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Abstract. Recent studies have revealed characteristic general features
in the topology of real-world networks. We investigate the universality of
mechanisms that result in the power-law behaviour of many real-world
networks, paying particular attention to the Barabasi-Albert process of
preferential attachment as the most successful. We introduce a variation
on this theme where at each time step either a new vertex and edge
is added to the network or a new edge is created between two existing
vertices. This process retains a power-law degree distribution, while other
variations destroy it. We also introduce alternative models which favour
connections to vertices with high degree but by a different mechanism
and find that one of the models displays behaviour that is compatible
with a power-law degree distribution.

1 Introduction

A variety of real-world networks, such as communications networks, the World
Wide Web and the Internet consist of many constituents that are connected by
diverse interactions. Until recently, there was an absence of data on these large
networks, making it difficult to extract reliable results about their topological fea-
tures. However, as the accumulation of data becomes increasingly computerised,
more information about large networks is becoming available. The studies that
have been performed on these complex networks so far suggest that they share
many common structural characteristics. Thus it has been proposed that there
may be universal laws governing the structure and evolution of many diverse
real-world networks.

Examples of such networks are the World Wide Web [1-3], the Internet [4],
the graph of movie actors, [5], scientific collaboration networks, [6, 7], citation
networks [8,9] and the graph of long distance phone calls [10]. Many of the
networks studied are found to exhibit power law degree distributions [11], P(k) ~
k=7, with v mostly in the range 2 < v < 3. These findings have raised the
important question of whether there is a universal mechanism by which the
networks grow and self-organise that persistently results in the distributions
found in real-world networks.

In this paper we introduce a mechanism that is not based on strict preferential
attachment to suggest that the preferential attachment process may not be the
only mechanism that results in the degree distributions observed in real-world
networks.



2 Preferential Attachment

The process of preferential attachment was first introduced by Barabasi and
Albert [5]. Preferential attachment is the process whereby new vertices and edges
are introduced to the network over time in such a way that vertices with more
edges increase their degree more quickly. The simplest case of linear preferential
attachment is given in Ref. [13], with a vertex of degree k receiving a new edge
with probability IT(k), given by II(k) o k. At each time step, a new vertex and
edge are added to the network and connect to a vertex already present. The
probability that a new vertex will connect to an existing vertex of degree k,
II(k), is given by IT(k) = k/M;(t). The moments M,(t) are given by M,(t) =
> k*Py(t), where Py(t) is the number of vertices of degree k at time t. The
lower order moments, My(t) and M, (t), give the total number of vertices in
the network and the total degree of the network, respectively. The result of this
model is a power law degree distribution, where the number of vertices of degree
k at time t, Py(t), is given by Py (t) ~ tk—2 [5,13].

For non-linear preferential attachment, given by IT(k) o< k%, where a > 0 is
a constant, then it is found that for a < 1, Py (t) follows a stretched exponential
and for o > 1, a single vertex in the network links to all other vertices [13]. In
Ref. [14], II (k) was measured for four large networks. This was acheived using the
computerised data of network dynamics to monitor which vertices acquire new
links as a function of the vertex degree. To avoid strong fluctuations, the accumu-
lative distribution, k(k) = fok II(k)dk, was used instead of IT (k). If II (k) follows
non-linear preferential attachment, then x(k) should have the form s (k) oc k**1.
In Ref [14], the Internet and citation networks were both found to follow near
linear preferential attachment, with a = 1.05 and o = 0.95 & 0.1, respectively.
The scientific collaboration network and the actor network were found to follow
sublinear preferential attachment, with & = 0.79 £ 0.1 and o = 0.81 + 0.1, re-
spectively. This sublinear behaviour implies that P(k) should follow a stretched
exponential [13], but the measured P(k) indicate that a power law offers a better
fit. The authors of Ref. [14] suggest that this is because external links to new
vertices follow sub-linear preferential attachment, whereas internal links between
existing vertices follow near linear preferential attachment. Since both the actor
and science collaboration networks are dominated by internal links, the degree
distribution exhibits the scale-free behaviour of linear preferential attachment.

