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Abstract

Growing networks are introduced in which the vertices are allocated one
of two possible growth rates; type A with probability p(¢), or type B with
probability 1—p(t). We investigate the networks using rate equations to obtain
their degree distributions. In the first model (I), the network is constructed
by connecting an arriving vertex to either a type A vertex of degree k with
rate puk, where p > 0, or to a type B vertex of degree k with rate k. We study
several p(t), starting with p(¢) as a constant and then considering networks
where p(t) depends on network parameters that change with time. We find
the degree distributions to be power laws with exponents mostly in the range
2 < v < 3. In the second model (II), the network is constructed in the same
way but with growth rate k for type A vertices and 1 for type B vertices. We
analyse the case p(t) = ¢, where 0 < ¢ < 1 is a constant, and again find a
power law degree distribution with an exponent 2 <« < 3.
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I. INTRODUCTION

Many networks, both in nature and society, show highly organised structure and be-
haviour. Examples include the world-wide-web, the internet, ecosystems, neural networks
and actor collaboration networks [1-5]). These complex networks are made up of many
interacting components that organise themselves according to certain rules of interaction,
or organising principles.

Recently, a number of growing network models have been introduced [6] in an attempt
to discover the organising principles governing the behaviour of these complex networks. In
particular, large numbers of the models introduce new vertices and edges to the network
over time to model growth and evolution in complex networks.

The best way of adding new vertices and edges to networks is the process of preferential
attachment, whereby vertices with more edges increase their degree more quickly. This
process results in the power law degree distribution, often found in real growing networks.
Systems that possess such power law degree distributions are found to be highly tolerant
to random error and attack [7], and so are exceptionally robust. Preferential attachment
naturally results in these power law degree distributions and seems to be a natural way of
introducing new vertices and edges to the network. It seems reasonable that more highly
connected vertices should be more likely to receive new edges. For example, experience tells
us that well established internet sites are more likely to attract the attention of new sites
than are their lesser connected counterparts.

Due to its success, linear preferential attachment is now incorporated into most growing
network models, with a vertex of degree k receiving a new edge with probability II(k), given
by II(k) o k. This results in a power law degree distribution for large ¢, where the number
of vertices of degree k at time ¢, ni(t) is given by ny(t) ~ tk™® [8]. If TI(k) o k%, where
a > 0 is a constant, then it is found that for o < 1, ny(?) follows a stretched exponential
and for a > 1, a single vertex in the network links to all other vertices.

Recently [9], II(k) was measured directly for four different growing networks. This was



achieved using a numerical method on the computerised data of the networks. The science
citation network and the internet were found to have degree distributions that are consistent
with preferential attachment given by II(k) o k, while the degree distributions of the actor
collaboration and science co-authorship networks are consistent with preferential attachment
given by (k) o k% with a < 1. Despite the diversity of growing networks, most real growing
networks are found to have a degree distribution given by ng(t) ~ tk=7, with 2 < v < 3,
and so are scale-free [10]. This scale-free nature of the networks is destroyed for non-
linear preferential attachment [8], which suggests that the networks obey linear preferential
attachment but also that there is some other mechanism at work.

In this paper we introduce and study a set of models in which the vertices are allocated
one of two possible growth rates; type A with probability p(¢), or type B with probability
L — p(t). In our first model (I), both types of vertex grow with preferential attachment,
but at different rates. We consider several p(), starting with p(¢) as a constant, and then
considering cases where p(t) depends on the total number of edges acquired by the type A
and type B vertices. In our second model (II), only the type A vertices grow with preferential
attachment, while the type B vertices grow at a constant rate.

In the following sections we introduce our models and present results, concentrating
on the shapes of the degree distributions for the different models. In the final section we

summarise our results and compare them to empirical measurements on real networks.

I1I. MODEL I

The different rates with which vertices acquire edges is often attributed to the ability of
vertices to compete for new edges, called the vertex fitness [11]. In our model, we assign a
fitness parameter to each vertex type, causing them to grow at different rates. At each time
step a new vertex and edge is added to the network and connects to a vertex already present
in the network. As in [11], we assume that the probability that a new vertex will connect

to an existing vertex, II;(k), depends on the degree k and the fitness n; of that vertex, such



that

nik + A
i (mik; + X))

where the A; are constants. The vertices in our model are either type A or type B, with

(k) = (1)

A4 = Ag =0, ng = p, for all type A vertices, where p > 0 is a constant, and ng = 1 for all
type B vertices. Introducing ax(t) and by(t) as the number of type A and type B vertices
of degree k at time ¢, we define the total number of vertices of type A, N4(t), and type B,
Np(t), to be

NA(t) = Z ak(t) and NB(t) = Z bk(t) (2)
k=1 k=1
Similarly we define the total degrees of the type A and type B vertices, M4(t) and Mp(?),

to be

MA(t) = ki_o: kak(t) and MB(t) == ki_o: kbk(t) (3)

Eq. (1) then gives [14(k) = pk/M(t) and Ug(k) = k/M(t) as the rates with which the new
vertices will connect to a type A or type B vertex of degree k, where M () = pM4(t)+Mp(1).

