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Bid distributions of competing agents in simple models of auctions
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Models of auctions or tendering processes are introduced. In every round of bidding the players
select their bid from a probability distribution and whenever a bid is unsuccessful, it is discarded
and replaced. For simple models, the probability distributions evolve to a stationary power law with
the exponent dependent only on the number of players. For most situations, the system converges
towards a state where all players are identical. A number of variations of this model are introduced
and the application of these models to the dynamics of market makers is discussed. The effect
of price uncertainty on bid distributions is presented. An underlying market structure generates
heterogenous agents which do not have power law bid distribution in general.
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I. INTRODUCTION

A considerable part of the statistical physics commu-
nity is interested in financial market mechanisms and re-
lated problems [1,2]. One major challenge in this area is
to give a detailed picture of the emergence of group quan-
tities from market microstructure. For instance, how
prices and their fluctuations are related to the balance
of buyers and sellers. The major difference between this
approach and that using traditional financial theories is
that the emphasis is now put on comparing hypotheses
and their implications to real market data. In this work,
we investigate simple models of auctions, with various
settings, and obtain explicit expressions for distributions
that are intrinsic properties of sellers. As such, we are
not able to provide any comparison with any measurable
data, and in fact, from the simplicity of our models, it
is unlikely that any convincing similarity could be spot-
ted. Instead we present our work as a first step in auction
modelling from a physicist’s point of view, a problem that
has not attracted the attention it deserves up to now.

Much of economic activity is based on mini auctions
or tenders in which a potential buyer offers a particular
amount of money for a product or a potential seller offers
to sell the product at a particular price. The recipient of
this offer then compares it with the offers of competitor
buyers or sellers to determine the best deal and conse-
quently with whom to trade. Sellers who overprice their
goods or buyers who are not prepared to spend suffi-
cient money seldom trade and risk going out of business.
There have been numerous works on auctions, and a use-
ful summary can be found in Ref. [3] and its references,
while Ref. [4] still provides a very interesting review of
the subject. Much of this work has concentrated on mod-
elling the generation of an equilibrium price, determined
by some extremization procedure, either by profit maxi-
mization, by risk minimization, by considering inventory
constraints, or by considering the price of transactions
[3]. These models are mainly concerned with the dy-
namics of price formation. In contrast, here we want
to consider sellers competing to attract buyers, reducing

their behaviour to a trial and error process. We want to
model the learning of sellers that are repetitively com-
peting against each other. In practice, our models are
not specially devised to reproduce financial markets but
rather to tackle the more general problem of competing
sellers acting inductively [5].

In an attempt to model this type of process we intro-
duce simple models in which two or more players repeat-
edly bid against one another. Each player has a prob-
ability distribution from which they draw their bids at
random. When a player is unsuccessful he discards that
bid and replaces it with another bid selected at random.
In practice, we do not associate the bid proposed by a
player to a market price, but rather to the profit made
by a player over a fair market price. As such, we let bids
be in the range (0, 1), with 0 for no profit and 1 for a
maximum profit. This implies that a bid is a simultane-
ous proxy for both the profit of a player and his risk. In
the next section we introduce the two player system and
solve it analytically in two particular cases; when both
players have the same set of bids at the beginning and
in the long time limit. We argue that, except for very
specific situations, the system converges towards a sym-
metric situation for the players. In Sec. III we solve two
different d player versions of the same game and in Sec.
IV, we extend the model to mimic market makers. We
investigate in Sec. V the effect of price volatility on the
bid distribution. In Sec. VI, we let players be hetero-
geneous by implementing a market structure, and solve
exactly one simple situation. Our results are summarized
in the last section, where we also discuss improvements
to make the models more realistic.

In this work, we restrict our attention to the random
picking of new bids from a uniform distribution. This
minimalist adaptation process assumes that players do
not have a very efficient record of past bids. But this is
in line with the idea of players trying to make the maxi-
mum profit, while minimizing risk. If players only try to
minimize their exposure, they keep track of the winning
bids and no room is left for profit. By always picking
bids from a uniform distribution, players keep trying to
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improve their profit. We will discuss on extending the
models to incorporate more general adaptation processes,
but we keep a general analysis of this problem for future
work.

We have to mention that we use the term auction to re-
fer to the competition between buyers or sellers, but this
does not compare with the usual definitions of auctions
in the economics literature. Our auctions are concerned
with the dynamics of intermediaries, trying to make a
profit from the competitive sale of a commodity or a ser-
vice. This is completely different from auction as defined
in finance, where participants take part in several rounds
of bids before a sale takes place.

