapter 5 : Data Collection, Analysis and Modelling  

5.1 Introduction 

The key feature in the collection of combined XRD/XRF data is the ability of the 

CCD to collect isolated X-rays, or X-rays contained within a single pixel. The major 

factor dictating the amount of isolated events detected by a CCD is the depletion 

depth. Depletion depth is dependant on the biasing conditions of the CCD, but more 

importantly on the resistivity of the p-type epitaxial region. The initial section of this 

chapter aims to confirm the resistivity of the CCD30-11 devices that make up the 

CCD-Array. CCDs are very popular detectors for XRF analysis, but the use of CCDs 

for XRD analysis is still a relatively new technique (last decade). Therefore, the focus 

of this chapter is based on XRD data collection, analysis and modelling. Different 

data collection techniques are highlighted, including methods of reducing noise in 

XRD patterns. An investigation is also carried out to determine the best CCD 

architecture for collecting XRD data, namely frame transfer or full frame. The final 

section of this chapter is concerned with the modelling of XRD data using CCDs. The 

model allows users to calculate optimised CCD exposure times, total incident X-ray 

events, background noise, event statistics and CCD binning effects. The operation of 

the model is explained and agreement between the simulated and experimental data is 

highlighted.  

5.2 CCD30-11 Depletion Depth Measurements 

5.2.1 X-ray Events in CCD Detectors 

Once a positive voltage is applied to the surface electrode, a depletion region forms 

underneath the SiO2 layer with a finite depth. If X-rays interact in the CCD depletion 

region, the resulting charge cloud is quickly swept away by the strong electric field to 

the nearest potential well. These X-ray events are usually confined to a single pixel 

and are known as isolated or single pixel events. X-rays that ionise underneath the 

depletion layer where no electric field is present, diffuse into neighbouring pixels and 

cause split events. Figure 5.1 (a) shows the 3-dimensional Gaussian distribution of 

electrons contained within the charge cloud. The digitised value of each pixel is 

determined by calculating the fraction of the charge cloud in each pixel, as shown in 

figure 5.1 (b).  
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Figure 5.1 (a): Charge clouds produced at different X-ray ionisation depths and (b) 

               corresponding digitised pixel values 

To identify distinct X-ray energies, only isolated events are used in the data collection 

stage. The calibration of the X-ray spectrum is expressed as: 

                           
noiserayx

rayxE
ADCeVCal

ππ −
=

−

−
)/( ,            (5.1) 

where πx-ray is the mean digitised value of the X-ray peak, πnoise is the digitised value 

of the noise mean and Ex-ray is the energy of the X-ray peak in eV. The number of 

electrons per digitised value can be calculated by dividing Cal by ω, which represents 

the average amount of energy (eV) needed to create a single electron hole pair in Si. 

This value is temperature dependant and is approximately 3.74 at -100 °C and 3.67 at 

+25 °C [Groom 2004].  

The presence of isolated events in the CCD image is determined as follows. The mean 

position of the noise peak πnoise, is identified and accurately fitted using a Gaussian 

distribution. The noise threshold is set to any events in the image that are 3 × σnoise 

greater than πnoise, where σnoise represents the standard deviation of the noise peak. A 

pixel with an intensity greater than the noise threshold (πnoise + 3σnoise) is considered as 

an ‘event’. Isolated events must have an energy greater than the noise threshold, with 

4 neighbouring pixels below the noise threshold (see figure 5.23).  

2 × 2 

2 × 1 

3 × 1 

isolated 
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X-ray ionisation in Si causes the formation of an electron-hole cloud, the size of 

which is based on the energy of the incoming X-ray and the absorption depth, z. A 

simulation was designed to determine the ratio of isolated to split events over          

(26 µm)2 pixels, with respect to increasing electron-hole cloud diameter. The 

simulation involved randomly distributing 1 × 105 photons over a 5 × 5 pixel imaging 

area (25 pixels) for each electron-hole cloud diameter. The events considered were 

isolated events, 2 × 2 and 2 × 1 split events. The results of the simulation are shown in 

figure 5.2.  

 

 

 

 

 

 

 

 

 

Figure 5.2: Simulation revealing the ratio of isolated to split events with increasing 

         electron-hole cloud diameter over (26 µm)2 pixels 

As can be seen from figure 5.2, the number of isolated events decreases with 

increasing cloud diameter until the cloud diameter reaches the size of the pixel and no 

isolated events can occur. It is important to note that photons collected within the 

depletion region of the CCD have very small cloud diameters (< 1 µm) which will 

result in a very high percentage of isolated events. Photons absorbed underneath the 

CCD depletion layer will form much larger electron-hole clouds due to diffusion and 

result in a much lower percentage of isolated events. The probability of 2 × 1 split 

events decreases when the electron-hole cloud diameter reaches half the pixel size.     
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2 × 2 split events become dominant at electron-hole cloud diameters greater than 

approximately half the pixel size.  

By 2 × 2 binning the CCD image, an increase in the isolated event efficiency occurs, 

since the pixel area is quadrupled whilst the size of the charge cloud remains the 

same. Split events such as those seen in figure 5.1 (b) are summed to reform the 

original X-ray event. Binning causes an increase in the SNR as each pixel now 

contains 4 times as much signal intensity, whilst the readout noise remains the same, 

however each pixel also contains 4 times as much dark current.   

5.2.2 Depletion Depth Measurement – X-ray spread ev ents 

The AIMO FI CCD30-11 manufactured by e2v is normally fabricated on 100 Ω.cm  

p-type Si with a 25 µm epitaxial layer. However, in recent years deep depletion 

AIMO CCD30-11 devices have also been fabricated on 1000 Ω.cm p-type Si with a 

50 µm epitaxial region [Pool 2005]. The CCD30-11 devices used in building the 

CCD-Array were expected to be 100 Ω.cm as opposed to the 1000 Ω.cm resistivity, 

but measurements were required for confirmation.  

Depletion depth measurements were made using X-ray spread event analysis. The size 

of the electron-hole cloud formed by a particular X-ray is dependant on its energy and 

the interaction depth within the Si. By determining the size of the electron-hole cloud 

formed by X-rays of different energies and simulating these events over a given pixel 

area, the ratio of isolated to split events for a given X-ray energy can be calculated. 

By measuring the ratio of isolated to split events in the experimental data and 

comparing to the simulated results, depletion depth estimates can be made.  

5.2.2.1 Isolated Events in the Epitaxial Region 

Figure 3.10 shows the small electron-hole cloud formed by X-rays in the depletion 

region in comparison to the pixel size (26 µm)2, for a 100 Ω.cm and 1000 Ω.cm 

device. It can be assumed that all events detected in the depletion region of the CCD 

result in single pixel events. Since the electron-hole cloud radius of X-rays detected in 

the depletion region is much smaller than the pixel size, this is a fair assumption. 

However, since some X-rays will statistically ionise in between pixel boundaries, 

such events although detected in the depletion region, can form split events. The 

formation of split events in the field free region is much more likely as the charge 
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cloud will diffuse before reaching the potential well of the CCD. Figure 5.3 highlights 

this effect as the number of isolated events immediately decays when X-rays begin to 

ionise in the field free region. 

The transmission of monochromatic X-rays through Si is shown for 3 elements in 

figure 5.3. The diagram shows the depletion boundaries for 100 Ω.cm and 1000 Ω.cm 

devices biased at a 12 V gate voltage and 0 V substrate voltage. The resulting 

depletion depth of each of the devices was calculated to be 12 µm and 33 µm 

respectively, using equation 3.11.  

 

 

 

 

 

 

 

 

 

Figure 5.3: Transmission of P Kα, K Kα and Ti Kα X-rays in a 12 µm and 33 µm 

         depleted CCD 

The simulation begins by generating an interaction at depth z, based on the 

transmission plot shown in figure 5.3, with a random location within the pixel. An 

initial cloud radius forms at the depth of interaction Ri, the size of which can be 

calculated using equation 3.27. When the X-ray ionises in the depletion region           

(z < Zd), the size of the charge cloud reaching the n-type buried channel is a 

combination of the initial charge cloud and subsequent spreading in the depletion 

region (equation 3.30). If the X-ray interacts in the field free region (Zd > z < Zffr), the 
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Element eV Epitaxial (simulated) %  Depletion (simulated)% Depletion (predicted) %
P Kα 2013 98.57 98.5337 99.9513
S Kα 2307 97.94 97.6328 99.56
Cl Kα 2622 96.822 95.54 97.99
Ar Kα 2957 94.5764 91.3299 94.1918
K Kα 3313 90.4947 84.6834 87.68

Ca Kα 3691 84.2859 75.89 78.94
Sc Kα 4090 76.32 66.1761 69
Ti Kα 4510 67.3821 56.4335 58.99

charge cloud diffuses until it reaches the depletion boundary. The extent of the charge 

cloud in the field free region (FFR) is calculated using equation 3.31 and must also 

include additional spreading in the depletion region (equation 3.32). Since                

X-rays > 4.5 keV were not used for depletion depth measurements, interactions in the 

substrate are ignored. Charge clouds formed in this region produce events that are not 

confined to 2 × 1 or 2 × 2 split events, but form larger split events and are very 

difficult to detect experimentally. Charge from the electron-hole cloud is also lost due 

to recombination in the substrate, therefore these events cannot be summed to reform 

the original X-ray energy. Once the size of the charge cloud reaching the potential 

well for a given interaction depth has been calculated, the software calculates the 

fraction of the charge cloud in each pixel and determines whether the event is an 

isolated or spit event.  

The results of the simulation are labelled as ‘isolated events’ in figure 5.3. Since the 

spreading of the charge cloud in the depletion and FFR is not related to the X-ray 

energy, the ‘isolated events’ curve is a very good approximation for all X-rays from 

0.1 – 10 keV. The value of Ri (which is dependant on the X-ray energy) has little 

influence on the curve. The number of isolated events produced by an X-ray of energy 

E, is the number of X-rays absorbed in the epitaxial region multiplied by the    

‘isolated events’ curve. As E increases, fewer X-rays are absorbed within the epitaxial 

region and the number of isolated events decreases. The results from the simulation 

are shown in table 5.1 for 8 different elements ranging from 2 − 4.5 keV.  

 

 

 

 

Table 5.1: Summary of simulated results calculating the percentage of isolated events 

        for various characteristic Kα photons ranging from 2 − 4.5 keV 

As predicted, the number of isolated events actually produced in the depletion region 

are very similar to the number of events absorbed in the depletion region (listed as 
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‘Depletion (predicted)’ in table 5.1). Table 5.1 also outlines the total number of 

isolated events detected in the epitaxial region. Depletion depth measurements were 

made by comparing the simulated data to experimental data. Experimental data was 

collected by detecting the Kα X-ray emissions of the elements listed in table 5.1. The 

percentage of isolated to split events was then calculated for each element and 

compared to the simulated data. The X-ray flux was reduced to ensure X-ray events 

were sparsely populated across the CCD (X-rays source flux was reduced according 

to samples fluorescence yield to allow ~ 50 total events/s). Results are shown in figure 

5.4. 

 

 

 

 

 

 

 

 

 

Figure 5.4: Comparison between simulated and experimental evaluation of depletion 

         depth using X-ray spread events for 100 and 1000 Ω.cm devices 

It is evident that the experimental evaluation of the depletion depth provides a good 

match to the 100 Ω.cm resistivity. The measurements aim to highlight the agreement 

between the experimental data and the total isolated events in the epitaxial region 

(green curve), as this represents the most accurate representation of the isolated events 

formed inside the CCD. The errors seen in the experimental data were expected to 

arise from difficulties in processing experimental CCD images for isolated and split 

events. The errors between 2 − 3.5 keV appear to underestimate the depletion depth. 
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Since lower energy elements have a low fluorescence yield, the X-ray source was 

operated at full power to deliver an appreciable flux of X-rays. Events in the CCD 

image were therefore dominated with elastically scattered Cu Kα photons, which 

caused some interference in detecting the intended X-ray events. For additional 

confirmation, another technique of determining the resistivity of the devices was 

performed by using a much simpler method, which is presented in the next section.   

5.2.3 Depletion Depth Measurement – CCD30-11 vs. CC D42-10 

Additional depletion depth measurements were made by using e2v’s CCD42-10, 

which were FI, NIMO and deep depletion (1000 Ω.cm Si) devices. Since the 

resistivity of these devices was known, QE measurements could be compared between 

the CCD30-11 and CCD42-10 devices. As stated in equation 3.11, the depletion depth 

can be calculated using the expression: 

a

SSavgGSI
p qN

VV
x

)(2 −
= −ε

,               (5.2) 

where VG-avg  is the average applied voltage to each pixel [Murray 2007] [Burt 2006]. 

Figure 5.5 shows the region of each (26 µm)2 pixel of the CCD30-11.  

 

 

 

 

 

 

 

 

Figure 5.5: Average voltage applied to a single pixel in CCD30-11 
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Assuming the pixel is biased so that Iø1 and Iø3 are barrier phases, the only regions 

experiencing the presence of the positive gate voltage are Region 2 and Region 4. 

Located beneath Region 1 and 2 is the np junction which has a potential of ~ 11 V for 

the e2v devices discussed here. This also contributes to the voltage applied to each 

pixel. The channel stop regions (Regions 3, 4) do not experience additional potential, 

as no n-type material exists underneath the p+ channel stops. Equation 5.3 represents 

the average voltage applied to the top surface of a single pixel during integration, the 

constants representing the fraction of the pixel area each region covers.  

                              Region 1             Region 2          Region 3     Region 4 

( ) ( ) ( ) ( )VVVVVV 1209.0018.0111224.011048.0 +++++    (5.3) 

For a 12 V gate voltage applied to Iø2, the average applied voltage to the top surface 

of the pixel is 11.88 V. The depletion depth was determined by comparing the 

transmission of Cu Kα X-rays in the CCD30-11 to that in the CCD42-10. With a gate 

voltage of 12 V and substrate voltage of 7 V, the depletion depth of the CCD42-10 

was calculated to be ~ 22 µm. The percentage of Cu Kα photons absorbed within      

22 µm of Si is 29%. Given that the CCD30-11 is a standard 100 Ω.cm device, the 

absorption of Cu Kα X-rays in the depletion region will be ~ 12% when biased under 

the same voltages. This is an increase by a factor of 2.4, which means for every 100 

photons that are detected in the CCD30-11, ~ 240 will be detected in the CCD42-10. 

If the CCD30-11 was in fact deep depletion, the detection efficiency of Cu Kα 

photons would be very similar to the CCD42-10.  

CCD 2 was exposed to a ZnO diffraction ring located at 31.7° 2θ for a total of 1000 

frames (1 s exposure each). The average number of events detected within the ring 

was calculated to be 49.88 Cu Kα photons/s. The CCD30-11 was replaced with the 

CCD42-10 (with an identical geometry in relation to the sample) and data was 

collected for a similar exposure time. The CCD42-10 image area was 2 × 2 binned to 

simulate (27 µm)2 pixels, which is a close approximation to the (26 µm)2 pixels of the 

CCD30-11.  The average number of X-rays was calculated to be 137 Cu Kα counts/s. 

This represents an increase by a factor of ~ 2.56, which is acceptably close to the 

predicted value of 2.4. This confirms the resistivity of the CCD30-11 devices to be 

100 Ω.cm.  
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5.3 Combined XRD/XRF Data Collection 

This section discusses the process of collecting combined XRD/XRF data using 

CCDs. The overall aim of the process is to obtain a histogram (XRF) containing the 

elemental/chemical data and a 2θ vs. intensity plot (XRD) which can be used to 

determine mineralogy.  

5.3.1 Single Photon Counting 

The use of the single photon counting technique for collecting combined XRD/XRF 

data using CCDs has been well documented [Reyes-Mena et al. 2000]. The ability of 

the CCD to resolve the energy of incident X-rays (typical FWHM energy resolution 

of ~ 130 eV at 5898 eV) as well as determine the exact interacting position of X-rays 

(typical spatial resolution of 13 − 26 µm), makes it an ideal detector for XRF and 

XRD respectively. Operating a CCD in single photon counting mode involves 

integrating the CCD for short periods (0.1 − 2.0 s) and taking multiple exposures to 

increase the SNR. Exposing the CCD for a short time ensures the CCD is not flooded 

with X-ray events, thereby aiding the process of detecting single pixel events. By 

adjusting the X-ray source flux with respect to the sample’s diffraction/fluorescence 

yield, a target of 250 − 500 events/s is achieved across the CCD in full imaging mode 

(256 × 1040 pixels). If the charge is confined to a single pixel, the software can 

determine the energy of the incident X-ray and once the resulting image has been 

generated, the exact pixel location of the isolated event. Once all the exposures are 

taken, split events from each frame are eliminated and all the frames are combined to 

form a histogram that contains isolated events only. Figure 5.6 shows the XRF 

spectrum collected from sodium chloride (NaCl) powder using the single photon 

counting technique. The data was collected under normal operating conditions for a 

total of 1000 exposures.    

The energy resolution of an XRF peak is limited by the readout noise, fano factor and 

dark current. Assuming the first two parameters are fixed, exposing the CCD for short 

periods is ideal since this minimises the dark current generation, thereby improving 

the energy resolution. XRD data is extracted from the raw data through a process 

known as energy discrimination, which is now discussed. 
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Figure 5.6: XRF spectrum of NaCl collected using the single photon counting   

        technique 

5.3.2 Energy Discrimination 

The Bede micro-source produces a 93% monochromatic beam of Cu Kα X-rays when 

operated at 40 kV, 2 mA and using a 15 µm Ni filter. When diffraction occurs in the 

sample, the entire incident spectrum is diffracted, which is predominantly Cu Kα      

X-rays. When a histogram is generated of all X-rays incident upon the detector, a 

strong Cu Kα X-ray peak is present. These Cu Kα events represent X-rays that were 

diffracted from the sample and collected by the CCD. Cu Kα X-rays are also detected 

by the CCD through elastic scattering, which causes the background noise in the XRD 

pattern. A Gaussian fit is applied to the Cu Kα peak and events within 3 standard 

deviations of the mean are registered as diffraction data (99.7% of all Cu Kα events). 

In order to extract the XRD information from the CCD image, only isolated Cu Kα   

X-rays are collected in each CCD frame. This process is known as energy 

discrimination. Energy discrimination is applied to each CCD exposure and all 

exposures are accumulated. The resulting image contains single or multiple isolated 

Cu Kα X-rays. Figure 5.7 (a) shows the combined XRD/XRF data of peridotite 

collected using CCD 2. Events in the image are all the isolated X-rays detected in the 
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2000 exposures, regardless of energy. Figure 5.7 (b) shows the energy discriminated 

data, containing only isolated Cu Kα events and the removal of unwanted XRF data.  

 

 

 

 

 

 

 

 

Figure 5.7 (a) Raw peridotite data containing all isolated events (XRD/XRF data) and  

        (b) energy discriminated image (XRD data only) 

5.3.3 XRD Software Processing 

Once the energy discrimination technique is applied to all CCDs, software was used 

to extract the 2θ vs. intensity plot. The initial stage in the software process begins by 

placing each of the CCDs in ascending order of 2θ angle (CCD 1 − CCD 4). The 

software then constructs an array representing an angular coverage from 4.48° to 

63.95°, which contains the 4 CCD images and gaps between CCD imaging areas. The 

geometry described in Section 4.5 was used to determine the 2θ coverage of each of 

the CCDs. 