Inspired by the above work, we introduce a model where at each time step
a new edge is added with probability p or an edge and vertex with probability
1 — p. Following the method of [13], the rate equation for Pj(t) is found to be

de(t) _ 2p+1—p
dt Mt

[(k —1)Pe—1 — kPg] + (1 — p)dg,1- (1)

The first term on the right hand side of this equation represents the creation of
a vertex of degree k from a vertex of degree k¥ — 1. The second term represents
the creation of a vertex of degree k + 1 from a vertex of degree k. This happens
with probability 2p if a new edge is added between existing vertices, and 1 — p if



a new edge and vertex are added and link to an existing vertex. The final term
represents the arrival of a new vertex of degree 1, which happens with probability
1 — p. Following [13], we find the total number of edges in the network, M;(t),
obeys dM;(t)/dt = 2. Substituting M;(t) = 2t and Py(t) = tny into Eq.(1)
yields the recursion relation

np = — &= e @)

Ck+[2/(A+p
for k > 1. For large k, ny has the solution ny ~ k=7, where v = 1+ 2/(1 + p).
Since 0 < p <1, then 2 < v < 3 for large k, which is the range of the exponent
found for many real-world networks.

We also consider the case where a new edge is introduced between existing
vertices with linear preferential attachment, but the new vertices link to existing
vertices with sublinear preferential attachment. The probability that an existing
vertex will recieve a link to a new vertex is then given by IT(k) o k%, where
a < 1. We find that when 0 < @ < 1 and k£ — oo, the degree distribution is
dominated by the process whereby edges are added according to linear prefer-
ential attachment. A power-law degree distribution is obtained, Py(t) ~ tk™7,
with v = 1+ 1/p, for large k, even when more edges are added according to the
process with sub-linear preferential attachment, i.e. when 0 < p < 0.5. However,
to yield 2 < v < 3 in agreement with experimental data [11], more edges must be
added to the network from the process with linear preferential attachment, i.e.
when 0.5 < p < 1. This work suggests that real-world networks are dominated
by the process of linear preferential attachment but that there may be other
mechanisms at work.

Many other models based on linear preferential attachment have been pro-
posed to include mechanisms such as the decay of edges, the “condensation”
of edges and vertices with fitness [11]. The aim of these models is to maintain
the scale-free nature found in real-world networks, whilst incorporating other
mechanisms to model the different features that they exhibit.

3 Networks with Fitness

The different rates with which vertices acquire edges is often attributed to the
ability of vertices to compete for new edges, called the vertex fitness [15]. In Ref.
[16], models of growing random networks are studied in which the growth rates
are dependent upon the vertex fitness.

Model A

In model A, a network is built by connecting new vertices to those already
present in the network. The probability that an existing vertex will acquire a
new edge is given by II(k,n) o« (k — 1) 4+ n, where k is the vertex degree and
7 > 0 is it’s additive fitness chosen randomly from a probability distribution
f(n). For this model the degree distribution behaves as Py (n,t) ~ tk~7, where
v =<n>+2 and < n > is the average additive fitness.



Model B

In model B, the network is built in the same way, but an existing vertex acquires
a new edge with random additive fitness, 1, random multiplicative fitness, {, and
degree, k, with probability IT(k,n,() « ¢((k—1)+n.n and  are initially chosen
from a probability distribution f(n, ). After some analysis, it is simple to show
that the degree distribution behaves as Py(n,(,t) ~ tk~7 for k — oo, where
v =14+m/{, m is the reduced moment, given by Mi;(t) = mt, and Py (t) = tng.
For model B, specific cases are considered as the general case cannot be solved
explicitly.

The case where f(n,{) = 1,0 <n <1,and 0 < ¢ <1 is first considered.
For this case, the reduced moment is given by m = 1/(1 — e~2) = 1.156, which
yields ng ~ k~7/Ink with v = 1+ m = 2.156.

For the case where f(n,{) = §(C —n) with 0 < ¢ < 1, then the degree
distribution follows nj ~ k=7 with v = 2.255.

