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Abstract

One of the main challenges facing the airline industry is planning under uncertainty,

especially in the context of schedule disruptions. The robust models and solution

algorithms that have been proposed and developed to handle the uncertain parameters

will be discussed. Fleet assignment models (FAM) are used by many airlines to assign

aircraft to flights in a schedule to maximize profit. In the context of FAM, the goal

of robustness is to produce solutions that perform well relative to uncertainties in

demand and operation.

In this thesis, we introduce new FAMs (i.e. DFAM1 and DFAM2) that tackles

the common problem associated with aircraft utilization. Subsequently, stochastic

programming (SP) is presented as a method of choice for the research. Through the

use of a two-stage SP with recourse technique, the DFAMs are extended to SP-FAMs

(SP-FAM1 and SP-FAM2). The main distinction of the SP-FAM compared with

other FAMs is that, given a stochastic passenger demand, it gives a strategic fleet

assignment solution that hedges against all possible tactical solutions. In addition,

we have a tactical solution for every scenario. In generating the demand scenarios,

we use a network-simulation model embedded with a time-series engine that gives

a snapshot of one week that is representative of any other week of the scheduling

season.

We later outline the approach of solving the SP-FAMs where the schedule is

compacted through several preprocessing steps before inputting it into SAS-AMPL

converter. The SAS-AMPL converter prepares all the data into readable AMPL for-

mat. Finally, we execute the optimizer using a FortMP solver (integrated in AMPL)

that invokes branch-and-bound algorithm. We give a proof of concept using real data

from a Middle East airline. Our investigations establish clear benefits of the recourse

FAM compared to alternative models. Finally, we propose areas of future research

to improve SP-FAM robustness through solution algorithms, revenue management

(RM) effects, calibration of network-simulation models and system integration.
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Chapter 1

Introduction

”Management scientists (Operation researchers) have wrecked the airline industry” (Coates,

2005).

In this chapter, an overview of Operations Research (OR) in the airline industry

and major areas of its application will be discussed. Specifically, the illustrations of

the applications will be made with a simple OR model as used in Revenue Manage-

ment (RM), Network Planning (NP) and Schedule Planning (SP).

1.1 OR Application in the Airline Industry

The field of Operations Research (OR) and specifically optimization, has had a pro-

found impact on the airline industry (Yu and Yang, 1998). Although airline opti-

mization models have been used since the 1950s, airline planning and operation has

become increasingly complex and dynamic (Klabjan, 2005). The need for effective

and proper planning has increased the use of optimization models in the airline in-

dustry (Sylla, 2000). This need has also come about due to increasing pressure on

profitability in a fiercely competitive environment.

The unprecedented revolution in airline operation optimization has been con-

tributed to: (i) the evolution of technology and rapid advancement of optimization,

(ii) increasing focus on the bottom-line in the industry, and (iii) better understanding

(by researchers) of the issues in the planning of airline operations (Yu, 1998). In

order to optimize profit, an airline must continually evaluate performance of existing

routes and pro actively undertake appropriate remedial action in terms of capac-

ity rationalization, route optimization, network optimization, hub optimization and

code-share optimization. Today major airlines have fully fledged OR divisions that

cater across the company on optimization related issues. Similarly, small airlines buy

optimization applications off-the-shelf and employ OR personnel in vital areas that

have significant elements of optimization. The major contributors in the application

1
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of airline optimization is depicted in Figure 1.1 that reflects the core processes typical

for many airlines.

Revenue 
Management

Network
Planning

Operations
Control

Distribution

Fleet Planning

Schedule PlanningRoute Planning

Schedule Generation

Fleet Assignment

Through & Maintenance

Crew Scheduling

Pricing and 
Yield 

Management 
Control

New/Existing Markets

Capacity Planning

Profitability Evaluation

Manpower Planning

Maintenance
Planning

Schedule
Publication

CRS Evaluation

StrategicStrategic

TacticalTactical
Scope for optimization

Figure 1.1: An overview of planning in the airline industry.

The airline planning process is inter related and can broadly be classified into

three phases; strategic planning, tactical planning and operational planning. Some of

the phases have an element of both operational and tactical or tactical and strategic

approaches. Strategic planning is long-term planning and attempts to position an

organization within its environment and typically spans a period of over five years.

On the other hand, tactical planning is a series of specific actions necessary to support

the accomplishment of the strategic, overall plan and covers a period of 1 - 5 years.

Operational planning is setting out clearly the implementation of the strategic plan

against specific objectives and covers a period of six months to one year.
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1.2 OR Application within Revenue Management

Airlines sell seats in the same plane compartment with different restrictions on pur-

chase and price. Pricing of seats in different categories has an important bearing on

revenues (fill all seats and do not turn away high-fare customers (Busutulli, 1999)).

RM is the integrated control of capacity and price whose sole objective is to maximize

revenue; it means selling the right seat to the right customer at the right price and

the right time (Klophaus and Polt, 2007).

There is a common belief that RM originated in airline industry with the first true

model accredited to Littlewood. The basic model has been through numerous refine-

ments; SP formulation, nonlinear programming formulations, dynamic programming

formulations, along with various algorithms for solving these models, including de-

composition methods and some quite elaborate schema (Boyd, 2006). An extensive

review on the evolution and current research on RM has been elaborated (McGill and

Ryzin, 1999). The biggest refinement was the introduction of origin and destination

control, or simply O-D control. O-D control optimizes over an entire flight network as

opposed to individual flight legs. The current setting of many RM departments within

airlines is a de-linking of the pricing role from the RM role; however, the future, espe-

cially in the context of O-D control, is the dynamic integration of the two (pricing and

RM) through the entire booking period. The new paradigm will determine what is

the most appropriate fare to display to the consumer prior to the departure to ensure

that the highest probability of sale is attained. The paradigm differs from the current

setting where the RM department alone determines the allocation of seats based on

the forecast passenger demand for predefined products (Dunleavy and Westermann,

2005).

As an illustration, the RM process normally follows a five-stage process as shown

in Figure 1.2.

Figure 1.2: The revenue management process.
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Fundamental system requirements : This entails establishing fare rules to gain the

best price from different customers. Such a pricing strategy will depend on several

factors such as demand elasticity, competitive issues, marketing factors and cost fac-

tors.

Forecast demand : As demand varies frequently, capacity needs to be rationalized

to accommodate the variations. When demand is high, select the high-yield traffic

and spill the rest to the low-demand flights. Similarly, when demand is low, attracting

additional traffic either by recapturing own spill, capturing demand from competitors

by intensifying sales and marketing efforts.

Optimize capacity, fare mix, overbooking : When there is excess demand in a

lower compartment while empty seats (that are not expected to sell) are available

in a higher compartment, the capacity in the higher compartment is rationalized to

accommodate the excess demand in the lower compartment. In fare-mix optimization

the bookings limits are calculated using a popular heuristic approach known as the

Expected Marginal Seat Revenue. This technique takes three different forecast values

by booking class; mean demand, demand variability, and expected revenue or fare to

optimize to give the best fare mix. Overbooking is done deliberately as some already

booked passengers do not show up at the time of departure. The no-show could be as

a result of missed connections, double booking or fake bookings that have not been

cancelled. An overbooking optimization takes the no-show forecast and overbooks to

offset the no-shows.

Set nested booking limits : Seat availabilities in the computer reservation systems

can be displayed in several ways. For example, if a booking class has reached the

limit of its own allocation, the booking class would have sold out; this is known as

partitioned control or discrete nesting. The main disadvantage of this approach is a

situation where a high booking class is sold out while a lower booking class is still

available. Serial (or linear) nesting overcomes such situations by creating a linear

order of the booking classes such that the lower booking class will still be available

once the high booking class is sold out.

Forecast Revenue: Forecasting revenue provides the airline with an early warning

of future revenue shortfall. Specifically, the source of revenue weakness pertaining

to origin or point of sale and the day of the week is identified. Once identified, the
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impact of competitors fares are evaluated and strategies to combat the situation are

devised. At this point, the airline can match, cut down or maintain the fares.

A simple RM model based on marginal values or bid-price (Higle and Sen (2001))

is associated with seat availability and the willingness of the customer to accept or

reject the offered price. Suppose customers request flight services for a particular

itinerary comprising flight legs with different class (based on fare) composition.

Sets and indices

i=1..I denotes itineraries (i ∈ I).

l=1..L denotes flight legs (l ∈ L).

Decision variables

xi = number of seats allocated to itinerary i.

Parameters

ai,l = 1 if itinerary i uses flight leg l, otherwise it is 0;

vi = unit revenue for itinerary i ;

cl = number of seats available on leg l ; and

d̄i = expected passenger demand for itinerary i.

Constraints and objective function

PDLP Max
∑
i∈I

vixi (1.2.1)

subject to :∑
i∈I

ailxi ≤ cl ∀l ∈ L (1.2.2)

0 ≤ xi ≤ d̄i ∀i ∈ I (1.2.3)

The objective function (1.2.1) maximizes the revenue for each itinerary; the allo-

cation constraint (1.2.2) ensures that the number of seats to be allocated is less or

equal to the available seats (capacity) of the itinerary and the demand constraint
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(1.2.3) ensures the number of seats to be allocated in the itinerary is less or equal to

the passenger demand for the itinerary.

1.3 OR Application within Network Planning

1.3.1 Fleet Planning

Fleet planning encompasses acquiring the right type of aircraft with the right number

of given seats for the airline (Stone, 1998). In a nutshell, fleet planning defines an

airline’s structural build-up and is characterized by aircraft type, number of aircraft,

deployment of aircraft, attainment of financial goals, timing of purchase and retire-

ment of aircraft. Acquiring the right number of seats, entails analyzing the route

network for existing and new destinations that is driven by demand forecast. The

simulated route network is embedded in a profitability model that is optimized to

determine the best mix of aircraft (Boeing, 2003). On the other hand, consideration

for buying the right type include, among other factors, operating cost, price, per-

formance, comfort, range, commonality, ease of maintenance, operational flexibility,

stability of value, external noise, emissions and design of cargo hold (Clark, 2001).

The above fleet selection criteria are outlined and shown in Figure 1.3.

Direct operating cost

Aircraft price

Performance

Commonality

Ease of maintenance

Operational flexibility

Comfort

Stability of value

External noise

Emissions

Design of cargo hold

Present
importance

Future
importance

High Low

Figure 1.3: Aircraft selection criteria.

Belobaba (2006) outlined two approaches of fleet planning methodologies, the top-

down or macro approach and the bottom-up or micro approach. The macro approach
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allows the rapid evaluation of new aircraft types, given high level of assumptions, at

a defined sub-system, region, or route level. In contrast, the micro approach is the

most commonly used approach as it entails detailed evaluation of routes and allows

scenario analysis. Mathaisel (2008) confers with Belobaba on the approaches and dis-

tinguishes two optimization models for fleet planning problems, the Cell (Mathaisel,

1981) model and FA-4 model. The Cell model is an economic-based macro model

with financial constraints that reduces the size of the multiple-period problem by

clustering individual routes into classes or cells, such as short-haul, medium-haul, or

long-haul. The model finds the optimum combination of aircraft types and frequen-

cies for all of the cells in this aggregate network. The reduced size of the problem

permits a rapid evaluation of the fleet requirement for a number of years into the

future. On the other hand, FA-4 is a micro approach and uses the fleet assignment

model to make optimal decisions on routes, aircraft types and frequencies for a single

period in time, over all periods in the planning horizon. The FA-4 approach assists

the airline firm in optimizing: the route network design for the airline; the assignment

of aircraft for each route; and the frequency of service on each route. The results also

provide valuable insight into the profit impact of a specific route upon a network, and

into how the addition of new stations or the deletion of existing ones affect optimal

routings. These decisions are made for a single period in time.

1.3.2 Route Planning

Airlines have developed different appraisal matrices that rank routes based on differ-

ent performance attributes such as, load-factor, market-share analysis, network value,

average fare paid by passenger per miles flown (yield), unit revenue per available

seat, unit cost per available seat, etc. The ranking pin-points both star-performers

and under-achievers, thus prompting detailed scrutiny. The specific route analysis

is then done using different models (e.g., network-simulation model) and practical

decisions undertaken. Such decisions can lead to: frequency adjustment, schedule

synchronization, capacity rationalization and code-share evaluation.

Similarly, new routes have to be planned with the right entry timings, frequen-

cies and appropriate aircraft type to be deployed. Using a multi-criteria technique,
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Ahmed and Taskila (2007) devised a scoreboard where potential routes are priori-

tized on a launching strategy. Such a technique entails a process of network analysis

through a network-simulation model and other micro-economic indicators.

A start-up airline will adopt a point-to-point network structure and evolve into a

single hub structure as the market matures. Once there is enough traffic between the

two non-hub points, the network evolves further into a hub by-pass and eventually a

multi-hub fragmented structure. The network evolution stages, are depicted in Figure

1.4.

A point-to-point
structure

Single hub structure Increased direct
non-hub offering
(hub by-pass)

Multi-hub, fragmented
structures

This is a starting
point for most
airlines

Once a network
has been
established,
connections can
be organized 

Once there is
enough traffic
between two
non-hub points,
direct flights are
offered

Connections are
organized in
other airports

Stage 4Stage 3Stage 2Stage1

Figure 1.4: Network evolution.

The other enormous task involves the development of scheduling wave or bank

systems to optimize on connectivity, especially for an airline that embraces the hub-

and-spoke network. Lufthansa Systems (Jeschke, 2006) have developed a hub opti-

mizer that maximizes unconstrained network revenue by optimizing the arrival and

departure times for flight legs that operate via a hub. This is done by shifting services

in time, splitting services and swapping services. Here service means a set of flights

operating on different days of the week and all the flights fulfil several conditions such

as; operated by the same airline, have the same flight number, are connected to the
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same hub, departs or arrives in the same hub, have the same routing, have the same

slot requirements, etc. The hub optimizer takes slots and rotational constraints into

account.

The bank system comes under criticism, especially for a large network, as it nor-

mally leads to over capacity with a high-cost structure that leads to lower aircraft and

airport utilization (both employee and gate utilization). The emerging popular con-

cept, rolling hub or breaking the bank is a system that spreads flights out during the

day instead of arranging them in the previously peaked connecting banks. The main

distinction of the rolling concept is that the waves are split and overlapped, so that

the inbound bank and outbound bank occur simultaneously in the same direction.

1.4 OR Application within Schedule Planning

The schedule planning process follows a four-stage process as shown in Figure 1.5.

Schedule
Generation

Fleet
Assignment

Through &
Maintenance

Routing

Crew 
Scheduling

Figure 1.5: The schedule planning process.

1.4.1 Schedule Generation

The four-stage process for schedule generation (Sylla, 2000), comprises demand es-

timation, schedule construction (refer to Figure 1.6), slot management and schedule

distribution. Schedules are developed from a previous schedule by estimating demand

for the season under consideration. The estimated demand is optimized taking several

parameters such as connecting flights, desired turn-around times, aircraft availability,

customer preference and competitors schedule. Slot refers to timing rights given to

an airline for landing and take-off; mainly applicable to international markets and

other slot-controlled airports; they are normally negotiated twice in a year, during

summer and winter. Finally, the schedule is filed into the global distribution channels

to ensure that it is correctly displayed.

Erdmann et al. (2001) described the schedule generation problem as the problem

of determining aircraft rotations observing operational constraints and fleet sizes, and
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Old
Schedule

New
ScheduleEnrichment

Forecasting

Optimization

Figure 1.6: Schedule construction steps.

of re-routing passengers taking seat capacities into account, such that the combined

aircraft and passenger costs are minimized. He proposed a model for charter operation

that generates the schedule from scratch as opposed to the conventional process of

generating a new schedule from the previous one.

1.4.2 Fleet Assignment

Once the schedule has been generated, the next stage is to assign a specific type of

plane to each leg. Different planes have different operating costs, ranges and capaci-

ties. Furthermore, competitiveness also dictates which aircraft can be assigned on a

specific leg. The generated schedule, together with the projected demand (potential

revenue) are the inputs to the FAM that assigns aircraft to the appropriate legs. The

basic FAM can be stated in two ways, using the arcs to represent connection (con-

nection networks) or using the arcs to represent flight legs (time-space networks). In

this section, the connection-based formulation (Abara, 1989) will be described and

the time-space formulation will be described in Chapter 3.

The connection network has nodes that represent the points of time when flights

arrive or depart. In addition, an imaginary master source node and a master sink node

are conceptualized (not actually created) in the network to account for the beginning-

of-the-day and the end-of-the-day effects. There are three types of arcs representing

the different types of connections: the flight connection arcs link the arrival nodes

to the departure nodes, the terminating (connection) arcs link the arrival nodes to

the master sink node to represent aircraft arriving and remaining at the station for

the rest of the day, and the originating (connection) arcs link the master source node

to the departure nodes to represent the aircraft that are present at the station at
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the beginning of the day. All flight connections have to be feasible with respect to

flight arrival and departure times; that is, the minimum turn-time has to be observed

between the arrival flight and the following departure flight to allow for the connection.

Sets and indices

L is the set of flight legs indexed by i, l and j ; K is fleet type (k ∈ K ); S is a set of

stations (s ∈ S ); As and Ds is the sets of arrivals and departure legs for station S,

(s∈ S ), respectively. (The indices i = 0 and j = 0 denote originating and terminating

arcs, respectively).

Decision variables

fijk is a binary decision variable that takes on a value of 1 if the feasible connection

between flight leg i ∈ L to flight leg j ∈ L is covered by aircraft type k.

Parameters

pjk is the benefit of departing flight j of the connection and is a combination of profit,

aircraft utilization, etc; c is the unit operating cost of assigning the type f0jk that

initiates the use of a fleet type k for some flight leg j ; Nk is the number of aircraft

available for type k.

Constraints and objective function

Max
∑

i∈L∪{0}

∑
j∈L

∑
k∈K

pjkfijk − c
∑
j∈L

∑
k∈K

f0jk (1.4.1)

subject to :∑
i∈L∪{0}

∑
k∈K

fijk = 1 ∀j ∈ J (1.4.2)

∑
i∈L∪{0}

filk −
∑

j∈L∪{0}

fljk = 0 ∀l ∈ L, k ∈ K (1.4.3)

∑
i∈Ds

f0ik −
∑
i∈As

fi0k = 0 ∀s ∈ S, k ∈ K (1.4.4)∑
i∈L

f0ik ≤ Nk ∀k ∈ K (1.4.5)

The objective (1.4.1) is to maximize profit by subtracting costs (c
∑

j∈L
∑

k∈K f0jk)

from revenue (
∑

i∈L∪{0}
∑

j∈L
∑

k∈K pjkfijk). The cover constraint (1.4.2) requires
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that each flight is preceded by an arrival or an originating arc that is covered by a

fleet type. To ensure the integrity of the network, the equality or continuity of equip-

ment constraint (1.4.3) ensures that each flight served begin (sequence originating or

continued from another flight) and end (sequence termination or turn into another

flight) on the same aircraft type. The schedule balance aircraft constraint (1.4.4)

ensures that the same number of aircraft of each type remain at each station every

night so that the same assignment can be repeated daily. In the case of an unbalanced

schedule, Abara made a provision to automatically balance the schedule by introduc-

ing an origination shortage variable (Psk) and a termination shortage variable (Qsk)

for each station s and aircraft type k combination. Using this provision, constraint

(1.4.4) can be restated as:

∑
i∈Ds

f0ik + Psk =
∑

i∈As
fi0k +Qsk ∀s ∈ S, k ∈ K

The availability constraint (1.4.5) limits the number of available aircraft to use in

the assignment, that is, the total number of aircrafts assigned to flight legs (
∑

i∈L f0ik)

should not be more than the available of that type (Nk).

Figure 1.7 shows twelve connections: six (feasible) flight connections, three con-

nections from arrival flights to termination, and three connections from originations

to departure flights. Since Abara defined turn as the successive assignments of an

aircraft to two consecutive flights, this become a major limitation as non-connecting

flights (i.e. 1-6) are not included in the model. Further, since all feasible connections

had to be specified, the model expanded into unmanageable size due to the large

number of possible connections. Abara deals with this problem by specifying a limit

on the number of connection variables that are considered for each flight.

In the estimation of cost, Abara uses a nominal unit operating cost, denoted by

c, for each assignment of type f0jk that initiates the use of fleet type k for some

flight leg j. However, the industry standard specifies that the cost factor (c) should

account for both the flight leg and fleet type (i.e. cik). Similarly, revenue is based on

a stochastic model of demand, but Abara assumes that each leg is independent (i.e.

pjk is assigned arbitrarily to the turns in which the flight is the departing segment).
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Arrow arcs 1-3 are arriving flights and 4-6 are departing flights. They are not included in the decision 

variable. The decision variables are the binary connections variables fijk for fleet type k to cover 

connection i to j, where fi0k represent the terminating connections and f0jk represent the originating 

connections.

1

2

3

4

5

6

Flight Flight connecting arc Originating / Terminating arc

f14k
f04k

f05k

f10k

f15k

f16k

f25k

f26k

f20k

f30k f36k f06k

Figure 1.7: Feasible connections in one station.

1.4.3 Through and Maintenance Routing

When a plane passes into a hub by combining two flights without a change of air-

craft, it is called a through flight. Through flights are displayed first in the passenger

reservation system, have more revenue and are preferred by passengers to connecting

flights. The Through-Assignment Model (TAM) takes input from FAM and deter-

mines through connections by identifying inbound and outbound flights at each city

flown by the same fleet. Ahuja (2006) stated the following TAM formulation.

Sets and indices

L is a flight leg (i,j ∈ L); K is fleet type (k ∈ K ); O is a station (o ∈ O); IN(o,k)

is the set of inbound flight legs to node (o,k) and OUT(o,k) is the set of outbound

flight legs from node (o,k).

Decision variables

xi,j =

{
1 if flight with leg (i,j) is selected;

0 otherwise.
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Parameters

pi,j is the through benefit of assigning flight leg (i,j).

Constraints and objective function

Max
∑

i∈IN(o,k)

∑
j∈OUT (o,k)

pi,jxi,j (1.4.6)

subject to :∑
j∈OUT (o,k)

xi,j = 1 ∀i ∈ IN(o, k) (1.4.7)

∑
i∈IN(o,k)

xi,j = 1 ∀j ∈ OUT (o, k) (1.4.8)

The objective function (1.4.6) maximizes through benefits that represent the set of

most profitable through connections; the inbound constraint (1.4.7) ensures that only

one flight is covered by a fleet type in the inbound flight; and the outbound constraint

(1.4.8) ensures only one flight type is covered by a fleet type in the outbound flight.