II. THE TWO PLAYER GAME

Imagine two players who each have an infinite set of
numbers described by a probability distribution. At each
time set the two players draw a number at random from
their respective distributions. They compare numbers;
the player with the smallest number wins and does noth-
ing, the player who loses replaces his losing number in
the probability distribution with another number cho-
sen at random from a uniform distribution. We will call
the players P and Q and their corresponding probability
distributions at time t, P (x, t) and Q(x, t). The proba-
bility distributions obey the non-linear coupled integro-
differential equations

∂P (x, t)

∂t
= −P (x, t)

∫ x

0

Q(y, t)dy

+

∫ 1

0

P (y, t)

∫ y

0

Q(z, t)dzdy (1)

and

∂Q(x, t)

∂t
= −Q(x, t)

∫ x

0

P (y, t)dy

+

∫ 1

0

Q(y, t)

∫ y

0

P (z, t)dzdy. (2)

The first term on the right hand side in Eq. (1) corre-
sponds to the destruction of numbers in P (x, t) when
player P draws a number larger than that drawn by
player Q. The second term on the right hand side corre-
sponds to the creation of new numbers in P (x, t) after P
has lost. Eq. (2) has similar terms. Providing that the
initial distributions P (x, 0) and Q(x, 0) are normalised
then we have

∫ 1

0

P (x, t)dx =

∫ 1

0

Q(x, t)dx = 1 (3)

for all time. We will find it useful to define the probability
that Q will win at time t, α(t), by

α(t) =

∫ 1

0

P (y, t)

∫ y

0

Q(z, t)dzdy (4)

and similarly the probability that P will win at time t by
β(t) = 1 − α(t). α(t) and β(t) are the second terms on
the right hand sides of Eqs (1) and (2) respectively.

We can solve (1) and (2) completely if P (x, 0) =
Q(x, 0). Then we have P (x, t) = Q(x, t) for all time
and

∂P (x, t)

∂t
= −P (x, t)

∫ x

0

P (y, t)dy +
1

2
. (5)

Introducing the cumulative probability distribution

F (x, t) =

∫ x

0

P (y, t)dy, (6)

we can rewrite (5) in terms of F (x, t) as

∂F (x, t)

∂t
= −F 2(x, t)

2
+

x

2
. (7)

This is easily solved to give

F (x, t) =
√

x

(

F (x, 0) +
√

x + (F (x, 0) −√
x)e−

√
xt

F (x, 0) +
√

x − (F (x, 0) −√
x)e−

√
xt

)

.

(8)

Consequently, for all initial conditions P (x, 0) = Q(x, 0),
the long time state is stationary with F (x,∞) =

√
x, or

P (x,∞) = 1/(2
√

x).
We cannot solve (1) and (2) for general initial condi-

tions, except in the long time stationary limit. This can
be done by setting the derivatives on the left hand side
of (1) and (2) to zero and dropping the time dependence.
This reveals

P (x) = αxα−1 and Q(x) = (1 − α)x−α (9)

where

α = lim
t→∞

α(t). (10)

Consequently, for all initial conditions the stationary
state is a one parameter family of power laws with the
exponents equal to the negative of the probability that
a player will win in the long time limit. This probabil-
ity is itself determined by the initial conditions. From
a symmetry principle, one expects the stable states to
be extrema of a characteristic function of both P (x) and
Q(x). It seems reasonable to expect that α and 1−α will
characterize these distributions, respectively. Forming
simple functions from these two expressions gives three
characteristic values for α, namely, α = 0, 1/2 and 1.
We have performed a number of simulations to confirm
that α = 1/2 gives the stable solution for most initial
conditions. In fact, with very specific initial conditions,
the system also converges towards α = 0 or α = 1, start-
ing with these values as initial conditions, for instance.
In practice, one would not except any of these peculiar
conditions to be realised. If the model can mimic a real
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situation, α = 1/2 is the only value that one should en-
counter. In other words, for most initial conditions, the
system is driven towards a state where the two players
are identical.

Of particular interest is the stationary distribution of
the prices, which is equal to

Z(x) = P (x)

∫ 1

x

Q(y)dy + Q(x)

∫ 1

x

P (y)dy (11)

or

Z(x) = αxα−1 + (1 − α)x−α − 1. (12)

In the most common situation, that is, when α = 1/2,
Z(x) = x−1/2−1. The moments of the price distribution
are equal to

Mn ≡
∫ 1

0

dxxnZ(x) (13)

=
α(1 − α) − n(n + 1)

(α + n)(1 − α + n)(n + 1)
. (14)

In particular, the average price M1 is given by

M1 =
3α(1 − α)

2(α + 1)(2 − α)
. (15)

It achieves its maximum value for α = 1/2. Hence, the
adaptative process, even if very simple, is efficient be-
cause, of all solutions, the system selects the one that
gives the sellers the maximum profit.