Following [8], the rate equations for ax(t) and by(t) are

dadkt(t) - Mﬂ(t) [(k = 1D)ag-1 — kax] + p(t)ora (4)
and
dbc,}t(t) _ Ml(t) [(k — )by — kbg] + (1 — p(t))6p1. (5)

The first term on the right hand side of these equations represents the creation of a vertex
of degree k from a vertex of degree k& — 1. The second term represents the creation of a
vertex of degree k + 1 from a vertex of degree k. This happens with rate pk for the type
A vertices and with rate k for the type B vertices. The final term represents the arrival of
a new vertex of degree 1. The probability that new vertices are of type A is p(t), and that
they are of type B is 1 — p(t), where p(?) is either constant or depends on differing network

parameters for the different models.



Case A p(t) = ¢, where 0 < ¢ < 1.

We first consider the case where the type of the new vertex is chosen with constant
probability. Asin [8], we consider only the asymptotic regime, ¢t — oo, and find the moments
M4(t) and Mp(t) to be linear in time, implying that ay(t) and b(t) are also linear in time.
Accordingly, we substitute M4(t) = mat, Mp(t) = mpt, ar(t) = axt and by(t) = [yt

everywhere in our equations. From Eq. (3), substituting p(#) = ¢ in Eqs. (4) and (5) gives

dMA(t) /LMA(t) dMB (t) MB (t)
= (1) +¢c and TR M(1) +1—c¢ (6)

and writing dM4(t)/dt = m4 and dMp(t)/dt = mp, we get two equations for m4 and mp

that can be solved to reveal

o 2dptelp =D+ — g = D 4 Selp = 1)
4 2(n — 1)

(7)
and

(p—1—=cu+ec)ma+2(1—c)
(b —1Lma+1

(8)

mp =

With p(t) = ¢ and M(t) = (uma + mp)t, and substituting ax(t) = axt and bi(t) = Bit, Eqgs.

(4) and (5) yield the recursion relations

w(k —1) d B k—1
Op—1 an 5k =
w(ma+ k) +mp pma+mp+k

A =

Br—1 (9)
for £ > 1. We find that for large k, a; and [ have the solutions
ap ~ k™ and B~ kTP, (10)

where A and B are given by

A:w—l—l and B =pums+mp+ 1. (11)

7
We find that the degree distribution of the network, given by ny(t) = (ax + Bi)t follows a
power law, ny(t) ~ tk™7, for large k, with v = mun(A, B). For ¢ =0, v = (3 — ¢) and

the type B vertices dominate the degree distibution. For g = 1, v = 3, the two types of
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vertex become indistinguishable and the model reduces to that for a single vertex type [12].
As f — 00, v — (2 4 ¢) and the type A vertices dominate the degree distribution. Since
0 < ¢ <1, we find that 2 <~ < 3 for large k.

For the specific case of p(t) = 0, there is only one type A vertex in the network as the
probability that a new vertex will be of type A is zero. The new vertices are therefore always
of type B. With p(¢) = 0, and following the steps above, Eqgs. (4) and (5) yield two sets of

recursion relations. For 2 < p < oo, we obtain the recursion relations

kE—1 kE—1
ap = mak—l and Br = I+ Mﬂk—l (12)
for £ > 1, with solutions
ap~k72  and  fj~ kFD (13)
for large k, and for 0 < p < 2, we obtain
w(k —1) k—1
S S d = _ 14
ag ,uk—l—2ak1 an 5k k—|—26k1 ( )
for £ > 1, with solutions
ap ~ K5 and B~ k0 (15)

for large k.

As before, the degree distribution follows a power law, ng(t) = tk=", where 2 < v < 3
for large k. For p = 0, v = 3 and the type B vertices dominate the degree distribution.
The single type A vertex, however, grows at a rate M4 ~ t*/2, which is generally much
faster than the type B vertices. As p — oo, the single type A vertex acquires all of the
incoming edges, and grows at a rate M4(¢) ~ t. In this case, the single type A vertex gains
all incoming edges and the network forms a star shape.