Note that this formulation is a generalization of the assignment problem, in practice,

there are some additional constraints that must also be satisfied.

In addition, the airlines have to adhere to regulatory requirements. One such re-

quirement involves the maintenance of the aircraft, therefore on a regular basis each

plane stays overnight at a maintenance base for a minimum period of time. Given a

flight schedule with aircraft assigned to it, the aircraft maintenance-scheduling prob-

lem is to determine which aircraft should fly which segment and when and where each

aircraft should undergo different levels of maintenance check. Sriram and Haghani

(2003) proposed a model with objective function that minimizes maintenance cost

plus any costs incurred during the re-assignment of aircraft to the flight segments.

1.4.4 Crew Scheduling

The first task in the crew scheduling process is the process of matching pilots and

flight attendants for a series of flights that start and end at the hub, this is known

as crew pairing. In describing the problem (Barnhart et al., 1999), stated as follows:

Given a set of flights (corresponding to an individual fleet type or fleet family), choose

a minimum cost set of pairing such that every flight is covered exactly once (i.e. every
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flight is contained in exactly one pairing). The crew pairing problem is just the set

partitioning problem, partitioning the set of flight legs into disjoint pairings, each

containing a valid sequence of flights, to make the total cost the minimum:

Sets and indices

F k is a set of daily flights assigned to fleet type k (f ∈ F k); P k is a set of feasible

pairings for fleet type k (p ∈ P k).

Decision variable

yp =

{
1 if pairing p is in the solution;

0 otherwise.

Parameters

cp = is the cost of pairing p.

δfp = is 1 if flight f is included in pairing p, otherwise it is 0;

Constraints and objective function

Min
∑
p∈Pk

cpyp (1.4.9)

subject to :
∑
p∈Pk

δfpyp = 1, ∀f ∈ F k (1.4.10)

The objective function (equation 1.4.9) minimizes the penalty cost of the pairing

that partitions the flights; equation 1.4.10 ensures that every flight is included in

exactly one pairing. This formulation requires explicit formulation of all pairings

which can be difficult to achieve because of the numerous work rules that must be

checked to ensure legality and also because of the huge number of potential pairings.

Next, the resultant solution (that generated possible pairings) needs to assign spe-

cific individuals to those pairings; we call this the crew assignment problem. When

crew are allowed to bid on their preferred work schedule, usually based on senior-

ity, the model gets transformed into a bidding problem. Otherwise, individualized

schedules, lead to a rostering problem, where, unlike the generic crew assignment

problem, the focus is both on crew needs and cost. The crew assignment model finds

the cost-minimizing bidlines where the crew can bid for their top choices.
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1.5 Conclusion

In this chapter we gave an overview of OR in the airline industry and narrowed down

to four major areas of application. In the area of RM, we traced the origin, outlined

the process and discussed the contemporary thinking in the field. We illustrated the

concept through a simple bid-price model.

Next, we discussed the application within network planning focusing on fleet plan-

ning and route planning. In fleet planning, two major phases of aircraft acquisition

were mentioned, the type and the size processes. As for the first phase, different

selection criteria (such as, aircraft price, range, comfort, etc) are explained. As for

the aircraft capacity selection, two approaches are outlined, that is, the cell approach

and the FA-4 model. In route planning, different process are elaborated ranging

from route evaluations, selection of new markets, wave development and optimiza-

tion, among others.

In the third area of OR application, schedule planning with the four inter-twined

phases are mentioned. In the schedule generation phase,a further four-stage process

is outlined, that is, demand estimation, schedule construction, slot management and

schedule distribution. The second phase of schedule planning is the fleet assignment

process that assigns aircraft to flight legs. Under fleet assignment, we illustrate the

connection-based model followed by a description of the generic through-assignment

model for the third phase. In the last phase (crew scheduling), we discussed the

crew-pairing model.



Chapter 2

Airline Schedule Robustness

”The hard-dollar costs of disruption are relatively easy to calculate. The softer costs,

such as lost passenger goodwill, are almost impossible to measure. Both are impor-

tant” (Cook, 2002).

In this chapter, the definition of robustness in the context of airline schedules will

be outlined, followed by different approaches and interpretations of schedule robust-

ness as an important element during irregular operation. The popular key perfor-

mance indicators that are used to measure schedule robustness are outlined. Later,

the robust models and solution algorithm that have been proposed and developed

to handle schedule robustness will be discussed. Finally, the differentiation between

FAM robustness and operational robustness is made; with the former defining the

scope of this research.

2.1 Defining Robustness

There is no universally scientific accepted definition of robustness (Vinke, 2003); it

is context-driven and many analogies can be given. Robustness analysis (Rosenhead,

2002) embraces two important elements; the uncertainty factor that obstructs con-

fident decision-making and that the decision must be or can be staged. Rosenhead

has defined robustness analysis as a way of supporting decision-making when there

is radical uncertainty about the future. In an analogous approach, robustness anal-

ysis has been equated as sensitivity analysis ; where an optimal solution responds to

changes in input that might vary in the future. Not surprising, even in the context

of airline scheduling that there is no systematic way to define robustness (Lan et al.,

2003). The ultimate aim of robustness is to reduce downstream impact and over-

all cost disruptions; (Clarke, 2004) outlined the following characteristic for airline

robustness:-

• Robustness is the ability to perform as desired in as many operating conditions

17
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or situations as possible and return to normal operations as soon as possible

after disruption

• Robustness requires both flexibility to respond quickly and damping

• Robustness is created by first understanding the dynamics of the system and

then figuring out the right combination of flexibility and damping

• Robustness can only be measured in terms of performance in the operating

environment

In today’s fiercely competitive operating environment, any form of schedule ineffi-

ciency is very costly (Lohatepanout and Jacobs, 2003). Robustness can be created in

two ways; one is to have a flexible schedule that will easily cope with demand fluctua-

tion. The alternative approach is the damping effect where robustness is achieved by

an independent schedule component such as having a spare aircraft to operate on dis-

rupted flight. Ultimately, robustness is implemented by either integrating it into the

schedules during the planning stage or re-optimizing the schedule after disruptions

occur.

Schedule disruptions are caused by two major factors: (i) weather unpredictability

that has a consequential effect of reducing or increasing airport capacity through di-

versions and, (ii) flight delays and cancellations that accounts for the larger part and

are brought about by demand uncertainties, technical reasons such as aircraft mainte-

nance and overall poor planning. Disruptions are highly inconvenient for passengers

and connecting flights that cascade the delays across the network. The disruptions

interfere with the fleet and crew assignment that needs to be re-scheduled to re-

accommodate passengers. As the problem recurs, airline strength is assessed on the

ability to improve robustness, as it can make or break the airline.

2.2 Measuring Robustness

A popular method of controlling schedule robustness is through a management pro-

cess of measurement by key performance indicators (KPIs) and accountability. Rather

than using a KPI trend, a combination of KPIs is used to set SMART targets, that is,

targets which are specific, measurable, attainable, realistic and time-bounded. The
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KPIs prompt for further analysis to identify the root cause of the disruptive compo-

nent; appropriate remedial action is then taken to gauge against future recurrence.

The root cause can be mitigated by many factors such as inefficient schedule design

(e.g. short time allocation on the aircraft turn-around), poor and inadequate airport

infrastructure, air traffic control delays and congestion, passenger behaviour, con-

gestion, engineering delays, poor resource planning, interdependencies of connecting

flights, unpredictable weather and rostering of both technical and cabin crew (Lee

and Moore, 2003), (Wu and Reid, 2003) and (Bratu and Barnhart, 2005). The KPIs

measures the quality of the schedule in two ways; either by its integrity and (or) cost

effectiveness. Integrity refers to the schedule reliability and is a major indicator of

operational excellence, typical KPIs are shown in Table 2.1.

Although the KPIs outlined above are the most popular, different airlines come up

with varying KPIs that suit their business model. An example worth mentioning is a

statistical approach developed by a team of researchers for KLM (Bian et al., 2005).

In their approach, the number of Aircraft On Ground (ACOG) were analyzed on

different schedule waves at KLM. Then a number of input variables were defined and

correlated with schedule performance indicators (PI). The six or seven most highly

correlated input variables were then regressed to determine the best balance between

parsimony and explanatory power. The analysis on the expected number of aircraft

on the ground has shown to provide a good prediction of the robustness of a given

schedule. A summary of the major approaches used by researchers and practitioners

in order to incorporate robustness in the schedule will be discussed in the next section.

2.3 Modelling Robustness Techniques

Researchers have tackled the schedule robustness issue from a mathematical modelling

perspective, where at least two models get integrated or a re-modelling is done to

incorporate a robust component.

Integrating schedule design and crew scheduling : As a way to enhance robustness,

American Airlines (Lohatepanout and Jacobs, 2003) developed a more pragmatic ap-

proach by introducing a feedback loop between the integrated schedule design and



20

Key Performance Indicators Explanation

% of flights cancelled Number of cancelled flights divided by total number of
flights.

% of late arrivals Number of late arrivals divided by total number of
flights.

Rate of flight cancellation Total number of flights divided by number of cancelled
flights.

Distribution of delays Number of flights delays distributed over the week.

On-time performance Number of flights that arrive or depart on time.

Disrupted passengers Number of passengers who missed their flights.

Number of violation of crew
rules that is Flight Time
Credit (FTC)

FTC is the difference between the number of minutes
paid and the number of minutes flown as a percentage of
the number of minutes flown.

Number of upgrades Frequency of change in the assignment to larger aircraft.

Average passenger delay Mean number of passengers delayed in a given period.

Average delay per flight Mean number of flights delayed for a given period.

Average delay of disrupted
passengers

Number of passengers that have been affected by can-
cellation or missed connection in a given itinerary for a
specific period.

% of disrupted passengers Number of disrupted passengers divided by total number
of passengers in a given itinerary for a specific period.

Average delay of non dis-
rupted passengers

Mean number of passengers that were not disrupted but
had their flight delayed for a specific period.

Table 2.1: Typical KPIs.

crew scheduling. This approach differs from the common practice where crew schedul-

ing is explicitly done after FAM results have been obtained. Unlike the explicit in-

tegration, the feedback process is more flexible and provides a good mechanism to

capture much of the impact associated with the other process. Although the model is

data thirsty and sometimes difficult to quantify resource availability (due to complex

union contracts and regulations); it offers the most efficient crew reduction plan that

leads to significant profit improvement.

Degradable airline schedule: In the aftermath of disruption, the concept of delay-

ing propagation (Kang, 2004) was advanced where, in order to minimize the impact
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of the whole schedule, the disruptive part of the schedule is isolated. The schedule is

degraded into several smaller and independent schedules called layers (sub-schedules).

The priorities for each layer are based on revenue where the information is available

to passengers before they buy their tickets. In formulating the problem, integer pro-

gramming was applied to find a feasible schedule that minimizes the total penalty.

The penalty was incurred if an itinerary was not assigned to its desired layer (or

higher priority layer). The research has now taken another dimension, instead of

propagation delay we could have independent delay that is caused by other factors -

not independent or not a function of the routing (Lan et al., 2003).

Flight schedule re-timing : In a re-timing (connection-based) model (Lan et al.,

2003), the number of disrupted and mis-connected passengers are minimized. Pas-

sengers are disrupted when there is a flight delay (that is, slack time is 0 ); hence

adding more slack can be a solution for connecting passengers. By moving flight

departure times in a small time window, better allocated slack is obtained. The mod-

els input included historical distributed data for a number of disrupted passengers

for each connection with the model constraints defined as follows: a) for each flight,

exactly one copy will be selected; b) for each connection, exactly one copy will be

selected and this selected copy must connect the selected flight-leg copies; and c) the

current fleeting and routing solution cannot be altered.

Integrating FAM with other models : FAM integration is one of the most vibrant

research areas with a track record of the most successful implemented robust models.

The FAM integrated models include crew scheduling, schedule design, aircraft routing,

through-assignment, RM, etc. The integration of such models are discussed in the

next chapter.

2.4 Heuristic Robustness Techniques

Similarly, the schedule robustness issue has also been addressed through a develop-

ment and application of specific heuristic techniques; either applied as a solution

algorithm or as a robust technique.

Neighbourhood search: A neighbourhood search algorithm has enjoyed application

in the solving of FAM (Gotz et al., 1999), and is attributed to faster solutions com-

pared to both linear programming and integer programming algorithms. An example
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worth mentioning is an algorithm developed (Love et al., 2002) with an objective

function that minimises real cost (associated with direct operating cost) and virtual

cost (associated with disruptive situations). Based on the swap neighbourhood, they

implemented four heuristics; Iterative Local Search (ILS), Revised ILS, Steepest As-

cent Local Search (SALS) and Revised SALS (RSALS). Another two-phase heuristic

approach for the aircraft rotation problem was adopted by Air France (Ambrosini

et al., 2003). Under phase one, the network flow problem was solved by the con-

struction of an initial solution covering all the flight legs and optimizing flight cost

connections. In the second phase, constraints were considered in order of priority

by improvement of swaps between aircraft to respect the Maximum Take-Off Weight

(MTOW) taking into account the overhaul.

Multi-objective genetic algorithm: Many integrated problems entail multiple ob-

jectives that can be solved as one instance as opposed to sequentially. For exam-

ple, (Ahuja et al., 2003) modelled FAM with multi-criteria objectives where ground

manpower and crew costs were added to the combined fleet assignment model (ct-

FAM) (Ahuja et al., 2007). Similarly, a genetic algorithm (Lee et al., 2003) has been

used to fine-tune the departure times of each of the flight legs in the schedule while

preserving the aircraft rotation and crew assignment. The model objective function

(multi-objective) was to optimize flight departure time with constraints on; crew con-

nection (minimum turn time), crew maximum duty time, crew rest time, aircraft

connection (minimum turn time), aircraft scheduled maintenance and station curfew.

The decision variables were defined as the adjustments made to the original scheduled

departure times. The idea was to find the right adjustments to all the flight legs so

as to optimize robustness without violating the constraints.

Simulation approach: American Airlines (Green, 2002) developed a three-phase

simulation approach where the schedule attributes that influence dependability were

measured. The impact of changes in those attributes were then evaluated and opti-

mized on an explicit account of dependability. On measuring the attributes into a

dependability relationship, simulations were used to classify the attributes into four

broad categories. Metrics for each schedule attribute were then defined and calcu-

lated in a prototype tool developed in SAS. The prototype provides the source data
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required for querying or reporting capabilities. At the next evaluation stage, opera-

tional dependability of alternative schedules were simulated while varying the schedule

attributes to establish quantitative relationships to dependability. The dependability

impact of broader issues (such as crew pairing strategies, system operating policies,

schedule protection strategies, etc) were also evaluated. A typical existing tool in the

market using the above approach is SIMAIR, that evaluates operational performance

of schedules and recovery procedures. Delta (Zhao, 2003b) has also applied simulation

in identifying potential flight delays.

In a stochastic model (Mederer and Frank, 2002) robustness has been defined as

a schedule whose deterministic parameters are as insensitive to real life variables as

possible. Blocktimes and overall ground time were considered as the major influences

of the stochastic model. The blocktime comprised aircraft flying time, taxiing and

holding time while overall ground time comprised the normal ground time and delay

time. Under this approach, schedule was integrated with the stochastic Monte Carlo

simulation model; the overall result was an impressive improvement on the schedule

punctuality, regularity and connection quality.

A Multi-criteria approach: Delta (Zhao, 2003a) built a rotation model using a

multi-criteria technique with the following objectives; maintaining schedule consis-

tency, locking rotations in terms of specific aircraft assigned to specific legs, checking

on ground time violations, checking on aircraft gate availability, consecutive red-eye

and ensuring maintenance check for major, line and spread maintenance. A deci-

sion support system, Operations Planning Model (OPM), was developed that could

achieve multiple business tasks. The OPM followed a two sequential step; the global

approach and the heuristic approach. The global optimization model provides a good

initial rotation and looks at the number of aircraft used, major maintenance, gate

availability, fixed ground time violations and hard-forced connection. The heuris-

tic approach looks into the multi-criteria optimization nature of an aircraft schedule

and the trade-off between business rules and constraints. Furthermore, the approach

looks at improving the robustness of an aircraft rotation, such as, line maintenance,

maintenance spread, schedule consistency, crew connections, etc.

Delay perturbation: In formulating the basic minor delay perturbation model (Huag,

1998), the consequences of a flight delay whenever there is an incident was considered.
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To achieve robustness, one or more of the following five strategies are used.

1. Speed up strategic model: Under this strategy, the node-arc formulation of FAM

built extra arcs that link the origin node; consequently, the travel time between

two points was minimized.

2. Cancellation of strategic model: This was achieved by changing the objective

(cost) function to allow cancellation.

3. Swap an aircraft before departure time with an alternative aircraft.

4. Delay flight strategic model: The model is similar to the basic delay model but

with an additional delay bundle arc constraint.

5. Ferry flights: This considers a spare aircraft in support of a disruptive schedule

operation.

A similar model that not only includes options for delaying and cancelling flights,

but also incorporates a measure of deviation from the original aircraft routings has

also been proposed (Thengvall et al., 2000). A number of studies addressing the

schedule perturbation problem with reference to a ground delay program as it occurs

have also been presented (Luo and Yu, 1998).

Just-in-time (JIT) approach: Gershkoff (1998) advocated a six-stage approach for

enhancing robustness. The first one is to cancel flights with zero booking. Although

flights with zero booking hardly exist in real life situations, the concept of a zero

booking flight is created in a high frequency market where customers have multiple

equivalent flight times to choose from. The analysis done shows that by forcing

the demand onto the non-JIT flights, profitability can be increased on off-peak days

by idling the JIT aircraft. Although the concept of idling a perfectly serviceable

aircraft contradicts scheduling managers objective of maximizing aircraft utilization,

the analysis shows otherwise. The second is to substitute old aircrafts on JIT flights.

Old aircraft tend to have a high operating variable cost and a low fixed cost, so it

makes sense to allocate them to JIT. The third is to encompass all high-frequency

routes; since as the number of flights in a high-frequency market decreases, the average

time gap of somewhere between 1-2 hours, the assumption that traffic will spill to

the nearest flight begins to break down, even for a monopoly route. The fourth
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strategy is to use marginal aircraft to chase highest transient revenue opportunities.

Under this option, the aircraft is routed to a different city pair experiencing transient

demand. When a particular route has high traffic, transient demand can suffice to

fill the aircraft in both directions. The fifth strategy is to rationalize resources other

than aircraft and crews. Although a difficult approach, matching ground resources to

demand can generate high savings. It is argued that the ground resources needed by

the airline to operate variable flights must be sensitive to demand fluctuations and

therefore must become variable as well. The final strategy is to dynamically substitute

aircraft to meet fine-grain demand variations. This refers to capacity rationalization

process which, where demand is high, leads to increase of aircraft size instead of

frequencies. Likewise, reduction of capacity size instead of decreasing frequencies

when demand is low.

2.5 Robustness within FAM

The objective of robustness is to produce FAM solutions that perform well relative

to uncertainty in demand and operations. A schedule planned in advance (more than

three months to departure) is hardly ever flown as planned, especially for a network

carrier. During these periods, many unforseen disruptive events would have occurred;

such events could be categorized as either demand fluctuation or operational issues.

Demand fluctuations necessitate capacity readjustments while operational issues, such

as weather unpredictability and aircraft maintenance delays, lead to the schedule

adjustment. While it is impossible to have a perfect schedule (Lee et al., 2003), the

airline strength is measured on how robust its schedule is in coping-up with both

demand uncertainties and operational performance.

2.5.1 Demand Robustness

The reliability of FAM solutions is pegged to the accuracy of cost and revenue esti-

mates. The standard computation of aircraft operating costs is well defined, relatively

stable and does not pose modelling difficulties. The major challenge is on estimat-

ing revenue through fare and demand forecasts. The total demand for a particular

flight fluctuates for a given time of day, by day of week and season of the year. In
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addition to these more predictable or cyclical fluctuations in demand, there are also

less predictable variations in demand around the mean or expected value for a flight.

Similarly, passenger class allocation based on revenue management effects, adds to the

complexity of revenue estimation. For this research, we concentrate on the demand

uncertainty and how it can be generated and integrated into FAM.

2.5.2 Operational robustness

It has been noted that existing planning systems do not have effective methods to

manage disruptions (Lan et al., 2003); hence airlines adopted a centralized process

called Operations Control Center (OCC) or Station Control (Pbuero, 2001). Such

a centre centrally manages operations of aircraft, crews and passengers. The centre

monitors flight irregularities and comes up with a recovery plan that returns to the

original schedule. The OCC calls for sophisticated systems as the challenges involved

are enormous (Barnhart, 2003). Following a disruption, there is a little slack time

to recover operations with a cost minimization model that involves a sophisticated

plan for aircraft scheduling, crew scheduling and passenger routing. Furthermore, the

time-frame of coming up with the best operational decisions is small and hard, any

delay in coming up with a solution will make the decision obsolete. Additionally, the

complexities involved could have severe consequences, as a small delay may propagate

through the entire network, last for several days and affect both passenger goodwill

and overall profits.

Serio is a typical decision support system that is used in a Station Control (Alvarez,

2002). Several studies and surveys for the irregular airline operations have been

presented (Bratu and Barnhart (2006), Ball et al. (2007), Clarke (1997) and Seth

et al. (1998)).

2.6 Conclusion

We have now seen that there is no universally scientific accepted definition of robust-

ness; it is context-driven and many analogies can be given. In the context of airline

scheduling, the ultimate aim of robustness is to reduce downstream impact and over-

all cost disruptions. We also noted that robustness can be created in two ways; one is
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to have a flexible schedule that will easily cope with demand fluctuation. The alter-

native approach is the damping effect where robustness is achieved by an independent

schedule component such as having a spare aircraft to operate on disrupted flight.

The different interpretations of schedule robustness given lays a foundation in

defining the scope of our research. In particular, the FAM robustness relates to

variation or uncertainty in demand. The total demand for a particular flight fluctuates

for a given time of day, by day of week and season of the year. In addition to these

more predictable or cyclical fluctuations in demand, there are also less predictable

variations in demand around the mean or expected value for a flight. For this research,

we concentrate on the demand uncertainty and how it can be generated and integrated

into FAM.



Chapter 3

Airline Fleet Assignment Modelling

The FAM is enjoying increasingly wide application and is one of the most vibrant

research areas. In this chapter a review of the development of basic FAM is pre-

sented. The chapter also provides a detail description using a time-line structure,

and describes its solution algorithm. Also the various FAM integrated models are

discussed. Later, we propose two alternate ways of capturing aircraft utilization that

represents the deterministic equivalent of the SP-FAM (to be described in Chapter

5 ). Finally, the challenges associated in estimating cost and revenues data as input

requirements to the FAM are outlined.