5.3.4 Beam Alignment and Radial Integration 

The next stage of the software process involved determining and correcting any errors 

involved in the experimental alignment. Under ideal circumstances, the collimated 

beam was located on the same axis as the centre of the CCDs (pixel 128) on the   

CCD-Array. This ideal alignment was difficult to achieve, therefore inaccuracies in 

the alignment were calculated and corrected during post-processing of the diffraction 

data. The 2θ vs. intensity plot was generated by radially integrating the array 
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constructed by the software. Figure 5.8 shows the radial integration of the 4 CCDs 

and the resulting intensity distribution as a function of 2θ scattering angle. In order to 

perform the alignment, the array was radially integrated and the FWHM of the rings 

was calculated. The beam position was then refined until the highest angular 

resolution was achieved. The position where the highest angular resolution was 

achieved represented the axis of the X-ray beam from the collimator. Under the 

normal experimental arrangement the beam centre was usually found to be within      

± 0.3 mm (11 − 12 pixels) from the centre of the CCD. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Radial integration of 4 CCDs revealing intensity distribution as a function 

         of 2θ scattering angle 

Figure 5.9 shows the radial integration of NaCl powder. In order to perform 

qualitative analysis, the positions of the 3 largest peaks are recorded and matched to a 

database, such as the ICDD PDFs (JCPDS file 5-628). A successful solution was 

found for the NaCl diffraction pattern shown in figure 5.9.  
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Figure 5.9: 2θ vs. intensity plot of NaCl generated by radial integration  

5.4 XRD Noise Sources 

This section describes the main sources of noise in XRD patterns and examines the 

impact of these noise sources in relation to the CCD-Array. Noise removal techniques  

are also investigated.  

XRD patterns experience the presence of various noise sources. Incomplete 

monochromation of the X-ray beam used for irradiation of the powder sample is one 

of the major sources of noise. In order to identify diffracted X-rays incident on the 

detector, the ratio of Kα characteristic X-rays to non Kα X-rays (continuous and other 

characteristic X-rays) should be maximised. It has been shown in Section 3.15 that 

with the use of an XOS polycapillary optic and a 15 µm Ni filter, the Bede          

micro-source produces a spectrum which is composed of a 93% beam of Cu Kα       

X-rays, therefore noise induced from incomplete monochromation was negligible.  

Another source of noise in XRD patterns is that generated by the detector. The main 

constituents of noise in CCDs comprises of readout noise (signal amplification and 

electronics) and leakage current (thermal). In Section 6.4.1, it is shown that CCD 

noise has negligible effect on the quality of the XRD pattern (assuming the CCD 
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noise < 30 ē r.m.s). All XRD patterns detected by the CCD are accompanied by XRF 

data, which is separated by the energy discrimination process. Clearly, detectors that 

cannot distinguish XRD from XRF data experience XRF as an additional noise 

source. This results in a non-linear scattering profile and reduction in SNR (see figure 

3.19). By using CCD detectors, this source of noise can also be eliminated. The main 

sources of noise in XRD patterns are either greatly reduced or almost completely 

eliminated with relation to the CCD-Array. The dominant noise source in relation to 

the CCD-Array originates from elastic scattering of Cu Kα X-rays. These X-rays are 

scattered from various locations in the test facility such as the sample holder, air and 

the aluminium front plate. The energy of these collisions is conserved (i.e the 

wavelength of the emitted photon is identical to the incident photon) and detected by 

the CCD as Cu Kα X-rays. These X-rays cannot be separated from the XRD data 

during the energy discrimination stage and constitute as noise in the diffraction 

pattern. The next section describes 2 methods of reducing the noise sources in XRD 

patterns.  

5.4.1 XRD Noise Reduction Techniques 

Figure 5.10 shows an XRD pattern collected from CaCO3 using CCD 3. The spectrum 

has been energy discriminated, therefore all events are either single or multiple 

isolated Cu Kα events. The data was collected under normal operating conditions for a 

total of 4500 exposures. The image consists of 7 diffraction rings and the remaining 

areas represent the background. The strongest peak, ‘Ring 1’ and weakest peak, ‘Ring 

2’ are used as examples.  

The difference between background events and XRD data is evident from figure 5.10. 

For example, Ring 1 contains events confined to a small region of the imaging area  

(~ 1 × 104 pixels) whereas background events are scattered across the entire CCD 

imaging area (2.6 × 105 pixels). Background events are sparsely populated across the 

CCD and do not form large clusters like XRD events. This is shown in figure 5.10, 

where ЛD is the average pixel intensity of XRD events per unit area, and ЛB represents 

the average pixel intensity of background events per unit area. Since ЛD >>  ЛB, XRD 

rings contain multiple isolated events in comparison to background noise for a given 

exposure period. 
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Figure 5.10: Energy discriminated CCD image of CaCO3. The CCD image contains 7 

          XRD rings and background noise in the form of elastic scattering 

Multiple isolated events represent pixels that have a value Npix, greater than 1 (where 

Npix is the number of isolated events detected within the given pixel over the total 

exposure period). Figures 5.11 and 5.12 show the variation of isolated Cu Kα events 

contained within the background and Ring 1/Ring 2 over 4500 exposures respectively.  

 

 

 

 

 

 

 

 

 

Figure 5.11: Variation in background noise events over 4500 CCD exposures 
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Figure 5.12: Variation in isolated XRD events in Ring 1 and Ring 2 

As shown in figure 5.12, the single isolated events peak at approximately 800 and 

3000 exposures for Ring 1 and Ring 2 respectively. Even after 4500 exposures, the 

single isolated events in the background noise have not peaked. In fact, at the end of 

the exposures, 60% of the background pixels are still empty. The next section 

discusses techniques to reduce the background noise, based on these observations.    

5.4.1.1 Neighbouring Pixel Elimination (NPE) 

As the number of CCD exposures increases, the density of background events also 

increases. One method of eliminating background events involves searching 

neighbouring pixels for similar background events. If the 8 neighbouring pixels 

contain no events, the original background event is eliminated [Cornaby et al. 2000]. 

Since almost all events within a diffraction ring contain a neighbouring event 

(assuming the CCD has been integrated for multiple exposures), no signal data is lost 

in the process.  

5.4.1.2 Single Pixel Elimination (SPE) 

After many exposures, another significant difference between the signal and 

background data can be exploited. The amount of single isolated X-ray events 
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contained within a diffraction ring is greatly reduced. The data contained within a 

diffraction ring contains multiple isolated X-ray events as seen in figure 5.12, whereas 

the background is still dominated by single isolated events. The single pixel 

elimination (SPE) technique, simply removes all single isolated events from the XRD 

image. This removes large amounts of background noise and very small amounts of 

diffraction data. The success of this technique depends on the number of counts in the 

weakest diffraction ring. Figure 5.13 (a) and (b) demonstrate the application of the 

SPE technique on Ring 1 after 1000 and 4000 exposures respectively.  

 

 

 

 

 

 

Figure 5.13: Application of the SPE technique after (a) 1000 and (b) 4000 exposures 

As can be seen from figure 5.13 (a), the diffraction ring still contains single isolated 

events (37%). By applying the SPE technique, events are not only extracted from the 

background region as intended, but also from the signal data region. However, after 

4000 exposures the diffraction ring is now dominated with multiple isolated events 

and applying the SPE technique only removes data from the tails of the Gaussian 

shaped diffraction peak. This does not cause any errors in determining the 2θ position, 

intensity or FWHM (°) of the peak.  The mean level of the background noise has been 

reduced from 44 to 14 Cu Kα photons, thereby increasing the SNR of the diffraction 

pattern. This example emphasises that a large number of exposures must be taken 

before SPE can be applied efficiently. Figure 5.14 compares the SPE and NPE 

technique being applied to the CCD image shown in figure 5.10, after 1000, 2500 and 

4000 exposures respectively.  
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Figure 5.14: Comparison of the SPE and NPE techniques after (a) 1000 (b) 2500 and  

          (c) 4000 CCD exposures 
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Raw Raw NPE NPE SPE SPE
Exposures 1000 4000 1000 4000 1000 4000
Error Ring1 (%) 0.00 0.00 0.00 0.00 7.10 < 0.05
Error Ring2 (%) 0.00 0.00 0.00 0.00 51.20 < 0.05
Background (Cu K α counts) 10.48 43.45 4.86 40.93 1.21 14.27
Background error  (Cu K α counts) 3.82 8.18 1.85 8.27 1.10 5.33
SNR 91.76 168.89 192.51 167.4 N/A 264.7

The NPE technique shows a much better response for shorter exposure periods. Even 

with short exposure periods, the probability of losing signal data with the NPE 

technique is very low. The SPE technique shows a very poor response at shorter 

exposures with errors of 51.2% in Ring 2 after 1000 exposures. After 4000 exposures, 

the intensity errors have been reduced to < 1% and the background has been reduced 

from an average of 43.45 to 14.27 Cu Kα photons. Since the density of background 

events is very high after 4000 exposures, the NPE technique has only reduced the 

background by 2.52 Cu Kα photons. Table 5.2 summarises the results shown in figure 

5.14.  

 

 

 

Table 5.2: Summary of results comparing NPE and SPE techniques (SNR was    

       calculated using equation 5.18) 

5.5 Image Smearing Effects with XRPD  

5.5.1 Frame Transfer 

The CCD30-11 is a full frame device without a shutter and therefore experiences 

image smearing. As each column is sequentially amplified, the signal in the image 

section awaiting readout collects more X-rays. During readout, Iø2 is held at a 

positive potential to hold the signal data. Since a positive gate voltage is applied to 

this electrode, a depletion region forms underneath Iø2, similar to the integration 

period. This results in incoming X-rays generating signal data that is collected in the 

potential well of Iø2, which already contains signal data from the integration period. 

The resulting image is therefore corrupted by ‘smear’. The time taken to readout a full 

frame CCD TRo, can be expressed as: 

            ( ) ( )11 −− ×+××= PRCRSRo fNNNfT  ,                     (5.4) 

where fS 
-1 is the time taken to readout one pixel of the serial register and fP

-1 is the 

time taken to transfer one column in the serial register. The readout of a full frame 
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device is carried out sequentially, where the first bracketed term in equation 5.4 is 

followed by the second bracketed term and repeated NR
 times.   

Figure 5.15 shows the effect of image smear on a NaCl diffraction ring. The        

CCD-Array was moved 25 mm off axis to accentuate the smearing effect (i.e. moved 

25 mm in parallel with the incident X-ray beam). The exposure time of each frame is 

shown above the relevant image and the ‘ratio’ represents the ratio of integration to 

readout time.   

 

 

 

 

 

Figure 5.15: Effect of image smearing with increased integration time (readout time =     

          1.6 seconds). Figure 5.15 (a) ratio = 1:16 (b) ratio = 1:1 (c) ratio = 2.5:1 

          (d) ratio = 5:1 

The data shown in figure 5.15 represents a total of 400 exposures. The CCD was 

operated without binning (256 × 1040 pixels) with each pixel in the serial register 

readout at ~ 165 kHz (~ 6 µsec). The parallel transfer speed for each pixel was           

~ 75 kHz (~ 13.3 µsec). Using equation 5.4, the total readout time was calculated to 

be approximately 1.617 seconds. The amount of smear experienced is identical for all 

images, therefore as the exposure time is increased, the ratio of signal data to smear is 

increased.  

Figure 5.16 shows the radial integration of the 1.6 s, 4 s and 8 s exposures shown in 

figure 5.15. Although the amount of smearing is identical, a minor increase in 

intensity in the smear regions is noticed with increasing exposure time. This is caused 

by an increase in elastic scattering because the smear region gathers more background 

Cu Kα events as the exposure time increases, but the amount of smearing is consistent 

for a fixed readout time.  
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Figure 5.16: Effect of image smearing with (a) increased integration time and (b)   

          CCD binning  

For a full frame device, the amount of smearing generated in the image is related to 

the ratio of exposure time to readout time. For combined XRD/XRF applications, 

simply increasing the ratio of exposure to readout time can have detrimental effects 

for certain XRF applications. Increasing the exposure time causes an increase in 

leakage current, the extent of which depends on the operating mode of the device 

(AIMO vs. NIMO). Regardless of operating mode, increased integration times will 

cause a decrease in the energy resolution (FWHM) of X-ray peaks. This is a 

disadvantage to XRF applications where certain experiments require the highest 

possible energy resolution achievable by the detector. This is one of the drawbacks of 

using full frame devices (without shutters) for combined XRD/XRF applications. 

However, better performance can be achieved with on-chip binning. Figure 5.16 (b) 

shows a comparison of an 8 s integration time without binning and 2 × 2 binning. 

With 2 × 2 binning the readout time of the device is reduced by a factor of 4. The ratio 

of exposure time (8 s) to readout time increases from 5:1, to 20:1. Operating the CCD 

with pixel binning however, causes a larger increase in dark current for a given 

exposure time in comparison to full imaging mode.  A loss in spatial resolution is also 

experienced but few XRD experiments are limited by the CCD resolution.  

Image smear can be reduced in full frame devices but at the cost of energy and spatial 

resolution. The solution to reducing smear to acceptable levels and maintaining the 

integrity of energy and spatial resolution is to use full frame CCDs with 

electronic/mechanical shutters, or to operate the full frame device in pseudo frame 
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transfer mode. The next section explores this device process by simulating a frame 

transfer device using the full frame CCD30-11.  

5.5.2 Full Frame vs. Frame Transfer 

Figure 5.17 shows the geometry of the XRPD ring in relation to the CCD for the 

images shown in figure 5.15. To simulate a frame transfer device, a 1 mm thick sheet 

of stainless steel was glued over the lower half rows of the CCD imaging area (closest 

to the serial register). The only smear experienced in frame transfer CCDs occurs 

during the transfer of signal data from the image to store section. Assuming the device 

contains 256 pixels in the image and store region, the amount of smear time would be 

reduced from 1.617 s (full frame) to 3.4 ms with a parallel transfer speed of 75 kHz 

per pixel. Using the frame transfer architecture allows the impact of smearing to be 

practically eliminated.  

 

 

 

 

 

 

Figure 5.17: Architecture of a (a) full frame device in comparison to (b) frame   

          transfer device. The grey shading represents the smearing caused from 

          the additional integration of the diffraction ring during readout 

Under frame transfer operation, the CCD was sequenced to perform 128 parallel 

transfers, to move the image into the store section and then begin readout. This would 

prevent any smear from taking place during the readout of the device as the signal 

data would be shielded from the XRPD ring. An exposure time of 8 s was used and 

400 exposures were collected. The comparison to a full frame exposure of 8 s × 400 

exposures is shown in figure 5.18. Only half of the image area was analysed in full 

frame mode, since the pseudo frame transfer imaging area was ~ 128 pixels.  
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Figure 5.18: Comparison of an 8 s exposure using full frame and pseudo frame    

           transfer architecture  

The data shown in figure 5.18 shows a reduction in smearing using the pseudo frame 

transfer method. The FWHM has improved by 10 pixels (~ 0.12°). Using the CCD in 

frame transfer mode allows much shorter exposure times, which is essential for 

collecting combined XRD/XRF data.  

5.5.3 Smearing with the CCD-Array 

The fraction of the diffraction ring captured by the CCDs was limited by the width of 

the CCD imaging area (6.7 mm). Very small fractions of the diffraction rings were 

actually collected by the CCD-Array, which is why the rings seen in figure 5.10 

resemble straight lines as opposed to curved rings. The effect of this is noticed at 

higher angles. For example, a diffraction ring located at the bottom of CCD 3 (~ 35°) 

will have a radius of approximately 106 mm. The percentage of the ring captured by 

the CCD is only 6.2%.  The curvature of the rings is more noticeable at lower angles 

(< 10° 2θ), however low angle diffraction peaks are uncommon. Since the XRD data 

was orientated in a straight line and the smear also occurred in a straight line, the 
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smear simply added to the signal data. When low angle peaks were present, larger 

integration times were necessary to avoid smearing. However, since the majority of 

samples did not contain low angle peaks, the effect of image smear with the         

CCD-Array was negligible.  

5.6 XRPD Modelling 

This section describes the results from a modelling program designed to simulate the 

collection of XRPD data with CCD detectors. The overall aim of the modelling 

program is to allow users to understand the performance and limitations of CCDs in 

collecting XRPD data. The model also allows users to optimise CCD parameters in 

order to maximise the performance of the experiment for a given application. The 

motivations for the modelling program are summarised below:  

Total X-ray events: Combined XRD/XRF data collection involves detecting isolated 

X-ray events and rejecting split events. For example, the strongest ZnO diffraction 

ring contains ~ 327 photon/s, localised across 28 × 256 pixels. Due to this high 

congestion of diffracted X-rays, it is impossible to analyse the ratio of isolated to split 

events in the diffraction ring from the experimental CCD images. Instead, the model 

is used to simulate the diffraction process and comparisons to experimental data are 

made in order to determine the total number of X-rays contained within the diffraction 

ring, as opposed to simply isolated events.   

Optimisation of CCD exposure time: For XRF analysis the noise is a crucial factor 

in providing the best energy resolution possible. Since XRD analysis involves the 

processing of an image, the noise is not a performance limitation. Experiments that 

only involve XRD analysis can make use of longer integration times to collect more 

data at the expense of increased dark current. The model can be used to optimise the 

CCD integration time in order to collect the maximum number of isolated events 

based on diffraction efficiency. As more and more X-rays are collected inside the 

diffraction ring, a point is reached where the ring becomes too ‘crowded’ and split 

events begin to interfere with the recognition of isolated events. The efficiency of the 

CCD in detecting isolated events therefore begins to decay. The model is used to 

calculate the optimum integration time for each exposure based on the samples 

diffraction efficiency.  
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Pixel event statistics: The number of single isolated events peaks after a certain 

number of exposures and multiple isolated events become dominant. The modelling 

program can be used to understand the event statistics not just for a single exposure, 

but from exposure to exposure.  

CCD Binning for XRD applications: Another benefit with using CCDs for XRD 

applications is the use of on-chip binning. Pixel binning (e.g. 2 × 2 binning) can 

increase single photon counting efficiency as 2 × 1 and 2 × 2 split events are summed 

to form single pixel events. Binning also greatly reduces the readout time of the 

device (e.g. in 2 × 2 binning mode the readout time is reduced from 1.6 s to 0.4 s). By 

modelling the effect of CCD binning in collecting XRD data, it is shown how binning 

can improve the data collection process.    

Background noise:  The background noise in an XRD pattern can easily be modelled 

by randomly scattering Cu Kα photons across the CCD image area. By simulating the 

noise, the amount of CCD exposures required to reduce the error in the noise and 

resolve low intensity diffraction peaks can be predicted.  