Case B p(t) = uMa(t)/M(2).

In this case, the probabilitiy that the vertex will be of type A or type B depends on

the total degree and fitness of each vertex type. If the type A vertices have higher fitness
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(f¢ > 1), then they will grow more quickly and have a greater total degree. With both a
higher fitness and a higher total degree, the new vertex will have a much higher probability
of being type A. If the type B vertices have higher fitness (¢ < 1), the new vertex will have
a much higher probability of being type B. This leads to the degree distribution and the
network being overwhelmingly dominated by the vertex type with the higher fitness.
Following the steps in Case A, but with p() = pM4(2)/M(t), Eqs. (4) and (5) yield two

sets of recursion relations. For 1 < p < oo, we obtain the recursion relations

kE—1 kE—1
= d = — (4 16
ag k—l—2ak 1 an 5k k—I—Q,Mﬂk 1 ( )
for £ > 1, with solutions
ap~ k™ and By~ kT (17)
for large k, and for 0 < g < 1, we obtain the relations
w(k —1) k—1
S S d = _ 18
ag ﬂk+2ak1 an B k_|_25k1 (18)
for £ > 1, with solutions
ap~ k0T and By~ k7 (19)

for large k.

The degree distribution of the network again follows a power law, ng(t) ~ tk=", but
with v = 3 for all g > 0 as £ — oo. This is the behaviour we would expect, as the degree
distribution is overwhelmingly dominated by just one vertex type. The effect of the second
vertex type becomes negligible as & — oo and the distribution is the same as that for just
one vertex type.

Case C p(t) = Mp(t)/M(t).

As in Case B, the new vertex type depends on the total degree and fitness of each vertex
type. However, in this case, if the fitness of the type A vertices is greater, then there is

a greater probability that the new vertex will be type B, and if the fitness of the type B
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vertices is greater, there is a greater probability that the new vertex will be type A. Hence
the network will have a tendancy to balance its edges out between the type A and type B
vertices.

Following the method of Case A, but with p(t) = Mp(t)/M(t), Egs. (4) and (5) yield

the recursion relations

p(k —1) k-1

= mak_l and B Br-1 (20)

ay
for £ > 1, with solutions

ap~ kT and By ~ km@H0) (21)

for large k.

We find that the vertex type with the higher fitness gains edges at an increasing rate as
the difference in fitness between the two vertex types increases. This is exactly matched by
the addition of an increasing number of vertices and edges of the lower fitness type so that
both vertex types have a total degree of ¢ for all p > 0. However, the number of vertices
with higher fitness added to the network decreases as the fitness gap increases, causing the
vertices of this type to have a much higher degree on average. The degree distribution is then
dominated by the vertex type with higher fitness, resulting in a power law degree distribution,
nk(t) ~ tk~7 with an exponent 4 that depends upon fitness, v = min(2 + %,2 + ). This
givesy =2+ pfor p < 1land v =2+ % for u > 1, so that v is found to be in the range
2 <~ < 3 for large k.

When the difference in fitness between the two vertex types is very large, the number of
vertices of the higher fitness type is very small. The few vertices of the higher fitness type
then grow with an average rate M4(av) ~ t and the network develops hubs of the higher
fitness type. This is analogous to the situation in Case A, where p(t) = 0 and g — oo,
where the single type A vertex acquires all of the incoming edges and the network forms a
star shaped distribution.

Case D p(t) = Ma(t)/[Ma(t) + My (1))



In this case, the type of the new vertex depends only on the total degree of each type of
vertex. If the type A vertices have higher fitness, then they will grow more quickly and have
a greater total degree. The new vertex will then have a greater probability of being type
A. Similarly, if the type B vertices have higher fitness, the new vertex will be type B with
greater probability. This is similar to Case B, as it leads to the network being dominated
by the vertex type with higher fitness.

Following the steps in Case A, but with p(t) = Ma(t)/[Ma(t)+ Mg(1)], Eqs. (4) and (5)

yield two sets of recursion relations. For 1 < p < 0o, we obtain the relations

E—1 E—1
T QOék_l and By = F o Br_1 (22)

A =
for £ > 1, with solutions
ap~ k™ and  fj ~ kT@eHD (23)

for large k. For 0 < < 1 we obtain the relations

w(k —1) k—1
e S d = _ 24
ag ﬂk+2ak1 an B k_|_25k1 (24)
for £ > 1, with solutions
ap~ k"G and B~k (25)

for large k.