Finally, the case where f(n, () takes the form f(n,{) = 6¢(1—¢)d(¢ —n) and
0 < ¢ < 1is solved to give the degree distribution ng ~ k=7 /(Ink)? for k — oo,
where v = 1 + m = 2.550.

4 Extremal Networks

There are many variations of the BA model that preserve the scale-free nature of
the model, such as networks where the vertices have random additive fitness [15,
16]. Other variations include processes such as aging and rewiring of edges [11].
However, it is important to note that the BA method of preferential attachment
may not be the only mechanism to produce power law degree distributions. Here
we present a model which favours connections to vertices with high degree, but
by a different mechanism.

In this model, at each time step a set of m(t) vertices are chosen from the
N(t) vertices already present in the network. The vertices to be in the set are
chosen at random so that any vertex can appear in the set more than once. A
new vertex is then connected to the vertex in the set with the highest degree. If
two or more vertices have equal highest degree, one of them is chosen at random.
With these rules, the degree, L(t), of the hub vertex, the vertex with the largest
degree, obeys

3)

S, 1— ——
dt
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The second term on the right hand side of this equation represents the probability
of not choosing the vertex when m(t) vertices are selected. Hence, as the hub
vertex always gains another edge when selected, the rate of change of the degree
of the hub vertex is one minus this probability. As N(t) ~ t for large time we

L0y, [ 00) "
dt t



Model A m(t) =m

When m(t) is time independent it is simple to use Eq.(4) to show that L(t) ~
m Int for large t. We consider four different cases of this model in turn (i) m =1,
(if) m = 2, (ili) m > 2 and (iv) m — oo.
For (i) m = 1 the model is just the random addition of an edge and vertex to
a randomly selected vertex already in the network. All vertices are selected with
equal probability, independent of degree. Consequently the number of vertices
of degree k at time t, Py(t), obeys the equation
dPy(t) 1

i N [Pr—1(t) —

Py, (t)] + k1. (5)

Following [13], Eq.(5) can be solved in the large time limit to yield Py (t) oc 2.
As one would expect from a network in which the vertices gain edges with a rate
independent of their degree, this network has an exponential degree distribution.

For (ii) m = 2 we choose 2 vertices at random and join the incoming edge
to the vertex with the larger degree. If they both have the same degree, one of
them is chosen at random. The degree distribution Py (t) satisfies

dPy(t) _ Pk

1
dt NZ(
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k—2 2 2
it) () P’“ 1() B () + k1. (6)

From this equation it is a simple matter to check that dN (t)/dt = dMy(t)/dt =1
and dM; (t)/dt = 2. Introducing Py (t) = tny and N(¢t) = t for large ¢ into Eq.(6)
gives

k—2 k—1
nE = 2np_1 Z n, — 2ny, an +ni_, —ni+ Ok,1- (7
r=1 r=1

Fig. 1. is a plot of ny against k obtained from a simulation of this model over 10°
time steps with m = 2. We see that the data suggests that ny has an exponential
dependence on k. We can test this by inserting ny = (1 — e=?)e~P* into Eq.(7).
For large k this reveals 8 = In(3/2) = 0.405..., which is in good agreement with
the simulation data, suggesting that § = 0.4306... A similar value of 8 can be
obtained by iterating Eq.(7) numerically.

For (iii) m > 2 we can show that the n; approximately obey

k— 1

k—2
N =mng—1 E Ny — mnyg E Ny
r=1

which is obtained by dropping terms of order n? and higher. Inserting nj =
(1 — e ?)e~P* into this iteration for large k yields 3 = In[(m + 1)/m]. Thus for
all finite m > 1 we have an exponential degree distribution.