5.6.1 Cu Kα X-ray Interactions in the CCD30-11 

During XRD analysis the only X-ray energy of interest is the strong characteristic    

Cu Kα X-rays (8047 eV) produced by the Bede micro-source. This section 

investigates the ability of the CCD30-11 to detect these photons and how these 

interactions can be modelled by computer simulations. The probability that an X-ray 

of energy E, will interact at a depth z, is given by:  

( ) ( ) 







−=

z

z
PZP

λ
exp0 ,             (5.5) 

where λZ is the linear attenuation coefficient for an X-ray with energy E in Si.  The 

depletion depth of the CCD30-11 under standard biasing conditions is approximately 

12 µm. The transmission of Cu Kα (8047eV) X-rays in Si is shown in figure 5.19. The 

probability of producing an isolated X-ray event at a given depth into the Si is also 

shown, which has been calculated by the simulations described in Section 5.2.  
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Figure 5.19: Transmission of Cu Kα X-rays through the CCD30-11 

Only ~ 16% of Cu Kα X-rays are absorbed within the CCD’s depletion region and     

~ 30% are detected within the epitaxial region. Approximately 70% of the events are 

absorbed in the substrate region, which will result in charge diffusion and charge loss. 

Assuming an X-ray has been absorbed in the field free region at a depth z, the amount 

of charge reaching the depletion layer boundary Qffr, can be expressed as        

[Holland 1990]: 

 

  (5.6) 

 

where Lffr represents the diffusion length in the field free region. The diffusion length 

is the length at which 68% of the charge carriers have recombined. The diffusion 

length, Ln, can be calculated using the expression [Sparkes 1994]: 

                         enn DL τ= ,        (5.7) 
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where τe is the recombination lifetime of the electron (s) and Dn is the diffusion 

coefficient. For a p-type doping concentration (Na) of 1.25 × 1014 cm-3, τe is 

approximately 0.0003 seconds [Tyagi & Overstraeten 1983]. The value of Dn depends 

on the electron mobility which is 1500 cm2 V-1 s-1 for a doping concentration of      

1.25 × 1014  cm-3. Using equation 5.7, the diffusion length in the field free region of 

the CCD30-11 was calculated to be ~ 1000 µm. Since Lffr >> Zffr, charge loss in the 

field free region can be ignored. Assuming the X-ray has been absorbed in the 

substrate, the amount of charge reaching the epitaxial layer boundary can be 

expressed as: 









−=

sub
oTotal L

z
QQ exp .            (5.8) 

Due to an increase in doping (p+), the diffusion length in the substrate Lsub, reduces to 

~ 10 µm (Na = 1.25 × 1018 cm-3), which occurs at a depth of 35 µm into the Si          

(Zd + Zffr + Lsub). Therefore, over 99% of the charge reaching the potential well is lost 

when X-rays interact at a depth greater than ~ 50 µm in the Si. Since ~ 50% of the   

Cu Kα X-rays interact at a depth greater than 50 µm, 50% of the Cu Kα incident      

X-rays will be lost due to recombination. If an X-ray interacts at a depth > 50 µm, the 

software does not process the event. X-rays which interact at Zffr > z < 50 µm will 

form split events and experience charge loss. Unlike split events that occur in the 

epitaxial region, these events cannot be summed to reform the original X-ray energy. 

The 1σ cloud radius of X-rays absorbed in the substrate, rsub, can be calculated using 

the expression [Holland 1990]: 

2

1
2.2 








−=

sub

sub
sub L

zL
r .                       (5.9) 

The size of the charge cloud reaching the n-type buried channel includes additional 

spreading in the field free and depletion region and can be expressed as: 

2222
subffrdi RRRRR +++= .      (5.10) 

The result is that out of the total Cu Kα X-rays incident on the detector surface, 30% 

of these events will interact in the epitaxial region and 70% will interact in the 
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substrate. Out of the 30% of X-rays that ionise in the epitaxial layer, ~ 20% will form 

isolated events. Out of the 70% of X-rays that ionise in the substrate, ~ 20% will form 

split events with charge loss and 50% will be completely lost due to recombination. It 

should be noted that the substrate region is purposely very highly doped to ensure 

photo-generated charge is greatly reduced when X-rays interact in this region. The 

substrate is therefore a ‘dead region’ and the performance of the device is based on 

the epitaxial layer. The interaction of Cu Kα X-rays in the CCD30-11 is simulated 

exactly as described in Section 5.2, with the additional introduction of charge loss in 

the substrate. To summarise, 20% of the Cu Kα X-rays will form isolated events, 10% 

will form split events without charge loss, 20% will form split events with charge loss 

and 50% will be lost to recombination. The overall performance of the CCD30-11 in 

detecting isolated Cu Kα X-rays is poor, since the epitaxial region is small (25 µm).   

5.6.2 Peak Shapes and Counting Statistics 

The profile of 2 CaCO3 XRD peaks is shown in figure 5.20 (a). The diffraction rings 

have been accurately modelled using Gaussian peak shapes, therefore the peak mean, 

FWHM and amplitude can be accurately extracted from the fit. The parallel beams 

produced by the XOS optic result in very symmetrical diffraction peaks, leading to 

high quality fits with Gaussian models.  

 

 

 

 

 

 

 

Figure 5.20: (a) XRD rings of CaCO3 fitted using Gaussian peak shapes and (b) the 

          number of diffracted events detected in 1 s exposures, over the period 

         of 1 hour 
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Parameter Explanation
Peak mean 2θ diffraction location

P I Number of isolated diffraction events/exposure

Peak FWHM FWHM of XRD peak
X-ray energy Energy of diffracted X-rays 

λ E Linear attenuation coefficient of incident X-rays in Si

CCD binning mode / pixel size Binning mode of CCD and pixel size
N Exp Total number of exposures to simulate

N bck Total number of background events/s

I d CCD dark current

σ RN CCD readout noise

Z d Depletion depth

Z ffr Field free region depth

Z sub Substrate region depth

L sub Diffusion length in substrate

N a p channel doping concentration

Figure 5.20 (b) shows the number of events collected in 1 s exposures, over the period 

of one hour for the CaCO3 peak located at CCD column number 37 in figure 5.20 (a). 

The mean number of events collected by the detector was 6.86 Cu Kα photons /s with 

an error of 2.6 Cu Kα photons/s. The number of diffracted photons collected in a 

given time interval can be accurately modelled using a Poissonian distribution, with 

an error given by the square root of the mean number of counts.   

5.6.3 Model Operation 

This section describes the operation of the modelling program used for simulating 

XPRD data using CCDs. A model of the strongest peak in ZnO (101 reflection) is 

used as an example throughout this section. The ZnO XRD data was collected under 

standard operating conditions with Rsd = 30 mm. The initial stage involves fitting the 

ZnO peak with a Gaussian function as shown in figure 5.20 (a). The 3 parameters 

extracted from the fit are the 2θ location of the peak (36.25°), the FWHM of the peak 

(0.13°)  and the most important parameter, the integrated intensity of the peak (27.88 

Cu Kα photons/s). This represents the number of isolated Cu Kα events collected per 

second. The main input parameters required for the simulation are listed in table 5.3.  

 

 

 

 

 

 

 

Table 5.3: Summary of the main input parameters required for simulation 

Since the detectors are tiled along the measuring circle, the parallel beams diffracted 

from the sample are detected orthogonally by the CCDs. The simulation therefore 

assumes all diffracted X-rays are detected at an angle of 90°. The model begins by 

distributing Cu Kα photons in a Gaussian distribution in the horizontal direction and 
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randomly in the vertical direction, as shown in (figure 5.21 (a)). The number of 

diffracted photons simulated in each exposure is calculated from a Poissonian 

distribution with a mean PI+S+Cl, where PI+S+Cl is the total number of diffracted 

photons incident over the diffraction ring in each exposure. Figure 5.21 (b) shows the 

different types of electron-hole clouds formed by the Cu Kα photons interacting at 

different depths in the Si. During each exposure, Nbck X-rays are randomly scattered 

across the entire CCD imaging area. Once the diffracted/background X-ray positions 

have been simulated, the program determines the fraction of charge in each pixel. 

Each pixel is also assigned a dark current and readout noise value selected from a 

Poissonian distribution with mean Id and Gaussian distribution with an error σRN 

respectively. A digitised image is then generated (figure 5.21 (c)) and the single 

photon counting technique is applied by rejecting split events from each exposure. 

The simulation is run for NExp exposures and the energy discriminated images are 

combined. The final image generated is an array of numbers representing the number 

of isolated diffracted photons collected in each pixel over NExp exposures. Figure 5.21 

shows 3 screenshots of the program simulating the ZnO diffraction ring. 

 

 

 

 

 

 

 

 

Figure 5.21: (a) Distribution of simulated photons inside diffraction ring of ZnO (b) 

         electron-hole clouds being produced at different interaction depths (DR= 

         depletion region, FFR = field free region, Sub = substrate) and (c)   

         digitised image of the diffraction ring 

CCD rows 
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5.6.4 Chi-Squared Goodness of Fit     

In order to determine the quality of fit between the simulated and experimental data, a 

chi-squared (χ2) goodness of fit test was used. The χ
2 test can be used to determine if 

sets of data are ‘statistically significant’, at a certain significance level, αsig, also 

known as the confidence level (1 - αsig). For example, if the data sets are found to be 

statistically significance when αsig is 0.05, this means there is only a 5% chance the 

agreement occurred by chance. The χ2 value can be calculated using the expression: 

( )
∑

=

−=
xN

i i

ii

Exp

ExpObs

1

2
2χ ,           (5.11) 

where Obsi is the experimental observation at data point i, Expi is the simulated value 

at data point i, and Nx is the number of samples tested. The agreement between the 

data sets is found to statistically significant when the χ2 value is less than the critical 

Chi value, χcrit. The χcrit value can be determined from the Chi-squared distribution 

table based on αsig and the degrees of freedom (dof). The dof can be calculated using 

the expression: 

1−−= rmx pNdof ,                                          (5.12) 

where Prm is the number of parameters used to generate the simulated model (e.g. Prm 

is 3 for a Gaussian distribution). The next section presents results from the modelling 

program and highlights the agreement between the simulated and experimental data 

for the ZnO powder sample. 

5.6.5 Simulation Results 

5.6.5.1 Total Events – Splits + Isolated 

The ZnO peak (101 reflection) consisted of 27.88 isolated counts per exposure (1 s 

each) within a 28 pixels wide (± 3 standard deviations) diffraction ring. The total 

number of X-rays distributed over the diffraction ring per second is denoted by 

PI+S+Cl, which represents the isolated events (PI), split events (PS) and events lost to 

recombination (PCl). Since 50% of these events are lost to recombination, PI+S 

represents the number of detected events (isolated and split). After PI+S+Cl photons are 
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distributed across the diffraction ring, the total number of isolated events within the 

ring PI, is calculated. The total number of events can be expressed as: 

          mlIClSI TPP ×=++ ,    (5.13) 

where Tml is the multiplication factor and from the discussion presented in Section 

5.6.1, was expected to be ~ 5. Therefore, if PI was 27.88 Cu Kα photons/s, PI+S+CL 

was expected to be ~ 139. The simulation distributed 139 photons across the ZnO 

diffraction ring each exposure. The simulation was repeated for 500 exposures in full 

imaging mode (256 × 1040 pixels). All input parameters used in the simulation were 

derived from the process involved in collecting the experimental ZnO data. Figure 

5.22 shows the results from the simulation. 

 

 

 

 

 

 

Figure 5.22: Simulation of ZnO diffraction ring revealing the total number of incident 

          X-rays on the detector surface 

The best fit to the experimental data was found at PI+S+Cl = 134.66 Cu Kα photons/s, 

resulting in a multiplication factor of ~ 4.94. The number of isolated events PI, 

generated through the simulation was 27.21 Cu Kα photons/s, which is in very good 

agreement with the observed data.. Figure 5.22 also shows the number of detected 

events PI+S, which is ~ 50% of PI+S+Cl.   

5.6.5.2 Optimisation of CCD Integration Time 

As the exposure time is increased, the diffraction ring becomes congested with events 

and the detection of isolated X-rays begins to decay. The rate of this decay is 

dependant on the diffraction efficiency of the sample and the number of pixels the 
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ring occupies. Figure 5.23 highlights the effect of increased exposure time in 

collecting single pixel events. A single pixel event contains a value greater than the 

noise threshold with 4 neighbouring pixels having a charge less than the noise 

threshold. This is shown by blue spots in figure 5.23 (a). When the pixels are 

congested with events, as shown in figure 5.23 (b), the probability of producing an 

isolated event decreases. For XRD applications, the CCD exposure time can be 

increased to find the optimum time at which isolated events within the ring are at a 

maximum. This section aims to calculate this point through simulations and make 

comparisons to experimental data.  

 

 

 

 

 

 

 

 

Figure 5.23: (a) Sparsely populated events inside diffraction ring  and (b) congestion 

           of events resulting in unresolved isolated events 

Figure 5.23 (b) shows the difference between ‘unresolved’ and ‘resolved’ isolated 

events. An unresolved isolated event occurs when the pixel’s charge is confined to a 

single pixel but the neighbouring pixels also contain charge above the noise threshold, 

usually due to overcrowding of events. An unresolved isolated event is therefore not 

detected by the energy discrimination process and is lost. A ‘resolved’ isolated event 

represents an event that has been successfully detected as an isolated event, as the 

neighbouring pixels have a charge less than the background threshold. The 

relationship between ‘unresolved’ and ‘resolved’ isolated events is simulated and 

presented in Section 5.6.5.5.  
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The ZnO ring was located across 0.33°, which results in a total of 7,168 available 

pixels (256 × 28 pixels). Since approximately 9 pixels are required to detect an 

isolated event, the maximum number of isolated events that can be detected is ~ 800. 

However, since the majority of events within the ring will form split events, the 

maximum number of isolated events was expected to be much lower than 800. 

According to the simulation, ~ 135 Cu Kα photons are incident on the CCD per 

second, as calculated in the previous section. The model distributes 135 photons/s 

over the diffraction ring, calculates PI (already calculated to be approximately 27.21) 

and increments the CCD exposure time. During a CCD exposure of 2 s, 270 Cu Kα 

photons (135 counts/s × 2 s) are distributed across the ring and PI is re-calculated. It is 

important to remember that 50% of the incident photons are lost to recombination, 

therefore only ~ 68 (135/2) events are produced in each exposure. The aim of the 

experiment was to determine the optimum CCD exposure time that produced the 

maximum number of isolated events. Figure 5.24 shows the results of the simulation.  

 

 

 

 

 

 

 

 

 

 

Figure 5.24: Variation in isolated events in ZnO diffraction ring with increasing CCD 

          exposure time – experimental vs. simulated 
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After ~ 32 seconds of exposure time, the number of isolated events inside the ring 

peaks and a total of 2,176 events (68 photons/s × 32) have saturated the available 

7,168 pixels. The number of isolated events then begins to decay as overcrowding of 

events becomes dominant. The simulation is in good agreement with the experimental 

data for exposure times < 34 seconds, with a confidence level of 97.1%, determined 

with the χ2
 test. Figure 5.25 shows a possible reason for the disagreement for exposure 

times > 34 seconds.       

 

 

 

 

Figure 5.25: (a) Simulated image of ZnO diffraction ring with even distribution and 

           (b) experimental image of ZnO peak displaying some preferred   

           orientation 

Figure 5.25 (a) and (b) show the simulated and experimental images of the ZnO 

diffraction ring respectively. The contrast of these images has been adjusted to 

enhance the regions of maximum intensity. Due to preferred orientation in powder 

samples, the distribution of photons in the experimental images is more like that seen 

in figure 5.25 (b). Since some grains in the ZnO powder sample are more orientated 

than others, particular regions of the diffraction ring experience a higher flux of 

diffracted X-rays. These regions become saturated with events (reducing the number 

of detected isolated events) whilst other regions receive a much lower flux of 

diffracted events. This is a possible reason for the disagreement between the model 

and experimental data, as the model assumes a perfectly Gaussian distribution of 

events inside the ring. However, the model still accurately predicts the point at which 

the isolated events peak. Using the model, the optimised exposure time for any 

sample can be calculated prior to data collection. Figure 5.26 shows the results of 

modelling samples with varying diffraction efficiencies over a 0.33° wide (± 3 

standard deviations) XRD ring.  
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Figure 5.26: Diffraction efficiency vs. optimum CCD integration time over a 0.33° 

          wide diffraction ring 

The simulation clearly illustrates that as the diffraction efficiency increases, the CCD 

must be integrated for shorter periods because the higher flux of X-rays causes more 

interference with detecting isolated events. The model can be used to estimate the 

optimum time (τopt) to integrate the CCD in order to collect the maximum number of 

single pixel events for a given diffraction efficiency (PI+S+Cl). For a 0.33° wide 

diffraction ring (± 3 standard deviations), τopt can be expressed as: 

             ( )9935.0)(8.4137 −
++= ClSIopt Pτ .            (5.14) 

5.6.5.3 XRD Pixel Events 

The previous section has discussed the detection of isolated events in a single CCD 

exposure. This section describes the variation in pixel events from exposure to 

exposure. During the energy discrimination of each exposure, each pixel (where an 

isolated Cu Kα photon is detected) is incremented by one. In the example of ZnO, this 

is applied to all 1000 exposures yielding an image where each pixel contains N 
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events. The modelling of post energy discriminated exposures is relatively simple 

compared to the simulation shown in figure 5.24. Out of the 7,168 available pixels in 

the ZnO ring, ~ 27 of these pixels are incremented by 1 each second (the number of 

events detected in each exposure has a Poissonian distribution with an error given by 

equation 2.15). As the exposures are increased, the probability of an event being 

detected in a previously filled pixel increases. Approximately 68% of the events are 

localised within 1 standard deviation of the mean, therefore multiple isolated events 

are more likely to occur in these regions. Figure 5.27 shows the progression of 

multiple single pixel events in the ZnO ring over 1000 exposures. The simulation 

shows a very good agreement to the experimental data, with an average confidence 

level of 95.6%, determined using the χ
2 test.  

 

 

 

 

 

 

 

 

 

 

Figure 5.27: Progression of multiple single pixel events in a ZnO XRD peak (101 

           reflection) over 1000 exposures – experimental vs. simulated 

5.6.5.4 CCD Binning Effects  

Binning a CCD image involves summing numerous pixels, which results in an 

increase in isolated events but causes a loss in spatial resolution. For example, 2 × 2 
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binning of the CCD image quadruples the size of each pixel whilst maintaining the 

size of the charge cloud generated by each X-ray photon. Split events that are noticed 

without binning are now summed to form single pixel events. Although binning 

causes an increase in single pixel events, the number of available pixels is greatly 

reduced. In the ZnO example, the number of available pixels within the diffraction 

ring reduces from 7,168 in full imaging mode to 1,792 pixels in 2 × 2 binning mode.   

Figure 5.28 (a) and (b) show the results from a simulation comparing the isolated 

event efficiency for a normal and 2 × 2 binned CCD image for a total of 68 and 386 

detected events (PI+S) per second respectively. The simulation with 68 detected 

photons represents the ZnO peak used in previous examples and is distributed over a 

0.33° wide diffraction ring. The benefit of binning is evident from figure 5.28 (a), as 

an increase of ~ 11 isolated Cu Kα photons is seen in 2 × 2 binning mode. The ratio of 

resolved to unresolved isolated events is similar, as events are sparsely populated 

across the CCD and congestion of events is limited. With 386 detected events, 

binning becomes a disadvantage as overcrowding of events begins to interfere with 

the detection of single pixel events. The ratio of resolved to unresolved isolated events 

is also seen to decrease due to this effect.  