As in Case B, we find that the degree distribution of the network follows a power law,
ng(t) ~ tk=" with v = 3 for all g > 0 as k — oo. As k — oo, the degree distribution is
again dominated by just one vertex type and becomes the same distribution as that for a
network with just one vertex type.

Case E p(t) = Mp(t)/[Ma(t) + Mp(1)].

As in Case D, the new vertex type depends only on the total degree of each type of
vertex. In this case, if the type A vertices have higher fitness, then they will grow faster

and have a greater total degree, but the new vertex will then have a greater probability
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of being type B. If the type B vertices have higher fitness, the new vertex will be type A
with greater probability. As in Case C, this has the effect of balancing out the edges of the
network between the type A and type B vertices.

We again follow the steps in Case A, but with p(t) = Mpg(t)/[Ma(t) + Mp(t)], and get

two equations that can be solved to reveal

20 = 2) + 24/[L = pp + p?]

ma — 26
3(p—1) (%6)
and
20 = 2p) + 24/[1 — p + p?
oy — (1= 2p) [1—p+p ]' @7)
3(1 —p)
Eqgs. (4) and (5) then yield the recursion relations
w(k —1) k—1
_— _ d — — 28
o M(mA+k)+mBak1 o P ket pma +mp 28)
for £ > 1, with solutions
ap~ k™ and B~ kTP (29)
for large k, where A and B are given by
pmy +mp
A=—"——11 and B=pumy+mp+1. (30)
i

As in Case C, the vertex type with higher fitness gains edges at an increasing rate as
the difference in fitness between the two vertex types increases. However, this is not exactly
matched by the addition of an increasing number of vertices and edges of the lower fitness
type as the gap in fitness increases. Instead, it results in a maximum total degree of 4¢/3 for
the vertex type of higher fitness. Since the total number of edges in the network is 2¢, the
vertex type with higher fitness can only possess 1/2 to 2/3 of the total edges in the network.
The number of vertices of each type is also limited in this case, where there is a maximum
of 2t/3 vertices of the lower fitness type, which is 2/3 of the total vertices in the network.

The degree distribution is again dominated by the vertex type with higher fitness, result-

ing in a power law degree distribution, ng(t) ~ tk~7, for the network with v = min(A, B),
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so that 1 < < 3 for large k. When the difference in fitness between the two vertex types
is large, the number of vertices of the higher fitness type is 1/3 of the total for the network.
The vertices of the higher fitness type then grow with an average rate that is four times
higher than that of the vertex type with lower fitness. With ¢/3 vertices of much higher
degree on average than the average for the network, we get a greater spread in the degree
distribution, evident in the lower values obtained for the degree exponent ~.

In summary, we obtained a power law degree distribution, ny(t) ~ tk= for all of the
cases we studied in Model 1. For cases A and C, we found 7 to be in the range 2 < v <3
for large k. For cases B and D we found that v = 3 for large k, and for case E, we found

that for large k, v is found to be in the range 1 <~ < 3.

I1I. MODEL II

In the second model we consider, only one of the vertex types grows with preferential
attachment, while the other grows at a constant rate. Both vertex types have a fitness of
n =1, with A4 =0 and Ag = 1, so that Eq.(1) gives [14(k) = k/M(t) and Ilg(k) = 1/M(?),
where M(t) = M4(t) + Np(t) and Ng(t) and M4(f) have the definitions given in Eqs. (2)
and (3). The number of vertices of type A and type B of degree k at time ¢, ax(t) and by()

now obey the equations

da;t(t) _ Ml(t) [(k — D)ag—1 — kay] + p(t)dx 1 (31)
and
dbc];t(t) - Ml(t) [be—1 = bx] + (1 = p(1))6r (32)

As before, the probability that a new vertex is of type A is p(t), and that it is of type B is
1 —p(t).

We study the case where the new vertex is type A or type B with constant probability,
p(t) = ¢, where 0 < ¢ < 1. From Egs. (2) and (3), substituting p(t) = ¢ in Eqgs. (4) and (5),

gives
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AMa(t) _ Ma) o dN()

di M(1) di

=1—-c (33)

and writing dM4(t)/dt = m4 and dNp(t)/dt = np, we get two equations for m4 and ng

that can be solved to reveal
ma =c++ec and ng=1-—c. (34)

With p(t) = c and M(¢) = (1 + /c)t, and writing ax(t) = at and bi(t) = 5t, Egs. (31) and
(32) yield the recursion relations

k- .
Tkt o1t T o/

A

Br-1 (35)
for £ > 1, with solutions
ap ~ k"I and B~ (24 e) (36)

for large k.
We find that the degree distribution follows a power law, ny(t) ~ tk™7, where v =