3.1 FAM Development

The airline fleet assignment problem has undergone a major metamorphosis since in-

ception (Ferguson and Dantzig, 1955). They formulated a combined fleet assignment

and aircraft routing model that maximizes operating profit for a fixed schedule with

known deterministic demand. During that period until early 90’s, several other FAMs

came into existence, but none enjoyed wide application. The first true FAM, that

lead to the basic FAM discussed in the next section, is credited to Abara (1989) who

used the connection-network formulation discussed in Chapter 1. In Abara’s solution

approach, the schedule balance and the aircraft availability constraints are relaxed

with appropriate penalty functions added to the objective function. The structure

of this connection-network necessitated specification of all feasible connections that

lead to a very large scale model. To solve this problem, Abara had to put a threshold

on the number of possible connections for each flight.

Using a similar formulation, (Rushmeier and Kontogiorgis, 1997) came up with

some preprocessing techniques that solved the problem without the need to spec-

ify feasible flight connections. They came up with the idea of partitioning stations

into complexes that represented feasible connections with schedule balance i.e., where

28
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there is an equal number of incoming and outgoing legs. In consideration of additional

crew-based constraints, they designed a heuristic to solve the problem. In the heuris-

tic, LP relaxation is first solved and the resulting solution is rounded to obtain an

initial solution that is solved by branch-and-bound. This solution used a considerable

computing time.

(Berge and Hopperstad, 1993) and (Hane et al., 1995), were among the first re-

searchers to use the time-line representation that has largely become the method of

choice in formulating subsequent fleet assignment problems. The time-line network

structure is essentially a multi-commodity network flow problem. The commodities are

the different types of aircraft with flights as a common resource to be used by only

one commodity. Unlike the connection network, the time-line network gives more

flexibility in establishing feasible connections that fall within the time and space con-

sideration. The flexibility manifests itself in the reduction of decision variables where

the number of flight legs is far less than the number of possible connections. Hane’s

formulation is similar to Abaras’ but with significant computational improvements.

The model includes a ground-arc network that tracks aircraft on the ground, but

unlike Abaras, does not indicate aircraft turns. The model also proposed the use

of interior-point programming and branching, that have since become a standard

method of solution algorithm.

After the period of the basic FAM development, a new era of tackling robustness

within FAM was addressed. This was marked by extensions; mainly focusing on

integrating FAM with other models and using FAM to address irregular operational

issues.

3.2 Basic FAM Formulation

In describing the basic FAM (Hane et al., 1995), we summarized the tutorial given by

Sherali et al. (2006). Unlike the connection network described earlier, the timeline

network is cyclic with time-lines for each airport. Between time-lines there are arcs

for all the flights, (where flight arcs represent flight legs), and each time-line has a

node for each arriving or departing flight. The ground arcs correspond to aircraft

waiting times between the nodes (or staying at the same station for a given time).

We also have wrap-around arcs that ensure overnight connectivity linking the last



30

events of the day with the first events of the next day. As each airport station is tied

to one fleet type, the airports are duplicated into multiple copies making independent

networks that allows only one fleet type to be assigned to each flight leg. Thus, given

any fleet type in an independent network (or sub-network) for each station, a network

time-line consists of a series of event nodes that occur sequentially with respect to

time, along with the ground and wrap-around arcs that link these event nodes. Note

that the arrival node is placed at the block time which is the actual arrival time plus

the aircraft turn-around time ready for the next departure.

Figure 3.1 shows a time-line network for two stations (A and B) with two fleet

types (Type 1 and Type 2 ). The nodes represent an event (arrival or departure)

according to its time of occurrence. To make a distinction between the fleet types,

the full arrows denote the fleet of Type 1 and the broken arrow to the fleet Type

2. The slanted arrows represent flight arcs, the vertical arrows are the ground arcs,

and the curved arrows are the wrap-around arcs. The wrap-around arcs are shown

only for Type 1 and are suppressed for Type 2. The arc pairs (A1, A2) to (F1, F2)

represents flights A - F flown by Types 1 and Types 2, respectively. Note that A1

stays on the ground for a shorter time before the next departure on flight B1 using

Type 1, compared to A2 that requires relatively longer turn-times before the next

departure on flight B2 using Type 2.

The fleet assignment problem can be described as: given a flight schedule with

fixed departure times and aircraft operating cost on each flight leg, find the least cost

assignment of aircraft types to flights, such that (1) each flight is covered by exactly

one fleet type, (2) flow of aircraft by type is balanced at each airport, and (3) only

the available number of each type are used.

Sets and indices

L: the set of flight legs indexed by i ;

K : set of different aircraft types indexed by k ;

O : set of stations (airports) indexed by o;

T : the sorted set of all event (arrival or departure) times at all airports, indexed by

t. The last node in the counting line is denoted by tn. The index t+ denotes an event

after time t while t− denotes an event before time t (t ∈ T ).

R: the set of nodes in the network indexed by {k,o,t};
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Figure 3.1: A two-type, two station fleet-flow time-space network.

CL(k) denotes the set of flight legs crossing the count time (i.e. tn) flown by k i.e.

the set of flight legs where an aircraft of type k may be in the air at time tn;

I(k,o,t) is the set of inbound flight legs to node {k,o,t}; and

O(k,o,t) is the set of outbound flight legs from node {k,o,t}.

Decision variables

fk,i =

{
1 if fleet type k is assigned to flight leg i ;

0 otherwise.

Yk,o,t ≥ 0 is the number of aircraft of fleet type k, on the ground at station o, and

time t; Yk,o,t+ is the number of aircraft of fleet type k, on the ground at station o, just

following time t (t ∈ T ); and Yk,o,t− is the number of aircraft of fleet type k, on the

ground at station o, just prior to time t (t ∈ T ).

Parameters

ck,i denotes aircraft direct operating cost of assigning aircraft k on flight leg i (£ per

aircraft flight leg); and

Nk denotes the number of available aircraft of type k.
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Constraints and objective function

Min
∑
k∈K

∑
i∈L

ck,ifk,i (3.2.1)

subject to :∑
k∈K

fk,i = 1 ∀i ∈ L (3.2.2)

Yk,o,t− +
∑

i∈I(k,o,t)

fk,i − Yk,o,t+ −
∑

i∈O(k,o,t)

fk,i = 0 ∀{k, o, t} ∈ R (3.2.3)

∑
o∈O

Yk,o,tn +
∑

i∈CL(k)

fk,i ≤ Nk ∀k ∈ K (3.2.4)

The objective function (3.2.1) is to minimize the cost of the fleet assignment; the

cover constraint (3.2.2) ensures that each flight is covered once and only once by a

fleet type. Constraint 3.2.3 and 3.2.4 can be explained using Figure 3.2 that consider

events happening in station A using fleet type k in the time-line network. In the

diagram, we have three arriving (inbound) flights A2, A6 and A8 occurring at times

t = 1, t− 1 and t, respectively. Similarly, we have three departing (outbound) flights

B1, C1 and Z1 occurring at times t, t+1 and tn, respectively. Note that when arrivals

and departures occur simultaneously (e.g. A8 arrives at t and B1 departs at the same

time), arrivals precedes departures in the time-line. The conservation flow constraint

(3.2.3) ensures aircraft balance, that is, the number of aircraft of type k on ground in

city o just before time t (i.e. Yk,o,t− or Yk,A,t− in our case) plus the number (sum) of

inbound flights on aircraft of type k arriving in station o at time t (i.e.
∑

i∈I(k,o,t) fk,i

or flight A8 in our case) must be equal to the number (sum) of outbound flights on

aircraft of type k departing from station o at time t (i.e.
∑

i∈O(k,o,t) fk,i or flight B1 in

our case) plus the number of aircraft of the same type on ground in city o just after

the departure time t (i.e. Yk,o,t+ or Yk,A,t+ in our case). The conservation equation

makes up the bulk of the model constraints. There is one constraint for each aircraft

at each node, where each flight results in two nodes. Hence, if there are 10 aircraft

and 2,500 flights per day, and if every aircraft could fly every flight leg (which is not

true due to operational limitations), and if all departure and arrival times for a given

aircraft at a given city were unique (also not true), then we would have 2,500 × 2 ×
10 = 50,000 conservation equations.
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The count constraint (3.2.4) ensures that for each aircraft type, the total number

of aircraft on the ground or in the air at any point in time cannot exceed the total

available. It is enough to ensure that the count constraint is satisfied at one particular

point in time i.e. the conservation flow constraint ensure that if the count constraint

is satisfied at some point of time, it is also satisfied at any other point in time. If

we take a snapshot of time at the event in the last node (tn), the number (sum) of

aircraft of type k on ground at station o (i.e.
∑

o∈O Yk,o,tn) plus the number (sum) of

flights in air using aircraft k (i.e.
∑

i∈CL(k) fk,i) should not exceed the total available

(i.e. Nk). As a simple illustration and for simplicity, assume the event times for flight

A2-Z1 are as shown in Figure 3.2.

{t = 1 = 3 am, t− 1 = 6 am, t = 12 pm, t+ 1 = 3 pm, tn = 9 pm} ∈ T

In this case, the count time at the last node (tn) is set to 9 pm. Note that the

number of aircraft on ground count (Yk,o,tn) at station station A will remain the

same between 9 pm until the following day at 3 am (as there are no other events

happening). Since the available number of aircraft (i.e. Nk) is known and that the

number of assigned flights (on air) using aircraft k at 9 pm (i.e.
∑

i∈CL(k) fk,i) can

be measured, if the constraint holds at 9 pm, then the conservation flow constrain

ensures that it will hold at any other given time.

3.3 Solution Method

The sheer size of the FAM problem and the required computational time necessitates

a series of preprocessing steps to make the representation more compact. In the first

instance, the node aggregation step is done where flights that arrive before a departing

flight in some pre-defined timing are consolidated. In this case, the order of a node’s

event occurring does not matter as long as all the connections are intact. Figure 3.3

illustrates the concept where Part (a) shows a network time-line representation of a

station for one type having flights A-H. The downward vertical arc representing the

time occurrence in increasing order of each event. Part (b) demonstrates the node

aggregation where flights B-C and D-G are consolidated into two nodes representing

a total reduction of four nodes from the initial eight. This preprocessing step has the
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Figure 3.2: A one-type, one station fleet-flow time-space network.

effect of removing thousands of rows and columns from the initial steps, making it

easier to solve without infeasibility.

The second preprocessing step is based on heuristic observations of the network

structure. For example, in a hub-and-spoke structure, flights between spokes can be

reduced significantly. Normally, the activity at the spokes have sporadic flights and

if one makes an assumption that no aircraft should be on the ground at some time,

the ground arcs can be removed to form what are called islands as shown in Part (c).

Furthermore, since there are no ground arcs from one island to another, some of the

flights within the island can be aggregated as one.

The third preprocessing technique eliminates missed connections by creating air-

craft balance. If two flights that must be flown consecutively result in a missed con-

nection, an aircraft balance will not be maintained because of the longer turn-times

for that fleet type. This pair of flights can either be removed from the circulation or

create a dummy flight that will maintain the aircraft schedule balance.

After the above preprocessing steps, solved the LP relaxation problem. Thereafter,
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Figure 3.3: Network reduction for a time-space network.

a rounding heuristic is invoked to fix the variables resulting in a new problem. The

new problem is then solved using branch-and-bound, or a combination of algorithmic

strategies such as interior-point methods, or dual steepest-edge simplex approach,

among others. As the solution method involves a heuristic phase, it is not guaranteed

to be optimal. Nevertheless, it is reported that the IP objective after the rounding is

very much closer to the LP objective.

A further milestone in the reduction of the computational effort, is a heuristic

algorithm, simulated annealing, which has now become popular in substituting LP

and IP algorithms. Specifically, introducing side constraints to the basic FAM, such

as homogeneity and time windows makes the use of LP and IP very difficult. The

homogeneity constraint forces the flight to be flown by the same sub-fleet on different

days while time windows allow departure times to vary slightly around a preferred

time. Gotz presented an algorithm that proceeds in three phases: a preprocessing, a

simulated annealing and a postprocessing phase (Gotz et al., 1999). The first phase

aims at reducing the number of legs, as in the aggregation step discussed earlier.

In this case, the algorithm, initially allows explicit specification of sequential flight

legs that can be grouped together. Thereafter, the algorithm provides the option

to combine legs on low-frequented airports. In the simulating annealing phase, a

neighbourhood search algorithm is defined that allows for some transition stages,
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change and swap, that have the effect of altering and changing sub-fleets during the

FAM execution. Finally, the postprocessing phase follows suit with a hill-climbing

algorithm that uses the same neighbourhood function as the simulation annealing

and ensures termination in a local optima.

3.4 FAM Extensions

This section describes the various forms of FAM integration that contribute to ro-

bustness.

Integrating FAM and crew scheduling : FAM has been integrated with a crew

pairing model (Barnhart, Lu and Shenoi, 1998) known as the duty-based model (or

DPP). The DPP model was not only much easier to solve compared to the generic

crew pairing but had a relatively good approximation solution. The integrated model

comprised various sub problems; the fleet assignment sub problem and a number

of crew scheduling sub problems, one for each fleet family. The objective function

minimizes the total fleet assignment and total time-away-from-base crew costs. In

solving the integrated model, they developed an advanced sequential solution approach

that replaced the basic FAM with an approximated model. In this approach, the

fleeting decisions are first deduced, thereafter, crew pairing problem is solved for each

fleet family.

Integrating FAM with schedule design: (Desaulniers et al., 1997) integrated FAM

with the scheduling design process by allowing departure times to vary within certain

time-windows, thus allowing different connection possibilities for the FAM. Similarly,

Rexin et al. (2000) followed suit with a similar model but with a set of discrete time

windows for each leg that represent possible departure times.

Integrating FAM with aircraft routing problem: The aircraft routing problem de-

termines a sequence of flights, or routes, that must be flown by individual aircraft

such that the assigned flights are included in exactly one route and all aircraft can

be maintained as necessary. This process normally follows after the FAM has been

executed. The combination of the FAM with the aircraft routing problem in a string

based model was also presented (Barnhart, Boland, Clarke, Johnson, Nemhauser and

Shenoi, 1998). Where a string refers to a sequence of connecting flights that begins

and ends at maintenance stations, satisfies flow balance, and is maintenance feasible.
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The objective of the string model is to select the set of strings that have the minimum

time necessary to perform maintenance attached to the end of the last flights in the

string; such that, each flight segment is assigned to exactly one fleet, and, for any

fleet, its assigned flights are partitioned into a set of rotations with each aircraft in

the fleet assigned to one rotation at most and the total cost is minimized.

The robustness problem could also be formulated where flight cancellation and

delays are considered simultaneously. Such a model (Clarke, 1997) allows for multiple

fleet aircraft swapping in flight scheduling, provided the candidate aircraft is capable

of flying a given flight segment. The overall framework of the model is represented

on a time-space network called the schedule map and uses efficient tree-searching

algorithms as a solution algorithm. The model has been described as a hybrid of the

traditionally defined fleet assignment and the aircraft routing or rotation problem.

Integrating FAM with through-assignment model : The Through-Assignment Model

(TAM) has been integrated (Ahuja et al., 2007) with FAM into a single model known

as the combined fleet assignment model (ctFAM). The models are solved sequentially

with optimal fleeting decisions from FAM used to solve TAM. The objective of the

TAM model is to determine through connections. The ctFAM is then solved heuris-

tically using the neighbourhood search algorithm with the optimal solutions from

both FAM and TAM used as a starting point for the neighbourhood search. Figure

3.4 (Ahuja, 2006) shows the sequential steps for solving the ctFAM. In Step 1, FAM

is first solved without consideration of through revenue. Thereafter, TAM is solved

without changing the initial generated FAM solution. In Step 2, the model maximizes

the total contribution of both the fleet assignment and through assignment.

Integrating FAM with station purity : Similarly, there have been advances in the

concept of station decomposition (Smith, 2004) where station purity was integrated

into FAM. Station purity ensures that the number of fleet types serving a given station

does not exceed a specified limit and is classified into maximum purity (where spoke

stations use only one fleet type) and moderate purity (when small spokes use one fleet

type, larger spokes use one or two). The decomposition concept is made in reference

to the hub-and-spoke model for a typical airline flight network. If a hub is removed

from such a network, the network decomposes into a set of spoke stations (station

purity), with its own set of flights.
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Figure 3.4: The combined fleet assignment model.

Integrating FAM with RM : Many approaches have been investigated on incorpo-

rating RM into FAM. Smith (2004) gives a detailed survey of the integrated aspects

and shows that FAM solution quality is sensitive to revenue assumptions. In par-

ticular, incorporating RM into FAM gives a superior solution than using average

passenger revenues. One of these approaches, is known as the tactical FAM which

represents the deterministic equivalent of SP-FAM. In the next section, the tactical

FAM will be discussed and in Chapter 5 a detailed description of the SP-FAM will

be presented.

3.5 FAM with Aircraft Utilization

We adopted the Lufthansa System (Lufthansa, 2006) distinction made on their NetLine-

Plan and NetLine-Sced planning tools between strategic FAM and tactical FAM, re-

spectively. Unlike the tactical FAM, the strategic FAM is integrated with the network-

simulation model that represents an ideal market under competitive forces where pas-

sengers are captured, spill, and are sometimes lost to a competitor. A typical strategic

FAM is the itinerary based FAM (Barnhart et al., 2002) that has the salient features

mentioned above. On the other hand, the tactical FAM is integrated with the airline’s

own projected demand, has spill but does not consider the recapture effect.

The tactical FAM is identical to the basic FAM discussed earlier except for the
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modification of the objective function (equation 3.5.1) that includes both the aircraft

assignment cost (i.e.
∑

k∈K
∑

i∈L ck,ifk,i) and an additional passenger revenue (i.e.∑
k∈K

∑
i∈LXk,i× qi× fk,i). The passenger revenue computation considers passenger

demand, aircraft spill and average ticket price. Note that spill occurs when passenger

demand exceed aircraft capacity.

Min
∑
k∈K

∑
i∈L

(ck,i −Xk,i × qi)× fk,i (3.5.1)

where,

di denotes passenger demand on flight leg i ;

uk denotes a maximum spill factor on aircraft k;

seatsk denotes number of seats on aircraft k ;

qi denotes average ticket price on flight leg i (£ per aircraft); and

Xk,i denotes the minimum of the number of aircraft seats of type k or demand after

spill on aircraft k for flight i (customers), that is, Xk,i := min (seatsk, di × (1− uk)).
If passenger spill on aircraft k with 150 seats has a factor of say 0.1 and the demand

for the flight is 200, then the Xk,i:= min(150,180)=150.

Some of the major challenges associated with FAM optimized results are the air-

craft over-utilization and under-utilization that makes the resultant fleeting decision

non-implemental. In such a case, the optimization expert will seek to trade-off aircraft

by imposing swap restrictions and re-optimize until a realistic utilization balanced is

attained. Here, the objective of FAM is not only to minimize cost (or maximize profit)

but to ensure that there is aircraft balance in terms of utilization. A wide-body air-

craft has a higher direct operating cost and a consequent opportunity (or idle) cost

compared to a narrow-body aircraft. Although the network planner’s goal is to ensure

a higher utilization for all aircraft, given a conflicting utilization result, a wide-body

should have a higher utilization preference during the re-optimization process.

Over-utilization is good from financial perspective and does not pose a major

concern, since it depicts efficiency and a high return on investment. However, it could

also mean that the schedule is not robust to disruption. An over-utilized aircraft has

little slack time to account for the flight delays, maintenance delays, or simply, the

aircraft cannot be used as a standby. Nevertheless, an average standard maximum
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aircraft threshold block-time value (MXk) can easily be defined to account for the

robust slack-time. Conversely, under-utilization is of much greater concern as it

depicts an aircraft not efficiently being utilized with a low return on investment. As

such, an average minimum aircraft threshold value (MNk) is usually defined based

on an industry average or more specific tailored as KPI to the airline.

On the foregoing basis, it would appear trivial to include a constraint that restricts

the aircraft utilization within the stipulated range (i.e. MXk and MNk). In this case,

we would extend the tactical FAM and include constraint 3.5.2.

Nk ×MNk ≤
∑
i∈L

fk,i ×Bk,i ≤ Nk ×MXk ∀k (3.5.2)

The constraint ensures that the total number of block-time flown on aircraft k on

all flight legs (i.e.
∑

i∈L fk,i × Bk,i) is less or equal to the total maximum threshold

value (i.e. Nk×MXk) on aircraft k and more or equal to the total minimum threshold

value (i.e. Nk ×MNk) on the same aircraft. Bk,i denotes the block-time on flight leg

i using aircraft type k. Block-time refers to the number of hours (minutes) incurred

by an aircraft from the moment it first moves for a flight until it comes to rest at its

intended blocks at the next point of landing, or returns to its departure point prior

to take-off.

Unfortunately, the use of such a hard constraint highly limits the aircraft assign-

ment and leads to infeasible results. In reality, some aircraft will always fall below

the MNk value and can only be controlled to a limited extent as opposed to get-

ting confined within the threshold boundary. If the MNk value is made smaller (or

zero), the infeasible results would be eliminated and optimality attained, however,

the constraint would become redundant or insensitive to smaller incremental values.

To counter the inherent deficiency, we offer two approaches that integrate the aircraft

utilization to the tactical FAM.

Option 1: DFAM1

The most ideal way is to impose an aircraft utilization cost (wk) whenever the uti-

lization falls below the MNk value. In this case, we are using a softer restriction

where under-utilization is still acceptable below the MNk value but at a cost. The
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aircraft utilization constraint (denoted by equation 3.5.7) computes the number of

under-utilized block-time on aircraft of type k by subtracting the total number of

block-time flown on aircraft k on all flight legs (i.e.
∑

i∈L fk,i × Bk,i) from the avail-

able minimum that the aircraft can operate (i.e. Nk×MNk). The utilization variable

is split into two parts (i.e. rk = rpk - rmk), the positive part (rpk ≥ 0) denotes the

under-utilized variable and the negative part (rmk ≥ 0) denotes the expected-utilized

variable (i.e. within the acceptable or expected range). The new formulation of the

deterministic equivalent of the SP-FAM is identical to the tactical FAM with modi-

fication of the objective function and an addition of the utilization constraint.