Note that the basic adaptation process can be im-
proved. The model can be generalised so that when a
player loses the new number received is drawn from a
probability distribution ω(x) rather than from the uni-
form distribution. In this case, in the long time limit, we
have

P (x) = αω(x)
(∫ x

0 ω(y)dy
)α−1

Q(x) = (1 − α)ω(x)
(∫ x

0 ω(y)dy
)−α (16)

where α is given by (10). Again, α = 1/2 gives the sta-
ble solution. The previous equations clearly shows that
the power law found for the player distributions are not
characteristic of competition, as any other distribution
would give another result. This conclusion, namely, that
the power law distributions are not robust, will be at-
tained in several occasions in this work.

III. THE D PLAYER GAME

We can obtain similar solutions for the d player game
where only the player with the highest number changes
his distribution. In particular, when all the players have
the same starting conditions they all have the same prob-
ability distribution at time t. This obeys the non-linear
integro-differential equation

∂P (x, t)

∂t
= −P (x, t)

(
∫ x

0

P (y, t)dy

)d−1

+
1

d
. (17)

In the long time limit this evolves to the distribution

P (x) =
1

d
x

1

d
−1. (18)

When the initial conditions are unequal the probability
distribution of player i (i = 1,..., d) evolves to

Pi(x) = (1 −∇i)x
−∇i (19)

where ∇i is the probability that player i wins in the long
time limit and

d
∑

i=1

∇i = 1. (20)

The same symmetry argument as in the previous section
can be put forward here, and it suggests that ∇i = 1/d
is the stable solution for most initial conditions. The
function we extremize is formed by the product of all the
prefactors in Eq. (19). This function appears naturally
as a scale factor in the evolution equation, because all
probability distributions are multiplied by one another.
For instance, in Eq. (1), we have to multiply P and Q
in both terms on the right hand side. We checked nu-
merically that ∇i = 1/d characterizes the most common
stationary state.

A more rigorous argument can be put forward by con-
sidering the price distribution Z(x), defined as the proba-
bility that the selling price is equal to x. This distribution
is given by

Z(x) =

(

d
∑

i=1

1 −∇i

x∇i − x

)(

d
∏

i=1

(1 − x1−∇i)

)

. (21)

The first moment of this distribution is the average price
and is a function of the set of exponents {∇i; i = 1, .., d}.
By looking to the extrema of Z(x) with respect to these
exponents, with the added condition Eq. (20), one ob-
tains that ∇i = 1 − 1/d for all i corresponds to a max-
imum of Z(x). By extension, it is also a maximum of
its first moment, meaning that the system reaches a sta-
tionary state where the players maximize their profit. In
particular,

Z(x) =

(

1

x1/d
− 1

)d−1

(22)

when all players are identical. The moments Mn(d) of
this distribution, defined in Eq. (13), are given by

Mn(d) =
d!(nd)!

((n + 1)d)!
. (23)

The average price,equal to M1(d), is a decreasing func-
tion of the number of players. As this price compares

3



with a profit, we can associate it to a measure of the
spread between ask and bid prices. In this case, we con-
clude that the spread is a decreasing function of the num-
ber of players. This is a well-known fact that has been
observed empirically.

As in the two player game, the previous model can be
generalised so that when a player loses the new number
received is drawn from a probability distribution ω(x)
rather than from a uniform distribution. In this case,

Pi(x) = (1 −∇i)ω(x)

(
∫ x

0

ω(y)dy

)−∇i

(24)

in the stationary limit, which provides a slight improve-
ment to the adaptation process.

In the previous model, only one player updates his dis-
tribution at each round of bidding. However, for auctions
where agents are quoting prices to a buyer, the asset will
only be sold by the agent proposing the lowest price. We
consider the d player game where all players that have
not proposed the lowest price discard their proposal and
draw a new price from a flat distribution. The players
distributions follow coupled differential equations and for
the particular case of all players starting from the same
probability distribution, they all keep the same probabil-
ity distribution during the whole game. This probability
distribution obeys

∂P (x, t)

∂t
= −P (x, t)

(

1 −
(

1 −
∫ x

0

P (y, t)dy

)d−1
)

+
d − 1

d
(25)

where the first term on the right hand side shows that
a player proposing x is discarding this value as soon as
another player proposes a lower bid. The second term
means that a player is always changing his bid unless he
wins. We have set equal to 1/d the winning probability
of all players, because of the model symmetry. Note that
from now on, we always consider symmetric initial con-
ditions, because as we showed, this is the most common
stationary state.