 

 

 

 

 

 

 

Figure 5.28: Comparison of isolated event efficiency for 1 × 1 and 2 × 2 binned   

           images with (a) 68 and (b) 386 detected events 

The majority of samples used in testing the CCD-Array produce less than ~ 250 

detected events per second. The simulations highlight the fact that it is more 
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beneficial to operate the CCD in 2 × 2 binning mode as opposed to full imaging mode 

for the majority of applications. The readout time of the device is reduced from 1.6 to         

0.4 seconds and more single pixel events are detected. The reduction in spatial 

resolution is irrelevant as the width of diffraction peaks in PB geometry is much 

greater than the spatial resolution of the CCD. The increase in dark current in binning 

mode is also irrelevant for reasons discussed in the next chapter.  

5.6.5.5 XRD Background Noise  

The simulation of XRD background noise involves the random scattering of Cu Kα 

photons across the CCD image area. For the majority of samples used for testing the 

CCD-Array, scattered background events (BI) range from 5 − 75 events/s. This 

represents single pixel events therefore the total number of background events 

(BI+S+Cl) incident on the detector surface is usually 25 − 375. Since the scattering of 

these background events is random, the mean noise level in the diffraction pattern 

(πxrd) can be expressed as: 

c

I
xrd N

B=π ,              (5.15) 

where Nc is the number of columns in the CCD image (which depends on the CCD 

binning mode). For the ZnO example, the mean background level in the diffraction 

pattern was found to be 0.054 Cu Kα photons/s. The data was collected without 

binning (Nc = 1024), therefore re-arranging equation 5.15, the number of isolated      

Cu Kα background events incident on the CCD per second was calculated to be ~ 55.  

The modelling program can be used to understand the error associated with the 

background noise with respect to increasing CCD exposures. Figure 5.29 shows πxrd 

and the variation in the associated error σxrd, with increasing CCD exposures. The 

characteristics of the background noise are not influenced by any diffraction peaks. As 

stated in equation 5.15, πxrd is dependant on BI and Nc, whereas σxrd is determined by 

the number of CCD exposures. Many minerals and rocks contain diffraction peaks 

with very low intensities that are comparable to the mean level of the background 

noise. If σxrd is too high, such peaks are lost within the background noise and cannot 

be detected. 
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Parameter Value Units
N diff 1 counts/s

B I 55 counts/s

N C 1024 pixels

π xrd 0.05 counts/s

P xrd 0.12 counts/s

α sig 95 %

Z crit 1.64

N cnt 15 pixels

It is important at this stage to clarify the software process used in detecting an XRD 

peak. The aim of the peak-finding algorithm is to find any statistically significant 

events from the background noise, which has a Gaussian distribution with a mean πxrd 

and standard deviation σxrd. This is performed using a ‘Z test’, which determines if the 

difference between an event and the noise mean is large enough to be statistically 

significant. The Zscore is determined using the expression: 

xrd

xrdevent
scoreZ

σ
ππ −= ,       (5.16) 

where πevent is the value of the event in question. The Zscore is then compared to a Z 

table, which contains the percent of area under the curve between πevent and πxrd. Since 

XRD peaks are above the mean level of the noise, a one-tailed test is performed. For a 

significance level, αsig, of 0.05, the Zscore must be greater than 1.64. The software 

calculates the Zscore of each count in the XRD pattern, then checks to see if Ncnt pixels 

are above αsig. Since the standard width of XRD peak is ~ 40 – 50 pixels, Ncnt was  

pre-set to 15 pixels, although this was an adjustable parameter.  

Consider a single exposure with the parameters given in table 5.4.   

 

  

 

 

 

Table 5.4: Summary of parameters used in simulation 

For the parameters given in table 5.4, the software can be used to calculate how many 

CCD exposures are required to resolve the XRD peak, Pxrd (Pxrd has 1 diffracted 

photon/s). Figure 5.29 shows πxrd and the reduction in σxrd with increasing exposure 

time for the parameters listed in table 5.4.  
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Figure 5.29: Variation of σxrd with respect to CCD exposures for the parameters listed 

           in table 5.4  

Figure 5.30 (a) and (b) show the effect of σxrd in detecting Pxrd, after 100 and 650 

exposures respectively. After 650 CCD exposures, Ncnt pixels (located between pixel 

numbers 492 and 508) exceed a Zscore of 1.64, therefore these pixels are registered as 

containing statistically significant data (i.e. an XRD peak), at a 95% confidence level.  

 

 

 

 

 

 

Figure 5.30: Simulated XRD pattern containing 55 background events and 1   

          diffracted photon after (a) 100 CCD exposures and (b) 650 CCD             

          exposures.  
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If the number of background events is known prior to data collection, the modelling 

program can be used to calculate the minimum number of exposures required to 

resolve very low intensity peaks. The SNR of the diffraction pattern can be expressed 

as: 

  
xrd

xrdxrd
xrd

P
SNR

σ
π−= ,          (5.17) 

where Pxrd is the peak height of the XRD peak.  

5.7 Discussion 

This chapter has investigated the data collection and analysis of the XRPD technique 

using CCD detectors. The ability of the CCD30-11 to collect isolated X-ray events 

has been determined by depletion depth measurements, which conclude that the 

depletion region extends 12 µm into the Si epitaxial layer under standard biasing. 

Techniques in collecting combined XRD/XRF data have been highlighted and results 

have been presented. The different noise sources present in XRD patterns have been 

explained. A method of reducing elastic scattering noise in XRD patterns (SPE) has 

been presented and compared to existing techniques [Cornaby et al. 2000]. For shorter 

exposures, it was found that NPE was more effective at removing noise, with an 

improvement in SNR of ~ 100. For longer exposures, SPE was more productive at 

removing noise with a SNR of ~ 265 in comparison to ~ 167 for the NPE technique. 

The disadvantages of using full frame CCDs for XRD applications have been 

discussed and the advantages of using frame transfer devices have been highlighted. 

The final section of this chapter presented results from a novel modelling program 

designed to simulate the collection of XRPD data using CCD detectors. The model 

can be used to optimise the performance of the detector for different XRPD 

applications. Agreement between the model and experimental data has also been 

highlighted.  
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Chapter 6 : Operational Performance and Application s of the 

CCD-Array 

6.1 Introduction 

This chapter describes the operational performance of the CCD-Array. The initial 

section of this chapter examines the transmission of X-rays through the current test 

facility. All attenuation factors are calculated and the low energy detection limit of the 

CCD-Array is determined. The performance of the CCD30-11 in detecting soft X-rays 

is investigated by generating a response matrix. Different sample preparation issues 

experienced during testing of the CCD-Array are highlighted and the temperature and 

power required by the instrument to perform combined XRD/XRF analysis is 

presented. The use of the CCD-Array in different applications is discussed and 

optimisation of the geometry is suggested.  

6.2 X-ray Transmission and Detection 

The flux produced by the Bede micro-source with respect to tube voltage and current, 

has been calibrated in Chapter 2. At the standard operating power of 80 W               

(40 kV, 2 mA), the micro-source produced a flux of ~ 3 × 106 counts/s within a       

150 µm spot. By knowing the flux incident on the sample and determining the 

attenuation factors of signal X-rays (characteristic and diffracted), it was possible to 

estimate the detection efficiency of X-rays ranging from 0.1 − 10 keV in the described 

experimental arrangement, with particular interest in the low energy response. The 

path of X-rays from the point of production in the Bede micro-source to detection by 

the CCD can be summarised as follows: 

1. Continuous and characteristic Cu X-rays generated by Bede micro-source.  

2. X-ray polycapillary optic greatly attenuates X-rays > 10 keV and focuses      

X-rays into a 1 mm low divergent beam (~ 0.2° FWHM).  

3. A 15 µm Ni filter at the optic output, results in a 93% monochromatic beam of 

Cu Kα X-rays.  

4. X-ray flux is reduced by 180 mm of air between optic and sample.  
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5. Incident X-rays are partly/fully  absorbed in sample. 

6. X-rays diffracted/fluoresced from sample based on sample’s efficiency.  

7. Signal X-rays attempting to escape the sample are partly/fully absorbed. 

8. Flux of signal X-rays is reduced by 108 mm of air between sample and 

detector.  

9. Signal X-rays are attenuated by 20/40 µm Mylar X-ray window.  

10. Signal X-rays from 0.1 − 10 keV are detected based on the CCD’s QE. 

6.2.1 Sample Absorption 

The signal X-rays produced by the incident radiation will be attenuated as they travel 

through the sample. The absorption of signal X-rays depends on the linear attenuation 

coefficient and thickness of the sample, Tsp. In the reflective XRD geometry, the 

attenuation of signal X-rays depends on the interaction depth. Photons emitted from 

the top surface of the sample experience little or no attenuation. The top surface of the 

sample also represents the maximum intensity of the irradiating beam. This is one of 

the major advantages of the reflective XRD geometry in comparison to the 

transmission geometry, since a high flux of characteristic X-rays can be generated on 

the detector side of the sample. X-rays that are emitted from inside the sample (as 

shown in figure 6.1) cannot escape if the emission depth is too high. Ed represents the 

maximum emission depth of a photon of a given energy and can be calculated based 

on the linear attenuation coefficient of the sample.   

 

 

 

 

 

Figure 6.1: Maximum emission depth of signal X-rays in a basalt powder 
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The most common igneous rock found in Earths crust, basalt, is used as an example in 

this section. Igneous rocks are composed of approximately 9 primary oxides, which 

are Al2O3, CaO, Fe2O3, K2O, MgO, Na2O, P2O5, SiO2 and TiO2. By knowing the 

fractional weight of each of these oxides in the sample Wi, and the mass attenuation 

coefficients of the oxides [Henke et al. 1993], the overall mass attenuation coefficient 

can be calculated using the expression: 

    ∑ 







=

i
i

i p
W

p

µµ
.                   (6.1) 

Using equation 3.21, the transmission of X-rays from 0.1 − 10 keV can be calculated 

based on the thickness of the basalt sample and the density (typically 3 g/cm3 for 

basalt). Complete attenuation of the signal X-rays Latt, was represented as the amount 

of sample required to reduce the intensity by 99.9%. For a 1 keV, 2 keV and 3 keV 

photon, Latt was calculated to be 6 µm, 15 µm and 45 µm respectively. The value of 

Ed is also dependant on the angle of emission θ, as shown in Figure 6.2.  

 

 

 

 

 

 

Figure 6.2: Maximum emission depth of a 1 keV X-ray photon in basalt 

As discussed in Section 3.16.2, signal X-rays that are emitted at lower angles must 

travel longer path lengths to escape the sample resulting in increased attenuation. The 

value of Ed can be calculated using the expression: 

        ( ) attd LE ×= θsin .                (6.2) 
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For the example in figure 6.2, the maximum emission depth of a 1 keV photon in 

basalt, emitted at an angle of 30°, was calculated to be 3 µm. Similarly, for a 3 keV 

photon, Ed was calculated to be 22.5 µm. Based on equation 6.2, as the emission angle 

decreases, Ed also decreases. Assuming the detector is active across an average angle 

of 20°, the maximum depth at which a 2 keV photon can be detected is ~ 5 µm. 

Increasing Tsp > 5 µm, will not change the number of detected 2 keV photons.  

The thickness of the sample determines the attenuation of the incident radiation, as 

well as the attenuation of signal X-rays. Primary characteristic X-rays can cause 

secondary fluorescence of other atoms, thereby reducing the intensity of the primary 

radiation and increasing the intensity of secondary radiation. For example, an Fe Kα 

photon generated at a depth of 10 µm, may encounter a Ca atom at a depth of 2 µm 

when attempting to escape the sample. Since the energy of the Fe Kα photon        

(6403 eV) is greater than the K shell binding energy of Ca (4038 eV), a Ca Kα X-ray 

may be produced by the interaction (16.3% probability). This must be considered 

when performing quantitative XRF analysis through ‘matrix corrections’, where the 

‘matrix’ represents the various elements in the sample. However, this does not 

influence the maximum emission depth at which X-rays can be generated. The next 

section takes into account the remaining absorption factors of signal X-rays prior to 

detection, in order to determine the low energy X-ray response of the CCD-Array.  

6.2.2 Low Energy X-ray Response of the CCD-Array 

Without the path between the sample and detector in a vacuum, the detection of low 

energy elements in air is difficult to achieve. A 108 mm distance between the sample 

and CCD-Array provides very high spatial resolution for XRD applications (0.012°), 

but results in severe attenuation of low energy X-rays for XRF applications. The 

attenuation of signal X-rays in the test facility prior to detection by the CCD is now 

discussed.  

The main composition of air contains N (78%), O (21%), Ar (0.934%) and CO2 

(0.033%). Using equation 6.1 the overall mass attenuation coefficient for air was 

calculated and using equation 3.21, the transmission of soft X-rays through 108 mm 

of air was determined, as shown in figure 6.3. This figure also shows the fluorescence 

yield [Krause 1979] and the remaining absorption factors of signal X-rays, prior to 

detection (5 µm thick basalt sample, 20 µm Mylar X-ray window and the CCD’s QE).   
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Figure 6.3: Attenuation of signal X-rays from 0.1 − 10 keV prior to detection 

The transmission of X-rays through the sample was estimated using 5 µm of basalt 

powder. Based on figure 6.3, the low energy detection limit was expected to be 

between 1 − 2 keV. Since the maximum emission depth of a 1 keV and 2 keV photon 

in basalt is 3 µm and 7.5 µm respectively, attenuation through 5 µm is a reasonable 

approximation for the sample absorption. Basalt was an ideal sample to test since it 

contains 4 elements with characteristic Kα emissions in this energy range (Na, Mg, 

Al, Si).  

Figure 6.4 shows the overall transmission of X-rays from 0.1 − 10 keV under standard 

operating conditions for a 20 µm and 40 µm X-ray window thickness. Figure 6.4 also 

shows the resulting increase in transmission when the air gap between sample and 

detector is eliminated, with and without a 20 µm Mylar X-ray window. All 

transmission curves include the K shell fluorescence yield for elements with Kα 

emission from 0.1 − 10 keV.    
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Figure 6.4: Transmission of X-rays from 0.1 − 10 keV from sample to detector  

The low energy detection limit is related to the number of exposures accumulated. For 

typical samples, 102 − 103 exposures (1 s) are acquired by the CCD. The Bede             

micro-source produced ~ 3 × 106 counts/s in a 150 µm spot, although this was 

expected to be 1 order of magnitude lower than the actual flux produced [Gibson & 

Gibson 2002]. As an initial estimate, it was assumed that the low energy detection 

limit was ~ 1 keV, which corresponds to Na Kα X-rays (1041 eV). It is highly 

unlikely that 3 × 106 X-rays/s will interact with a Na atom in the basalt sample and 

result in the emission of characteristic Na Kα photons. In order to estimate the low 

energy detection limit, the number of incident X-rays that are available to excite the 

Na atom per second must be approximated. A crude approximation was made that 1% 

of the incident photons (~ 3 × 104 counts/s) interacted with the Na atoms (or Mg, Al, 

or Si atoms). If 1000 exposures are collected, ~ 3 × 107 X-rays will have interacted 

with the Na atoms (all incident X-rays have sufficient energy to dislodge K shell 

electrons with a binding energy < 2 keV (see figure 3.16)). To collect a minimum of 
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100 photons in 1000 exposures, the transmission cannot be less than ~ 1 × 10-6, which 

is located at ~ 1.7 keV (Si Kα), as indicated in figure 6.4. This is the estimated low 

energy detection limit based on a collection time of 1000 exposures (1 s each) and an 

approximation that 1% of the incident photons interact with the Si atoms and all 

resulting Si Kα emissions (~ 4.7%)  are detected based on the CCDs solid angle.   

In order to determine the low energy detection limit, data was collected from a basalt 

powder under the same experimental conditions used in the calculations (20 µm 

Mylar X-ray window, 108 mm air gap, 12 µm CCD depletion depth, 150 µm spot 

size, 80 W X-ray source operating power and 1000 exposures). The resulting 

spectrum is shown in figure 6.5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: XRF spectrum of basalt highlighting the low energy detection limit         

         under normal operating mode to be Al Kα (1487 eV) 

As shown in figure 6.5, the lowest energy detected by the CCD-Array was ~ 1.5 keV 

(Al Kα), which was lower than expected (1.7 keV). In the laboratory arrangement, the 
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high absorption of X-rays in air is counteracted by the high flux produced by the Bede 

micro-source. For a portable X-ray source, the flux would be ~ 2 − 3 orders of 

magnitude lower than the Bede micro-source, thereby degrading the low energy 

detection limit to ~ 2.5 keV, as indicated in figure 6.5. Improvements to the low 

energy detection limit in the 2nd generation CCD-Array are discussed in Section 7.2.  

6.2.3 CCD30-11 Response Matrix 

The final stage in the X-ray transmission process is the detection of signal photons 

ranging from 0.1 − 10 keV by the CCD30-11. The response of the CCD30-11 to      

X-rays of different energies can be determined using a response matrix. The response 

matrix is a 2-dimensional image that represents the probability of generating a 

digitised value for a given X-ray energy. The response matrix was generated using 

Monte-Carlo simulations, which involved simulating 1 × 104 incident photons from 

0.1 − 10 keV, in 1 eV steps. The process of determining the digitised value of a given 

X-ray photon was calculated as follows.  

The simulation calculated the transmission of the incoming X-ray photon through the 

dead layer of the CCD, which consists of 0.835 µm of SiO2, 0.085 µm of Si3N4 and 

0.3 µm of polysilicon for the CCD30-11. The fraction of events absorbed in the 

CCD’s depletion region was calculated using equation 3.25. Based on the absorption 

depth and X-ray energy, the size of the charge cloud reaching the buried channel was 

calculated. If the charge cloud was spread across multiple pixels the fraction of the 

charge cloud in each pixel was calculated. The fraction of energy assigned to the 

given pixel was determined by summing across a 3-dimensional Gaussian mesh, 

which represented the distribution of the charge cloud. If the X-ray interacted in the 

CCD substrate, the charge loss through recombination was also calculated. Each pixel 

was also assigned a dark current value, which was selected from a Poissonian 

distribution with a mean Id, and readout noise value, which was selected from a 

Gaussian distribution with an error, σRN. The photon shot noise was also added to each 

X-ray photon, which depends on the X-ray energy and CCD operating temperature 

(equation 3.16). The simulated response matrix of the CCD30-11 is shown in figure 

6.6 from 0.1 − 10 keV.  
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Figure 6.6: Response matrix of the CCD30-11 (Cal = 10 eV/ADC, pixel size =        

          (26 µm)2, noise threshold = 14 (ADC), Zd = 12 µm, Zffr = 8 µm,           

          Zsub = 300 µm, σRN = 7.4 ē r.m.s, Id = 1 ē p/p/s, input photons =              

          1 × 104/eV, CCD operating temperature = -40 °C, ω = 3.7)  

The x-axis represents the energy of the detected X-ray photon and the y-axis 

represents the digitised value of the photon. The image has been displayed in log scale 

to show the low intensity split events, located above the noise threshold. The main 

diagonal line in figure 6.6 represents the Kα X-ray peak, the FWHM of which is given 

by equation 3.24. The secondary line is located 1740 eV below the main X-ray peak 

and represents the Si escape peak.  