Min
∑
k∈K

∑
i∈L

(ck,i −Xk,i × qi)× fk,i +
∑
k∈K

rpk × wk (3.5.3)

subject to :∑
k∈K

fk,i = 1 ∀i ∈ L (3.5.4)

Yk,o,t− +
∑

i∈I(k,o,t)

fk,i − Yk,o,t+ −
∑

i∈O(k,o,t)

fk,i = 0 ∀{k, o, t} ∈ R (3.5.5)

∑
o∈O

Yk,o,tn +
∑

i∈CL(k)

fk,i ≤ Nk ∀k ∈ K (3.5.6)

rpk − rmk = Nk ×MNk −
∑
i∈L

fk,i ×Bk,i ∀k ∈ K (3.5.7)

Note that the variable splitting technique depicted in equation 3.5.7 and the linear

objective function (
∑

k∈K rpk ×wk) is a special case of a convex separable piecewise-

linear objective function, with a slope of zero where the variable is negative (rmk)

and a slope of wk where the variable is positive (i.e rpk).

An alternate way of representing the objective function and aircraft utilization

constraint 3.5.7 is by changing the equation sign (from = to ≥) and not splitting

the utilization variable (note that in this case rk ≥ 0). Using this representation,

constraints 3.5.4 - 3.5.6 will remain intact while the objective function (3.5.3) will be

substituted with equation 3.5.8 and constraint 3.5.7 change to equation 3.5.9.
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Min
∑
k∈K

∑
i∈L

(ck,i −Xk,i × qi)× fk,i +
∑
k∈K

rk × wk (3.5.8)

rk ≥ Nk ×MNk −
∑
i∈L

fk,i ×Bk,i ∀k ∈ K (3.5.9)

In this formulation, the solver will automatically look for the lowest feasible value

of rk given all other variables. If the right-hand side (rhs) of the constraint is non-

negative (implying a case of under-utilization), rk will be set equal to the rhs (i.e.

the computed under-utilized value); if the rhs is negative (implying a case of the

expected-utilization), the sign restriction on utilization (i.e. since rk ≥ 0) will result

in rk automatically being set to zero.

Option 2: DFAM2

Another way of modelling the aircraft utilization is to introduce a constraint that will

compute the utilization variable (rk ≥ 0) as the difference between the total maximum

threshold value on aircraft k (i.e. Nk ×MXk) and the total number of block-time

flown on the same aircraft on all flight legs (i.e.
∑

i∈L fk,i×Bk,i). The rk value is then

penalized with a utilization cost (wk) in the objective function. This approach aims

at gaining high utilization rate for each aircraft irrespective of the MNk value. Using

this representation, constraints 3.5.4 - 3.5.6 will still remain intact as in tactical FAM,

while the objective function and the utilization constraint will change. The model

will be represented as:

Min
∑
k∈K

∑
i∈L

(ck,i −Xk,i × qi)× fk,i +
∑
k∈K

rk × wk (3.5.10)

subject to :∑
k∈K

fk,i = 1 ∀i ∈ L (3.5.11)

Yk,o,t− +
∑

i∈I(k,o,t)

fk,i − Yk,o,t+ −
∑

i∈O(k,o,t)

fk,i = 0 ∀{k, o, t} ∈ R (3.5.12)

∑
o∈O

Yk,o,tn +
∑

i∈CL(k)

fk,i ≤ Nk ∀k ∈ K (3.5.13)

rk = Nk ×MXk −
∑
i∈L

fk,i ×Bk,i ∀k ∈ K (3.5.14)
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3.6 Cost and Revenue Data

In order to produce the fleeting decisions, FAM requires estimates of both aircraft

operating costs and revenues per flight leg. Airlines use different conventions in the

computation of aircraft operating costs that are fairly stable and reliable. As such,

cost does not pose any modelling challenges (Smith, 2004). The problem comes in

the estimation of revenue, that is a function of the aircraft capacity, the uncertain

passenger demand and fare variation.

An average fare is derived from a price that has comprehensive elements which

include levels, rules, routings, booking class, and distribution channel. The problem

is further compounded as the fare paid needs to be apportioned to the specific flown

sectors and later weighted against the passenger demand to arrive at an average unit

fare. While it is easy to analyze a historical average unit fare, it is not easy to forecast

the same at flight level given the high seasonal variation.

Similarly, demand for any flight varies by class type for each day of week and

season. Estimating actual demand, especially close to flight departure, is almost

impossible. A good forecasting model will always strive to project close to reality.

The relationship between price and demand is shown at Figure 3.5. Part (a) shows

the relationship before price segmentation with a distinction between those who are

prepared to pay more and those who would paid less. Part (b) is the scenario of

multiple prices and the maximization of revenue.

Part (a)                                                        Part (b)

Customers who
were prepared 
to pay more

Customers who
would have 
bought for
‘a little less’

45

Price
£

Demand1000

45

Price
£

Demand1000

40

50

500 750

Figure 3.5: The relationship between price and demand.

Essentially, the challenges of combining price and demand has been captured in

the origin-destination yield management model (Smith, 2004) that can be stated as:
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Sets and indices

L is a flight leg (i ∈ L); P is a set of all passenger types, defined by their itinerary

and fare class (p ∈ P); and pi is the subset of passenger type p on leg i.

Decision variables

allocp is the number of seats allocated to passenger type p ∈ P, trafp is the number

of passengers carried (traffic) by passengers of type p ∈ P.

Parameters

Dmdp is the demand for passenger type p ∈ P ; capi is the seating capacity of flight

i ∈ L; and revp is the average revenue per passenger for passenger type p ∈ P.

Constraints and objective function

Max
∑
i∈L

∑
p∈pi

revpE(trafp|Dmdp, allocp) (3.6.1)

subject to :
∑
p∈pi

allocp ≤ capi ∀i ∈ L (3.6.2)

Where the objective function 3.6.1 maximizes total expected revenue across all

flight legs by finding allocations for each path subject to the capacity constraint 3.6.2

that ensures the sum of allocation on each leg is less than the leg capacity. Note

that E(trafp|Dmdp, allocp) is the expected traffic for passenger type p ∈ P given the

demand distribution for passenger p, Dmdp and seating allocated to passenger type

p, allocp, that is:

E(trafp|Dmdp, allocp) = P (Dmdp ≤ allocp) ∗Dmdp

+(1− P (Dmdp ≤ allocp)) ∗ allocp (3.6.3)

The major challenge is to forecast revenue before integrating such a model into

the basic FAM. The tactical FAM described earlier, resembles the integration of the

basic FAM and the above RM model.
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3.7 Conclusion

We have now described the basic FAM and the inherent problem associated with

aircraft utilization. We then explored different FAM extensions before coming-up

with our new extensions (i.e. DFAM1 and DFAM2) that effectively tackles the aircraft

utilization problem. In addition, the DFAMs lays a concrete foundation for a further

extension into the SP-FAMs (to be described in Chapter 5).



Chapter 4

Stochastic Programming (SP) Modelling Approaches

This chapter describes the SP as a method of choice for modelling optimization prob-

lems that involve uncertainty. We start with a background information and discuss

the major classes of SP problems. In particular, the recourse-based approach would

eventually lead to an extension of the DFAM (described in section 3.6) to SP-FAM

(in Chapter 5). The other modelling approaches and their inter relationship could

be linked to Chapter 8 where the proof of concept is made. The different solution

algorithms discussed could be linked to Chapter 7 where the SP-FAM is solved.

4.1 Background

A mathematical programming problem in which some of the data are unknown, that

is, they are subject to uncertainty, random influences or statistical variations is called

a stochastic programming (SP) problem. In general, SP problems can be classified

into three (Mitra, 2001) major categories i.e. recourse problems, distribution problems

and chance-constrained problems.

4.2 The Recourse Problems

The classical linear program with recourse partitions the problem variables into two

stages, those that have to be decided here-and-now (the first-stage decisions), and

those that can be decided after the uncertain parameters reveal themselves (the

second-stage recourse decisions). In this approach the key underlying decisions must

be made currently in the face of future uncertainties. At a later time, the uncertainties

are resolved by observing a joint realization of the values of all uncertain parameters.

At that time, corrective (recourse) actions are taken in response to the outcomes that

materialize. The objective is to minimize the expected total cost, which includes

the direct cost of the first-stage decisions and the expected cost of the second-stage

corrective actions.

46



47

Let

ω denote the random event,

x ∈ <n1 denote the first-stage decisions,

c ∈ <n1 denote the cost associated with the first-stage decisions,

b ∈ <m1 denote the right-hand side of the first-stage system,

A ∈ <m1×n1 denote the constraint matrix of the first-stage decisions,

y(ω) ∈ <n2 denote the second-stage decisions,

q(ω) ∈ <n2 denote the cost of the second-stage system,

h(ω) ∈ <m2 denote the right-hand side of the second-stage system,

B(ω) ∈ <m2×n1 denote the linking matrix corresponding to the first-stage decisions

in the second-stage system,

D(ω) ∈ <m2×n2 denote the matrix corresponding to the second-stage decisions in the

second-stage system.

The two-stage SP problem with recourse is expressed as:

Zhn min cx+ Eω(q(ω)y(ω)) (4.2.1)

subject to :

Ax ≥ b

B(ω)x+D(ω)y(ω) ≥ h(ω)

x ≥ 0, y(ω) ≥ 0.

The set of constraints B(ω)x + D(ω)y(ω) ≥ h(ω) describe the links between the

first-stage decisions x and the second-stage recourse actions y(ω). Note that we

require that this constraint holds with probability 1, or for each possible ω ∈ Ω. The

objective function of Zhn contains a deterministic term cx and the expectation of the

second-stage objective q(ω)y(ω) taken over all realizations of the random event ω,

Eω(q(ω)y(ω)). The second-stage term is difficult to evaluate because, for each ω, the

value y(ω) is the solution of a linear program. As each component of q,h,B, and D is

a possible random variable. Let Bi(ω)/Di(ω) be the ith row of B(ω)/D(ω). Piecing

together the stochastic components of the second-stage data, we obtain a vector

ξ(ω) = (q(ω), h(ω), B1.(ω), . . . , Bm2(ω), D1.(ω), . . . , Dm2(ω)), with potentially up to

N =n2 +m2 + (m2 × (n1 + n2)) components. A single random event ω (or scenario)
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can influence several random vectors, ξ(ω). Therefore, model Zhn can be written as

Zhn min cx+ EξQ(x, ξ(ω)) (4.2.2)

subject to :

Ax ≥ b

x ≥ 0

where Q(x, ξ(ω)) = min q(ω)y(ω) (4.2.3)

subject to :

B(ω)x+D(ω)y(ω) ≥ h(ω)

y(ω) ≥ 0

Recourse problems are extended in a number of ways. One of the most common

is to include more stages. A general multi-stage recourse problem with T stages can

be written as (Dempster (1980) and Birge (1988)):

Minx1{q1x1 + Eξ(ω2){minx2(q2x2 + Eξ(ω3)|ξ(ω2){minx3(q3x3 + ...

Eξ(ωT )|ξ(ω1)...ξ(ωT−1){minxT
(qTxT}....]})}}

subject to :

A1x1 ≥ b1

B2x1 + A2x2 ≥ b2

B3x2 + A3x3 ≥ b3

. .

. .

. .

BTxT−1 + ATxT ≥ bT

l1 ≤ x1 ≤ u1

lt ≤ xt ≤ ut t = 1, ...., T

where ξ(ωt) = (bt, qt, At,1, ..., At,nt , Bt,nt), t=2,..T, are random vectors in some
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canonical probability space (Ω,z, P r). The sub-indices of the matrices B, A, and

the vectors q, x, b refer to the stages of the problem. Once the realized values are

observed at a stage t, the information required to decide the actions at stage t+1 is

known.

The interpretation of the above model is as follows: first, decision vector x1 is

chosen to satisfy period 1 constraints, and then in period 2, after having observed the

realization of random vectors ξ(ω1), a decision vector x2 is chosen. In general, period

t, decisions xt have to be adapted to the information arrival process {ξ(ω1), ...ξ(ωt)},
as well as to the decision sequence {x1, ...xt−1}; namely, decisions should be taken

before the outcome of future realizations of random events, a requirement known as

non-anticipativity of decisions. Multi-stage SP models with recourse corresponds to

the sequence of anticipatory decisions taken prior to observing future random events,

as well as adaptive decisions that must be made to compensate for deviations from

prescribed targets as random events unfold.

Letting S be the total number of scenario, model Zhn can also be re-written in

discrete representation as:

Zhn min cx+

|S|∑
s=1

psqsys (4.2.4)

subject to :

Ax ≥ b

Bsx+Dsys ≥ hs ∀ s ∈ S

x ∈ <n1 , ys ∈ <n2 , ys ≥ 0

As presented, without assuming any additional properties or structure on Zhn,

we would describe the problem as having general recourse. In many cases, there is

specific structure in the recourse subproblem that can be exploited for computational

advantage. Some of the more commonly types are described as follows.

Simple Recourse: A special case of the recourse model, known as the sim-

ple recourse model, arises when the constraint coefficient matrix in the second-stage

problem, D, form an identity matrix. That is, D=[I -I], and y(ω) is divided corre-

spondingly as (y+(ω),y−(ω)) and q(ω)=(q+(ω),q−(ω)). Note that, in this case, the
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optimal values of y+(ω),y−(ω) are determined purely by the sign of h(ω)-B(ω)x pro-

vided that q+(ω)+q−(ω) ≥ 0 holds with probability one.

Fixed Recourse: A fixed recourse problem is one in which the constraint matrix

in the recourse subproblem is not subject to uncertainty (i.e., it is fixed or not ran-

dom). The recourse subproblem with Q(x, ξ(ω)) representation is similar to equation

4.2.3 but without the random variable in the matrix D. However, when the second

stage objective coefficients are also fixed, the dual representation of the recourse sub-

problem (with fixed set of dual feasible solutions) is given by:

Q(x, ξ(ω)) = Max πT (h(ω)−B(ω)x) (4.2.5)

subject to :

πTD ≤ qT

π ≥ 0.

Complete Recourse: This property holds when there exist y(ω) ≥ 0 such that

D(ω)y(ω)=p for all p ∈ <m2 . A slightly less strenuous property, which leads to the

same result, is known as relatively complete recourse. Suppose we define two sets

for the model Zhn as: K1 = {x|Ax = b, x ≥ 0} and K2 = {x|Q(x, ξ(ω)) < ∞}. A

stochastic program has relatively complete recourse if K1 ⊂ K2, that is, every solution

x that satisfies the first-stage constraints, Ax = b, has a feasible completion in the

second-stage.

4.3 Distribution Problems

The optimization problems which provide the distribution of the objective function

value for different realizations of the random parameters and also for the expected

value of such parameters are broadly known as the distribution problems.

The Expected Value Problems: A more quantifiable approach is to solve

the original linear program where all the random data have been replaced with the

expected values. Let f̄ =
∑|s|

s=1 psfs, B̄ =
∑|s|

s=1 psBs, D̄ =
∑|s|

s=1 psDs and h̄ =∑|s|
s=1 pshs. We define the expected value model as
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Pev = min cx+ f̄y

subject to :

Ax ≥ b

B̄x+ D̄y ≥ h̄ (4.3.1)

Let (x̄, ȳ) be the optimal solution to Pev and Zev(x̄, ȳ) be the corresponding value.

In order to evaluate the quality of the first-stage solution, we fix the first-stage vari-

ables in Zhn to x̄, and define the resulting model as:

Peev = min cx̄+

|s|∑
s=1

psqsys

subject to :

Ax̄ ≥ b

Bsx̄+Dsys ≥ hs ∀s (4.3.2)

and having the objective value Zeev. The objective value, Zeev, obtained by the

model 4.3.2 is called the expectation of the expected value solution.

Wait-and-See Problems: In contrast to here-and-now problems, which yield op-

timal solutions that achieve a given level of confidence, wait-and-see problems involve

a category of formulations that shows the effects of uncertainty on optimum design.

A wait-and-see problem involves deterministic optimal decision at each scenario or

random sample, equivalent to solving several deterministic optimization problems.

Consider a family of scenarios dependent (wait-and-see) models,

Pws(s) = min cx+ qsys

subject to :

Ax ≥ b

Bsx+Dsys ≥ hs (4.3.3)
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For a given s, let (x∗s, y
∗
s) be the optimal solution to Pws(s) and Zws(x

∗
s, y
∗
s) be the

corresponding objective value. Processing all the scenarios and aggregate them, that

is

Zws =

|s|∑
s=1

psZws(x
∗
s, y
∗
s)

where ps is the probability for all the scenario s.

4.4 Chance-Constrained Problems

Another important class of SP models are the chance-constrained problems (CCP)

accredited to Charnes and Cooper (1959). These problems are characterized with

a constraint that holds with a probability. The general formulation (Valente et al.,

2005) of a chance-constrained problem is:

ZCCP = min cx

subject to : A0x = b0

P{Aix ≥ hi} ≥ βi i = 1..I (4.4.1)

where βi ∈ [0,1] is a reliability level and ξi = (Ai, hi) ∀ i = 1..I is a

random vector on the probability space (Ω,z, P r). If the Ai is a row vector, the i-th

constraint is called individual chance constraint. If Ai is a r × c matrix with r > 1 ,

then the i-th constraint is referred to as joint chance constraint.

4.5 The Inter-relationships and Bounds

It can be easily shown that the three solutions, Zws, Zhn, Zeev are connected by the

ordered relationship: Zws 6 Zhn 6 Zeev. The difference (Zeev − Zhn) is known as

the value of stochastic solution (VSS). VSS measures how much better the solution

of the stochastic optimization problem is in relation to the expected solution of the

expected value problem.

The difference (Zhn − Zws) is known as the expected value of perfect information

(EVPI). EVPI is interpreted as the expected value or the amount the decision-maker
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is willing to pay to have perfect information, which is, knowledge about all the future

scenarios. A relatively small EVPI indicates that better forecasts will not lead to

significant improvement while a relatively large EVPI means that incomplete infor-

mation about the future may prove costly. The EVPI and VSS can also be shown to

be bounded as:

0 6 EV PI 6 Zhn − Zws 6 Zeev − Zev

0 6 V SS 6 Zeev − Zev

4.6 Solution Approaches

Given the discrete representation as denoted by equation 4.2.4, we can create very

large-scale linear programs whose solution is the same as that of the stochastic pro-

gram. These Deterministic Equivalents (DE) have a very peculiar algebraic structure

which can be exploited by different solution methods. Some of the common known

techniques are described in this section.

4.6.1 Universe

In this approach (Valente et al., 2005), the SP problem is expressed as DE and

solved by general-purpose linear programming solvers. The discrete distribution can

be represented through an event tree with nodes associated with the realisations of

the stochastic quantities. The introduction of an event tree to describe uncertainty,

allows the formulation of the DE problem which can have implicit or explicit non-

anticipativity constraints.

In the case of explicit constraints, the event tree (refer to section 6.1.1 for a detail

description) is splitted path-wise and the decision process follows the scenario evolu-

tion. The decision hierarchy is in this case forced along every scenario consistently

with the original tree structure. The procedure leads to S dynamic problems, where

S represents the number of scenarios, characterized by the same time structure where

each scenario describes a unique path from the root of the tree to the leaf node.

Non-anticipativity constraints are thus added explicitly to ensure feasibility of the

decisions with respect to the set of information constraints.
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In the case of implicit constraints the property of non-anticipativity is automati-

cally fulfilled by introducing a unique vector of decision variables for each node of the

tree making sure that the random coefficients of the problem are properly associated.

4.6.2 Decomposition

There are two types of decomposition based approaches depending on whether the

scenario tree is split according to time stages (primal decomposition) or scenarios

(dual decomposition). In this subsection, we discuss the popular method of each type

i.e the L-Shaped method (based on primal decomposition) and Lagrangian method

(based on dual decomposition).

L-Shaped Method: The first solution procedure proposed for two-stage stochas-

tic linear programs with recourse is the L-Shaped method (Slyke and Wets, 1969).

The L-Shaped method decomposes the problem by stage; the first-stage problem leads

to a master problem and the second-stage problem leads to a subproblem. In reality,

the method is simply an adaptation of Benders decomposition to the structure of

the second-stage problem. A general principle behind the L-shaped approach is that,

since the recourse function, Q(x, ξ(ω)), involves a solution of all second-stage recourse

linear programs, we would like to avoid numerous function evaluations for it.

The algorithm is initiated by solving the master problem first and then checking

feasibility with the subproblems. If the subproblem is infeasible, a feasibility cut

constraint is added to ensure feasibility of the first-stage decision. Next, the algorithm

checks for optimality with the subproblem, and if not optimal, adds an optimality cut

constraint that is a linear approximation of Q(x) on its domain of finiteness, and is

determined based on the dual of the second-stage problem. The procedure is repeated

until all the subproblems have been exhausted.

Depending on the starting point of the chosen subproblem and the number of cuts

added, the algorithm could be time consuming before getting a solution. However,

substantial amount of time could be saved if we take advantage of a solution for a sin-

gle subproblem in solving the others (i.e. a bunching technique). In many ways, the

L-Shaped method is by now a classic technique for solving two-stage stochastic pro-

grams. Although it is well suited for an introduction to stochastic linear-programming
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solution methodology, it is no longer computationally effective for large scale prob-

lems. One of the first major improvements to this basic methodology involved the

introduction of a regularizing term (a quadratic proximal term added to the objective,

||x− xk||2, for example).

Lagrangian Method: Lagrangian relaxation is a technique used when difficult

problems can be turned into easy problems by eliminating a subset of the constraints.

Penalties for violating the constraints are introduced into the objective. These penal-

ties are then adjusted in an attempt to price the constraint violation, and the problem

is solved again. The objective value of the solution to the pricing problem provides a

bound to the original problem.

The basic motivation behind the Lagrangian approaches is that only the non-

anticipativity constraints linking the scenarios are relaxed. Consider the dual rep-

resentation of equation 4.2.4 and let λs denote the dual multipliers associated with

second-stage constraints for scenario s. Since the non-anticipativity constraints are

the hard constraints, we can place them in the objective and penalize them. If we

define λ̃ = (λ1, ....., λ|s|), then the lagrangian formulation becomes:

Maxλ̃ LG(λ̃) = cx+

|S|∑
s=1

psqsys +

|S|∑
s=1

ps(λs(hs −Bsx+Dsys)) (4.6.1)

subject to :

Ax ≥ b

From the general optimality condition, the optimal value of the lagrangian dual

(equation 4.6.1) is equal to the optimal value of the primal problem (equation 4.2.4).

The common lagrangian solution algorithms include the Dual Ascent method, La-

grangian Finite Generation Method for Linear-Quadratic Stochastic Programs and

Linear Progressive Hedging algorithm (Birge and Louveaux, 1997).