As (iv) m — oo this exponential degree distribution breaks down and 8 — 0.
This is because a new edge is always added to the vertex with the highest degree
in the network and the network develops a star geometry. More precisely, at time

+ 5k,1 (8)
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Fig. 1. The degree distribution when m = 2 vertices are chosen at random and the
incoming edge is connected to the vertex with highest degree .

t it has a hub vertex with degree N (t) — 1 linked to N(¢) — 1 vertices with degree
1. Consequently the degree distribution takes the bi-modal form

Pu(t) = 8(k — N(t) + 1) + (N () — 1)6(k — 1). 9)

Model B m(t) = pN(t)

In this network model a few hubs develop with very high degree and the vast
majority of the the vertices have degree 1. This can be demonstrated by some
simple analysis. For instance, putting m(t) = uN(t) = ut for large t into Eq.(4)
gives L(t) ~ (1 — e™#)t, which indicates that a proportion 1 — e™* of the edges
in the network are connected to the vertex of the highest degree. The number of
vertices with degree 1, P (t), obeys

(10)

By writing Py (t) = t + p(t) and substituting it into Eq.(10) we can solve the
resulting differential equation for p(t) in the large ¢ limit to yield

1
P(t)y=t— ﬁln(t +c) (11)

where ¢ is a constant. Consequently the proportion of vertices with degree greater
than 1 behaves as

t—Pi(t) In(t+e)
t t

~0 as t — oo. (12)

Thus we see that for all g > 0 this network has Npyp ~ 1/ hub vertices with
degree kpyp ~ pt and a much larger number, N ~ ¢, of vertices with degree 1.



Model C m(t) = N¥(t)

Inserting m(t) = N¥(t) for large ¢ into Eq.(4) gives L(t) ~ t”. Clearly for v > 1
the network develops a geometry like that of Model B above. For 0 < v < 1 the
precise geometry is more difficult to classify analytically. For this reason we have
performed numerical simulations of this network for 0 < v < 1. We found that
the degree distribution Py is compatible with a power-law distribution P ~ k=7
with for instance v = 1.45... when v = 3/4 and v = 1.46... when v = 2/3. This
is clearer numerically for larger values of v, because the closer that v is to 1, the
easier it is to obtain accurate data for a wide range of vertex degrees. A plot of
the log-binned data for Py against k for v = 3/4 and v = 2/3 after 5x10° time
steps is given in Fig. 2. Plots of Py against k for 10® and 2.5x10¢ time steps give
the same exponents. The numerical work, and the work done on Models A and
B, suggest that when we have m(t) ~ N(t)¥, P, ~ k™7, with v a decreasing
function of v. However, the fact that for some values of v, v < 2, suggests that
this behaviour is destroyed for larger systems, and that P, may follow some
other functional form.
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Fig. 2. The degree distribution when m(t) = N"(t) vertices are chosen at random
and the incoming edge is connected to the vertex with highest degree; (a) v = 3/4
(diamond) ; (b) v =2/3 (cross ).

5 Discussion

Many real-world networks appear to exhibit power-law degree distributions, in-
dicating that such networks may be classified according to their scale-free nature.
The process of preferential attachment introduced by the BA model, along with
it’s variations, naturally results in these distributions. Thus it may be proposed
that there are universal laws governing real-world networks and that the process
of preferential attachment may prove to be one.



It seems unlikely, however, that all networks with power-law degree distribu-
tions grow according to the same mechanism. Indeed there are many variations
of the BA model that preserve the scale-free nature of the model such as net-
works where the vertices have random additive fitness. Other variations include
processes such as aging and rewiring of edges to mimic the behaviour of real
world networks. This raises the question of whether preferential attachment is
robust enough to incorporate different aspects of real-world networks whilst re-
taining their degree distributions. We have seen that the introduction of trivial,
additive fitness retains power law behaviour, but multiplicative fitness destroys
it.

Another important consideration is that what experimental studies indicate
as power-law dependence is actually a linear fit to a comparatively narrow range
on a log-log plot. It is very difficult for any experimental study to yield a func-
tional form for the degree distribution because of strong fluctuations [11]. We
introduced models that were not based on strict preferential attachment and
found that one of the models has a degree distribution that is compatible with
a power law, but may have a different functional form.

This work reveals important questions about the universality of complex
networks: (i) Is preferential attachment robust enough to incorporate all of the
diverse processes observed in real-world networks? (ii) Are there other processes
that result in the degree distributions found in real-world networks?
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