In the long time limit, Eq. (25) is equivalent to the
following equation

f(x)d − f(x)d + (1 − x)(d − 1) = 0 (26)

where we defined

f(x) ≡
∫ 1

x

P (y)dy. (27)

It is easy to check that for d = 2, the solution of Sec. II
is recovered.

By definition, 0 ≤ f(x) ≤ 1, so that f(x)d can be
neglected compared to f(x) when d is large. This can be
verified graphically, by using Eq. (26) to express x as a
function of f . We can then plot x as a function of f and

0
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0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f (
x)

x

FIG. 1. Cumulative distribution f(x) for d = 2, 3, 4 and 10,
from bottom to top. As d increases, f(x) converges towards
1−x. The solution is graphical as we only have x as a function
of f .

exchange the axes to obtain graphically f as a function x.
Fig. 1 present f(x) for d = 2, 3, 4 and 10, from bottom
to top. It is easy to appreciate that limd→∞ f(x) = 1−x.
In this case, P (x) is a flat distribution. Note also that
df/dx = −P (x). Differentiating Eq. (26) with respect
to x, we can express f as a function of df/dx and from
Eq. (26), x as a function of df/dx. Finally, this allows
us to draw the graphic of P (x). In Fig. 2, we show P (x)
for d = 2, 3, 4 and 10, from top to bottom on the left of
the figure. Note that we can show that P (x) ≥ 1 − 1/d,
and that it achieves this minimum value at x = 1. The
curves in Fig. 2 don’t all cross at the same point.

As can be appreciated in Fig. 2, P (x) is a power-law
from x = 0 up to a critical value xc, where it saturates
and becomes a flat distribution. For P (x) > 1, the ex-
pression for x(P ) can be expanded in a series of 1/P ,
giving

x(P ) =
d

2(d − 1)4
1

P 2
+ O

(

1

P 3

)

. (28)

Hence, P (x) ∼ (d3x)−1/2 for x < xc. A higher bound for
xc can be found by setting P (xc) = 1, which gives

xc ≤ 1 − d(d−2)/(d−1)

d − 1
+

d−d/(d−1)

d − 1
. (29)

In the inset of Fig. 2, we compare the analytical solution
to numerical simulations of the auction for d = 2 and
d = 10 for x > 0.1. The agreement is good.

We conclude that in a strongly competitive environ-
ment, where only one player can win, the behaviour of
the bid distribution is similar to the one obtained when
only two players are competing, at least where the low
bid values are concerned. Of course, the lowest bids are
of particular interest because deals are usually made at
these values.

As in the previous models, it is interesting to con-
sider the distribution of prices, Z(x), corresponding to
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FIG. 2. Probability distribution P (x) for the bids of the
agents for a game involving d = 2,3,4 and 10 agents, from top
to bottom on the left hand side of the figure. In the inset is
presented a zoom of the region x = 0.1 to 1. The continuous
lines are analytical results for d = 2 and d = 10 while the
symbols are direct numerical simulations of the auction for
d = 2 (⋄) and d = 10 (•).

the probability that the deal will be concluded at a price
x. From Eq. (26), Z(x) is equal to

Z(x) = d(P (x) − 1) + 1. (30)

The determination of Z(x) is dependent on the determi-
nation of P (x) but, fortunately, even if we do not have
any explicit solution for P (x), it is still possible to obtain
an expression for M1(d), the first moment of Z(x). This
first moment, which corresponds to the average price, is
calculated by changing x to f in Eq. (13) using Eq. (26).
M1(d) is equal to

M1(d) =
d

2(d + 1)
. (31)

This result is counterintuitive, as it predicts that when
the competition is stronger, with more players, the aver-
age price increases. In fact, it shows that when there are
a lot of players around, the probability of winning is very
small. Hence, players keep on trying to improve and they
do not keep any memory of past bids. They are adapting
too fast for the game. This could have been anticipated
from Fig. 2, where one sees that the distribution flattens
as d increases. Comparing this result with the similar re-
sult from the previous d-player model, one sees that real
life corresponds rather to a game where only the worst
player adapts than a game where everyone trys to be the
best.

IV. MARKET MAKERS

The previous models of auctions are interesting mech-
anisms to generate an ask price. A buyer solicits several
sellers, compares their prices and takes the lowest one

available. On the contrary, the generation of a bid price
is characterized by a seller considering several buyers. He
selects the one offering the highest price. All the results
obtained for ask prices x in the previous sections can be
transposed to bid prices by changing x to 1 − x.