4.6.3 Statistically Based Method

One of the major handicaps of the L-Shaped method is the need to solve a subprob-

lem for each scenario. In large-scale problems, the number of scenarios is much too
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high for this to be a reasonable approach and the possibility of using statistical es-

timations (Higle, 2005) of the recourse function becomes computationally attractive.

Conceptually, the simplest method for incorporating statistical approximations in the

solution procedure is to replace the recourse function, Q(x, ξ(ω)), by a sample mean

approximation. That is, if {ωt}nt=1 is a collection of independent and identically dis-

tributed observations of ξ(ω), then one might consider undertaking the solution of

the sample mean problem:

Zhn Min cx+
1

n

n∑
t=1

Q(x, ωt) (4.6.2)

subject to :

Ax ≥ b

x ≥ 0

In this fashion, the sample mean problem is a stochastic program with an alter-

nate distribution. When the sample size is significantly smaller than the number of

scenarios in the original distribution, equation 4.6.2 will be much easier to solve than

Zhn. On the surface, this approach is quite appealing, however, we note that the

solution obtained is dependent on the specific sample that was drawn. Consequently,

it is subject to error in the same manner that the mean value solution is subject to

error. In the absence of relatively complete recourse, it is possible that the solution

obtained is actually infeasible! That is, there may be some scenarios that are not

represented in the sample for which the solution to equation 4.6.2 is not feasible. For

this reason, relatively complete recourse is a critical property for problems that are

to be solved using statistical approximation schemes.

4.6.4 Decomposition Methods with Sampling

A potential disadvantage of statistical based method, is that some effort might be

wasted on optimizing when the approximation is not accurate. An approach to avoid

this problem is to use sampling within another algorithm without complete optimiza-

tion. Birge (1997) considered two such approaches, one uses importance sampling to

reduce variance in deriving each cut based on large samples and another based on a

sample that grows as the algorithm progress.
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The first approach (Dantzig and Glynn, 1990) is to sample Q(x, ξ(ω)) in the L-

shaped method instead of actually computing Q(x). Given an iterate xk, the result

is an estimate, Qv(xk)= 1
v

∑v
i=1Q(xk, ξi(ω)), and an estimate of ∇Q(xk) as π̄vk =

( 1
v

∑v
i=1 π

i
k) where πik ∈ ∂Q(xk, ξi(ω)). Now, for Q convex in x one obtains

Q(x, ξi(ω)) ≥ Q(xk, ξi(ω)) + (πik)
T

(x− xk) ∀x (4.6.3)

Assuming that we also have a finite value in Q(xk, ξ(ω)) for any ξ(ω) to prevent

problems with infeasibility,

Qv(x) = (
1

v
)

v∑
i=1

Q(x, ξi(ω)) ≥ Qv(xk) + (π̄vk)
T (x− xk) = LBv

k(x) (4.6.4)

where, by the central limit theorem,
√
v times the right-hand side in equation 4.6.4

is asymptotically normally distributed.

An alternate technique that integrates elements of decomposition techniques and

statistical approximation techniques is Stochastic Decomposition (SD) (Higle and Sen,

1991). Unlike the sample mean optimization in equation 4.6.2, which operates with

a fixed sample size, SD operates with an adaptive sample size; increasing the sample

size as iterations progress. Unlike the L-Shaped method, which solves a subproblem

for each scenario for each cutting plane constructed, SD uses recursive approximation

methods based on previously solved problems in order to bypass the solution of the

vast majority of the subproblems that would otherwise be solved. The combination of

adaptive sampling and subproblem approximations has proven to be quite powerful,

especially when a regularized master program is used.

4.7 Examples of SP Solvers

Most of the solvers would require the problem to be represented in SMPS format

before execution. The SMPS format is an extension of MPS (Mathematical Pro-

gramming System) format that converts the existing deterministic linear programs

into stochastic ones through the addition of information about the dynamic and

stochastic structure of the model.
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BNBS:(bouncing nested Bendes solver) is an implementation of the nested Ben-

ders algorithm for solving multi-stage stochastic linear programming problems (Al-

tenstedt, 2009). The name bouncing nested benders solver comes from one of the

implemented sequencing protocols. In this protocol, the active stage bounces up and

down in the tree.

FortSP: (the SP extensions to FortMP) is an integrated modelling and solver

system based on extended language constructs designed to facilitate the formulation

of scenario based recourse problems (OptiRisk, 2009). FortSP is embedded within

the Stochastic Programming Integrated Environment (SPInE) that produces model

instances in SMPS format. The integrated algorithms include Benders decomposition,

DE with Implicit and Explicit Non-antipativity (Deteqi and Deteqe).

MSLiP: (multi-stage stochastic linear programming) implements a multi-stage

version of the 2-stage L-Shaped method of Van Slyke and Wets using nested Bender’s

decomposition for the multi-stage stochastic linear programming problem (Gassman,

1990). The solver supports an arbitrary number of time periods and various types of

random structures for the input data (in SMPS format).

DDSIP: (dual decomposition in two-stage stochastic mixed-integer programming)

implements a number of scenario decomposition algorithms for stochastic linear pro-

grams with mixed-integer recourse (Caroe et al., 2009). The implemented algorithm

is the Lagrangian relaxation of the non-anticipativity constraints and a branch-and-

bound algorithm that re-establishes non-anticipativity.

SLP-IOR: An interactive model management system for two-stage (multi-stage)

recourse and chance-constrained models (Kall and Mayer, 1996). The solver handles

algebraic structure and scenario generation problems. The implemented algorithms

include: Benders, Regularized and Stochastic Decomposition, Discrete Approxima-

tion, Interior point methods, Supporting hyperplane, Central cutting plane, etc.

4.8 Conclusion

We have now introduced the recourse-based concept that would be used to extend

the DFAM to SP-FAM. Similarly, the SP solutions algorithms discussed can be re-

lated to the SP-FAM solution approach. The various SP models and the inter-bound

relationship have also been introduced to build a base for the proof of concept.



Chapter 5

The SP-FAM

In this chapter we start by outlining the problem statement and discuss previous

attempts in the formulation. We then present two alternate ways of formulating the

SP-FAM and describe the models salient features.

5.1 Problem Description

A flight is characterized by a pairing of origin-destination, aircraft type, aircraft oper-

ating costs and estimated passenger revenue. While aircraft operating costs are fairly

stable and known with certainty, revenue estimates that comprise average fare and

demand are highly uncertain. Given a heterogeneous fleet and a scheduling horizon

under conditions of demand uncertainty, we are looking for the best assignment of

aircraft types to flight.

Our approach is to model the problem as a two-stage SP with recourse. The main

distinction of the recourse FAM with other FAMs is that, given a number of passenger

demand scenarios, it gives a strategic fleet assignment solution that hedges against all

possible tactical solutions. In addition, we have a tactical solution for every scenario.

The four unique features of the modelling approach are: an introduction of buffer

aircraft within the available fleet; introduction of an artificial fleet assignment variable

that satisfies the recourse definition; inclusion of aircraft utilization constraint; and

inclusion of demand-spill constraint that links the first-stage decision variable and

the second-stage decision variable of the recourse formulation.

5.2 Previous Attempts

According to Smith (2004), (Berge and Hopperstad, 1993) pioneered the research

area using the Demand Driven Dispatch (D3) concept. D3 makes swaps after crew

scheduling instead of prior to and reassigns capacity near the departure date with

crew-compatible aircraft only. As the swapping is limited to only crew-compatible

59
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aircraft, the adoption of the concept has not only been at a relatively slow pace but

its application has been limited to carriers that have crew-compatible aircraft.

Next, Lister and Dekker (2002) developed the idea of robust FAM through a

scenario aggregation approach. The proposed model had the objective of determining

the fleet composition that maximized profit in a system that allows capacity swapping

close to departure. They used a two-stage stochastic linear programming model; the

first stage solved a single scenario and the second stage solved a deterministic FAM

model for each set of scenarios. While this is an SP-based approach, the solution

is not optimal. (Pilla et al., 2005) quickly noticed that since the initial assignments

are based on a single scenario, the result cannot be robust relative to variations in

demand.

With the above limitations, (Pilla et al., 2005) came with a more robust FAM that

utilizes a two-stage SP alongside the concept of D3 to assign crew-compatible aircraft

in the first-stage, so as to enhance the demand capturing potential of swapping in the

second-stage. To overcome the problem of using a single scenario as in Lister’s model,

they used an average of the scenarios to estimate the expected revenue value of the

recourse function for the two-stage SP model. In generating the demand scenarios,

they used a statistical model (multivariate adaptive regression splines) fitted into an

optimized-based computer experimental design (using Latin hypercube). The above

approach has three inherent limitations: the optimization of recourse function was

not considered; in a true SP approach, averaging of scenarios (also known as the

expected value model), does not give relatively better solutions than when solving an

SP model with all scenarios (called here-and-now model); and finally, the reliability

of using computer experimental data to generate the uncertain demand is highly

questionable.

5.3 Mathematical Formulation

The two-stage recourse FAM

In this section we present a new formulation of the SP-FAM that overcomes the

inherent deficiencies of the previous attempts. The two-stage recourse FAM is an

extension of the deterministic equivalent models described in Section 3.5 and uses

the same mathematical notations with modification in the following areas:



61

• Scenarios: The introduction of scenarios, and probability ps for each scenario s

• Decision variable: An additional artificial aircraft related variable is created,

virtual assigner. The artificial variable corresponds to virtual profit that is

accrued to the false flight legs.

• Parameters: An additional standby (spare or buffer) aircraft is introduced that

attracts a penalty cost jk,i. Unlike the other scheduled aircraft, the standby

aircraft does not attract the utilization (or idleness) cost (i.e. wk) as described

for the case of DFAMs.

• Demand-spill constraint: Addition of the demand-spill constraint that links the

first-stage decisions and the second-stage recourse actions (see constraint 5.3.5

and 5.3.11).

The resulting models, SP-FAM1 and SP-FAM2, follow the two deterministic equiv-

alent models discussed earlier, DFAM1 and DFAM2, respectively.

The SP-FAM1

Min CU1 + ZAP + ZV P (5.3.1)

Subject to : ∑
k∈K

fk,i = 1 ∀i (5.3.2)

Yk,o,t− +
∑

i∈I(k,o,t)

fk,i = Yk,o,t+ +
∑

i∈O(k,o,t)

fk,i ∀{k, o, t} ∈ R (5.3.3)

∑
o∈O

Yk,o,tn +
∑

i∈CL(k)

fk,i ≤ Nk ∀k (5.3.4)

(fk,i + bk,i,s)× seatsk ≤ Dk,i,s ∀k, i, s (5.3.5)

rpk − rmk = Nk ×MNk −
∑
i∈L

fk,i ×Bk,i ∀k (5.3.6)



62

The SP-FAM2

Min CU2 + ZAP + ZV P (5.3.7)

Subject to : ∑
k∈K

fk,i = 1 ∀i (5.3.8)

Yk,o,t− +
∑

i∈I(k,o,t)

fk,i = Yk,o,t+ +
∑

i∈O(k,o,t)

fk,i ∀{k, o, t} ∈ R (5.3.9)

∑
o∈O

Yk,o,tn +
∑

i∈CL(k)

fk,i ≤ Nk ∀k (5.3.10)

(fk,i + bk,i,s)× seatsk ≤ Dk,i,s ∀k, i, s (5.3.11)

rk = Nk ×MXk −
∑
i∈L

fk,i ×Bk,i ∀k (5.3.12)

where,

ZAP = CA - RA actual assignment profit (cost-revenue);

ZV P = CV - RV virtual assignment profit (cost-revenue);

CU1 =
∑

k∈K rpk × wk cost of aircraft under-utilization (or idleness);

CU2 =
∑

k∈K rk × wk cost of aircraft utilization (or idleness);

CA =
∑

k∈K
∑

i∈L(ck,i + jk,i)× fk,i actual cost of assignment;

RA =
∑

s∈S ps
∑

k∈K
∑

i∈LXk,i,s × qi × fk,i expected actual assignment revenues;

CV =
∑

s∈S ps
∑

k∈K
∑

i∈L(ck,i+ jk,i)× bk,i,s expected virtual cost of assignment; and

RV =
∑

s∈S ps
∑

k∈K
∑

i∈LXk,i,s × qi × bk,i,s expected virtual buffer revenues.

Sets and indices

L: the set of flight legs indexed by i ;

K : set of different aircraft types indexed by k ;

O : set of stations (airports) indexed by o;

T : the sorted set of all event (arrival or departure) times at all airports, indexed by

t. The event at time t occurs before the event at time, t + 1. The last node in the

counting line is denoted by tn. The index t+ denotes an event after the current time

t while t− denotes an event before the current time t (t ∈ T );

R: the set of nodes in the network indexed by {k,o,t};
CL(k) denotes the set of flight legs crossing the count time (i.e. tn) flown by k i.e.
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the set of flight legs where an aircraft of type k may be in the air at time tn;

I(k,o,t) is the set of inbound flight legs to node {k,o,t}; and

O(k,o,t) is the set of outbound flight legs from node {k,o,t}.

Decision variables

fk,i =

{
1 if fleet type k is assigned to flight leg i ;

0 otherwise.

Yk,o,t ≥ 0 is the number of aircraft of fleet type k, on the ground at station o, and

time t; Yk,o,t+ is the number of aircraft of fleet type k, on the ground at station o, just

following time t (t ∈ T ); and Yk,o,t− is the number of aircraft of fleet type k, on the

ground at station o, just prior to time t (t ∈ T );

bk,i,s is an artificial (virtual assigner) non-integer variable ≥ 0 (aircraft);

rk is the number of utilized block-time of aircraft of fleet type k ≥ 0 (minutes or

hours);

rpk is the number of under-utilized block-time of aircraft of fleet type k ≥ 0 (minutes

or hours); and

rmk is the number of expected-utilized block-time of aircraft of fleet type k ≥ 0 (min-

utes or hours).

Parameters

ck,i denotes aircraft direct operating cost of aircraft k on flight leg i (£ per aircraft

flight leg);

Nk denotes the number of available aircraft of type k (including standby aircraft);

seatsk denotes the number of seats on aircraft k ;

di,s denotes passenger demand on flight leg i under scenario s;

uk denotes the maximum spill factor on aircraft k;

Dk,i,s denotes the maximum of the number of aircraft seats of type k or passenger

demand after spill on aircraft k for flight i under scenario s, that is,

Dk,i,s := max (seatsk, di,s × (1− uk));
Xk,i,s denotes the minimum of the number of aircraft seats of type k or passenger

demand after spill on aircraft k for flight i under scenario s), that is,

Xk,i,s := min (seatsk, di,s × (1− uk));
jk,i denotes penalty cost of using standby aircraft on flight leg i (£ per aircraft flight
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leg);

qi denotes average ticket price on flight leg i (£ per aircraft);

wk denotes the utilization cost of the scheduled aircraft k i.e. standby aircraft do not

attract utilization cost (£ per aircraft minutes or hours);

ps denotes the probability of scenario s;

MNk denotes the average minimum block-time threshold value that aircraft of type

k can fly (minutes or hours);

MXk denotes the average maximum block-time threshold value that aircraft of type

k can fly (minutes or hours); and

Bk,i denotes the block-time of aircraft of type k on flight leg i (minutes or hours).

Note that fk,i corresponds to the first-stage solution that gives overall fleet compo-

sition for all the scenarios while bk,i,s corresponds to the second-stage solution unique

for each of the scenario. The objective functions (5.3.1 and 5.3.7) minimizes the fleet

assignment cost (it is a re-expression of maximization of fleet assignment profitabil-

ity). The cover constraints (5.3.2 and 5.3.8) ensures that each flight is covered once

and only once by a fleet type. Equation 5.3.3 and 5.3.9 are the conservation flows

constraints that ensures aircraft balance, that is, all aircraft going into a station must

leave the station at some time. The count constraints (5.3.4 and 5.3.10) ensures that

only the number of available aircraft are used. The demand-spill constraints (5.3.5

and 5.3.11) ensures that passenger demand after spill does not exceed the maximum

of the number of aircraft seats of type k or passenger demand after spill on aircraft

k for flight i under scenario s. The aircraft utilization constraints (5.3.6 and 5.3.12)

computes the number of utilized block-time on aircraft of type k.

5.4 Model Features

5.4.1 The Standby Aircraft

The fleet assignment problem is basically a multi-commodity flow problem with air-

craft being commodities that need to be assigned (or produced) to satisfy passenger

demand. As such, we can envisage the multi-commodity flow problem under condi-

tions of certain passenger demand and uncertain passenger demand. Under certainty

conditions, the demand needs to be satisfied with the available number of aircraft. In
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uncertainty conditions, demand needs to be satisfied with an alternative aircraft type

that was not originally scheduled to operate the flight. This can be done by ferrying

an aircraft, leasing of an aircraft at a short notice or use of a standby aircraft.

As such the distinct feature of the SP formulation is the standby aircraft that is

reassigned in the case of demand fluctuation but at the cost of the original scheduled

aircraft. The standby aircraft concept is used widely by both charter operators (Ro-

nen, 2000) and scheduled operators. Ideally, rather than having a standby aircraft

waiting to be assigned in the presence of demand uncertainty, a robust schedule is

built in such a way that the aircraft in circulation (on the network) become a poten-

tial standby when on ground and not immediately scheduled. One way of accounting

for standby aircraft types is depicted in the development of the scheduling wave sys-

tem where the aircraft on ground measure (Bian et al., 2005) becomes an important

attribute in the test of schedule robustness. Note that by swapping an originally

scheduled aircraft with a standby, the former becomes redundant and under-utilized,

a situation not welcomed by network planners. To counter this concept and discour-

age its practice, we introduce a penalty cost for using the standby aircraft and an

utilization (idle) cost for making the original scheduled aircraft under-utilized.

5.4.2 The Objective Function

The objective function computes the Total Profit (ZTP ) that comprises the Real Profit

(ZRP ) and the Virtual Profit (ZV P ). While ZRP can easily be measured and tracked

in the financial books of accounting, the ZV P is false and cannot be measured. In

other words, the airline does not really receive this profit. Both ZRP and ZV P have

revenue and cost elements. The revenue component computes the passenger revenue

by multiplying the projected passenger number with average fare (i.e. Xk,i,s × qi).

The cost element has two components, the aircraft direct operating cost (ck,i) and the

standby aircraft penalty cost (jk,i). ck,i is incurred by both scheduled and standby

aircraft while jk,i is exclusive for the standby aircraft. The ZRP is associated with the

first-stage decision variable (fk,i) that comprises the Utilization Cost (CU1 or CU2)

and ZAP ; while the ZV P is associated with the second-stage decision variable (bk,i,s).

• ZAP = CA - RA

• ZRP = CU1 (or CU2) + ZAP
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• ZV P = CV - RV

• ZTP = ZRP + ZV P

5.4.3 The Artificial Variable

The bk,i,s tries to assign superficial aircraft taking into account both revenue and the

aircraft direct operating cost. In particular, the artificial variable is introduced to

satisfy recourse condition but does not violate or contradict the first-stage decision

variable. As such, the aircraft utilization cost (CU1 or CU2) and the virtual profit

(i.e. ZV P ) that are tied to the aircraft swaps are the main underlying logics of

the formulation. The major problem with FAM solutions, and especially for a large

network, is the generation of infeasible solutions. If bk,i,s is treated as a binary variable,

the model will yield a feasible optimal solution for a model of smaller size but infeasible

for a large size. As in real life the artificial variable does not have much meaning, to

generate a feasible optimal solution for a large network, bk,i,s is relaxed (i.e. ≥ 0).

In a typical multi-commodity network flow problem, bk,i,s would have corresponded

to a standby aircraft (instead of ZV P ). But this assumption is only valid if the original

scheduled aircraft are capable of being entirely removed or added from circulation (as

opposed to being under-utilized or over-utilized) and where there is a wide variants of

standby aircraft. In this case, we visualize a situation where to satisfy the uncertain

demand, assign (or produce) fk,i of the scheduled aircraft; and where there is a surplus

or shortage in demand, acquire (or hire) bk,i,s of the standby aircraft. However, this

is not possible for the fleet assignment problem since the scheduled aircraft are fixed

and the standby aircraft are limited.

5.4.4 Demand-Spill Constraint

The demand-spill constraint (5.3.5 or 5.3.11) links the first-stage decision variable,

fk,i, and the second-stage artificial variable, bk,i,s. The constraint tries to ensure that

the assigned aircraft does not exceed the maximum of the assigned aircraft capacity

or passenger demand after spill. If eliminated, the constraint will lead to unbound-

edness irrespective of changing any of the cost or revenue parameters. Similarly, an

unbounded value is obtained if the equation sign is changed to ≥. In understanding
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the constraint we make an illustration with the following assumptions:

• Two routes denoted by X-Y1-X and X-Y2-X are to be operated. Where X-Y1-

X means a complete rotation, with an outbound flight X-Y1 and an inbound flight

Y1-X. The outbound flight departs from station X and arrives at station Y1, while

the inbound flight departs from station Y1 and arrives back at station X.

• Three aircraft denoted by A1, A2, and B4 (where B4 is a standby) are available

to operate any of the two routes. In algebraic notation, this is expressed as NA1 = 1,

NA2 = 1 and NB4 = 1.

• The number of seats on each aircraft are given as 100, 120 and 150 seats for A1,

A2 and B4, respectively.

• Two passenger demand scenarios (scenario 1 and scenario 2) are given for each

flight leg (as shown in Table 5.1).

• The probability for scenario 1 is 0.7 while that of scenario 2 is 0.3.

• The maximum spill factor for each aircraft is 0.1.

• For clarity, the artificial second-stage decision variable (bk,i,s) is treated as binary

(instead of being relaxed).

Flight leg i Scenario 1 Scenario 2

X-Y1 100 120
Y1-X 150 80

X-Y2 200 100
Y2-X 130 70

Table 5.1: Passenger demand scenarios.