By summing across the y-axis of the response matrix, the Gaussian profile of the main 

X-ray peak can be generated, along with the profile of split events. Figure 6.7 (a) 

highlights the agreement between the expected and simulated spectrum of a 
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radioactive Fe55 source.  Figure 6.7 (b) emphasises the agreement between a simulated 

and experimental Ca Kα X-ray peak (3691 eV). 

 

 

 

 

 

 

 

Figure 6.7: (a) Comparison between experimental data and response model for an 

        Fe55 spectrum, which contains both isolated and split events. Figure 6.7 

        (b) Comparison between experimental data and response model for a      

        Ca Kα X-ray peak (FWHM errors < 0.3 %) 

By summing across the x-axis of the response matrix, the QE of the CCD can be 

calculated. Figure 6.8 shows a comparison of the expected QE (calculated using 

equation 3.25) of the CCD30-11 and the QE generated through the response matrix. 

The ‘Expected DR QE – 12 µm’ calculates the transmission of X-rays through the 

dead layer of the CCD and assumes all X-rays that are absorbed within the CCD’s    

12 µm depletion region result in isolated events. The ‘Expected EPI QE – 25 µm’ 

represents the total events (splits and isolated) detected in the 25 µm region. The 

‘Response model DR QE – 12 µm’ takes into account the loss of events through 

escape peaks and events that are detected in the depletion region but still form split 

events. This response model depicts a more accurate representation of the isolated 

events detected in the CCD’s depletion region. The ‘Response model EPI QE – 25 

µm’ also takes into account the isolated events that are detected in the CCD’s field 

free region, therefore this QE curve portrays the most accurate representation of the 

total isolated events collected within the CCD30-11.   
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Figure 6.8: QE generated though response matrix compared with predicted QE for the

        depletion (12 µm) and epitaxial region (25 µm) of the CCD30-11 

6.3 Sample Preparation Requirements  

This section presents the major sample preparation issues experienced with the    

CCD-Array during testing and highlights the benefits of the PB geometry. 

6.3.1 Sample Thickness 

All X-rays have a maximum emission depth at which they can be emitted from the 

sample. It has been shown in Section 6.2.1 that a 1 keV X-ray cannot escape a sample 

of basalt at depths greater than 3 µm, assuming an emission angle of 30°. Therefore, 

increasing the thickness of the sample greater than 3 µm will not increase the amount 

of 1 keV X-rays collected by the detector. Figure 6.9 shows the XRF spectrum of 

andesite collected using 10 mg (~ 230 µm thick), 50 mg (~ 980 µm thick) and          

100 mg (~ 1800 µm thick) samples with a 150 µm incident beam. After 50 mg of 

andesite powder was exposed to the incident beam, the maximum emission depth of 

the Si Kα X-rays had been reached. Doubling the thickness of the powder does not 

cause an increase in the number of Si Kα counts/s. An increase in Ca Kα X-rays was 

noticed however, since the maximum emission depth at 3691 eV had not been 

reached. Since the data was collected using CCD 3, emission angles were in the range 
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of 35 − 47° 2θ. Since higher energy photons are emitted from greater depths in the 

sample, an increase in Si Kα X-rays can occur due to secondary fluorescence when 

the sample thickness is increased, however, this was not noticed. For XRF analysis, 

the sample should be thick enough to absorb all of the incoming radiation, so that the 

incident X-rays only interact with the sample and not the sample holder. This will 

maximise the emission of characteristic photons. 

 

 

 

 

 

 

 

 

 

Figure 6.9: Effect of sample thickness on XRF spectrum 

Sample preparation is crucial for accurate XRD analysis. Three main sources of errors 

exist in the BB3 parafocusing geometry, which are flat specimen error, sample 

displacement error and sample transparency error [Jenkins & Snyder 1996]. Flat 

specimen error occurs because samples are typically flat and form a tangent to the 

focusing circle, as opposed to lying along its curvature. Sample displacement error 

occurs when the sample height is above the centre of the measuring circle. Sample 

transparency occurs because the sample has a small linear attenuation coefficient and 

the incoming radiation is not full absorbed by the sample at higher angles of 

incidence, thereby causing intensity variations of diffracted X-rays as well as 

asymmetrical peak shapes. These errors lead to deviations in 2θ peak positions as well 

as asymmetrical peak shapes. Although parafocusing geometries can achieve very 
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high resolution with the use of receiving slits, high precision sample alignment is 

required as well as very careful sample preparation.     

Parallel beam diffraction eliminates some of the common sample related errors found 

in parafocusing geometries [Cao et al. 2002]. With the use of parallel beams, 

diffracted X-rays are focused, therefore the geometry is not bound to any focusing 

circles. This allows less precision sample alignment and also allows variation of the 

sample to detector distance. Flat specimen errors are eliminated since the sample is no 

longer required to conform to the curvature of a focusing circle. Sample transparency 

errors are eliminated since the angle of incidence does not vary. Thin samples can also 

be used since scattering from the sample holder is eliminated with the use of a ZBM. 

Sample displacement errors can be eliminated when performing parallel beam 

diffraction with a linear detector, but cannot be eliminated when using an area 

detector (such as an array of CCDs).  

For XRD analysis, the sample should be completely opaque to the incoming X-ray 

beam. This represents a sample thickness that absorbs 99.9% of the incoming beam 

intensity. It is important to note that a 4° incident angle means that the majority of the 

incident beam is attenuated very close to the sample surface (especially for 

inorganics), therefore the only small amounts of powder are usually required in the 

reflective XRD geometry to make a sample opaque. For a known sample, the 

thickness can be calculated prior to analysis. For example, the thickness of CaCO3 

needed to attenuate 99.9% of Cu Kα radiation can be calculated to be 380 µm. Since 

the incident beam irradiates the sample at a 4° incident angle, the actual thickness 

required to make the sample completely opaque is 26 µm. Data was collected from a 

transparent CaCO3 sample (< 26 µm thickness) and an opaque CaCO3 sample              

(> 26 µm). The aim of the analysis was to highlight the symmetry of the peaks and 

show that the PB geometry was insensitive to the peak asymmetry caused by sample 

transparency in the parafocusing geometry [Misture & Hailer 2000]. Figure 6.10 

shows the resulting XRPD patterns of CaCO3 using a sample thickness < 26 µm       

(10 mg) and >> 26 µm (70 mg). The 70 mg sample shows an increase in diffraction 

intensity since greater depths of the powder are available for diffraction. The 

background scattering is also seen to decrease, since elastically scattered X-rays are 

more highly absorbed within the thicker sample. Sample displacement errors were 
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calculated to be 0.037° 2θ and the transparent sample provided symmetrical peak 

shapes as shown by the Gaussian fitted peaks. The data highlights, that with the use of 

parallel beams and a fixed angle of incidence, the main sample related issues from 

parafocusing geometries can be eliminated, apart from sample displacement.  

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Effect of sample transparency/displacement on 2 CaCO3 XRPD peaks 

6.3.2 Grain Size 

For a portable instrument used for in-situ analysis, samples obtained from manual 

grinding and drilling of rocks is expected. Powder grains should be reduced to            

< 10 µm to produce all possible reflections in the sample. Larger grains cause peak 

broadening and a reduction in the number of orientations available for Bragg’s law to 

be satisfied. The impact of grain size and homogeneity on the XRD pattern was 

determined by collecting diffraction patterns from different basalt samples with 

different characteristics. The first sample consisted of untreated raw particles that 

were collected by drilling a basalt rock. Figure 6.11 shows an image of a large grain 

from the first sample against a 75 µm mesh. The average particle diameter in the first 
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sample was ~ 80 µm, with a maximum size of ~ 300 µm as shown in figure 6.11. This 

sample was very inhomogeneous in terms of grain size.  

 

 

 

 

Figure 6.11: A 300 µm diameter particle against a 75 µm mesh 

The second sample was sieved through a 75 µm mesh to remove large grains. The 

third sample was produced by grinding the second sample using a mortar and pestle 

and was used as the reference pattern. XRD patterns were collected from all samples 

in order to determine the quality of the pattern produced. The resulting XRD patterns 

for the 3 samples are shown in figure 6.12. The samples were rotated during data 

collection to reduce the effects of preferred orientation. 

The XRD pattern produced from sample 1 was much better than expected as all major 

peaks could be identified. However, the SNR was much poorer than the XRD pattern 

obtained from the meshed and ground samples, since larger grains result in less 

crystallographic planes presented to the incident beam. This causes less diffraction to 

take place, resulting in larger intensity errors from Poissonian statistics. The result is a 

‘spotty’ diffraction ring as opposed to a continuous ring. The poor SNR has also 

caused the loss of a peak located at ~ 32.3° 2θ. The diffraction pattern produced by 

sample 2 (figure 6.12 (b)) represents a much more homogenous sample resulting in an 

improved SNR and no peak loss.  

Sample 3 has reduced particles sizes to < 10 µm and represents the most ideal sample 

with the largest number of available orientations presented to the incident beam. For 

qualitative analysis, further grinding of sample 1 may not be necessary since the 

major peaks are identifiable (includes other CCDs). For accurate quantitative analysis 

however, the quality of the diffraction pattern should be improved by grinding and 

sieving.  
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Figure 6.12: XRD pattern of (a) sample 3 (reference sample) (b) sample 2 (sieved 

          through 75 µm mesh) and (c) sample 1 (raw drill particles)  
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6.3.3 Preferred Orientation 

The theoretical definition of a perfect sample for powder diffraction experiments is 

one that exhibits an infinite amount of randomly orientated crystals. With all possible 

crystal orientations presented to the incident beam, all diffraction rings are recorded in 

the 2-dimensional CCD image. Achieving the ideal sample however is a very difficult 

task. The most common problem from poor sample preparation is preferred 

orientation [Pecharsky & Zavalij 2005].  

Figure 6.13 (a) shows diffraction rings collected from an andesite powder. The 

density of X-ray photons inside the ring is very inconsistent. Instead of an even 

distribution, sharp peaks are noticed which are highlighted with red circles. This is 

caused by large crystals in the powder that have not been adequately ground to small 

enough particles (< 10 µm). These crystals cause single crystal diffraction which form 

sharp peaks inside the diffraction ring. Preferred orientation results in severe intensity 

errors in peaks, which will cause problems in both qualitative and quantitative 

analysis. In order to reduce the effect of preferred orientation, rotation can be used to 

bring other planes into diffracting positions and a more even intensity distribution is 

achieved across the diffraction ring, as shown in figure 6.13 (b). A major advantage of 

using 2D area detectors for XRPD in comparison to tradiational point detectors is that 

preferred orientation can be viewed and analysed using an image, which is also useful 

for texture analysis.. 

  

 

 

 

 

 

Figure 6.13: (a) Poorly prepared andesite powder displaying severe preferred   

          orientation. Figure 6.13 (b) Sample rotation has presented more crystal 

          orientations to the incident beam and reduced preferred orientation 
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In a reflective XRD geometry, the sample must be rotated perfectly level in relation to 

the horizontal axis. Figure 6.14 shows the effect of non-level sample rotation on 3 

CaCO3 XRD peaks. When the sample holder is not rotated about the horizontal axis, 

the surface area of the sample irradiated increases. Since the width of the diffracted 

beam is determined by the amount of irradiated sample, peak broadening occurs. 

Since the 3 peaks shown in figure 6.14 are in close proximity, peak broadening has 

resulted in loss of peak resolution. To achieve the best possible diffracted beam 

resolution, considerable effort should be made to ensure the sample holder is rotated 

perfectly on its axis.    

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Non-level sample rotation causing peak loss 

If the diffraction pattern collected from the level sample was not available, how could 

the analyst identify the peaks located in region, Rfit? XRD peaks can still be extracted 

from Rfit by means of Gaussian peak fitting and statistical significance testing. Since 

Rfit is 170 pixels wide and the standard width of XRD peaks is ~ 50 pixels, it can be 

expected that a maximum of 3 peaks exist within Rfit (assuming no peak overlapping). 

If statistically significant results are not achieved using 1, 2 or 3 Gaussian peaks, peak 
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Parameter 1 peak 2 peaks 3 peaks
Peak 1 mean (º 2θ ) 37.49 37.35 37.393
Peak 1 FWHM (º 2θ) 1.55 0.66 0.65
Peak 1 amplitude (peak height) 130 100 160
Peak 2 mean (º 2θ) - 37.9 38.02
Peak 2 FWHM (º 2θ) - 1.56 0.61
Peak 2 amplitude (peak height) - 78 78
Peak 3 mean (º 2θ) - - 38.65
Peak 3 FWHM (º 2θ) - - 0.54
Peak 3 amplitude (peak height) - - 57

α sig 1% 1% 1%

F crit 6.8 6.8 6.8

F calc 46.34 15.83 6.66

Accept Ho (F calc  < F crit ) No No Yes

overlapping may be assumed and Rfit is fitted with multiple peaks (> 3). Assuming no 

peak overlapping, the data located within Rfit is fitted with 1, 2 and 3 Gaussian peaks 

and the statistical significance of each fit is tested. During each fit, the parameters of 

each peak are refined (2θ position, FWHM and amplitude) and a least squares test is 

applied to find the best agreement with the experimental data. Once the best 

parameters for each peak are found, the statistical significance of the fit is tested. An 

‘F’ test was used to calculate the statistical significance of the Gaussian fitted peaks to 

the observed XRD pattern. By using a significance level, αsig, of 0.01 and calculating 

the degrees of freedom to be 1 and 320, the critical F value Fcrit, was found to be 6.8. 

To accept the hypothesis Ho, that there is no significant difference between the fitted 

and observed XRD pattern, the calculated F statistics Fcalc, must have a value < Fcrit. 

Table 6.1 shows the best-fit parameters for the 1, 2 and 3 Gaussian fitted peaks.  

 

 

 

 

 

 

 

Table 6.1: Best-fit parameters for 1, 2 and 3 Gaussian fitted peaks to the observed 

       XRD pattern 

Table 6.1 shows the agreement between the observed data and the fitted XRD pattern 

with 3 Gaussian peaks (as predicted by the spectrum collected with the level sample). 

Since Fcalc < Fcrit with αsig = 0.01, Ho can be accepted with 99% confidence. Based on 

the discussions that are presented in Section 6.4.2, the confidence intervals concerning 

the peak mean, FWHM and intensity were calculated and are summarised in table 6.2.   
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Parameter Peak 1 Peak2 Peak3
Peak mean position (2θ) 37.39 38.02 38.65
Mean confidence interval (º 2θ) < ± 0.01 < ± 0.01 < ± 0.01
Peak FWHM (º 2θ) 0.65 0.61 0.54
FWHM confidence interval (º 2θ) < ± 0.01 < ± 0.01 < ± 0.01
Peak Integrated Intensity (counts) 7284 4694 3720
Intensity confidence interval (%) ± 2.3 ± 2.86 ± 3.21

 

 

 

 

Table 6.2: Summary of extracted Gaussian parameters with confidence intervals (all 

        confidence intervals are at a 95% confidence level) 

Figure 6.15 shows the resulting fit using 3 Gaussian peaks with the parameters listed 

in table 6.2 and the confidence intervals for the intensity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15: Optimum fit of 3 Gaussian peaks with observed data between the region 

          Rfit. An F test confirmed the statistical significance of the fit with a 99% 

          confidence level 
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6.4 Thermal and Power Requirements of the CCD-Array   

In order to determine the suitability of the CCD-Array as a portable instrument, a 

study was carried out to determine the thermal and power requirements of the detector 

to perform accurate combined XRD/XRF analysis. The main source of power 

consumption in the detector was the TEC, which was used to cool the CCDs to reduce 

dark current. The effect of CCD temperature on XRD and XRF spectra are now 

discussed and the confidence in measurements based on the SNR is calculated.   

6.4.1 XRD 

The analysis of XRD data is simplified by the fact that the image contains events of a 

single energy, 8047 eV. A histogram of isolated events collected over all the 

exposures reveals a strong Cu Kα X-ray peak, which represents the diffracted X-rays 

from the sample. The intensity of the XRD peaks will always contain errors from 

Poissonian statistics, which is discussed later in this section. This section determines 

the influence of CCD noise on the intensity of XRD peaks and determines if the 

CCDs can perform XRD analysis at warm temperatures (+20 °C). 

The effect of increasing the temperature of the CCD is an increase in the FWHM of 

the Cu Kα peak due to an increase in dark current. This causes a reduction in the SNR 

of the Cu Kα peak. During the energy discrimination process, the Cu Kα peak is fitted 

using a Gaussian model and the 3 degrees of freedom (peak position, FWHM and 

intensity) are refined using the χ2 test, and the optimum parameters are determined. 

The accuracy of the fit is related to the SNR of the peak, therefore at higher CCD 

temperatures, the 3 parameters are determined with less confidence. Once the peak is 

fitted, all events within 3σ (where σ is the standard deviation) of the mean are 

registered as diffraction events. If the X-ray peak is perfectly Gaussian without any 

noise contribution, then 99.7% of events will be within ± 3σ of the mean. However, 

since the Cu Kα peak will contain noise contributions from the dark current and 

readout noise, the percentage of events detected will vary based on the SNR.  

A simulation was developed to calculate the errors involved in determining the 

percentage of events detected within 3σ of the mean, for an operating temperature of  

-40 °C (Id = 1 ē p/p/s) and +20 °C (Id = 600 ē p/p/s). Poissonian errors from the 

random arrival of diffracted events were also included in the simulation. Diffracted 
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events were simulated and the resulting Cu Kα peaks were fitted using Gaussian 

models and the best-fit parameters were determined using the χ2 test. Using the 

calculated mean and standard deviation, the number of events within ± 3σ of the mean 

were calculated and compared to the known number of diffracted events. The 

percentage of detected events was then computed for the 2 operating temperatures and 

the results are shown in figure 6.16.      

 

 

 

 

 

 

 

 

 

 

Figure 6.16: The percentage of diffracted events detected within 3 standard     

           deviations of the mean based on the CCD noise 

When operating at -40 °C, the accuracy of the Gaussian peak fitting allows more 

diffracted events to be detected in comparison to operating at +20 °C, but this has no 

influence on the XRD pattern on a single CCD image. At +20 °C, less XRD events 

are detected, but the intensity of each of the diffraction rings remains correlated. If 

99.7% of events are detected, 0.3% of the intensity of each of the peaks is reduced. 