Most financial exchanges use market makers to add liq-
uidity to the market [6]. A market maker is a person that
will quote both an ask and a bid prices whenever asked
to do so. The bid price is the price he is prepared to
pay for the asset and the ask price is the price he is pre-
pared to sell the asset at. When solicited, market makers
have to give both ask and bid prices because they do not
know whether the trader wants to buy or sell the asset.
The existence of market makers allows traders to place
buy and sell orders whenever they want, without having
to wait for somebody else to match their order. This is
known as non-synchronical trading. To cover themselves
against the risks of possessing unwanted stocks, the ask
price proposed by market makers is higher than the bid
price. The difference or spread, is their risk insurance and
their margin for profit. Usually, the exchange regulatory
body sets upper limits for spreads. There are of course
several market makers on any exchange and they try to
quote the lowest ask and highest bid prices, to attract as
many traders as possible. However, they cannot afford
to be excessively exposed to market risks and have to
maintain a minimum spread.

As a more realistic model with direct application to
market mechanisms, we consider a mixed auction, where
players are market makers. At each time step, the play-
ers are required to give a bid and an ask price. Hence,
each player has two probability distributions at their dis-
posal. To avoid arbitrage opportunities, each player has
to evaluate what the others are likely to propose, such
that all ask prices are higher than all bid prices. In prac-
tice, the only reference for a market maker is the history
of the prices. We assume that a player never proposes an
ask price that is lower than a previous winning bid price,
thinking that this bid price is likely to be proposed again.
Similarly, no market maker will ever propose a bid price
that is higher than a previous winning ask price.

The model works as follows, restricting our attention
to a two player game. As we only consider similar ini-
tial conditions for both players, we assume that they are
using the same distributions. The two players P and Q
draw at each time step an ask and a bid price from the
same probability distributions Ra(x, t) and Rb(x, t), re-
spectively. The subscript a refers to ask prices and b to
bid prices. These prices have to be such that the ask
prices are both larger than the higher bid price proposed
in the last h time steps, Mb, and the bid prices are both
smaller than the lower ask price proposed in the last h
time steps, ma. h represents the size of the history of the
system. We set Mb = 0 and ma = 1 at the beginning of
the simulations. In case a player selects a bid price higher
than ma, he draws a new bid price from a uniform dis-
tribution between 0 and ma. Similarly, a player selecting
an ask price lower than Mb draws a new ask price from a
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uniform distribution between Mb and 1. When the trader
is a buyer, the market maker with the lowest ask price
gets the deal, while for a seller, the market maker with
the highest bid price gets the deal. We call p the proba-
bility that the trader is a seller. The market maker that
does not get the deal discards his proposal and draws a
new one, a new ask price if the trader wanted to buy, a
new bid price otherwise. New ask prices are drawn from
a uniform distribution between Mb and 1, while new bid
prices are drawn from a uniform distribution between 0
and ma. We pay no attention to spread requirement.

As at each time step Mb or ma can be updated, but not
both of them simultaneously, we always have Mb < ma.
If the trader is a seller, Mb either does not change or
increases to a value lower than ma. For a buyer, ma

does not change or decreases to a value higher than Mb.
Hence, in the limit h → ∞, Mb and ma converge to the
same value M and stay fixed. We call this value M the
market price. It changes from one simulation to the next,
with an average value of M = p over several simulations.
When the history h is relaxed to a finite value, the market
price converges towards M = p, for every value of h, and
oscillates around this value, the larger h, the smaller the
oscillations.

The probability distributions of the bid and ask price
follow differential equations that depend on Mb and ma.
For ask prices less than Mb, we have

∂Ra(x, t)

∂t
= −(1 − p)Ra(x, t) (32)

and Rb(x, t) follows a similar equation for x > ma. The
1 − p factor gives the probability that an ask price is
required. The previous equation shows that Ra(x), the
stationary limit of Ra(x, t), is zero for x < Mb. Similarly,
Rb(x) is zero for x > ma. In reality, both Mb and ma

are functions of time for finite h and the distributions
are non-zero on a small interval around p. However, as
already mentioned, Mb and ma oscillate around a fixed
value in the stationary state, so that for the sake of sim-
plicity, we assume that Mb = ma = p, independent of
time. The effect of boundary fluctuations is addressed in
the next section. Within this framework, the distribution
of ask prices for prices higher than Mb is the solution to

Ra(x)

∫ x

p

Ra(y)dy =
1

1 − p

∫ 1

p

Ra(y)

∫ y

p

Ra(z)dzdy.

(33)

Note that we have dropped the time dependence as we
only consider the stationary limit. This equation is simi-
lar to Eq. (1) in the stationary limit, with p as the lower
limit instead of 0 and a symmetric condition on the two
players. As Ra(x) = 0 for x ≤ p, it is not necessary to
change the lower limits, but we did it for clarity. The
1/(1−p) factor is necessary to allow a proper normalisa-
tion of the distribution. This arises because the new ask
prices are chosen in (p, 1), not in (0, 1). Introducing

Fp(x, t) =

∫ x

p

Ra(y, t)dy, (34)

we obtain that Fp(x) =
√

(x − p)/(1 − p) and Ra(x) =

1/(2
√

(x − p)(1 − p)). A similar calculation gives

Rb(x) = 1/(2
√

p(p − x)). The solution for the auction
of Sec. II is obtained for p = 0, as expected.