Table 5.2 depicts typical results of the demand-spill constraint. After the optimiza-

tion process, assume the fleet assignment is as shown in column 2. The computation

shows that each aircraft is capable of being assigned; there is no preference in assign-

ing a bigger aircraft to a smaller one or a smaller one to a bigger one. The main

underlying logic of the constraint is that if a standby aircraft (i.e. B4) is assigned

to a particular flight leg, in our case fA1,i= 1 and fB4,i= 1, then the buffer variables

associated with the assigned aircrafts are automatically set to zero (i.e. bA1,i,s=0 and

bB4,i,s=0), for both scenario 1 and 2. The other values for bk,i,s will be allocated to

the un-assigned aircraft flight legs, taking a value of 0 or 1 in one or both scenarios.
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Constraint fk,i bk,i,s seatsk ( fk,i + bk,i,s) × seatsk dk,i × uk Dk,i,s

A1:Sc1: X-Y1 1 0 100 100 90 100
A1:Sc2: X-Y1 1 0 100 100 108 108
A1:Sc1: Y1-X 1 0 100 100 135 135
A1:Sc2: Y1-X 1 0 100 100 72 100
A1:Sc1: X-Y2 0 {0,1} 100 {0,1} × 100 180 180
A1:Sc2: X-Y2 0 {0,1} 100 {0,1} × 100 90 100
A1:Sc1: Y2-X 0 {0,1} 100 {0,1} × 100 130 130
A1:Sc2: Y2-X 0 {0,1} 100 {0,1} × 100 117 117

A2:Sc1: X-Y1 0 {0,1} 120 {0,1} × 120 90 120
A2:Sc2: X-Y1 0 {0,1} 120 {0,1} × 120 108 120
A2:Sc1: Y1-X 0 {0,1} 120 {0,1} × 120 135 135
A2:Sc2: Y1-X 0 {0,1} 120 {0,1} × 120 72 120
A2:Sc1: X-Y2 0 {0,1} 120 {0,1} × 120 180 180
A2:Sc2: X-Y2 0 {0,1} 120 {0,1} × 120 90 120
A2:Sc1: Y2-X 0 {0,1} 120 {0,1} × 120 130 130
A2:Sc2: Y2-X 0 {0,1} 120 {0,1} × 120 117 120

B4:Sc1: X-Y1 0 {0,1} 150 {0,1} × 150 90 150
B4:Sc2: X-Y1 0 {0,1} 150 {0,1} × 150 108 150
B4:Sc1: Y1-X 0 {0,1} 150 {0,1} × 150 135 150
B4:Sc2: Y1-X 0 {0,1} 150 {0,1} × 150 72 150
B4:Sc1: X-Y2 1 0 150 150 180 180
B4:Sc2: X-Y2 1 0 150 150 90 150
B4:Sc1: Y2-X 1 0 150 150 130 150
B4:Sc2: Y2-X 1 0 150 150 117 150

Table 5.2: Demand-spill constraint.

The allocation of bk,i,s to non-existence flight legs can have a deceptive interpreta-

tion where the ZV P value appears to be much higher than the ZRP and ZAP values.

Thus, when subjecting ZTP to the stochastic measures, we expect the superiority of

the here-and-now model (Zhn) and wait-and-see model (Zws) to be much higher than

the expected-value model (Zev). Consequently, it would only make sense when the

tests are also applied to ZRP and ZAP values. Theoretically, stochastic measures are

only applied to the overall objective function (ZTP ) since, in our case, the expected

value model (Zev) would have the same value for ZTP , ZRP and even ZV P . However

as we are more concerned with EVPI and VSS values, where Zev does not play a

direct role in establishing the inter-bound relationship (i.e. Zws 6 Zhn 6 Zeev),

its reporting only serves as a benchmark and the extension of the stochastic measures
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to ZRP and ZAP becomes a valid assumption. Since the model logic seeks to trade-off

the ZRP with ZV P value, the optimizer will always try and set the value of bk,i,s to

1. Consequently, while the inter-bound relationship will always hold for ZRP , it will

do so at the expense of ZV P value (i.e. it will never hold for ZV P value). As the

allocation of bk,i,s happens only to virtual flights that have not been assigned to fk,i,

it does not pose any implementation impediment from the scheduling point of view.

The ZV P paradigm will still not stop airline enthusiast from questioning the main

motive behind such an assumption, does the false profit not jeopardize the airline

business? In response, we make crystal clear that the ZV P drives the fleeting decisions

(our primary concern) and if ZRP is measured distinctly, the monetary benefit will

become more apparent. As a simple illustration, assume on solving the SP-FAM, the

following values are obtained:

• ZAP = £4 million

• ZRP = £3 million (where CU1 or CU2= £1 million)

• ZV P = £17 million

• ZTP = £20 million

The ZAP (£4 million) and ZRP (£3 million) values represent the standard mea-

sures that can easily be tracked in the financial books of accounting. However, the

ZV P (£17 million) value cannot be trailed and purely serve as a driver to the fleeting

decision (i.e. fk,i). If the ZV P value did not exist or gets eliminated, constraint 5.3.5

(or 5.3.11) will become redundant, and consequently, the SP-FAM will be reduced

to DFAM but with average passenger demand (i.e. the Expected Value model, Zev).

Further, the standby aircraft that was originally in the SP-FAM will still remain in-

tact in the reduced DFAM. Ideally the standby aircraft should not be included when

solving the DFAM, since in a deterministic environment, we assume that the schedule

will be flown as planned. In this case, the original ZRP value (£3 million) will be

different from both the reduced DFAM and DFAM solved without the standby. The

3 million value will only be identical to the reduced DFAM if the resultant fleeting

decisions (i.e. fk,i) remains intact. But this is rare for a large network, as the ZV P

(£17 million) value plays a significant role in determining the resultant fleeting deci-

sions for the SP-FAM. The backbone of our research is to account for the uncertain

demand, but the DFAM does not only integrate the uncertain demand but will be
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proved (in Chapter 8 ) to be relatively inferior to the SP-FAM.

In many optimization problems, we either include high penalty cost to restrict

certain variables or introduce dummy variables to satisfy certain conditions. If such

a practice is universally accepted within the optimization world, there is little room

for doubting the ZV P concept. In the context of schedule robustness and as discussed

in section 2.4, a more realistic analogue is given by Love et al. (2002). To tackle

the disruptive situation, three strategies were deployed, that is, delaying a flight,

cancelling a flight or swap a scheduled aircraft with a standby. In modelling the

objective function, just like in the case of our SP-FAM, both the real and the virtual

cost (profit) were minimized.

5.4.5 Aircraft Utilization Constraint

The idea of the cost function CU1 and constraint 5.3.6 for the SP-FAM1 is to incur a

utilization cost whenever utilization falls below the MNk value (i.e. incur penalty, wk,

when there is under-utilization, rpk). However, in our recourse argument we wish to

incur the utilization cost (wk) whenever there is a standby aircraft swap, irrespective

of under-utilization or expected-utilization (acceptable-utilization). This implies that

if the original scheduled aircraft was initially utilized as expected (in which case

wk=0) and later on there was a standby aircraft swap, there is no guarantee that the

utilization would fall below the MNk value to attract the penalty. In other words, the

the cost would only be incurred if the swapped aircraft was initially under-utilized

(or had a utilization value below MNk).

Constraint 5.3.12 and the utilization cost (i.e. CU2) that corresponds to SP-

FAM2 tries to overcome the inherent limitation. The constraint has MXk as opposed

to MNk value and the utilization cost will be incurred whenever there is a standby

aircraft swap. Although the two approaches (i.e. SP-FAM1 and SP-FAM2) might

yield different fleet assignment decisions, it is expected that one will out-perform the

other. In deducing the superiority of one over the other, the ZAP value will be an

important measuring criteria.

As an illustration, assume we now have a fleet size of six denoted by A1, A2,

three A3s and B4; where B4 is a standby. Five aircraft are to be assigned to five

routes X-Y1-X, X-Y2-X, X-Y3-X, X-Y4-X and X-Y5-X. Table 5.3 is in reference to
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SP-FAM1 while Table 5.4 corresponds to SP-FAM2. After the optimization process,

and for simplicity, suppose the same fleet assignment decisions took place for both

approaches (indicated by column (a)). Column (b) indicates the flight leg block-time;

(c) the average minimum threshold value for SP-FAM1 and the average maximum

threshold value for SP-FAM2. Column (d) gives the constraint computation denoted

by variable rpk and rk for each approach.

(a) fk,i (b) Bk,i (c) MNk (d) rpk (e) wk, UK £ (f) rpk × wk, UK £

fA1,X−Y 5 = 1 2
fA1,Y 5−X = 1 2 5 1 1000 1000

fA1,X−Y 2 = 1 4
fA1,Y 2−X = 1 4 7 0 2000 0

fA3,X−Y 3 = 1 6
fA3,Y 3−X = 1 6
fA3,X−Y 4 = 1 5
fA3,Y 4−X = 1 5 10 8 1500 12000

fB4,X−Y 1 = 1 4
fB4,Y 1−X = 1 4 8 0 0 0

Table 5.3: Constraint 5.3.6 and function CU1.

(a) fk,i (b) Bk,i (c) MXk (d) rk (e) wk, UK £ (f) rk × wk, UK £

fA1,X−Y 5 = 1 2
fA1,Y 5−X = 1 2 7 3 1000 3000

fA1,X−Y 2 = 1 4
fA1,Y 2−X = 1 4 9 1 2000 2000

fA3,X−Y 3 = 1 6
fA3,Y 3−X = 1 6
fA3,X−Y 4 = 1 5
fA3,Y 4−X = 1 5 12 14 1500 21000

fB4,X−Y 1 = 1 4
fB4,Y 1−X = 1 4 14 6 0 0

Table 5.4: Constraint 5.3.12 and function CU2.
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5.4.6 Aircraft Utilization Cost

If we further assume that the utilization variable has a corresponding utilization cost

as shown in column (e) of Table 5.3, the computation of the utilization cost function

CU1 and CU2 will then be computed as shown in column (f). Note that one of the

A3s is idle and incurring a high under-utilization cost, relatively to other aircraft. If

there was no standby aircraft swap, the resultant utilization cost would have been

much lower.

The aircraft utilization cost, as an input to the SP-FAM models, can be derived

in several ways. For instance, in the fleet planning process aircraft can be acquired

in different ways; from an outright cash flow, borrowing from a financial institution,

raising debt from capital market or on a lease basis. Acquisition through operating

lease method is the most commonly used. Under this method, the lessor (owner)

gives rights to the lessee (user), for a given period of time, to operate the lessor’s

equipment in exchange for an obligation to pay rent without transferring ownership

to the lessee. The monthly lease payment can be one way of determining the uti-

lization cost. Normally, and this applies to any mode of financing, a variable aircraft

ownership cost is allocated in the route direct operating costs. The allocation is done

by taking the aircraft monthly lease rent and apportioning it over the block hours.

As a strategy in deriving the utilization cost (wk), it is preferred to solve the

deterministic equivalent model first. The initial wk values could be set, for instance,

based on the average lease payment cascaded down on hourly (or minutes) rate.

Thereafter, the values are adjusted further based on the desired utilization balance

required for each aircraft type. The stabilized values could then be used in solving

the SP-FAM problem.

5.4.7 The Standby Aircraft Penalty Cost

The aircraft penalty cost is associated with the standby aircraft that is substituted for

an originally scheduled aircraft. Even in normal circumstances of assigning aircraft to

flights, the practice is to discourage certain possible swaps that interfere with smooth

planning. The swapping affects several processes including; aircraft maintenance

activity that needs to be rescheduled; revenue management that needs to account
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for passenger offload when the swapped aircraft has lower capacity (seats); and even

more important, we could have compatibility issues that go with the crew constraints.

For instance, it could happen that the standby aircraft is not ideal to operate a

particular affected flight or no crew are available to operate the aircraft. As such,

deriving the penalty cost when the potential standby aircraft are either the assigned

aircraft in circulation or non-assigned, is not difficult. Different airlines have different

conventions in calculating the penalty cost. One way would be to penalize whenever

there is a swap on a specific aircraft type (i.e. jk), but the most ideal is to penalize

the swaps based on aircraft block-time or aircraft type per flight leg (i.e. jk,i). This

way, a swap on a longer flight will incur more penalty than on a shorter flight.

5.5 Conclusion

The chapter proposed the SP-FAMs that effectively integrates the uncertain demand,

the core of the research. In our approach, the DFAM was extended by introducing

an artificial second-stage decision variable (bkis), standby aircraft, demand scenarios,

aircraft standby cost, scheduled aircraft idle cost and demand-spill constraint. For

the recourse condition, the first-stage decision variable (fk,i) corresponds to real profit

(ZRP ) while the second-stage decision variable (bkis) corresponds to the virtual profit

(ZV P ). For clarity, prototype examples are given to illustrate the models’ salient

features.



Chapter 6

Scenario Generator

Stochastic demand remains a major challenge in the quest to produce optimal sched-

ules. In the context of integrating the FAM with uncertain demand, there have been

few attempts to come up with a realistic model that generates realistic scenarios.

Such models tend to be simplistic with the use of descriptive statistics and apply-

ing an average of the demand scenarios in solving the FAM. As such, the models

have not only been unpopular but enjoyed less industrial application. The problem

is attacked through a sophisticated network-simulation model (also called network-

planning model). Conceptually, network-simulation models refer to a collection of

models that are used to determine how many passengers want to fly, what flight or

sequence of flights they choose, and the profitability of transporting passengers on

their chosen flights. The network-simulation model gives a snapshot of one week

that is representative of any other week of the scheduling season. In this chapter,

the previous attempts are reviewed, the description of the network-simulation model

process is briefly illustrated and extended by having each week accounted for inde-

pendently. This is done through an integration of a time-series demand generator to

the network-simulation model. This approach establishes a forecasting process that

can be used as a scenario generator when solving the FAM formulated as a two-stage

SP with recourse.

6.1 Integrating Scenario Generator and SP Model

A mathematical programming problem in which some of the data are unknown, that

is, they are subject to uncertainty, random influences, or statistical variations is

called an SP problem. SP provides a general framework to model path dependence

of the stochastic process within an optimization model. Furthermore, it permits

innumerable states and actions, together with constraints, time-lags, etc. Unlike

dynamic programming, SP separates the model formulation activity from the solution

74
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algorithm. One advantage of this separation is that it is not necessary for the SP

models to obey the same mathematical assumptions. This leads to a rich class of

models for which a variety of algorithms can be developed. SP formulations, however,

can lead to very large-scale problems. This requires the development of efficient

solution methods in order to process progressively larger models (Poojari et al., 2007).

When SP is used for tackling any problem, models of optimum allocation and of

randomness are solved. Whereas the optimum decision model constitutes the core

of the problem, the randomness model determines the distribution of the stochastic

parameters with underlying probability distribution for different scenarios. Hence,

the first component of SP is essential for the realistic representation of the problem

and the second component leads to better quality decisions being taken. Thus, a

major issue in any application of SP is the representation of the underlying random

data process.

6.1.1 Scenario Trees

The major challenge in an SP problem is modelling data to correspond to the alge-

braic structure of the model; in essence, the two are inter related. The advantage of

this relationship is that the modeler is able to analyze the data and solution values

using the same structure. Two-stage SP with recourse is nothing more than a large

linear program where realization of random parameters are included explicitly. Let

ξ represent the vector of all random parameters in a model. The probability of each

realization is defined as: pk=P(ξk) for k=1,...,K where pk ≥ 0 and
∑

k pk=1.

For multi-stage SP one assumes that the random vector ξ follows a stochastic

process ξt over the planning horizon. If the process is assumed to be discrete, with

probability, P(ξt), the uncertainty can be represented through a multilevel event tree

which defines the possible sequence of realizations also known as data paths. In

general these are called scenarios, over the whole planning horizon (see Figure 6.1).

The random data that represent the uncertainty is called the scenario tree and

encapsulates the first and the second stage phases. A root node represents the first

stage and extends linearly until the end of the stage time period. At the second

stage, the tree branches into nodes at level t=k+1 as shown in Figure 6.2. From
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ζ1

ζ2

ζ3

ζ4

Figure 6.1: Multi-stage tree.

each of these nodes discrete flat scenarios commence with nodes at each time period,

an optimum decision has to be taken until level t=T. This means that the scenario

tree is effectively a fan of individual scenarios ωs = ω1,s,...., ωT,s which occur with

probabilities ps=P(ωk,s) ∀ s.

First Stage Second Stage

t=1              t=2                 t=k                   t=k+1 t=k+2         t=k+3       t=k+4                            t=T

ω=1

ω=2

ω=3

ω=4

ω=k-1

ω=k

Figure 6.2: Scenario tree for two-stage SP.

6.1.2 Scenario Generation

As outlined above, the data for a stochastic optimization model is provided in the

form of scenario trees that are created using scenario generation methods which may

be very specific to the domain of application. The major challenge is the creation of

a close to ideal tree-structure that approximates the underlying distribution of the

random parameters. Some defined criteria include a model that explains the behavior

of the random parameters and the corresponding estimation of those parameters.
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Another criteria includes discretization of the distributions using statistical properties

and sampling of the scenarios. Table 6.1 shows the most common techniques that

have been used to develop scenario generators (Domenica et al., 2007) using some of

the mentioned criteria. For our scenario-generator, we use one of these technique (i.e.

time series analysis).

6.1.3 Measure of Quality of a Scenario Tree

Scenario generation methods differ in their ability to model randomness. Kaut and

Wallace (2007) discussed how to assess the quality of scenario generation and argue

that it should be performance based rather than based on theoretical properties. They

outlined two minimal requirements a scenario-generation method must satisfy. Since

most of the methods involve some randomness, the first requirement is stability : if

we generate several trees (with the same input) and solve the optimization problem

with these trees, we should get the same optimal value of the objective function.

The other requirement is that the scenario tree should not introduce any bias,

compared to the true solution. In testing for bias, we wish to determine if the scenario

generation method itself introduces any bias producing the optimal solution. This

can be theoretically achieved by comparing the optimal solution of the SP model to

the optimal solution obtained from the true statistical process. Practically this is

not applied as solving the theoretically optimal solution would imply the SP model

is redundant.

6.2 Scenario Generation for FAM

The uncertainty of demand for a future flight departure can be represented with a

probability distribution (density) of expected demand. Historically, a Gaussian (Nor-

mal) distribution of demand has been assumed, with a mean and standard deviation

that depend on the market being studied. Based on many empirical studies of actual

airline data (Belobaba, 2006), the standard deviation of total demand for a flight

relative to the mean demand is typically between 0.20 and 0.40.

In the work done by (Lister and Dekker, 2002), selection of demand realization

and their mutual combination for the scenario generator was done using a descriptive
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Purpose Methods

Generation of data Econometric Models and Time Series
trajectories ∗ Autoregressive Models: AR(p)

∗ Moving Average Models: MA(q)
∗ Autoregressive MA Models: ARMA(p,q)
∗ Generalized Autoregressive Conditional
Heteroscedasticity: GARCH(p,q)
∗ Vector Auto Regressive Models: VAR
∗ Bayesian VAR
∗ Reduced Rank Regression

Diffusion Process
∗ Wiener Processes (Brownian Motion)
∗ Generalized Wiener Process

Other Methods
∗ Neural Networks

Discretization Statistical Approximation
∗ Property Matching
∗ Moment Matching
∗ Non-parametric methods

Sampling
∗ Random sampling
∗ Stratified sampling
∗ Bootstrapping

Tree construction and Conditional Optimal discretization
Sampling ∗ Optimal Discretisation

∗ Barycentric Approximation
∗ Sequential Clustering

Reduction ∗ Scenario Reduction

Internal Sampling ∗ Stochastic Decomposition
∗ Stochastic Quasi-gradient
∗ EVPI-based Importance Sampling

Table 6.1: Techniques used in scenario generation
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sampling method. For illustrative purpose, they assumed one payload class is avail-

able in each aircraft type. The demand for seats on each flight leg i = 1, 2,....,N is

assumed to follow a normal distribution, di N(µi;σi), with probability distribution

function, Fi (the demands are assumed to be independent). They specified the num-

ber of scenarios (S) to be generated with values, di[1], di[2],..., di[S] sampled from

distribution i and equally quartile spaced;

di[j] = F−1
i (

j − 0.5

S
), j = 1, 2, ..., S; i = 1, 2, ..., N (6.2.1)

In this way more sample values were generated from a range of higher distribution

density and less values from low density regions. Since the inverse of the distribution

function Fi is not available analytically, they used accurate numerical approximations

generated with the Newton-Raphson method. Subsequently, a random permutation

of the values di[j]; j = 1, 2,....,S, was generated for each i = 1, 2,....,N. Then each of

the scenario representative vectors, (d1[j], d2[j], ...., dN [j]), j = 1, 2,.....,S was assigned

a probability, 1
S

. Thus the sample variability by a random combination of the S values

of each distribution was maintained with each other.

Another scenario generator approach presented was a Design and Analysis of Com-

puter Experiment (DACE) (Pilla et al., 2005). Typically, the computer experiment

is a simulation model; however, in this case, it was an optimization model that was

constructed based on knowledge of how the system operated. Design of Experiments

(DoE) was then used to select a set of sample points as input to the optimization

model, which then provided the corresponding responses with a fitting of a statistical

model into the data.

6.3 Calibration Process and Network-Simulation Model

The simulated-network tool imitates a real-life operating environment with compet-

itive forces where planners forecast profitability under different scheduling scenarios

such as entry into a new market, code-share with a potential partner, change in flight

timing, hub restructuring, budgeting for the airline, etc.

A vigorous calibration process, that is done outside the simulated-network model,

generates connection-builder (CB) parameters, beta-parameters for market share
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model (MSM), market size estimates and cluster structures for both CB and MSM

which then become part of the input to the simulated-network model. Figure 6.3,

depicts a typical relationship between the two.
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Figure 6.3: Calibration process and network-simulation model.

The calibration process has four major stages, that of market clustering, market

demand estimation, generation of beta-parameters for both the CB and MSM. The

main distinction between the CB and MSM for the calibration model to that of the

network-simulation model is that the latter takes inputs from the former to generate

itineraries for the CB and passenger forecast for the MSM. The major processes can

be summarized as follows:

Input data and clustering : The input data that goes into the calibration tool

includes OAG, global passenger data, coupon uplift, airport statistics, among other.

Once the data has been input, initial data processing takes place followed by quality

checks, market definition and connection reduction. A clustering process follows suits

where group definition of Origin-Destination is defined with respect to station, city,

country, sub-region and region.

Connection Builder : The CB calibration sets parameter values from MIDT by

creating relevant itineraries (sequence of flights) from OAG data (schedule). In so

doing, realistic connections linking airports are created. Although different airlines
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use different logic to generate the itineraries, the underlying algorithms are similar.

Some of these algorithms include the service type, distance-dependent circuit, elapsed

time, and traffic restrictions.

Market demand estimation: The seasonal MIDT data is mapped on a weekly basis

using ticketing (coupon uplift) and airport statistics data. Ratios deduced through

matching ticketing and airport data to MIDT scales the MIDT with the appropriate

correction factors. A weekly average is then computed and a proportion based on

either weighted mean by distance or passenger number is applied to the segment

scaled MIDT data to derive the O-D levels.