Similarly, if 68% of events are detected, 32% of the intensity of each of the peaks is 

reduced. Therefore, operating the CCD at +20 °C does not cause any errors in the 

diffraction pattern. However, since less diffracted events are detected, the Poissonian 
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errors on the XRD peaks are larger at warmer CCD temperatures, but this can be 

compensated for by increasing the number of exposures. For example, if 1000 

diffracted events are detected at -40 °C, 99.707% of events are detected (~ 998). If 

1000 X-rays are detected at +20 °C, 99.108% of events are detected (~ 992). 

Approximately 6 extra events are detected from operating the CCD at -40 °C, which 

improves the errors on the counting statistics by 0.01 diffracted events. From these 

results, it is clear that if a single CCD is used, the CCD can perform XRD analysis at 

any operating temperature. This is true when the CCD30-11s are operated with a 

system noise < 30 e¯ r.m.s. When the CCD noise exceeds 30 e¯ r.m.s, the Cu Kα and 

Cu Kβ peaks overlap at the 3σ level, which begins to cause interference in the energy 

discrimination process. However, even at room temperature, when the CCDs were 

operated using AIMO, the CCD noise was less than 30 ē  r.m.s, therefore Cu Kβ      

X-rays did not interfere with the energy discrimination of Cu Kα events. Figure 6.17 

shows a comparison of the XRD pattern of SiO2 collected using CCD 2 at -40 °C and 

+20 °C. The intensity scale is relative to the largest peak. 

 

 

 

 

 

 

 

 

 

 

Figure 6.17: Relative 2θ vs. intensity patterns of SiO2 at -40 °C and +20 °C revealing 

           identical XRD patterns 
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As seen in figure 6.17, the XRD patterns at both operating temperatures are identical. 

This highlights a major advantage of using CCDs for XRD analysis, as the CCDs can 

collect accurate XRD data at room temperature, without the need for cooling.  

When using multiple CCDs, variations in dark current will result in peak intensity 

errors. At +20 °C, the variation in temperature between CCD 1 & CCD 4 and CCD 2 

& CCD 3 was 0.1 °C. In AIMO, this caused a variation in dark current of ~ 6 e¯ p/p/s. 

Assuming 1000 events were detected, the intensity errors were calculated to be < 0.03 

diffracted events, which is negligible. Errors from using multiple CCDs can also be 

caused by the number of events detected by each CCD. For example, consider two 

peaks with a ratio of 5:1, located on CCD 1 and CCD 2 respectively (both CCDs are 

operating with a dark current of 600 e¯ p/p/s and a readout noise of 7.4 e¯ r.m.s). As 

shown in figure 6.16, if 50 events are collected on CCD 1, 95% of the events (47.5) 

will be detected by the energy discrimination process. If 10 events are collected by 

CCD 2, 68% will be detected, which is ~ 6.8. The actual ratio of the peaks will be 

determined as 6.98:1, as opposed to 5:1. Therefore, it is crucial when operating at 

warmer CCD temperatures to increase the number of exposures collected. If 2000 

diffracted X-rays were collected by CCD 1 and 400 diffracted X-rays collected by 

CCD 2, the ratio would be determined as 5.03:1. For samples with a low diffraction 

efficiency, operating the CCD at warmer temperatures may not be practical. However, 

for the majority of samples used in testing the CCD-Array, operating the CCDs at   

+20 °C resulted in negligible errors in the XRD patterns. Since CCD cooling was 

unnecessary for XRD applications, the cooling required for combined XRD/XRF 

applications was entirely dependant on XRF requirements.   

Although XRD analysis can be performed without CCD cooling, the confidence in 

determining the peak mean, FWHM and intensity is based on the SNR of the XRD 

peak. XRD peaks are the accumulation of diffracted X-rays over a given time, in a 

given area of the CCD. The intensity of the XRD peak is therefore affected by 

counting errors or Poissonian errors. The error associated with the number of 

diffracted counts per exposure, is the square root of the mean number of counts, 

Ndiff
0.5. For example, if 100 X-rays are collected in an exposure, 68% of the events 

will be spread across Ndiff ± Ndiff
0.5 (100 ± 10) and the resulting error will be 10%. If a 
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Parameter Value Units
N diff 50 counts/s

N bck 30 counts/s

N R 256 pixels

N C 1024 pixels

R PB 15 pixels

dof 21
χ crit 32.6

N exp 1 - 500 exposures

1% error is required, at a 68% confidence level, the number of exposures must be 

increased to 1 × 104 counts. The SNR of the XRD peak is given by the expression:  

diff

diff

diff
peakXRD N

N

N
SNR ==−                                      (6.3) 

As shown in equation 6.3, the error and SNR of the XRD peak are the same. The 

confidence interval defines the uncertainty in a parameter, at a given confidence level 

(usually 95%). The confidence intervals for the XRD peak 2θ mean position, FWHM 

and intensity were calculated using the χ
2 test. A CCD exposure was simulated 

(background events and a single XRD peak) and the 2θ vs. intensity pattern was 

generated through radial integration. The XRD peak was fitted using a Gaussian 

model and the 3 parameters of the model were refined to achieve the best χ2 fit. The 

values of Ndiff and Nbck were derived from typical exposures and the peak FWHM RPB, 

was calculated using equation 2.14, for a 2θ diffraction angle of 50°. The variables 

used in the simulation are listed in table 6.3.   

 

 

 

 

Table 6.3: Variables used in the simulation to determine the confidence intervals of 

       the peak mean, FWHM and intensity 

Statistically significant fits (i.e. χ2 < χcrit) were noticed for exposures > 30. By fixing 

the position of 2 parameters (e.g. intensity and FWHM), the mean was varied and the 

region within the 95% confidence level was recorded. This region represented the 

confidence interval for the mean at a 95% confidence level. The CCD exposures were 

increased to improve the SNR of the peak and the process was repeated. The 

confidence intervals for the FWHM of the peak were also calculated by fixing the 

position of the two unused parameters and recording the regions were χ2 < χcrit. The 

confidence intervals for the intensity were calculated using equation 6.4. Figure 6.18 

shows the results of the simulations.  
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Figure 6.18: (a) Peak mean confidence interval (pixels), (b) peak FWHM confidence 

          interval (pixels) and (c) peak intensity confidence interval (%)  
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Figure 6.18 (a) and (b) highlight how insensitive the peak mean and FWHM are to 

Poissonian noise, as the confidence intervals are within ± 1 pixel, even at a SNR of 8 

(~ 60 exposures). Since the SNR of XRD peaks used for analysis are much greater 

than 8, errors on the peak mean position and FWHM from Poissonian noise can be 

completely ignored.  

The peak intensity is more greatly affected by Poissonian noise with errors of 10% at 

a SNR of 20 (this mean that 95% of the diffracted events are within ± 10% of Ndiff). 

The number of diffracted events required to achieve a certain confidence interval CI, 

at a given confidence level, Zval, can be calculated using the expression: 

2








=
CI

Z
N val

diff                                                  (6.4) 

For a 68%, 95% and 99% confidence level, Zval is 1, 1.96 and 2.59 respectively. To 

achieve an intensity confidence interval of ± 3% at a confidence level of 95%, ~ 4,300 

diffracted X-rays must be collected. To achieve a confidence interval of ± 1% on the 

intensity, at a similar confidence level, ~ 38,400 diffracted X-rays must be collected. 

The confidence required is determined by the requirements of the application. For 

example, quantitative analysis may require intensity accuracies of ± 1% since the 

intensities are related to the concentration of the different phases in the sample. 

Qualitative analysis may be performed with a confidence interval of ± 10%, since the 

strongest peaks in the diffraction pattern simply need to be identified.  

6.4.2 XRF 

The energy resolution of a CCD is limited by 3 factors, which are the readout noise, 

dark current and photon shot noise. Since the dark current and photon shot noise have 

a Poissonian distribution where the error is described as the square root of the mean 

number of counts, equation 3.18 can be re-written as: 

     
w

FE
I dRNTotal ++= 2σσ .      (6.5) 

Equation 6.5 highlights that the main contribution to the degradation of the energy 

resolution is the readout noise. With the use of an Fe55 X-ray source, the readout noise 

of all 4 devices was calculated by measuring the serial over-scan pixels on the CCD 
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image. The noise contribution from this region of the CCD contains zero signal data 

but includes the noise induced from reading out the device. The lowest readout noise 

was 6.4 ē r.m.s. from CCD 3. The average readout noise from all 4 CCDs was 

calculated to be ~ 7.4 e¯ r.m.s. at a readout frequency of 165 kHz per pixel.  

The dark current performance of the devices was related to the operating mode. 

NIMO (VG = 12 V and VSS = 0 V) provides a depletion depth of ~ 12 µm and AIMO     

(VG = 0 V and VSS = 7 V) provides a depletion depth of 6 µm. AIMO greatly reduces 

dark current generation from the surface of the device which is the main contributor to 

the leakage current. Figure 6.19 shows the average dark current and CCD system 

noise measurements for AIMO and NIMO, as a function of temperature for the 4 

CCD30-11 devices. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: Average noise values for the 4 CCD30-11s in AIMO and NIMO 

The most commonly found element in rocks on Earth is O, which has a Kα X-ray 

emission at 532 eV. The detection of this element is very difficult to achieve by any 
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XRF instrument due to a very low transmission through materials combined with a 

very low fluorescence yield (0.006). All other major elements found in rocks range 

from 1 − 10 keV. The CCD-Array should therefore be able to uniquely identify all Kα 

characteristic photons in this range. Since the separation in eV between Kα emissions 

is shorter at lower Z elements, the energy resolution requirements would be based on 

Kα X-rays in the region of 1 − 2 keV. 

The energy resolution required to distinguish X-rays from 1 − 2 keV was calculated 

through computer simulations. The Kβ emissions were ignored due to very low 

fluorescence yield [Krause 1979]. Since Kα emissions in this range also have a very 

low fluorescence yield (0.02 − 0.047), a crude approximation was made that ~ 1 

photon of each of the 4 elements was incident on the CCD per second. In each CCD 

exposure, the number of electrons generated by each of the 4 Kα photons was 

determined using equation 3.15. The noise contribution was determined using 

equation 6.5, where the readout noise and photon shot noise were fixed and the dark 

current was varied. The dark current was gradually increased to find IDmax, which 

represented the maximum dark current that would allow the detection of elements 

from 1 − 2 keV. IDmax was determined when two peaks overlapped at approximately 

half the peak height.  

The SNR of each peak was calculated using the expression: 

ω
σ FE

I

counts
SNR

DRN

peakXRF

++
=−

2

                                      (6.6) 

For a fixed number of counts, readout noise and dark current, the SNR decreases with 

increasing X-ray energy, since the statistical uncertainty in the number of             

electron-hole pairs produced increases.   

Figure 6.20 shows the simulated results for a 10 minute, 2 hour and 10 hour total 

exposure period. Signal data collected from the readout process and the CCDs CTI 

was ignored. After the histogram for a given exposure time was generated, Gaussian 

peaks were fitted to the 4 X-ray peaks and the statistical significance of the fit was 

determined using the χ2 test.  



191 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.20: Simulated XRF spectrum from 1 − 2 keV with 600 e¯ p/p/s dark   

          current for exposures of (a) 20 minutes (b) 2 hours and (c) 10 hours 
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By increasing Id and monitoring the effect on the FWHM of the X-ray peaks, it was 

found that X-rays from 1 − 2 keV could be identified with a maximum dark current of 

~ 600 ē p/p/s (IDmax). The overall noise includes the average readout noise of          

7.4 ē r.m.s. for all 4 CCDs, resulting in a total CCD noise of ~ 25.5 ē r.m.s. By 

increasing the exposures and thereby the SNR, a higher confidence level can be 

achieved between the observed and expected spectra. The number of exposures 

required is dependant on the confidence intervals required for the 3 parameters of the 

fitted Gaussian peaks.  

Figure 6.19 outlines the temperature required to operate at IDmax for AIMO and 

NIMO. AIMO allows the CCD to operate at +20 °C, which has 3 significant benefits. 

Firstly, at +20 °C the CCDs are not required to be inside a vacuum. However, when 

operating at atmospheric pressure the CCDs should always be operated above the dew 

point of water (typically +15 °C in the laboratory environment) to prevent water 

vapour in the air condensing on the CCDs. Secondly, power consumption from the 

TEC is practically eliminated since the CCDs are close to room temperature (+23 °C). 

Finally, the front lid of the CCD-Array can be removed to increase the transmission of 

X-rays (this assumes the CCD-Array is inside a lightproof box and the CCDs are 

covered with a thin material to prevent contamination). Although the CCD-Array can 

detect Kα emissions from 1 − 10 keV at +20 °C when operating in AIMO, by 

increasing the CCD noise, longer exposure times are required to achieve a given SNR. 

The confidence intervals for the 3 parameters of the XRF peak based on the SNR are 

now discussed.  

Through the technique described in the previous section, the confidence intervals for 

the XRF peak mean position, FWHM and intensity were determined using the χ2 test. 

The XRF peak of Mn Kα (5898 eV) was simulated and the number of photons was 

increased to improve the SNR. The confidence intervals for the 3 parameters were 

calculated at a 95% confidence level. The results of the simulations are shown in 

figure 6.21.  
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Figure 6.21: (a) Confidence intervals for the peak (a) mean position in eV, (b)          

          FWHM in eV and (c) integrated intensity (%) at a 95% confidence level  
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To achieve a confidence interval of ± 1 eV on the peak mean position and FWHM, a 

SNR of ~ 500 is required. The separation between Kα peaks between 1 − 2 keV is      

~ 200 − 250 eV.  The separation between neighbouring Kα peaks increases at higher 

energies (e.g. separation is 591 eV between the Cu Kα and Zn Kα). Therefore a 

confidence interval of ± 10 eV will allow accurate qualitative analysis when analysing 

Kα emissions in the 1 − 10 keV range. This level of confidence requires a SNR of 8.8, 

which is 115 Mn Kα photons.  Equation 6.6 can be re-arranged in terms of the number 

of counts required by an X-ray of energy E, to achieve a given SNR (e.g. 152 Cu Kα 

photons are required to achieve a SNR of 8.8). This level of accuracy assumes that 

only Kα emissions between 1 − 10 keV are detected by the CCD. If L series radiation 

is also detected from elements with an atomic number > 40, higher accuracy is 

required due to the proximity of different peaks. For example, a Promethim (Pm) Lα1 

photon contains an energy of 5431 eV which is similar to the energy of a Cr Kα 

photon at 5414 eV. A confidence interval of ± 10 eV would not be sufficient to 

distinguish the two peaks and accuracies of ~ ± 5 eV would be more suitable.  

It is important to note that when XRF is performed with higher CCD noise, the time 

required to reach a given confidence interval increases, since the SNR increases at a 

slower rate. For example, the confidence interval for determining the mean of an Fe55 

X-ray peak can be determined by dividing the standard deviation of the peak by the 

square root of the number of counts. Therefore, with a CCD noise of 25.5 e¯ r.m.s    

(Id = 600 ē p/p/s), a 9.2 eV confidence interval is achieved after ~ 500  Mn Kα 

photons have been detected, whereas a confidence interval of 5 eV is achieved with a 

similar number of counts if the CCD noise is 7.4 e¯ r.m.s (Id = 1 ē p/p/s). If XRF 

analysis is performed at warm temperatures, longer exposure times are required to 

achieve a given confidence interval for the mean, FWHM and intensity.  

6.4.3 Combined XRD/XRF Analysis of Basalt at + 20 ° C Operating 

Temperature 

Based on the discussions presented in the previous section, combined XRD/XRF data 

was collected from a basalt powder at an operating temperature of +20 °C. The aim of 

the experiment was to ensure no characteristic or diffracted X-rays were lost from the 

XRF or XRD data respectively. The XRF spectrum taken at +20 °C was compared to 

a spectrum collected at -40 °C and the XRD pattern was compared to a reference 
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pattern, courtesy of the Natural History Museum (NHM). Figures 6.22 and 6.23 show 

the XRF and XRD data collected at +20 °C operating temperature.  

 

 

 

 

 

 

 

 

 

Figure 6.22: XRF spectra of basalt collected at -40, +10 and +20 °C (2000 exposures)  

 

 

 

 

 

 

 

 

Figure 6.23: XRD pattern of basalt taken at + 20 °C compared with a reference  

          pattern (2000 exposures) 
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The XRF spectra shown in figure 6.22 show an obvious decrease in energy resolution 

at +20 °C.  Only one major X-ray peak is lost from the spectrum at +20 °C, which is  

S Kα (2308 eV). Due to the increase in noise at +20 °C, the SNR of the S Kα X-ray 

peak is very low. Larger exposure times would be required to allow detection of the    

S Kα X-ray peak. However, all other Kα emissions were identifiable.  

The XRD pattern shown in figure 6.23 displays a very good agreement with the 

reference pattern. All major peaks were identifiable with maximum errors of 0.016° 

2θ, which includes the 3 largest peaks required for qualitative analysis. At +20 °C, the 

XRD pattern provided a successful qualitative solution of basalt, which was 

confirmed with the elemental data provided by the XRF spectrum. 

6.5 Applications of the CCD-Array – Mars 

This section presents possible applications of the CCD-Array. The need for a 

combined XRD/XRF instrument for in-situ X-ray spectroscopy on Mars has been well 

documented [Blake 2000]. The ability of the CCD-Array to meet the science 

requirements of such an instrument are discussed and improvements to the current 

geometry are suggested.  

As discussed in Chapter 2, the geometry most suited to portability with the lowest 

power consumption, is the use of the BB2 geometry with a radioactive X-ray source. 

Although in development [Oxford Instruments 2009], no miniature X-ray tubes with 

polycapillary collimating optics are currently available (miniature tubes with X-ray 

focusing optics are widely available). The flux produced by miniature X-ray tubes 

such as the Mini-X are only a factor of 7 − 8 times higher than that produced by a 

radioactive source, which does not justify the increased power consumption (~ 4 W) 

and instrument volume (additional 45 cm3 for the Mini-X, not including additional 

power supply and control electronics) for application on Mars. It is expected that a 

radioactive source used in conjunction with the CCD-Array will provide the most 

suitable option for a payload instrument on Mars. However, the use of the PB 

geometry is also discussed.  

6.5.1 XRD  

Over 30 Martian meteorites analysed on Earth and results returned from various       

in-situ spectrometers on Mars, have confirmed that the Martian surface is dominated 
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with igneous rocks and minerals such as olivine, peridotite and basalt. However, in 

2005, the OMEGA instrument onboard the Mars Express found deposits of 

phyllosilicates in many regions of Mars [Poulet et al. 2005]. Phyllosilicates are a 

group of clay minerals that are of particular interest to future in-situ spectrometers on 

Mars since they indicate the process of water interaction. For both qualitative and 

quantitative analysis, it is crucial for the diffractometer to cover an angular range 

where the major peaks of clay minerals and igneous rocks can be detected. As shown 

in figure 3.19 (peridotite) and figure 6.23 (basalt), the major peaks in igneous 

rocks/minerals ranges from approximately 15 − 60° 2θ. Figure 6.24 shows the XRD 

pattern of 3 common phyllosilicate clay minerals, chlorite, smectite and illite.    

 

 

 

 

 

 

 

 

 

Figure 6.24: The major peak locations of some common Phyllosilicate minerals (data                  

           courtesy of the NHM) 

It is obvious from figure 6.24, in order to identify the major peaks of clay minerals, 

low angle detection is crucial. The clay minerals in figure 6.24 with the largest          

d-spacings, smectite and chlorite, contain the lowest angle peaks ranging from 5 − 6°. 

The angular coverage achieved by the CCD-Array, which ranges from 4.48 − 64°, 

will allow the detection of all major peaks in phyllosilicates and igneous rocks 
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[Cuadros 2006]. The low background achieved by the CCD-Array at lower 2θ angles 

will also facilitate the detection of peaks in clay minerals.   