In our market maker model, the relative volume of buy
and sell orders is controlled by the probability p. As ex-
plained, the market price M settles close to M = p when
the history h is finite. One could wonder to this aspect
of the model: when the number of sell orders increases,
the model predicts a price increase, while it is well-known
than an increase in the supply makes the price go down.
We should however stress that M does not represent, in
itself, a market price, but that we use this name to sim-
plify the explanations in this section. As stressed in the
introduction, M is a measure of the profit made by a
market maker whenever a sale is agreed. For p close to
1, market makers are very rarely concluding sales so that
they have to make a large profit from each possible sale.
They can make a smaller profit from purchases, because
the number of occasions to conclude such deals are more
aboundant. A more complex model would not only con-
sider M as a profit but as the price of the asset itself.
In this case, it should incorporate the fact that market
makers are not only competing to increase their num-
ber of deals. They have to balance the number of buy
and sell orders if they don’t want to artificially sustain
the price by accepting all sell orders, for instance. As
soon as they try to sell, the price will fall quickly, with
nobody to match their sale. Hence, the last model has
the shortcoming that it does not address the dynamics
of matching the orders. As our main interest is on the
profit made over the market price, this is not really an
issue here. Interesting models where buy and sell orders
are matched can be found in [7,8].

The previous model can easily be generalised to d mar-
ket makers and in this case, the results of the previous
section can be adapted as we did for the two player auc-
tion. To give an idea of a realistic value for d, the number
of market makers per security varies from a minimum of 2
to a maximum of 68 on the Nasdaq [9], while George and
Longstaff witnessed around 300 market makers among
400 S&P 100 index option traders [10]. As in the previ-
ous sections, the model can also be generalised to cope
with prices chosen from a distribution ω(x) instead of a
uniform distribution.

V. PRICE VOLATILITY AS A MEASURE OF

RISK

Up to this point, the only uncertainty facing the play-
ers has been the decision of the other players. In reality, a
major source of uncertainty can be found in price fluctu-
ations. This corresponds in our framework to variations
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in the mininum profit necessary to hedge against market
fluctuations. We consider a simple auction model where
two players P and Q propose ask prices drawn from the
range (M, 1), with M chosen from a uniform distribu-
tion in (0, ∆) at each time step. As in the model of Sec.
II, P and Q are given probability distributions, P (x, t)
and Q(x, t) respectively, to choose their bids. Whenever
a chosen bid is less than M , it is discarded and another
bid chosen at random from the range (M, 1) is proposed.
The player with the lowest bid gets the deal. As we
consider similar initial conditions for both players, the
probability distribution P (x, t) follows

∂P (x, t)

∂t
= −P (x, t) (35)

for x ≤ M and

∂P (x, t)

∂t
= −P (x)

∫ x

0

P (y, t)dy +
α

1 − M
(36)

for x ≥ M . We have defined α as the probability that
Q wins, as in Eq. (4). Considering stationary solutions
and from our choice for the dynamics of M , P (x) is the
solution to

P (x)

(

1 − x

∆
+

x

∆

∫ x

0

P (y)dy

)

= − α

∆
ln(1 − x) (37)

for 0 ≤ x ≤ ∆ and

P (x)

∫ x

0

P (y)dy = − α

∆
ln(1 − ∆) (38)

for ∆ ≤ x ≤ 1. The exact solution to the second equation
is

P (x) = N0

(

P 2(∆)α ln(1 − ∆)

α ln(1 − ∆) + 2P 2(∆)∆(∆ − x)

)1/2

(39)

for ∆ ≤ x ≤ 1, where N0 is a normalisation coefficient.
The distribution is a power-law in this range, with the
same exponent as in the two player auction of Sec. II.
We could not solve the first equation, but its numerical
solution can be compared with direct simulations of the
model. The results are presented in Fig. 3 and as can be
seen, Eq. (37) compares very well with the model.

The previous analysis leads us to the conclusion that
the distributions obtained in the framework of simple
auction models are robust outside the range of price fluc-
tuations. However, agents should be reluctant to pro-
pose prices inside this range, in agreement with usual
pricing models that take the volatility as a proxy to in-
vestment risk [6]. The simple model presented here can
of course be easily generalized to deal with more realistic
price fluctuations. Even if we think that the present con-
clusion should remain applicable for most situations, it
is however important to stress that price fluctuations are
known to be non-Gaussian [1]. Large fluctuations are not
so rare and that has a major impact on the value of M .
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P
 (

x
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x

FIG. 3. Probability distibution for the bids of the players.
The points correspond to a direct simulation of the model,
while the continuous line is a numerical solution of Eqs. (37)
and (38). The dashed lines indicate the level of uncertainty,
fixed to ∆ = 0.2 during the simulation.