Market share model : The MSM estimates the probability of a traveller selecting

a specific itinerary (or path i.e., a sequence of flight segments a passenger can use

to make a continuous trip from an origin to a destination) connecting an airport.

The earliest market share model employed a demand allocation methodology referred

to as Quality of Service Index (QSI). The QSI model assigns points (weights) to

path (itinerary) based on its attributes. The Multinomial Logit Model (MNL) is the

refinement of the QSI model and uses multiplicative weighting.

The spill and recapture model : Spill refers to passenger demand in excess of air-

craft capacity. The spill model has extensively been elaborated (Swan, 1999) and

further enhanced (Swan, 2001) into what is known as the revised spill model. The re-

lationship between spill and recapture has been elaborated (Barnhart et al., 2002) on

the Passenger Mix Model. Since demand for certain flights may exceed the available

capacity, spill and recapture models are used to reallocate passengers from full flights

to flights that have not exceeded capacity.

Profitability model : Finally, revenue and cost allocation models are used to deter-

mine the profitability of an entire schedule (or a specific flight).

6.4 The Scenario Generator

Calibration is done for a previous period (the world as it was). Thereafter, schedule

and market sizes are adjusted to reflect the current and future period. The schedule

adjustment is relatively straight-forward as this entails updating OAG schedule and

the airline’s own schedule. However, the market size adjustment is subjective since

the calibrated week represents an ideal week for a whole planning horizon. One way of
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refining the market adjustment is to forecast by applying IATA published continental

growth factors (IATA, 2007), however, this breeds subjectivity as the factors neither

reflect O-Ds growth rates nor capture seasonal fluctuations. Our aim is to determine

close to actual demand forecast for each schedule week. The tactical FAM requires a

representative demand for a typical week while SP-FAM requires demand for all the

weeks in the scheduling season; by forecasting demand for every week and applying

equal probability, it represents the underlying concept of our scenario generator.

6.4.1 Holt-Winter’s Additive Time Series Model

To achieve this objective, the first step is to derive a weekly Time Series Model (TSM)

from historical MIDT, with data spanning a period no less than three years. In partic-

ular, develop a trend equation and seasonal index. Using the trend equation, forecast

the market sizes and determine the annual growth rates. Using the calibrated market

sizes, apply the deduced growth factors and seasonal index to predict market sizes

for each particular week. Finally map the planned schedule with the corresponding

forecast market sizes to the network-simulation model to predict the demand for each

week. The TSM was coded in SAS and executed stepwise as shown at Figure 6.4.

Compute the seasonal
indices and apply to data to
find deseasonalized value

Develop the secular trend
line by applying the least
square method

Find the cyclical variation
around the trend line using
the percent of the trend

Attempt to identify and
isolate the cause of any
irregular variation

Use TSM to see what
pattern of change take 
place over time on MIDT

START

Seasonalize this estimate by
the seasonal index and 
derive annual growth rate

Apply annual growth rates
and seasonality indices to
the weekly calibrated market
size to generate different 
weekly forecast

STOP

Compute the deseasonalized
value of the future period by
using the secular trend eq.

Match market size and
planned schedule for each
week and apply them to the
network-simulated model to
derive demand forecast for 
each week

Figure 6.4: TSM flow chart.
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As an illustration and for simplicity, suppose the MIDT data for an O-D (given in

quarters as opposed to weeks) is as shown on Table 6.2. The objective is to determine

the annual growth rate for 2008.

YEAR Quarter 1 Quarter 2 Quarter 3 Quarter 4 Total

2003 160 210 90 180 640
2004 150 200 100 180 630
2005 170 240 130 220 760
2006 170 250 110 210 740
2007 180 260 140 250 830

Table 6.2: Marketing Information Data Tape

The first step is to compute the seasonal indices by deseasonalizing the time series

on a quarterly basis, as shown in Table 6.3 and then compute the quarterly values,

as shown in Table 6.4.

YEAR Quarter Code Pax 4-Quarter MT MA Centered MA % MA

2003 1 1 160 - - - -
2003 2 2 210 - - - -
2003 3 3 90 640 160.0 158.25 56.7
2003 4 4 180 630 157.5 156.25 115.2
2004 1 5 150 620 155.0 156.25 96.0
2004 2 6 200 630 157.5 157.50 127.0
2004 3 7 100 630 157.5 160.00 62.5
2004 4 8 180 650 162.5 167.50 107.5
2005 1 9 170 690 172.5 176.25 96.5
2005 2 10 240 720 180.0 185.00 129.7
2005 3 11 130 760 190.0 190.00 68.4
2005 4 12 220 760 190.0 191.25 115.0
2006 1 13 170 770 192.5 190.00 89.5
2006 2 14 250 750 187.5 186.25 134.2
2006 3 15 110 740 185.0 186.25 59.1
2006 4 16 210 750 187.5 188.75 111.3
2007 1 17 180 760 190.0 193.75 92.9
2007 2 18 260 790 197.5 202.50 128.4
2007 3 19 140 830 207.5 - -
2007 4 20 250 - - - -

Table 6.3: Computation of seasonal index

Note that in Table 6.3, the quarters are coded for unique identification. We then
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add up the four-quarter moving total (4-Quarter MT) before computing the moving

average (MA) and the Centered MA. The MA ratio (percent) is obtained by dividing

Pax with Centered MA. The computation of seasonal index average in Table 6.4 is

done by eliminating the highest and the lowest values from each quarter and thus

reducing the extreme cyclical and irregular variations.

YEAR Quarter 1 Quarter 2 Quarter 3 Quarter 4

2003 - - 56.7 115.2
2004 96.0 127.0 62.5 107.5
2005 96.5 129.7 68.4 115.0
2006 89.5 134.2 59.1 111.3
2007 92.9 128.4 - -

Total 188.9 258.1 121.6 226.3

Mean 94.45 129.05 60.80 113.15

Index 95.1 129.9 61.2 113.9

Table 6.4: Seasonal index

where,

Sum of mean = 94.45 + 129.05 + 60.80 + 113.15 = 397.45

Adjusting factor = 400 / 397.45 = 1.0064

Index = Mean * Adjusting factor

Thereafter, develop a trend line by applying the least squares method to the

deseasonalized time series as shown on Table 6.5; where,

a = Ȳ = (
n∑
i

Yi/n) = (3609/20) = 180 (6.4.1)

b = (
n∑
i

xiYi/
n∑
i

x2
i ) = (4205/2660) = 1.6 (6.4.2)

Ŷ = a + bx = 180 + 1.6x (6.4.3)

To forecast the OD for 2008 Quarter 1, use the trend-line equation and then

multiply the value with the index deduced on Table 6.4.
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YEAR Quarters Code Pax SI Yi TV xi xiYi x2
i

2003 1 1 160 0.951 168 -9.5 -19 -3192 361
2003 2 2 210 1.299 162 -8.5 -17 -2754 289
2003 3 3 90 0.612 147 -7.5 -15 -2205 225
2003 4 4 180 1.139 158 -6.5 -13 -2054 169
2004 1 5 150 0.951 158 -5.5 -11 -1738 121
2004 2 6 200 1.299 154 -4.5 -9 -1386 81
2004 3 7 100 0.612 163 -3.5 -7 -1141 49
2004 4 8 180 1.139 158 -2.5 -5 -790 25
2005 1 9 170 0.951 179 -1.5 -3 -537 9
2005 2 10 240 1.299 185 -0.5 -1 -185 1
2005 3 11 130 0.612 212 0.5 1 212 1
2005 4 12 220 1.139 193 1.5 3 579 9
2006 1 13 170 0.951 179 2.5 5 895 25
2006 2 14 250 1.299 192 3.5 7 1344 49
2006 3 15 110 0.612 180 4.5 9 1620 81
2006 4 16 210 1.139 184 5.5 11 2024 121
2007 1 17 180 0.951 189 6.5 13 2457 169
2007 2 18 260 1.299 200 7.5 15 3000 225
2007 3 19 140 0.612 229 8.5 17 3893 289
2007 4 20 250 1.139 219 9.5 19 4161 361

3609 4205 2660

Table 6.5: Identifying the trend component.

Ŷ10 = (180 + 1.6(21)) × 0.951 = 203 passengers

Ŷ11 = (180 + 1.6(22)) × 1.299 = 279 passengers

Ŷ12 = (180 + 1.6(23)) × 0.612 = 133 passengers

Ŷ13 = (180 + 1.6(24)) × 1.139 = 249 passengers

Total passengers = 203 + 279 + 133 + 249 = 882 passengers

Since the year 2007 had a total of 830 passengers, the annual growth rate is 6.3%

(i.e., (882-830)/830).

Later apply the deduced growth rate and seasonal index to the calibrated market

size before inputting to the network-simulation model. As an example, suppose the

calibrated market size for 2007 is 185 (this represents the reality based on corrected

MIDT, YC ). The forecast for 2008 will now be:-
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ˆY C1 = 185 × 1.06 × 0.951 = 186 passengers

ˆY C2 = 185 × 1.06 × 1.299 = 254 passengers

ˆY C3 = 185 × 1.06 × 0.612 = 120 passengers

ˆY C4 = 185 × 1.06 × 1.139 = 223 passengers

6.4.2 Scenario Generator Assumptions

Since we could not obtain historical MIDT, we resorted to using the airline’s own

passenger uplift data (also referred as coupon data), to deduce the Seasonality Indices

(SI). The superiority of MIDT over coupon data is that the former has competitors

information while the latter does not. However, during the calibration process, we

have striven to match the bookings based MIDT data to the coupon data, the use

of coupon data will have an indicative market seasonality, at least for the markets in

which the airline has a strong presence.
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Figure 6.5: Overview of the solution approach.

Prior to the execution of the TSM, we removed inconsistencies within data by elim-

inating Origin-Destination (O-D) pairs that had many observations missing. Where

few observations were missing, we used a mean of the period within the series in which
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the observation is missing (for other approaches of tackling missing observations refer

to Fung (2006)). We constructed a TSM model on three levels, at O-Ds, regional and

global level. Further, instead of using the trend equation to forecast the market sizes

and determine the annual Growth Indices (GI), we resorted to using IATA (2007)

published growth rates; also available on three levels i.e. city, sub-region and regional

level.

We later applied the deduced SI and GI to the Calibrated Market (CM) sizes to

generate the Forecasted Market (FM) size for each particular week using the fall-back

principle. When applying the SI on a fall-back principle, in the first instance, we

used the index at an O-D level, and if a particular O-D was missing on the coupon,

we use the regional index, and if still missing, we used the global index. Figure 6.5

depicts the integration between the TSM, network-simulation model and the SP-FAM

that explains the solution approach for our robust FAM. The tables on the next page

illustrates the fall-back principle methodology. Part A shows the SI generated for a

particular week, on three levels for two regions (that is, Gulf-Africa and Gulf-Europe).

To map the the SI (GI) from Part A (Part C ) to the CM sizes (Part B) we adopt

the following algorithm:

Mapping 1 (Mapping 2): Part A (Part C ) to Part B

begin ;

if O-D (Country) in Part B is in Part A (Part C ) then SI (GI):= Level 1;

else if O-D (Country) in Part B is not in Part A (Part C ) then SI (GI):= Level 2;

else SI (GI):= Level 3;

end ;

The forecasted market size represents a particular week in the subsequent year

of the calibration period. Finally, we mapped the planned schedule with the cor-

responding forecasted market sizes to the network-simulation model to predict the

unconstrained (not constrained or limited to aircraft capacity) demand for each week.

Once the unconstrained demand has been realized, we apply ±0.5-5% variation to

depict twenty additional demand scenarios for that week. That is, if the demand for
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1.06Gulf – WorldLevel 3

1.06Gulf – EuropeLevel 2

1.15EuropeDOH-CDGGulf

0.95EuropeDXB-FRAGulf

1.08EuropeDXB-LHRGulfLevel 1

1.07Gulf - AfricaLevel 2

1.20AfricaDXB-EBBGulf

0.95AfricaDXB-DARGulf

1.05AfricaDXB-NBOGulfLevel 1

SID_RegionO-DO_RegionFallback

1.19Gulf – WorldLevel 3

1.15Gulf – EuropeLevel 2

1.07FranceDOH-CDGQatar

1.20GermanyDXB-FRAQatar

1.18UKDXB-LHRQatarLevel 1

1.22Gulf – AfricaLevel 2

1.35UgandaDXB-EBBQatar

1.06TanzaniaDXB-DARQatar

1.25KenyaDXB-NBOQatarLevel 1

GID_CountryO-DO_CountryFallback
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1514AustraliaDOH-MELGulf

3420EuropeDXB-FRAGulf

3186EuropeDXB-LHRGulf

810AfricaDXB-EBBGulf

755AfricaDXB-DARGulf

1313AfricaDXB-NBOGulf

FM SizeD_RegionO-DO_Region

Coupon Data: Part A

Calibrated Market Size: Part B

IATA Growth Rates: Part C

Mapping 1

Mapping 2

week 30 is 400 passengers, the following scenarios will be generated:

380 382 384 386 388 390 392 394 396 398 402 404 406 408 410 412 414 416 418 420

6.5 Conclusion

It must be emphasized that an airline’s network planning is not only complex but highly

volatile and the need for sophisticated network-simulation model is inevitable. In this

chapter, we have briefly described the interface between the calibration process and network-

simulation model. The heart of airline planning is to come up with a forecast that is
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close to actual passenger demand. Forecasting becomes even more complex when we have

uncertainties surrounding the SP-FAM problem; specifically, tactical demand scenarios are

required for the scheduling season under consideration. The previous two SP-FAM scenario

generation attempts have not enjoyed application because of the simplistic nature of the

underlying methodology. Generating scenarios by use of state-of-the-art network-simulation

model gives an alternate way of a scenario-generator for the SP-FAM problem.

The ideal way of generating the scenarios would have been calibrating one week of MIDT

instead of averaging several weeks and later deducing weekly demand based on seasonality

indices. However, using the current process this is a highly involved and time-consuming

process not to mention limitations in computing processing power and memory size that

would be required to handle such-large volume of data. The calibration process also relies

heavily on personal experience during the fine-tuning phase that cannot be readily substi-

tuted by a model; as such, calibration of more than one week will be even more demanding

of a calibrator’s time. Future research will dwell on substituting personal experience with a

robust model, multiple calibration of weekly demand and even more important, calibrating

the future as opposed to historical data. In this way, there would be no need to apply

growth factors or further interfere with the calibrated data.



Chapter 7

SP-FAM Solution Process

In solving the SP-FAM problem, we follow a series of steps as described in Figure 7.1. We

first extract a built up one-week rotated schedule from a scheduling tool in ssim format.

The prescribed IATA ssim format (standard schedules information manual) is unreadable to

both SAS and AMPL environments. In the second step, we use a special schedule converter

(SchedConv) developed by Lufthansa Systems that converts the ssim format into a user-

friendly text format, known as the sked format. Next, we perform three preprocessing steps

to the resultant schedule before simultaneously inputting the outputs of the preprocessing

steps, the scenario generator and others into a SAS-AMPL converter. The SAS-AMPL

converter prepares all the data into readable AMPL format. Finally we execute the opti-

mizer using FortMP solver (integrated in AMPL) that invokes branch-and-bound algorithm

automatically. After the optimization process, we convert back the resultant schedule into

sked format initially, and ssim format subsequently.

Scheduling Tool
Schedule 
Converter

SAS-AMPL
Converter

Optimization

FortMP

Branch &
Bound

AMPLssim

sked

Scenario
Generator

Preprocessing
• Aggregation
• Homogeneity
• Possible swaps

FAM Inputs
- Cost
- Fare
- Fleet

AMPL 
format

demand scenarios

1

2 3

4

5

6

7

8

3

sked

Figure 7.1: SP-FAM solution approach.

Schedule Aggregation

As explained in section 3.3 ; the sheer size of the problem and the required computational

90
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time necessitates an aggregation step that makes the representation more compact. The

schedule aggregation step can be explained in a simple conventional way as illustrated in

Figure 7.2. The diagram shows typical scheduled flights that operate between two stations

(DOH and LHR) for a given week. Part A shows the representation of the unique flights for

each of the operating days before an aggregation step; while part B shows the same flights

after the aggregation step. Note that all the flights have identical departure and arrival

times with similar aircraft type.

Part BPart A

B7723701275…..6.2LHR DOH
B7723701275….5..2LHR DOH
B7723701275…4…2LHR DOH
B7723701275...3….2LHR DOH
B7723701275.2…..2LHR DOH
B77237012751……2LHR DOH
B7721075750……71DOH LHR
B7721075750…..6.1DOH LHR
B7721075750….5..1DOH LHR
B7721075750…4…1DOH LHR
B7721075750...3….1DOH LHR

B772370127512345672LHR DOHB7721075750.2…..1DOH LHR
B772107575012345671DOH LHRB77210757501……1DOH LHR

DepartDay

1275

Depart

……7

Day

2

FNo

After schedule aggregation

Orig Dest

B772

Aircraft

370

Arrive AircraftArriveFNo

Before schedule aggregation
LHR DOH

Orig Dest

Figure 7.2: Before and after schedule aggregation.

Homogeneity

Assume the input schedule before optimization is as shown in part A of Figure 7.2. Further

assume that four aircraft types can operate the given schedule, that are, A332, A333, B772

and B773. The resultant schedule after optimization is shown in part C of Figure 7.3.

Note that the optimized schedule and the corresponding assigned fleet may not be rational

for implementation. For example, we could incur heavy costs associated with crew-related

expenses and under-utilization. Consequently, by offering an inconsistent product in the

market, the airline’s competitive edge is significantly weakened.

To counter such an assignment, we can define a criteria such that only two aircraft

should operate the schedule with a balance mix of three and four rotations for each aircraft

type. Such a criteria could lead, for example, in an optimized fleet assignment decision as

shown in part D.
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Part DPart C

B7723701275…..6.2LHR DOHB7723701275…..6.2LHR DOH
A3323701275….5..2LHR DOHA3323701275….5..2LHR DOH
B7723701275…4…2LHR DOHA3333701275…4…2LHR DOH
A3323701275...3….2LHR DOHB7733701275...3….2LHR DOH
B7723701275.2…..2LHR DOHB7723701275.2…..2LHR DOH
A33237012751……2LHR DOHA33237012751……2LHR DOH
A3321075750……71DOH LHRB7731075750……71DOH LHR
B7721075750…..6.1DOH LHRB7721075750…..6.1DOH LHR
A3321075750….5..1DOH LHRA3321075750….5..1DOH LHR
B7721075750…4…1DOH LHRA3331075750…4…1DOH LHR
A3321075750...3….1DOH LHRB7731075750...3….1DOH LHR
B7721075750.2…..1DOH LHRB7721075750.2…..1DOH LHR
A33210757501……1DOH LHRA33210757501……1DOH LHR

1275

Depart

……7

Day

1275

Depart

……7

Day

2

FNo

After optimization and homogeneity
LHR DOH

Orig Dest

B773

Aircraft

370

Arrive

A332

Aircraft

370

Arrive

2

FNo

After optimization but before homogeneity
LHR DOH

Orig Dest

Figure 7.3: Before and after defining fleet homogeneity.

Possible Swaps

Determining the possible swaps, homogeneity and aggregation steps are executed concur-

rently. Part D of Figure 7.3 could be aggregated as shown in part F of Figure 7.4. However,

before the resultant aggregation, one has to enumerate all possible swap options as shown

in part E. This is particularly necessary during the optimization process where branch-and-

bound algorithm is invoked.

B7733701275.2.4.6.2LHR DOH

Part FPart E

A3333701275.2.4.6.2LHR DOH
A3323701275.2.4.6.2LHR DOH
B77337012751.3.5.72LHR DOH
B77237012751.3.5.72LHR DOH
A33337012751.3.5.72LHR DOH
A33237012751.3.5.72LHR DOH

B7721075750.2.4.6.1DOH LHR
A3331075750.2.4.6.1DOH LHR
A3321075750.2.4.6.1DOH LHR

B7723701275.2.4.6.2LHR DOHB77310757501.3.5.71DOH LHR
A33237012751.3.5.72LHR DOHB77210757501.3.5.71DOH LHR
B7721075750.2.4.6.1DOH LHRA33310757501.3.5.71DOH LHR

B7731075750.2.4.6.1DOH LHR

A33210757501.3.5.71DOH LHRA33210757501.3.5.71DOH LHR
DepartDay

1275

Depart

.2.4.6.

Day

2

FNo

Resultant optimized aggregated schedule

Orig Dest

B772

Aircraft

370

Arrive AircraftArriveFNo

Enumerated swaps

LHR DOH

Orig Dest

Figure 7.4: Aggregated swap enumeration.

SAS-AMPL Converter

In solving the SP-FAM problem, we model the problem using the algebraic modelling lan-

guage AMPL (Fourer et al., 2002). The AMPL choice is appealing for several reasons;
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first, it has been used successfully by large airlines (e.g. US Airways) in modelling the

FAM problem. AMPL has succinct structural features represented by sets, nodes, arcs,

scenarios, etc that offers flexibility in the representation and modelling of many mathe-

matical programming problems. AMPL has not only integrated the SP features that are

pertinent to the problem under consideration but also well integrated with many solvers

such as FortMP (OptiRisk, 2008a) and FortSP solver. While the former is designed to solve

a wide range of well known optimization problems (including SP), the latter is only de-

signed for solving SP problems. During the solution process, FortMP automatically selects

branch-and-bound as the most appropriate algorithm for the SP-FAM.

The SAS application is expensive but highly flexible and powerful for both modelling

and analysis. A necessary step before execution of the optimizer in the AMPL Shell is the

preparation of the input data. In essence, several conversion programs need to be created

that prepare the input files for the optimization process. Further, conversion programs also

need to be created that take the output of the optimization process and convert it into

an integrative format for the scheduling tool. Figure 7.5 shows the interactive shell-level

modelling environment of AMPL.

Figure 7.5: AMPL Shell.

Optimization

As noted above, in solving the SP-FAM problem with FortMP, branch-and-bound is au-

tomatically selected as the most appropriate solution algorithm. Branch-and-bound is a
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general search method algorithm for finding solutions of various optimization problems, es-

pecially in discrete and combinatorial optimization. It consists of a systematic enumeration

of candidate solutions, where large subsets of fruitless candidates are discarded en masse,

by using upper and lower estimated bounds of the quantity being optimized.

The branch-and-bound algorithm starts by considering the root problem, that is, the

original problem with the completely feasible region, and applying the lower-bounding and

upper-bounding procedures to the root problem. If the bounds match, then an optimal

solution has been found and the procedure terminates. Otherwise, the feasible region is

divided into two or more regions that become sub problems of the partitioned feasible

region.