Qualitative analysis involves identifying the overall phase of the sample (e.g basalt or 

smectite). The most common technique to perform qualitative analysis is to locate the 

2θ positions of the 3 largest peaks in the sample and compare the results to reference 

patterns in a database, such as the ICDD PDFs. To perform accurate qualitative 

analysis, the detector must have adequate resolution to resolve the 3 largest peaks in 

the sample and must also be able to determine the peak positions with high accuracy. 

Figure 6.25 shows the resolution required to resolve 3 of the most intense peaks in 

some common Martian samples. For example, the marker located at 9.2° 2θ for 

chlorine, means a resolution of ~ 3° FWHM is required to resolve the peaks located to 

the left of the marker (6.175°) and the right of the marker (12.3°). 

 

 

 

 

 

 

 

 

 

Figure 6.25: Resolution required to resolve the 3 largest peaks in some common  

          Martian related samples (data courtesy of UCL and NHM). Pob = 30µm 

The calculations highlight that the resolution achieved by the current PB geometry 

easily meets the requirements for qualitative analysis. The increased resolution 

achieved using a radioactive Fe55 source in BB2 geometry with a similar beam size is 
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also shown, since this is the expected operating mode on Mars. The other main 

consideration for qualitative analysis is how accurately the 2θ peak positions can be 

determined. As discussed in the previous section, the accuracy in determining the 

mean 2θ position of the XRD peaks is insensitive to SNR, therefore, the only 

limitation is the spatial calibration of the detector. The CCD-Array was calibrated 

using NIST SRMs (see section 4.6) and maximum errors of ~ 0.012° were recorded  

(~ 1 pixel). This value includes a 0.00015° error due to the non-linear resolution 

experienced by the CCD-Array because the CCDs are not curved along the measuring 

circle but lie on a tangent to it. However, an accuracy of 0.012° 2θ will easily allow 

accurate qualitative analysis of samples.  

For accurate quantitative analysis, the detector must be able to resolve more peaks    

(~ 20 should be sufficient), determine the peak positions with high accuracy, and most 

importantly be able to determine the intensity of each peak with high accuracy. Figure 

6.26 shows the resolution required to resolve 20 of the most intense peaks for some 

common Martian related samples.   

 

 

 

 

 

 

 

 

 

Figure 6.26: Resolution required to resolve the 20 largest peaks in some common 

          Martian related samples (data courtesy of NHM). Pob = 30 µm 
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Figure 6.26 highlights that the resolution achieved by the CCD-Array in PB geometry 

can allow the detection of over 95% of peaks in the samples listed. The resolution 

achieved in BB2 geometry with a similar beam size (30 µm) allows the detection of all 

major peaks. The resolution requirements for both qualitative and quantitative XRD 

analysis on Mars have been documented to be ~ 0.26° FWHM, between the 2θ range 

of 5 − 55° [Sarrazin et al. 2005]. Assuming a radioactive Fe55 source is employed 

using the BB2 geometry, this resolution can be achieved using a beam size of              

~ 120 µm. This will increase the incident Mn Kα flux to ~ 1.7 × 103 counts/s and the 

total flux (Mn Kα and Mn Kβ) to 2.05 × 103 counts/s, at a distance of 40 mm. This is 

a significant increase in flux from using a 30 µm beam (total flux of 1.28 × 102 

counts/s) and will greatly reduce data collection times. To provide a resolution of       

~ 0.26° FWHM, the PB geometry is limited to very small spot sizes of 30 µm. A 

major improvement to the CCD-Array design is discussed in section 7.2, which 

allows much higher XRD resolution to be achieved. The 2nd generation CCD-Array 

will be able to meet the resolution requirements of a Martian diffractometer with 

beam sizes of 90 µm in PB geometry.    

With the use of NIST SRMs, maximum intensity errors were calculated to be ~ 3.2% 

at a 95% confidence level, which includes SNR errors and energy discrimination 

errors. The minimum number of diffracted photons collected in each peak was           

~ 10,000, which results in an intensity confidence interval of 2% at a 95% confidence 

level. Assuming 10,000 counts are detected, the CCD-Array can determine the 

intensity of diffracted peaks to within ± 3.2%. Careful sample preparation can reduce 

sample related intensity errors, which can also be accounted for in Rietveld 

refinement. This high level of accuracy in intensity measurements will allow precise 

quantitative analysis of XRD patterns on Mars.  

Although high quality data is preferred, significant information can also be obtained 

from lower quality data. Consider the discussion in section 6.3.3, where peak 

broadening due to non-level sample rotation resulted in the loss of 3 XRD peaks. 

Through Gaussian peak fitting and statistical significance testing, the mean, FWHM 

and intensity of the peaks was determined, with a 99% confidence level. The 

confidence intervals at a 95% confidence level were also calculated. If the user simply 

wanted to confirm the sample was in fact CaCO3, certain features of the ‘corrupted’ 
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XRD pattern (‘non-level rotation’) could be used for confirmation, such as the 2θ 

separation of the 3 peaks and the intensity ratios of the 3 peaks. The ‘level rotation’ 

data can be used as a reference pattern. In the reference pattern, the separation 

between Peak 1 − Peak 2, and Peak 2 − Peak 3 was determined to be 0.62° and 0.65° 

respectively (determined through Gaussian peak fitting). Using the results shown in 

table 6.2, the separation between the same ‘corrupted’ peaks was found to be 0.63° for 

both, with a confidence interval of < ± 0.01°. From the reference pattern, the intensity 

ratios between the 3 peaks were found to be 1:0.52:0.45 (scaled to Peak 1). From table 

6.2, ratios for the same peaks were determined to be 1:0.48:0.35. The separation 

between the peak positions from the ‘corrupted’ data provides significant agreement 

with the reference pattern, with errors of only 0.02°. The intensity ratios display larger 

errors but still provide a high level of confidence. Through similar techniques, data 

that has been corrupted by poor sample preparation or experimental misalignment can 

still be used to yield crucial information. This may be particularly important on Mars 

where data collection times for payload instruments are limited and the ability to 

repeat measurements may not be possible.  

6.5.2 XRF 

The crucial energy range required for chemical analysis on Mars is between                

1 − 10 keV. To maximise the number of isolated events collected, the CCD30-11 

should be operated in NIMO (VG = 12 V, Vss = 0 V), to provide a depletion depth of   

~ 12 µm and a QE of ~ 33% at 5898 eV. To increase the collection efficiency, deep 

depletion devices can also be used to increase the QE from 3 − 10 keV. Devices with 

a resistivity of 1000 Ω.cm, can provide depletion depths of ~ 33 µm under similar 

biasing and a QE of 65% at 5898 eV. Regardless of resistivity, the CCD30-11 

provides sufficient QE over the required energy range (1 − 10 keV). 

The detection of low energy elements by the CCD-Array in its current geometry is 

difficult due to excessive absorption by the 108 mm air gap between sample and 

detector. The low energy detection limit in the laboratory is ~ 1.5 keV, but this is due 

to the high flux produced by the Bede micro-source. Assuming the region between the 

sample and detector is at standard atmospheric pressure (1 bar), the reduced flux 

produced by a portable X-ray source will prevent the detection of elements < 2.5 keV. 

Since the average pressure on Mars is 5 − 7 mbar [Chamberlain et al. 1976], the high 
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absorption of signal X-rays in air is practically eliminated. The Mylar X-ray window 

can therefore be removed, as the CCD-Array can be operated at Martian atmospheric 

pressure. Figure 6.4 highlighted the effect of placing the sample to detector area inside 

a vacuum and removing the Mylar X-ray window. To prevent contamination by dust 

and other small particles, a very thin sheet of Mylar (~ 1 − 2 µm) would be required to 

protect the CCD imaging area. Therefore, the main limitation to the detection of       

X-rays from 0.1 − 10 keV on Mars, would be the CCD’s QE and absorption by the 

sample. Assuming an average emission depth of 1.5 µm for a 1 keV photon in basalt, 

the number of incident photons (that interact with the target atom) required to detect a 

single 1 keV photon would be ~ 500. Assuming multiple exposures are collected, this 

will allow the detection of an appreciable number of 1 keV photons.  

Figure 6.27 outlines the resolution achieved by the CCD-Array at different operating 

temperatures.  

 

 

 

 

 

 

 

 

 

Figure 6.27: Variation in XRF FWHM at various operating temperatures using  

          AIMO 

At full TEC power, the CCD30-11s can reach an operating temperature of -40 °C, 

where the dark current is practically eliminated (~ 1 ē  p/p/s). Combined with an 
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average readout noise of 7.4 e¯ r.m.s, FWHM resolutions of 135 eV at Mn Kα can be 

achieved. However, this resolution greatly exceeds the resolution required to identify 

the 22 elements in the 1 − 10 keV range by their Kα emissions. In Section 6.4.2, it 

was found that all Kα emissions from 1 − 10 keV could be identified with a CCD 

system noise of ~ 25.5 e¯ r.m.s. With an average readout noise of 7.4 e¯ r.m.s, this 

allows the CCD30-11 to operate with 600 e¯ p/p/s dark current, which is at an 

operating temperature of +20 °C (in AIMO). The resolution achieved by the         

CCD-Array at +20 °C is shown in figure 6.27. At an operating temperature of 0 °C, 

the CCD-Array achieves similar resolution (160 eV at 5898 eV) to the MER APXS 

[Lechner et al. 2004]. At temperatures < 0 °C, the CCD-Array surpasses the XRF 

energy resolution performance achieved by any in-situ XRF instrument used on Mars 

to date. The CCD-Array can therefore provide versatility in performance based on the 

XRF resolution requirements. 

The reduction in power consumption is crucial for a payload instrument on Mars. The 

main source of power consumption in the CCD-Array was the TEC, which provided 

cooling to the CCDs to reduce dark current. A detailed study was preformed on the 

CCD-Array to determine the required operating temperature of the CCD30-11 to 

perform combined XRD/XRF analysis, in an aim to reduce power consumption from 

the TEC. It was found that an increase in dark current had negligible effect on the 

XRD patterns, presuming a large number of exposures were collected. The operating 

temperature of the CCDs for combined XRD/XRF analysis was therefore entirely 

dependant on XRF requirements. Through simulations it was concluded that the 

CCDs could operate with an average dark current of 600 ē p/p/s and detect all Kα   

X-ray emissions from 1 − 10 keV. The required temperature of the CCDs to operate 

with 600 ē p/p/s dark current was dependant on the operating mode. If the CCDs 

operate using NIMO, they must be cooled to ~ -15 °C and require a total power 

consumption of ~ 4.5 W. However, if the CCDs are operated using AIMO, they can 

be used close to room temperature (+20 °C). This mode of operation reduces the 

depletion depth of the devices by ~ 6 µm, but the total power consumption of the 

CCD-Array is reduced to < 500 mW. Operating the CCDs in AIMO is an ideal mode 

of operation on Mars, since the power consumption of the instrument is greatly 

reduced. Assuming a radioactive source is used to provide flux, the only source of 

power consumption would be the CCDs and a small motor used to rotate the samples 
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during data collection, in order to reduce preferred orientation. It is expected the 

CCD-Array payload instrument could perform accurate XRD/XRF analysis 

consuming < 1 W of power when operated in this mode. Since this mode of operation 

reduces the SNR for a given number of X-ray counts, longer exposure times will be 

required to achieve a given confidence interval for the intensity, mean and FWHM.  

The current CCD-Array geometry can meet the science requirements for both XRD 

and XRF on Mars. The XRD resolution achieved in BB2 geometry allows a maximum 

beam size of ~ 120 µm, which produces a flux of ~ 1.7 × 103 Mn Kα counts/s. The 

data collection time required to reduce the XRD intensity errors to 1% (at a 68% 

confidence level) would be sample dependant, but is expected to be in the range of      

5 − 10 hours. Due to the low absorption of X-rays in the Martian atmosphere, a 

radioactive source will allow detection of all X-rays from 1 − 10 keV.  

6.6 Applications of the CCD-Array- Pharmaceuticals 

The CCD-Array can also be applied to a broad range of markets for terrestrial use, 

one of which is the pharmaceuticals industry. This section discusses the requirements 

of XRPD and XRF instruments used in the pharmaceuticals industry and highlights 

possible uses of the CCD-Array.  

Since power consumption is less crucial a consideration for terrestrial instruments, a 

low power miniature X-ray tube would be ideally suited for use with the CCD-Array. 

As shown in figure 6.10, unlike parafocusing geometries, the PB geometry with a 

fixed angle of incidence is insensitive to sample transparency. In the pharmaceuticals 

industry, samples are usually highly transparent (e.g organics), therefore an X-ray 

tube fitted with a polycapillary collimating optic would be ideal. The use of a 

miniature X-ray tube with X-ray optics would also greatly reduce data collection 

times for both XRD and XRF experiments. Therefore, for many applications, data can 

be collected in less than 1 hour, which is ideal for on-site analysis.   

6.6.1 XRD 

An important use of XRD in the pharmaceuticals sector is the determination of 

quantities of amorphous content within a crystalline substance. During pharmaceutical 

processes such as milling, the periodic structure of crystalline substances can be 

disrupted, resulting in the formation of amorphous areas. This can cause large 
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Parameter Required CCD-Array (PB)
Angular range (2θ ) 10 - 35º 4.48 - 63.95º
Step size (2θ) 0.016º 0.012º
Diffracted beam resolution at 20º 2θ ~ 0.13º ~ 0.23º

variations in the dissolution and bioavailability of a medication in the human body, 

therefore monitoring the change in crystalline substances is crucial during the 

pharmaceutical processing stage. A recent study was performed using Panalytical’s 

X’pert Pro to determine the accuracy of the XRPD technique in determining the 

quantities of amorphous regions in a crystalline substance [Beckers et al. 2007]. 

Precise quantities (1%, 3%, 5%, 7% and 9%) of amorphous regions were added to   

100 % crystalline lactose by lyophilization. The aim of the experiment was to perform 

XRPD on the samples, calculate the quantity of amorphous content by comparing the 

ratio of XRD peaks (from crystalline portion of the sample) to the background (from 

the amorphous region of the sample), and then compare the findings to the expected 

results. The CCD-Array’s ability to perform this type of analysis on pharmaceuticals 

samples can be determined by comparing the detectors performance with the 

instrument used in the study. A performance comparison is summarised in table 6.4. 

  

 

 Table 6.4: XRPD performance of an instrument used to determine the quantity         

       of amorphous content in a crystalline sample in comparison to the        

       CCD-Array (Pob = 100 µm) 

As shown in table 6.4, the angular range and spatial resolution offered by the      

CCD-Array can meet the requirements of such analysis, however, the overall 

resolution achieved by the CCD-Array in PB geometry is lower that that used in the 

experiment. The major reason for the lower resolution achieved by the CCD-Array in 

PB geometry is due to the low angle of incidence (4°). Since the area of interest starts 

at 10° 2θ, the angle of incidence can be increased to 10°, thereby increasing the 

resolution to ~ 0.17° at 20° 2θ (Pob = 50 µm). This resolution is comparable to the 

resolution used in the study and provides sufficient resolution to perform the required 

analysis (modifications to the current CCD-Array design, which are discussed in 

Section 7.2, will vastly improve the detectors resolution performance).  

Similar applications include determining the percentage crystallinity in amorphous 

substances [Sarsfield et al. 2006]. The analysis in this study was performed over a 2θ 

range from 12 − 22° with a step size of 0.04°. Again, the angular region of interest is 
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covered by the CCD-Array and the spatial resolution can be matched in 2 × 2 binning 

mode. The resolution of the diffraction peaks in the study was ~ 0.26° FWHM and 

this can be achieved by the CCD-Array in the PB geometry with beam sizes of 30 µm. 

Similarly, it is important to note a 12° incident angle could be used to vastly improve 

the diffracted beam resolution.   

Other XRPD applications of the CCD-Array in the pharmaceuticals industry include 

polymorph screening and drug discovery. A recent study showed that 97% of 

crystalline samples from random off the shelf pharmaceutical samples could be 

identified using the ICDD PDFs [Fawcett et al. 2006]. With the use of the ICDD 

PDFs, the CCD-Array could be used on site to test for counterfeit drugs and 

medications.    

XRPD is a highly utilised technique in the pharmaceuticals industry. Currently all 

XPRD analysis is performed on high resolution laboratory diffractometer such as 

Panalyticals X’pert Pro. These instruments usually operate in BB3 geometry, 

achieving very high resolution. However, by increasing the angle of incidence, the 

CCD-Array can achieve much better resolution in PB geometry and in BB2 geometry, 

can produce resolutions closer to laboratory diffractometers. The CCD-Array cannot 

match the resolution achieved by laboratory diffractometers but can still be utilised in 

many areas of the pharmaceuticals industry where resolution requirements are less 

critical. Since pharmaceuticals substances are highly transparent to X-rays, the use of 

parallel beams will also prevent asymmetrical peak broadening due to sample 

transparency [Cao et al. 2002]. To optimise the CCD-Array geometry for XRPD 

pharmaceutical applications, the angle of incidence should be increased to ~ 10°, 

which would greatly reduce the length of irradiated material and thereby greatly 

improve the diffracted beam resolution. The resolution achieved by the 2nd generation 

CCD-Array with a 10° angle of incidence is shown in figure 7.3.  

6.6.2 XRF 

The most obvious use of XRF analysis in the pharmaceuticals industry is testing for 

contamination of food and medicines. The CCD-Array could be used by organisations 

such as the Food and Drug Administration (FDA) to perform quality control on 

medications and food. For example, the CCD-Array could be taken on site to test for 

contaminants in multi-vitamin tablets. Figure 6.28 shows an XRF spectrum collected 
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from a multivitamin tablet with the CCD-Array. The multivitamin tablet was 

purposely contaminated with chlorine. 

 

 

 

 

 

 

 

 

 

Figure 6.28: XRF spectrum of a multivitamin tablet contaminated with Cl. Data was 

          collected for 30 minutes at 40 kV, 2 mA 

The spectrum shows the presence of two unidentified elements from the multi-vitamin 

tablet, which are Cl Kα (2622 eV) and Ar Kα (2957 eV). As shown in figure 3.18, the 

background spectrum produced by the CCD-Array contains an Ar Kα peak due to the 

presence of Ar atoms in the air (~ 1%). The Cl peak can therefore be identified as a 

contaminant in the substance.  

The range of elements required for analysis of pharmaceutical substances is far more 

diverse than that of the planetary sciences sector. The maximum X-ray energy 

detectable by the CCD30-11 is limited to ~ 15 keV (QE of 1%) in AIMO and 20 keV 

(QE of 1%) in NIMO. This is sufficient to allow the detection of all possible 

elements, since elements with an atomic number < 40 can be identified through K 

series radiation and elements with an atomic number > 40 can be identified through L 

series radiation (see figure 1.5). To allow this however, the excitation energy of the 

incident X-rays must be ~ 25 keV or greater. For example, a tube with a Cu anode 
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could be operated at 25 keV potential to excite all elements for XRF analysis, and 

provide a strong Cu Kα characteristic peak for XRD analysis. The low energy 

detection limit of the CCD-Array with a portable X-ray source is ~ 2.5 keV, which 

will not allow the detection of elements between 1 − 2 keV. Improvements to the 2nd 

generation CCD-Array will improve the low energy limit to ~ 1 keV (see section 7.2).   