24 +/c), and since 0 < ¢ <1, we find 4 to be in the range 2 < v < 3 for large k.
8 g 8 g

IV. DISCUSSION

We investigated networks in which the vertices have one of two possible growth rates,
type A or type B. In our first model (I), both vertex types grow with linear preferential
attachment, but have different fitness, n. We analysed 5 cases, where the new vertex was
type A with probability p(t), and type B with probability 1 —p(¢), with different p(¢) in each
case. We first considered the case where p(t) is a constant and then went on to consider
cases where p(t) depends on the fitnesses and on the total degrees of the two vertex types.
We found that in all the cases we studied, the degree distributions of the networks follow a
power law, ng(t) ~ tk™7.

For the first case, A, where p(t) is constant, we found that the exponent ~ can take

any value in the range 2 < v < 3, depending on the value of p(¢). For the specific case of
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p(t) = 0, there is a single type A vertex that grows much faster than the type B vertices
when it has higher fitness. When the single type A vertex has much higher fitness, y — oo, it
acquires all incoming edges, monopolising the distribution. These results are inkeeping with
empirical data, where most growing networks are found to have degree distributions given
by ng(t) ~ tk~7, with 2 < v < 3. Monopolies are also seen to occur in real systems, where in
business for example, a certain company is the only supplier of a product to many consumers,
or in ecology, where many parasites live off one particular host. However, although p(?) is
constant in our model, we are free to choose it’s value in the range 0 < p(t) < 1, so that the
value of p(t) can be adjusted to obtain the desired exponents for different networks.

In the two cases where the new vertex has a greater probability of being of the type with
higher fitness, B and D, we found that v = 3 for all fitnesses 0 < u < oo. The reason for
this is that the contribution from the vertex type with lower fitness is negligible for large k,
so that the network looks like a network with just one vertex type.

In the two cases where the new vertex has greater probability of being of the type with
lower fitness, C and E, we found that 2 < v < 3 for Case C, when the probability is directly
dependent on fitness, and 1 < v < 3 for Case E, when it is not. In Case C, the gain in
edges of the vertex type with higher fitness is exactly balanced by the addition of more
vertices and edges of the lower fitness type, so that the total degrees of the type A and type
B vertices are equal, M4y = Mp. However, as the gap in fitness between the vertex types
increases, less and less vertices with higher fitness are added to the network so that their
average degree increases. For a very large fitness gap, this results in just the few vertices
with higher fitness having a very large degree and the network again becomes monopolised
by a very small number of vertices. Also, in the rare case that an incoming vertex is of
the higher fitness type, it quickly overtakes many vertices already in the network, acquiring
edges at a much greater rate than its lower fitness counterparts. This behaviour can be
found in many networks, such as the www, where new websites can rapidly acquire links,
overtaking many older websites in a short time [14].

In Case E, the gain in edges of the vertex type with higher fitness is slowed as the
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fitness gap increases, but not exactly balanced by the addition of new vertices and edges
of the lower fitness type. For a very large fitness gap, the vertices of higher fitness grow
with an average fitness that is much higher than that of the vertices of lower fitness. Since
there can not be a very small number of vertices with higher fitness, this does not result
in a few vertices monopolising the degree distribution, but results in a spread in the degree
distribution, giving a power law with exponent v ~ 1. Also, as in Case C, new vertices of
higher fitness can overtake older vertices of lower fitness as observed in some real networks.

Although Model T is a simple network model and does not take into account processes
such as ageing or rewiring, the model successfully incorporates a mechanism to introduce
vertices of different fitness into the network. Rather than randomly adding vertices with
fitnesses taken from a distribution, the fitness of the new vertex is dependent upon the state
of the network at the time that it is introduced. A similar mechanism is found in networks
such as ecosystems, where niches in the environment are filled by different species. As the
environment changes, more of the species that are compatible with the new environment
will appear. The different cases of Model I give different results, but most are consistent
with empirical data.

In our second model (II), only one vertex type grows with preferential attachment, while
the other grows at a constant rate. For this model, we analysed only the case where p(t)
is constant, and found that the degree distribution follows a power law, ny(t) ~ tk~", with
2 < v < 3. Surprisingly, this is the same range we obtained when both vertex types
grew with preferential attachment. This work suggests that the reason why most empirical
measurements of real networks have power law degree distributions with exponent 2 <~ <3

is that the growth rates of vertices in these networks are inhomogeneous.
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