Hence, in period of quiescence, the conclusion of this sec-
tion should apply, while for more agitated markets, what
we call the range M of the fluctuations could force agents
to propose prices well inside the range of fluctuations.

VI. IMPLEMENTING A MARKET STRUCTURE

In the previous models, sellers are competing in an ab-
stract infinite dimensional space, where every trader is
identical, apart possibly from initial conditions. How-
ever, lots of trades rely on a strict market structure,
where buyers are interacting with only a restricted set
of sellers. To investigate the effect of space on sellers
price distribution, we consider a variation of the d player
game of Sec. III where players are nodes of a network,
competing with their first neighbours. It should be ob-
vious that an important quantity in such a framework is
the connectivity distribution, that is, the number of sell-
ers you are competing with. But who you are competing
with is also of major importance. For a regular network
with d − 1 neighbours for each site, the d player game is
recovered. More interesting is the case where a site has
k neighbours with a probability ck. As for the d player
game of Sec. III, two extreme situations can be consid-
ered; either a player is happy unless he gets no deal, or a
player is happy only if he gets all possible deals. Based on
our conclusions of Sec. III, we only consider the former.

There is one customer and one player at each node of
the network. At each time step, every player proposes
a price drawn at random from his personal bid distribu-
tion. A customer at one node buys from the cheapest
price among the price proposed by the player at his node
and the prices proposed by the players of the neighbour-
ing nodes. Hence, a player located at a side with k neigh-
bours can get from 0 to k + 1 customers in every round
of bidding. As long as a player gets one customer, he
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does nothing, while a player with no customer discards
the price he proposed and draws a new price at random
from a uniform distribution. The bid distribution of a
player P with k first neighbours, Qi, with i = 1, ..., k,
evolves according to

∂P (x, t)

∂t
= −P (x, t)

k
∏

i=1

∫ x

0

Qi(y, t)dy + 1 − αP (40)

where αP is the probability that P wins and Qi(x, t) the
bid distributions of the neighbours of P . Of course, these
distributions follow similar evolution equations involving
their own neighbours. With the chosen updating rule,
winning is synonymous with getting at least one deal.

We are not able to solve the previous set of equations
in the general situation, but it is tempting to assume
that Qi(x) = (1 − αi)x

−αi in the stationary state, by
analogy with the previous models. In this case, it is easy
to show that the condition imposed on the exponent at
one site is that the sum of this exponent and the ex-
ponents of all neighbouring sites is equal to the number
of neighbours. However, this solution is not compatible
with the condition αP ∈ (0, 1), at least for some special
situations, hinting that this works only for special cases,
when all players have the same number of neighbours for
instance. To show that the previous assumption does not
capture the complete picture, we consider the stationary
limit of a very simple network of k + 1 nodes. k of these

nodes have only one link pointing to the central k + 1th

node. This corresponds to one central seller P trying to
compete with k local sellers, Qi, with i = 1, ..., k. By
symmetry, all local sellers should have the same distribu-
tion Qi(x) ≡ Q(x). One could think of the central node
as a supermarket and all the neighbouring nodes as small
differenciated shops. As the small shops do not sell simi-
lar goods, they do not compete with each other, while the
supermarket is competing on all goods. The fact that we
take only one price for all goods is justified by the fact
that the different goods prices are correlated, being all
sold by the supermarket. Alternatively, some particular
geographical situation could make going to other shops
uninteresting, like restricted parking places, while the su-
permarket could provide easy access. In this case, we
obtain in the stationary limit that

P (x)

(
∫ x

0

Q(y)dy

)k

= 1 − αP (41)

and

Q(x)

∫ x

0

P (y)dy = 1 − αQ. (42)

Introducing G(x) =
∫ x

0
Q(y)dy, we can show that

(αQ − 1)G(x)k ∂2G(x)

∂x2
= (1 − αP )

(

∂G(x)

∂x

)2

. (43)

The previous equation can be solved to obtain
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FIG. 4. Probability distibutions for the bids of the players
for one central seller and 4 side sellers competing with him.
The continuous lines are for the side sellers, while the con-
tinuous line with dots (•) is the distribution of the central
seller.