The algorithm is applied recursively to the sub problems. If an optimal solution is

found to a sub problem, it is a feasible solution to the full problem, but not necessarily

globally optimal. If the lower bound for a node exceeds the best known feasible solution,

no globally optimal solution can exist in the subspace of the feasible region represented by

the node. Therefore, the node can be removed from consideration. The search proceeds

until all nodes have been solved or pruned, or until some specified threshold is met between

the best solution and the lower bounds for all unsolved sub problems. For a more intuitive

understanding, consider the following IP model:

Max z =
∑
j

cjxj (7.0.1)

subject to :
∑
j

aijxj 6 bi i = 1, ....m (7.0.2)

xj ≥ 0 and integer j = 1, ....n (7.0.3)

Step 0 : Initialization. Let the master list initially include only the original linear

program, and let the first iteration be denoted by t=1, and z1= -∞.

Step 1 : Branching. Stop if the master list is empty. Otherwise select a program from

the master list.

Step 2 : Relaxation. Solve the problem taken from the master list. If the problem has
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no feasible solution, or if its objective function value z is less than zt (this branch has

fathomed), let zt+1 = zt and go to Step 1. Otherwise go to Step 3.

Step 3 : If the solution to the solved LP satisfies the integer constraints, then store the

solution and let zt+1 equal the objective function value for the solution. Since this branch

has been fathomed, go to Step 1. If the integer condition is not satisfied, go to Step 4.

Step 4 : Separation. Select any variable xj whose value bj in the current solution does

not satisfy the integer requirement. Add two problems to the master list; these problems

are identical to the one just solved except that in one we add:

xj > [bj ]+1

and in the other we add:

xj 6 [bj ].

Let zt+1 = zt and go to Step 1.

The major limitation on our SP-FAM testing is the sole use of FortMP that invoked

branch-and-bound algorithm. For testing the model with SP algorithms discussed in section

4.6, we would have first needed to represent the problem in SMPS format that could be

acceptable to other solvers (see section 4.7). Unfortunately, the SMPS format has not

enjoyed universal acceptance because of difficulties with its rigidity and varying constructs.

In fact, to date, there is no optimization SP solver that will accept all the wide variation

SP problem sets. In our case, we encountered two difficulties; the lack of a typical example

of a test example that suits the SP-FAM problem and second, the real, live, problem has

thousands of variables and millions of constraints, the accurate representation of which is

not trivial. It is probable that SPInE (OptiRisk, 2008b) using the FortSP solver would have

offered a solution to the above; but during the research, SPInE was still evolving and had

not fully integrated into AMPL syntax.



Chapter 8

Case Study

In this chapter we give a proof of concept using real data from a Middle East airline. We

quantify the robustness of both the SP-FAM solutions and the scenario generator forecasts

through the stochastic measures and stability measures, respectively.

8.1 SP-FAM

We applied the methodology described in the previous sections to a real airline carrier

with a weekly schedule containing 79 stations, 1356 legs and five fleet types with a total

of 62 aircraft (40 wide-body and 22 narrow-body) including 5 standby (3 wide-body and 2

narrow-body). Due to sheer size of the problem, the solver would allow a maximum of 130

demand scenarios before reaching the iteration limit. The tests are thus conducted using

50, 100 and 125 number of demand scenarios. The following assumptions were made:

• The spill factor was taken as 10% of aircraft capacity.

• Passenger revenue effect and recapture were not considered in the model.

• The penalty cost (jk,i) of using the standby aircraft was taken as 2% of the aircraft

direct operating cost.

• The aircraft utilization cost (wk) was derived using the strategic methodology dis-

cussed in section 5.4.5.

• The MNk values for wide-body was taken as 17 hours per day while for narrow-body

14 hours per day.

• The MXk values for wide-body was taken as 21 hours per day while for narrow-body

19 hours per day.

96
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We consider the deterministic demand to be the weighted average (i.e. the expected

value) of the stochastic demand. The model so constructed using the deterministic demand

is called the Expected Value (EV) model and the corresponding objective is denoted as

Zev. Specifically, we solved the DFAMs with the weighted passenger demand and without

using the standby aircraft. In a deterministic environment, we assume that the schedule

will be flown with the planned aircraft and the need of a standby aircraft does not arise.

Conventionally, a deterministic solution can always be found from the recourse model (i.e.

Zhn where HN stand for here-and-now) by setting the number of scenarios to 1 and the

corresponding probability of the weighted passenger demand to 1. In this case, the approach

of solving the EV model will be identical to solving the wait-and-see (WS) model except

that we use an average of all the demand scenarios. But in our case, this approach is not

representative as we do not wish to have a standby aircraft with the corresponding penalty

cost value (jki) in the first place. If we set the standby aircraft values to zero, the SP-FAMs

will still give high EV values (mainly driven by bkis variable) for the virtual profit. But

even then, still this does not represent the deterministic equivalent as the virtual profits are

non-existent and cannot be tracked anywhere in the financial books of account.

Through the Zev and Zhn models we construct the Expectation of the Expected Value

solution (EEV) model by fixing the first stage (non-recourse decisions) in the HN model

to that of the EV model and solving for the remaining variables. The objective value so

obtained (denoted by Zeev) indicates the impact of implementing a deterministic solution

in a stochastic environment. VSS represents the additional gain obtained on modelling and

solving the stochastic model. When the VSS is small then the expected value deterministic

model is as good as the stochastic model and we can ignore the uncertainties. We also

process each of the scenario models individually; such models are known as wait-and-see

and the probability weighted objective for all the scenarios is denoted by Zws.

We modelled the problem using the algebraic modelling language AMPL (Fourer et al.,

2002), generated all the input data using SAS and solved with FortMP (OptiRisk, 2008a);
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where branch-and-bound is invoked automatically. All experiments are performed on Win-

dows 2000 having a dual processor of 3.4 GHz and 3.24 GB of RAM.

8.1.1 SP-FAM Statistics

Table 8.1 shows the computer runtime and statistics of the here-and-now model under

varying scenarios for both the SP-FAM1 and SP-FAM2 (using the same data source).

Scen. Runtime (Sec.) Binary Linear Variables Constraints

SP-FAM1 SP-FAM2 Variables SP-FAM1 SP-FAM2

50 166 160 1200 62237 62228 62370
100 655 568 1200 122335 122326 122370
125 948 881 1200 152385 152376 152370

Table 8.1: Here-and-now model statistics

The results at Table 8.1 indicate that for a given high computing processing power and

memory, solving such a large-scale problem is highly efficient.

8.1.2 SP-FAM Stochastic Measures

Table 8.2, 8.3 and 8.4 shows the objective values given in UK £ of the various SP models

for SP-FAM1 and SP-FAM2, respectively.

Scenarios Zev Zws Zhn Zeev EVPI VSS

SP − FAM1
50 2,102,768 19,572,735 19,569,195 ∞ 3,540 ∞
100 2,213,569 19,792,435 19,786,168 ∞ 6,266 ∞
125 2,308,793 19,960,050 19,951,351 ∞ 8,699 ∞

SP − FAM2
50 1,361,502 18,803,127 18,798,075 ∞ 5,051 ∞
100 1,471,918 19,023,220 19,015,363 ∞ 7,857 ∞
125 1,567,091 19,190,818 19,197,834 ∞ 7,016 ∞

Table 8.2: ZTP : Objective values and SP measures

Table 8.2 indicate that, for both SP-FAM1 and SP-FAM2, solving the here-and-now

model is much superior to the expected-value and expected of the expected-value models.
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Scenarios Zev Zws Zhn Zeev EVPI VSS

SP − FAM1
50 2,102,768 1,403,510 1,494,987 ∞ 91,477 ∞
100 2,213,569 1,478,657 1,544,635 ∞ 65,979 ∞
125 2,308,793 1,552,784 1,657,952 ∞ 105,169 ∞

SP − FAM2
50 1,361,502 645,897 744,796 ∞ 98,899 ∞
100 1,471,918 721,529 811,346 ∞ 89,817 ∞
125 1,567,091 795,084 948,529 ∞ 153,446 ∞

Table 8.3: ZRP : Objective values and SP measures

Scenarios Zev Zws Zhn Zeev EVPI VSS

SP − FAM1
50 2,640,867 1,931,366 2,028,001 ∞ 96,635 ∞
100 2,751,668 2,000,851 2,076,137 ∞ 75,285 ∞
125 2,846,893 2,067,012 2,187,949 ∞ 120,938 ∞

SP − FAM2
50 2,667,417 1,945,741 2,050,230 ∞ 104,488 ∞
100 2,777,833 2,015,565 2,115,268 ∞ 99,703 ∞
125 2,873,007 2,080,979 2,250,946 ∞ 169,967 ∞

Table 8.4: ZAP : Objective values and SP measures

Note that Zws and Zhn values are much higher than Zev, this is simply because of the

deceptive behaviour inherent by bk,i,s assignment (refer to section 5.4.4).

If we extend the measurement and apply to the Real Profit (ZRP ) i.e. a component

of the the Total Profit (ZTP ), we obtain Table 8.3. For our purpose, we consider the

Zev to be the same as shown in Table 8.2. Table 8.3 indicate that, for both SP-FAM1

and SP-FAM2, solving the here-and-now model outperforms the wait-and-see and expected

of the expected-value models. Further, we have the inter-bound relationship holding (i.e.

Zws 6 Zhn 6 Zeev).

If we further extend the measurement and apply to the Actual Profit (ZAP ), we obtain

Table 8.4. Table 8.4 portrays similar conclusions as in Table 8.3 but in addition, we have

SP-FAM2 outperforming SP-FAM1. The ZAP values depict the standard agreeable measure

that can easily be tracked in the financial books of accounting. A striking feature about the
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overall measurement is the EVPI values that appears significantly higher for ZRP and ZAP

compared to ZTP . While a higher EVPI means that more gain will be obtained in knowing

the future, in our context, it also emphasizes the fact that we cannot ignore the ZRP and

ZAP values.

Scenarios Zev Zws Zhn Zeev EVPI VSS

SP − FAM1
50 2,102,768 18,169,225 18,074,207 ∞ 95,018 ∞
100 2,213,569 18,313,778 18,241,533 ∞ 72,245 ∞
125 2,308,793 18,407,267 18,293,399 ∞ 113,868 ∞

SP − FAM2
50 1,361,502 18,157,230 18,053,279 ∞ 103,951 ∞
100 1,471,918 18,301,692 18,204,017 ∞ 97,675 ∞
125 1,567,091 18,395,735 18,249,305 ∞ 146,430 ∞

Table 8.5: ZV P : Objective values and SP measures

Finally, if we now subject the measurement to the Virtual Profit (ZV P ) and assume

that the Zev to be the same as shown in Table 8.2, we obtain Table 8.5. The results in

Table 8.5 portrays contradictory conclusions as that of ZRP and ZAP relationship, that is,

the inter-bound relationship (Zws 6 Zhn 6 Zeev) does not hold. This behaviour

depicts the trade-off logic of making the ZRP value obeying the inter-bound relationship at

the expense of the ZV P value.

8.2 Stability Measure

The stability requirement has two desirable aspects which need consideration, that is, the

in-sample and the out-of-sample measures. A scenario-generator is said to manifest in-

sample stability if, when generating several scenario sets of the same size (from the same

sample) and solving the optimization problem on each of these scenario sets, the optimal

objectives are similar. If the optimal solution does not change significantly for inputs taken

from outside the sample, we have out-of-sample stability.

The out-of-sample stability is the important one, since this says that the real perfor-

mance of the solution is stable, i.e. it does not depend on which scenario set we solved
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the optimization problem. In-sample stability does not imply the out-of-sample one or vice

versa. It is possible to have in-sample instability (of the objectives) but stability of the

solutions in this case, it is likely to have out-of-sample stability, since, in this case, all the

solutions are tested on the same scenario set. Given that SP-FAM2 outperforms SP-FAM1

in Table 8.4, we use SP-FAM2 to investigate the stability of the scenario-generator .

8.2.1 In-Sample Stability Measure

In our case study, we decided to use a tree with twenty scenarios and subsequently carried

out fifty simulation runs. The distribution of the objectives obtained by the simulation is

used to extract the following measures of stability.

Stability measured by Value

Min, in UK £ 18,011,783
Max, in UK £ 19,178,926
Range, in UK £ 1,167,143
Mean, in UK £ 18,563,886
Stdev, in UK £ 306,659
RMnD 1.65%

Table 8.6: In-sample stability.

• Min: Min represents the minimum objective value of all the simulation runs.

• Max : Max represents the maximum objective value of all the simulation runs.

• Range: The value Range is the difference between Max and Min and represents the

maximum spread between all the runs.

• Mean: Represents the average of all the objective values.

• Stdev : Stdev is the standard deviation of all the objective values.

• RMnD : Represents the relative mean deviation and is expressed by the fraction be-

tween the Stdev and the Mean (i.e. RMnD = Stdev
Mean).
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When plotting the distribution of the objectives functions (as shown in Figure 8.1), a

flat curve is obtained. We also observe that the value given by the RMnD in Table 8.6 is

less than 2%, therefore can assume that the scenario generation method used in this study

is stable. Use of a tree with a larger number of demand scenarios in the simulation runs,

will provide more reliable values of stability measures with a smaller error interval.
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Figure 8.1: In-sample stability.

8.2.2 Out-of-Sample Stability Measure

The out-of-sample stability is concerned with the robustness of the optimal decisions ob-

tained by solving an SP problem with a given scenario generation method. In this case, a

very large scenario tree, generated with a different method, is used as the real stochastic

process, and the performance of the optimal solutions is computed in relation to this tree.

In other words, the scenario generation method is compared in absolute terms with what is

supposed to be the real stochastic process (this in reality can never be done, so the large

tree is used as a substitution of the real process). More formally:

Let ξ1...ξn be n sets of scenario trees and let the optimum decisions obtained by solving
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Figure 8.2: Out-of-sample stability.

the problem be represented by x∗1...x∗n. Let also ξ̄ be a large scenario tree which is assumed

to be the best available approximation of the real stochastic process. The objective function

values obtained by evaluating x∗1...x∗n using the tree ξ̄ are represented by:

o1....on = F (x∗1, ξ̄)....F (x∗n, ξ̄) (8.2.1)

We can then compute the average distance (d̄) between all pairs of values:

d̄ =
1

(n2 − n)/2

n∑
i=1

n−1∑
j=i+1

|Oi −Oj | (8.2.2)

As a measure of the stability (s) of the scenario generation method we use the ratio between

the mean distance (d̄) and the mean objective (for all scenarios) (µ):

s = 1− d̄

µ
(8.2.3)

Figure 8.2 shows how the out-of-sample stability for our scenario generator is increasing

when the number of scenarios generated by the method increases. In this case, the method

seems perfectly stable with trees of more than 130 scenarios.
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8.3 Conclusion

In our solution approach we have shown that given high computing processing power and

memory, solving such a large-scale problem is highly efficient. Through real data from an

airline, we have proved that the SP-FAM satisfies the recourse conditions with inter-bound

relationship holding (i.e. Zws 6 Zhn 6 Zeev) for both ZTP , ZRP and ZAP . In

addition, we have also proved that SP-FAM2 outperforms SP-FAM1 and that the inter-

bound relationship does not hold for ZV P .

In testing the reliability of the scenario generator, both in-sample and out-of-sample

tests were done. For in-sample stability, when plotting the distribution of the objectives

functions, a flat curved is obtained. We also observed that the value given by the RMnD is

less than 2%, therefore assumed that the scenario generation method used in this research is

stable. Similarly, the out-of-sample test revealed that the stability for the scenario generator

is increasing when the number of scenarios generated by the method increases. The method

seems perfectly stable with trees of more than 130 scenarios.



Chapter 9

Conclusion and Future Work

The complexity and the unprecedented growth facing the airline industry pose a major chal-

lenge for planning under uncertainty conditions. Currently, the trend is towards the use of

deterministic and non-integrated Decision Support Systems (DSS); however, with increasing

competition, managers require more robust DSS that integrate different models, databases

and solution approaches that will cope up with the increasing demand and pressure from

airlines. Although several attempts have been made to narrow the gaps; there is still scope

for enhancing efficiency and reliability. On the one hand, there is an algorithmic challenge

that, although SP provides a natural mechanism for tackling the uncertainty conditions,

little application has been enjoyed. Similarly, system integration, and in particular, the use

of relational databases within the optimization solvers, has not been fully exploited.

9.1 Conclusion

Robustness within FAM remains a vibrant research area with many challenges on model

formulation, accurate passenger forecast and integration of such models. In Chapter 1 we

gave an overview of the optimisation application within the airline industry. In Chapter 2,

the robust models and solution algorithms that tackle schedule robustness were discussed.

Chapter 3 described the FAM in detail while Chapter 4 explained the concept of SP in

general.

The main research contribution is summarized as follows:-

• We have presented new FAMs (the DFAMs) that tackles the major problem of aircraft

utilization associated with basic FAM. The DFAMs saves an optimization expert’s

time in re-optimizing aircrafts while seeking trade-off in attaining desired utilization

balance.

105
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• Using two-stage SP with recourse, we have provided two ways of formulating the

SP-FAM (i.e. SP-FAM1 and SP-FAM2). The distinguishing feature of the model

formulation is the introduction of the aircraft utilization variable, standby aircraft

and aircraft assignment artificial variable.

• Through an empirical testing we prove that SP-FAM2 outperforms SP-FAM1 in more

representation of the recourse model.

• We have come up with a new way of generating passenger demand scenarios through a

network-simulation model. In our scenario-generator, we have embedded an additive

TSM that forecasts the market sizes as an input to the network-simulation model.

While previous research tackled the integration of the demand through averaging of

scenarios (expected-value), our formulation integrates all the scenarios concurrently

(here-and-now). Through SP-FAM2, we prove reliance of the scenario-generator

through the in-sample and out-of-sample stability measures.

• We then provide a framework showing how the model can be integrated with uncertain

demand scenarios through interfacing network-simulation model, scheduling tool and

AMPL-SAS converter.

• The hurdle associated with solving FAM in general and SP-FAM in particular, is the

sheer size of the problem. While schedule aggregation is one such preprocessing step,

we combine other preprocessing steps (such as homogeneity and possible swaps) that,

traditionally, have not been combined concurrently.

• Through a real case study, we have shown that solving the here-and-now model is

superior to both the expected-value and the expectation of the expected-value models.

We thus vindicate the long-standing notion that it is impossible to account for all

demand scenarios in the same model.
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9.2 Future Work

9.2.1 Solution Algorithm

The major limitation of SP-FAM testing is the sole use of FortMP that invokes branch-

and-bound algorithm. Unfortunately, for testing SP problems with other algorithms, the

model has to be expressed in an SMPS format that converts the existing deterministic linear

programs into stochastic ones by addition of information about the dynamic and stochastic

structure of the model. While conversion into SMPS with the issue of thousands of variables

is non-trivial, there is no solver that will solve all instances that can be expressed in the

SMPS format; and this applies to the SP-FAM problem.

The standard SMPS format representation entails generation of three files known as the

core, time and stoch. The core file is equivalent to the MPS format and can be generated

from the deterministic equivalent of the SP problem. In the core file, the problem dimensions

and deterministic coefficients as well as the locations of all the stochastic coefficients are

determined. The time file contains the information needed to specify the dynamic structure

of the problem. The time file indicates the position (in terms of rows and columns) of

the elements of the decision vector identified for each period. The stoch file specifies the

distribution of the random variables.

To prepare the file formats for the SP-FAM problem, one needs to account for three main

challenges. Selection of a solver that has been customized to accept the specialized features

of the problem beforehand; generating the required format through automation that will

realign data on the three files (core, time and stoch); and finally, be able to interpret the

data once the problem has been solved.

9.2.2 Revenue Effects

In the SP-FAM formulation discussed in this research, only the stochastic nature of demand

was considered. Actually, in all the SP-FAM attempts made so far, RM effects have never

been taken into account. In principal, all the models have used the average fare for one
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passenger type, which is far from reality. Flight fares are highly uncertain with wide varia-

tion between fare-classes being offered. Furthermore, we have the network effects (spill and

recapture) that are compounded by passenger type which, if modelled into the problem, will

add complexity and pose a major challenge in both formulation and solution algorithms.

9.2.3 Improving Demand Forecast

During the calibration of the network-simulation model we endeavoured to deduce historical

weighted load-factor (LF) by flight level. Ideally, as an input to FAM, this could have a

severe impact on the realized fleeting decision. In fact, for running SFA, hardly do we take

the input of the demand forecast from network-simulation model without fine-tuning the

LF at flight level and by day of week; and as such, this is one of the deficiencies of the

reliance on the network-simulation model. Although different approaches have been used

in modelling passenger time-of-day preference, such as the inclusion of time-of-day dummy

variables for each hour of the day; and the weighting parameters for a series of sin and cos

curves. The models so applied only focus on time-of-day and not day of week, and this is

of concern to network planners who strive to get a realistic representation

The other difficulty is matching the airline’s projected market share with the actual

share for the chosen representative week in the network-simulation model. As an input to

the calibration, the MIDT data is customized on a leg or segment basis (as opposed to O-D

level) with different trip building rules. Figure 9.1 shows an O-D pair denoted by JNB-

DOH. This O-D pair has two legs (that is, JNB-CPT and CPT-DOH) and three segments

(that is, JNB-CPT, CPT-DOH and JNB-DOH).

The network-simulation tool, takes the output of the calibrated data (in segment format)

and projects the markets at O-D level that, when compared with MIDT market share, differs

significantly. Furthermore, this problem is compounded when one compares the airline’s

actual passenger numbers with the network-simulation forecast. These two shortcomings are

inter twined, in that, if we can deduce market share from MIDT and consider the airline’s

actual passenger uplift, then the market size can be estimated. Unfortunately, this can only
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Figure 9.1: O-D pair.

be harmonized, to some extent, during the fine-tuning phase of the calibration process. As

such, there is scope for further improving the demand forecast of the network-simulation

tool by automating the fine-tuning phase into rough calibration phase.

9.2.4 System Integration

Integrating the FAM with uncertain demand is only one of the challenges; there are still

many integration aspects to the resultant SP-FAM. For instance, integrating SP-FAM with

RM, integrating SP-FAM with crew planning, integrating SP-FAM with Operations Control

Centre, are but a few of the challenges. The airline fleet assignment process affects many

other processes and normally comes as a module within a planning system. In their system

investment criteria, airlines adopt an enterprize acquisition strategy. They specifically look

at a system that has integrated (or is integrative) with many other core processes that

support the entire planning cycle. Unfortunately, this has not been easy to achieve and will

remain a challenge for many years to come.
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