Unlike the planetary sciences sector, the XRF resolution required for pharmaceuticals 

analysis is high. This is because of peak overlapping between K series and L series 

radiation. One of the most popular XRF instruments utilised in the pharmaceuticals 

field is the ‘Minipal Pharma’, by Panalytical [Panalytical 2009]. This instrument uses 

a Si-pin detector that achieves a typical resolution of 145 keV at 5898 eV. Assuming a 

readout noise of 7.4 e¯ r.m.s, a similar resolution can be achieved by the CCD-Array 

when operating with a dark current of 40 e¯ p/p/s. This requires an operating 

temperature of ~ -8 °C in AIMO and a power consumption of ~ 2.5 W (CCD-Array 

only, not including X-ray source).   

The CCD-Array can match the performance of benchtop XRF spectrometers such as 

the Minipal Phamra in terms of both elemental coverage and resolution. However, the 

main use of XRF in the pharmaceuticals industry is for quantitative analysis of 

contaminants, usually in the parts per million (ppm) range. For example, the 

Committee for Human Medicinal Products (CHMP) issue a guideline on the limits for 

residual catalyst in pharmaceutical processing [EMEA 2009]. Residual catalysts are 

used as reagents during pharmaceutical processing and are leftover in trace amounts 

(ppm) in the active pharmaceutical ingredient (API). XRF instruments can be used to 

detect the quantity of these elements (mostly transition elements) and ensure they are 

within the recommended guidelines. For example, the guideline for the amount of Cu 

residual catalysts in a 5 g sample is 500 ppm [EMEA 2009]. The quantity of powder 

samples used for XRF analysis are usually ~ 100 mg, therefore detection limits of      

~ 10 ppm are required. To detect such low concentrations, high quality data and 

calibration is required. Although quantitative analysis has not currently been 

performed on CCD-Array XRF spectra, this technique can be performed very 

accurately with the use of the fundamental parameters technique and SRMs       

[Sprang 2000]. Typical accuracies range from 0.5 ppm − 100 ppm [Loubser & Verryn 

2008].  Assuming the fundamental parameters technique is employed with the use of 
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SRMs, and SNR errors are greatly reduced through increased data collection times, it 

is expected that the CCD-Array will quantify the concentration of elements with 

similar accuracies. The CCD-Array can then be used to determine the quantities of 

contaminants in both food and medicines.  

6.7 Discussion 

This chapter has discussed the operational performance of the CCD-Array in the 

current laboratory environment. The transmission of signal X-rays from the sample to 

the detector has been determined and the detectors response in detecting these X-rays 

has been outlined using a response matrix. The most common sample preparation 

issues experienced with the CCD-Array in the reflective XRD geometry have been 

highlighted. It has been shown that the PB geometry relaxes sample preparation 

requirements and eliminates the common sample preparation issues experienced in 

parafocusing geometries. The power and operating temperature required by the     

CCD-Array to perform XRD/XRF analysis have been investigated. It has been shown 

that the CCD-Array can perform both XRD/XRF analysis at +20 °C, as long as a large 

number of exposures are collected to reduce SNR errors. Possible applications of the 

CCD-Array have been suggested and variations to the geometry to suit these 

applications have been recommended.  
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Chapter 7 : Conclusions and Future work 

7.1 Conclusions 

This chapter presents the main conclusion of this thesis and possible future work to be 

carried out.  

The work carried out for this thesis involved the design and testing of a CCD array 

detector capable of simultaneously collecting XRD/XRF information from powder 

samples. A test facility was also designed to incorporate the detector for testing 

purposes. The work involved in this thesis provided an initial investigation into the 

eligibility of a CCD array detector for combined XRD/XRF analysis. CCDs are ideal 

detectors to be used for such applications due to their ability to discriminate X-ray 

energies with high resolution (XRF), as well as determine the position of detected    

X-rays with high spatial resolution (XRD).  

The CCD-Array consisted of 4 CCDs (e2v’s CCD30-11 FI, AIMO) tiled along a    

120 mm measuring circle. The CCDs were bonded to a Shapal ceramic, which had a 

very high thermal conductivity (90 W/m K) and low thermal expansion                    

(4.4 × 10-6 / °C). All 4 CCDs were cooled using a single 3-stage TEC, which was 

selected using Melcor’s thermoelectric cooler selection software [Aztec 2005]. Each 

of the CCDs received sufficient cooling to reduce the dark current to                           

~ 1 ē p/p/s with an average readout noise of ~ 7.4 e¯ r.m.s. at 165 kHz readout speed. 

The CCDs were enclosed inside a vacuum using an aluminium chamber with a 20 µm 

thick Mylar X-ray window. The Mylar X-ray window was durable and allowed a high 

transmission of X-rays from 1 − 10 keV. Liquid cooling was incorporated into the 

copper base plate to absorb heat generated from the backside of the TEC during 

operation. Two environments for cooling were considered, which consisted of 

creating a vacuum inside the CCD-Array or filling the CCD-Array with N2. 

Calculations performed prior to measurements indicated that the heat loads incident 

on the cold side of the TEC were much larger in the N2 environment. The calculations 

were confirmed by both measurements and simulations. The CCD headboard was 

incorporated onto the backside of the copper base plate, which provided CCD bias 

and clock voltages, TEC power terminals and PRT outputs. A 12-inch flexible 
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vacuum pipe connected the CCD-Array to a vacuum pump, which maintained a 

pressure of ~ 3 × 10-3 mbar inside the CCD-Array during cooling.  

The other main feature of the test facility was a high brightness X-ray micro-source 

manufactured by Bede Scientific Instruments. The main advantage of the            

micro-source was the coupling of an XOS polycapillary collimating optic. The optic 

focussed a highly divergent beam of X-rays into a low divergent beam                      

(3.5 mrad FWHM) of collimated quasi-parallel X-rays. Using the micro-source 

greatly reduced data collection times and increased the efficiency of both XRD and 

XRF experiments. When used at 40 kV, it was found that the optic almost entirely 

eliminated the transmission of high energy bremsstrahlung photons (> 10 keV). A    

15 µm Ni filter was also used to reduce Cu Kβ X-rays by 98% and lower energy 

bremsstrahlung X-rays. The resulting spectrum incident on the sample was a 93% 

monochromatic beam of Cu Kα X-rays, focused into a small collimated beam           

(< 150 µm). This was ideal for XRD applications since X-rays other than the main 

characteristic peak (Cu Kα) act as noise in the diffraction pattern.  

In recent years, the advantages of using CCDs for the collection of XRPD data have 

been well documented [Reyes-Mena et al. 2000], but this is still a relatively new 

technique. Chapter 4 presented detailed studies concerning the collection, analysis and 

modelling of XRPD using CCDs. The data collection process involved integrating the 

CCD for very short periods. This ensured the image was not clustered with X-ray 

events, which is important to the process of identifying isolated X-ray events. The 

number of isolated events generated within the CCD is dependant on the depletion 

depth of the device. By using X-ray spread event analysis, the depletion depth of the 

CCD30-11 was confirmed to be 12 µm when biased at 12 V gate voltage and 0 V 

substrate voltage. A QE of 33% was achieved at Mn Kα (5898 eV) with a depletion 

depth of 12 µm. Single exposures ranged from 0.1 − 2 s with readout times of           

1.6 s and 0.4 s for full imaging (256 × 1040) and 2 × 2 binning mode respectively. 

Multiple exposures were collected (100 − 10,000) to increase the SNR of both XRD 

and XRF data. Isolated events were determined by identifying events with an energy 

greater than the noise threshold, which was 3 standard deviations above the mean 

background noise. An ‘event’ was registered as a pixel containing a value greater than 

the noise threshold with 4 neighbouring pixels below the threshold. All isolated  
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events detected in the individual exposures were then accumulated to provide a 

histogram representing the combined XRD/XRF data.  

When X-rays diffract from a sample, the entire incident spectrum is diffracted. Since 

the spectrum incident on the sample was almost entirely composed of Cu Kα X-rays 

(93%), all X-rays diffracted from the sample were detected as Cu Kα events. By 

applying the energy discrimination technique, XRD data was extracted from the raw 

CCD images, revealing the diffraction pattern. Cu Kα events were also elastically 

scattered from various parts of the test facility and detected as noise in the diffraction 

pattern (typically 5 − 75 isolated events/s). Methods to reduce XRD noise have been 

demonstrated in Section 5.4. Once the diffraction data was extracted, radial 

integration was preformed on the 4 CCD images to reveal the 2θ vs. intensity 

diffractogram. Prior to radial integration, alignment of the sample with the CCDs was 

performed. The position of the integrating circle (centre of the diffraction rings) was 

refined by ± 0.3 mm and radial integration was performed. The FWHM of the peaks 

was calculated and the position with the highest angular resolution represented the 

centre of the diffraction rings. Beam alignment ensured the maximum possible 

angular resolution was achieved and errors in sample to detector alignment were 

eliminated.  

The performance of the CCD-Array as an X-ray spectroscopy device has also been 

investigated. The operational performance of the device has been highlighted in 

Chapter 6. The ability of the CCD30-11 to detect soft X-rays in the current laboratory 

arrangement has been discussed and the low energy detection limit was found to be   

~ 1500 eV (Al Kα) using a collimated 150 µm beam. By increasing the diameter of 

the irradiating beam to ~ 1.5 mm, the low energy detection limit increased to 1254 eV    

(Mg Kα). As a portable instrument, the reduced flux from a miniature X-ray tube or 

radioactive source would degrade the low energy detection limit to ~ 2.5 keV. An 

investigation was carried out to determine the CCD operating temperature required to 

perform combined XRD/XRF analysis. It was found that XRD analysis could be 

performed at room temperature, as CCD noise had negligible effect on the XRD 

pattern. Since CCD system noise has no effect on XRD patterns, the operating 

temperature of the CCDs was therefore entirely dependant on XRF requirements. 

Through computer simulations it was found that operating the CCD with 600 e¯ p/p/s 
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of dark current (+20 °C), allowed the detection of all Kα emissions from 1 − 10 keV. 

Accurate qualitative XRD/XRF analysis of basalt was performed by the CCD-Array 

at an operating temperature of + 20 °C in AIMO, with a power consumption of less 

than 400 mW.  

7.2 Future Work 

From the knowledge gained in testing the CCD-Array, 3 major improvements can be 

made concerning the design, 2 of which concern the XRD performance. Firstly, the 

resolution achieved by the CCD-Array is limited by the size of the diffracted beam 

from the sample, not by the spatial resolution of the detector. The first major 

improvement to the CCD-Array design will be the reduction in Rsd, which will result 

in higher XRD resolution since divergence of the diffracted beams is reduced. By 

reducing Rsd to 33 mm, only 2 CCDs are required as opposed to 4, which will also 

cover a larger 2θ angular range.   

The second improvement to the design will be the reduction in angular gaps, currently 

located at 3 positions along the measuring circle with a range of 2.96° each. This will 

be achieved by laser cutting the ceramic packaging of the CCDs, allowing the 

imaging areas to almost touch one another.  

The final improvement will be the low energy XRF response. For X-ray spectroscopy, 

the detection of elements from 1 − 2 keV is crucial, namely Na Kα (1041 eV),        

Mg Kα (1254 eV), Al Kα (1486 eV) and Si Kα (1740 eV). Detection of X-rays          

< 2 keV is difficult to achieve for portable detectors due to a low transmission in air 

and the X-ray window material. Figure 7.1 shows the geometry of the 2nd generation 

instrument in relation to the CCD-Array.  

The CCD regions in figure 7.1 (coloured black) represent the imaging areas of the 

CCD30-11s (26.6 mm length). By using a 33 mm sample to detector distance, an 

angular coverage from 1.1° − 89.15° θ can be achieved. The laser cut ceramic 

packages result in a single gap in angular coverage of 0.2° (located from              

45.05° − 45.25°). This assumes a 100 µm gap between the CCD imaging areas, which 

can be achieved by manual gluing. 
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Figure 7.1: Geometry of improved 2nd generation CCD-Array. Both instrument use 

         the CCD30-11 FI AIMO, with an imaging area length of 26.6 mm  

As can be seen from figure 7.1, the 2nd generation instrument has a reduced 

instrument volume and extends the X-ray window to within ~ 3 mm of the sample. 

Assuming the CCD-Array is placed under vacuum, this geometry greatly improves 

the low energy X-ray response as shown in figure 7.2. The XRF response will also be 

improved with the use of an 8 µm Mylar X-ray window, however, this reduces the 

detectors opacity to light and requires the CCD-Array to be inside a lightproof 

container during data collection. As shown in figure 7.2, the 2nd generation           

CCD-Array allows the detection of X-rays between 1 − 2 keV, which was not 

possible with the 1st generation model. Figure 7.3 shows the improved XRD 

resolution achieved by the 2nd generation CCD-Array in PB geometry. 
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Figure 7.2: Improved overall QE of 2nd generation CCD-Array 

 

 

 

 

 

 

 

 

Figure 7.3: Improved XRD resolution achieved by the 2nd generation CCD-Array in 

        PB geometry (Pob = 50 µm). Resolutions do not include any broadening 

        effects from the sample 

By increasing the angle of incidence, a comparable resolution to laboratory 

instruments can be achieved. The new geometry provides a degraded spatial 

resolution of 0.042° in comparison to the 1st generation instrument (0.012°), but as 
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Parameter 1st generation CCD-Array 2 nd generation CCD-Array Units
Number of CCDs 4 2
R sd 120 33 mm
Spatial resolution 0.012 0.042 º 2θ
θ inc 4 4 º θ
Angular coverage 4.48 - 63.95 5.1 - 93.15 º 2θ
Angular gaps 3 × 2.96º 1 × 0.2º 2θ
R PB at 10º, 30º, 60º 0.21, 0.27, 0.33 0.07, 0.12, 0.19 º2θ (FWHM)
Instrument size 174 (H) × 80 (L) × 70 (W) 70 (H) × 50 (L) × 40 (W) mm
XRF energy range 2,500 - 10,000 1,000 - 10,000 eV
Geometry PB with fixed θ inc PB with fixed θ inc

X-ray window 20 µm Mylar 8 µm Mylar

shown in figure 7.3, the size of the diffracted beams is still much larger than the 

spatial resolution of the detector. A consequence of reducing the radius of the 

measuring circle is the increase in distance between the CCD imaging area and the 

curvature of the measuring circle. This results in a larger variation in spatial resolution 

(see Section 4.5.1) from 0.00015° to 0.008° 2θ. This variation is still not expected to 

cause any errors in qualitative analysis, however, these errors could be easily 

corrected during post-processing. Table 7.1 summarises the advantages of the 2nd 

generation CCD-Array.  

 

 

 

 

 

Table 7.1: Comparison of 1st generation and 2nd generation CCD-Array  

The 2nd generation CCD-Array will use the deep depletion version of the CCD30-11, 

which has a resistivity of ~ 1500 Ω.cm. This will provide a larger depletion region, 

resulting in a higher number of single pixel events. The use of BI CCDs is 

unnecessary for the CCD-Array since the benefits in QE are at energies < 1 keV. The 

2nd generation CCD-Array will be ideally suited to portability due to the decreased 

instrument volume and power consumption. The CCDs will be typically operated at    

-20 °C to reduce the dark current to < 1 e¯ p/p/s. The CCDs can also perform 

combined XRD/XRF analysis at room temperature, however, this requires longer data 

collection times. Future work will also involve investigating alternative heat 

dissipating methods to liquid cooling. Fan assisted heat sinks may provide a more 

feasible option for portability. The 2nd generation CCD-Array greatly improves on the 

design of the 1st generation model and can be applied to many applications such as 

those discussed in section 6.5. and section 6.6. The type of X-ray source used in 

conjunction with the new CCD-Array will be application specific. Figure 7.4 shows 

the concept and geometry of the new CCD-Array.  
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Figure 7.4: Illustration of the improved 2nd generation CCD-Array 
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The curvature of the imaged diffraction rings will be more pronounced in the 2nd 

generation instrument, therefore, unlike the 1st generation instrument, image smearing 

cannot be ignored. If full frames CCDs without shutters are used, longer integration 

times will be required to reduce errors from image smearing, but this will increase the 

dark current. CCD binning can also be applied to increase the ratio of integration to 

readout time, but the spatial resolution of the 2nd generation instrument should not be 

reduced further than 0.042°. Frame transfer CCDs may also be considered to 

eliminate errors from image smearing. The 2nd generation CCD-Array will also collect 

a larger fraction of the diffraction cones, thereby improving counting statistics for a 

given data collection time.   

Future work will also involve performing quantitative analysis on both XRF spectra 

and XRD patterns. The intensity of an XRF peak for a given element is related to the 

concentration of the element in the sample. However, the intensity is affected by other 

elements in the sample due to secondary/tertiary fluorescence. This process can be 

modelled by software programs that perform ‘matrix corrections’, the ‘matrix’ in this 

case referring to the sample. By using SRMs, the experimental geometry can be 

calibrated to perform quantitative XRF analysis using the fundamental parameters 

technique [Sprang 2000]. 

Quantitative XRD analysis can be performed using techniques such as Rietveld 

refinement [Young 1993]. Software programs such as GSAS can be used to generate a 

synthetic version of the expected diffraction pattern [Larson & Von Dreele 1994]. The 

expected diffraction pattern is generated using sample, geometrical and instrumental 

parameters. The synthetic pattern is then refined using the different parameters (one of 

which is the scale factor that represents the weight of each phase in the sample) until 

the best agreement is found between the experimental and simulated data. Once the 

best fit is achieved, the scale factor reveals the weight of each phase in the sample and 

quantitative analysis can be performed [Gonzalez 2003].  
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Sample name Form Origin Chemical formula/composition
Lanthanum hexaboride SRM 660a NIST LaB6

Fluorophlogopite mica  SRM 675 NIST KMg3(AlSi3O10)F2

Zinc oxide  SRM 674b NIST ZnO
Titanium dioxide  SRM 674b NIST TiO2

Chromium (III) oxide  SRM 674b NIST Cr2O3

Ceric oxide  SRM 674b NIST CeO2

Basalt Rock NHM Olivine/Pyroxene/Feldspar/Quartz
Aragonite Synthetic powder UCL CaCO3

Peridotite Rock UCL Olivine/Pyroxene
Andesite Rock NHM Plagioclase/Pyroxene/Feldspars/Biotite/Magnetite/Quartz

Multivitamin tablet Tablet Brunel Miscellaneous
Sodium chloride Granuals Brunel NaCl

Quartz Powder NHM SiO2

Chlorite Rock NHM (Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6

Smectite Rock NHM (Ca, Na, H)(Al, Mg, Fe, Zn)2(Si, Al)4O10(OH)2 - × H2O

 Illite Rock NHM (K, H)Al2(Si, Al)4O10(OH)2 - × H2O

Olivine Powder UCL (Mg, Fe)2SiO4

Appendix A 

 

 

 

 

 

 

 

Table A: Sample reference (NHM = Natural History Museum, UCL = University    

    College London, Brunel = Brunel University, NIST = National Institute of 

    Standards and Technology)                                                              