Ax + B =

∫

dG exp

(

(1 − αP )G1−k

(1 − αQ)(1 − k)

)

(44)

where A and B are integration constants. Using G(0) = 0
and G(1) = 1, we obtain the implicit solution

1 − x =
Θ(G1−k)

Θ(∞)
(45)

where we defined

Θ(v) =

∫ v

1

u
k

1−k exp

(

(1 − αP )u

(1 − αQ)(1 − k)

)

du. (46)

This shows that for x close to 1, Q(x) is uniform, while
P (x) ∼ x−k. For x close to 0, the leading term for Q(x)
is 1/x, with important logarithmic corrections, and it can
be written

Q(x) ∼ 1

x (ln(x/γ))k/(k−1)
(47)

for some function γ that depends on αP , αQ and k. In
this limit, P (x) ∼ xQ(x). In Fig. 4, we present the
results of a simulation where one central seller competes
with 4 side sellers, that do not compete with each other.
Each seller had 104 different prices at their disposal and
they played 107 rounds of bidding. For the particular
simulation presented, 1 − αP ≈ 0.03 and 1 − αQ ≈ 0.7.
As mentionned earlier, the different probabilities do not
have to sum up to 1, as they don’t refer to exclusive
events. As can be appreciated in Fig. 4, for x close to
1, Q(x) becomes uniform, while P (x) can arguably said
to converge towards a power law. We could not check
numerically the value of the exponent of this power law
because it extends over less than a decade.

In Fig. 4, it is apparent that the distribution for the
side players is uniform from 0.1 to 1, which signals a bad
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adaptation. This impression is justified by the fact that
they do not win very often. In simple terms, the central
player benefits from having to compete with several play-
ers. This is to be expected, as the central player wins if
he is not the worst player out of k, while the side players
have to be the best of two not to lose. We arrive at the
interesting conclusion that, as in Sec. III, it pays not to
change prices too often. In fact, new prices being choosen
from (0, 1), they are unlikely to be competitive. Assum-
ing that we can extend this conclusion to more general
networks, we expect to find that sites with a larger con-
nectivity, surrounded by sites with smaller connectivity,
are winning more often. This conclusion has some echoes
in real life, where supermarkets benefit from attracting a
wider range of customers than small shops.

VII. CONCLUSIONS

We have introduced simple models for tendering pro-
cesses in an attempt to model the dynamics of interme-
diaries trying to make a profit from the competitive sale
of a commodity or a service. Starting with a simple 2-
player game, we extended our model to a d-player game,
considered the problem of market making, investigated
the effect of price fluctuations and implemented a strict
market structure. In all these cases, the bid distribution
of the players has been our main concern and we showed
that it can strongly depend on the system details. Nev-
ertheless, two generic features could be seen in all these
models. First, unless there is a strict market structure to
differentiate the players, they tend to become identical
in the long time limit. This stationary state corresponds
to a maximum profit state for the whole system. Hence,
cooperation has appeared in a system made up of selfish
individuals, a property reminiscent of the Minority Game
[11]. Second, we showed that players generally benefit
from waiting longer before updating their beliefs. Play-
ers updating their bid distribution too quickly are not
able to discern between a trend and a fluctuation. This
was also spotted in an evolutionary variant of the Minor-
ity Game, where it was shown that players prefer to keep
on playing with only one strategy [12,13]. We can com-
pare this particularity to models of growing boundaries,
where noise can be drastically reduced by only allowing
sites that have been selected a given number of times
to grow [14]. Similarly, we can improve the adaptation
process by updating bids only if they have lost a given
number of times.

Considering each variant of the model separately, we
can refine our conclusions. For the two-player game, the
stationary bid distribution is a power law and this result
can be extended to a d-player game. However, this result
is dependent on the type of adaptation process chosen,
and we showed that it would not be the solution of a
simple generalisation. By considering the average price
generated by the model, which corresponds to a player’s

expected profit, we showed that a model with only the
worst player adapting compares better with reality than
a model in which all the non-winning players adapt. This
suggests that in real life, unless you are the worst, you
still make a profit from business. Considering a simple
generalisation to mimic market making, the previous re-
sults have been extended. The major difference is that
the reference price, corresponding to 0 in the first mod-
els, is not fixed now. This leads us to consider the ef-
fect of price uncertainty over the bid distribution. We
showed that outside the range of the fluctuations, the
preliminary result obtained in the simple models can be
extended. So, in a quiescent market, one expects our re-
sult to apply, while for unsettled markets like markets
from emerging countries, fluctuations are so important
that they should strongly affect the bid distribution of
the participants. Finally, putting the players on a net-
work allowed us to generate heterogeneous players. We
showed that a player’s bid distribution is a function of his
neighbours. From a simple example, we concluded that
players with a high connectivity connected with players
of low connectivity are optimal, in the sense that they
should get most of the deals.
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