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Abstract
We consider the random sequence z,, = x,,_1 +7yz,, with v > 0, where ¢ = 0,1, ...,n—1 is chosen
randomly from a probability distribution P, (q). When all ¢ are chosen with equal probability, i.e.
P,(q) = 1/n, we obtain an exact solution for the mean < z, > and the divergence of the second
moment < z2 > as functions of n and . For 7 = 1 we examine the divergence of the mean value
of z,, as a function of n, for the random sequences generated by power-law and exponential P, (q)

and for the non-random sequence Pp(q) = d4,3(n—1)-

PACS numbers: 02.50.cw, 05.40.-a, 89.75Hc.
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I. INTRODUCTION

Random sequences form a fundamental part of many models in fields ranging from science
and technology to sociology and economics. From the random walk, models of packet trans-
port on a network to models of income distribution and share price movement, a random
sequence plays some role in the basic model.

Recently there has been much interest in the behaviour of the random Fibonacci series
Fn—l—l =F, £ akF,_, (1)

where the plus or minus sign is taken with equal probability. It has been shown [1, 2] that
there is a critical value of o, o, = 0.703, such that, as n — oo, | F}, | diverges exponentially
when a > a, and decays exponentially to 0 for a < a.. Problems of this type are technically
very similar to a variety of problems in one-dimensional disordered systems [3], such as
the Anderson model of electrons in a metal with impurities. In this paper we consider the
random sequence

Ty = Tp—1 + Yq (2)

with, v > 0 and without loss of generality, o = 1, where ¢ is a random variable chosen
from the integers ¢ = 0,1, ...,n — 1 with probability P,(¢). This is a generalisation of the
sequence produced by P,(¢q) = 1/n and v = 1, which was recently considered in [4]. There
it was shown that asymptotically < z, >~ n~"/*exp(2\/n) as n — oo and that the system
exhibits multiscaling so that the typical behaviour of the sequence will deviate substantially
from the behaviour of the average [4].

In general the mean of the sequence in Eq.(2) exhibits at least two different types of
behaviour. Heuristically speaking, if P,(q) is such that it is dominated by ¢ of order n, then
< xg > will be of order z,,_; and the sequence will grow exponentially. Conversely if P,(q)
is dominated by ¢ of order 1, then z, will be of order zy and < z,, > will grow linearly
in n. Between these two extremes other, more complex, types of behaviour are possible.
In this paper we consider the mean and variance of the sequence generated by a uniform
P,(q), as well as the sequences generated with a power-law and exponential P,(¢), and the
non-random sequence P,(q) = 0q8(n-1)- In the latter cases we find the critical values of the
parameters in these distributions that determine the onset of linear and exponential growth,

as well as determining the behaviour of the sequence between these regions.



II. RANDOM SEQUENCES

In this and the next two sections we consider random sequences in which the random
variable ¢ is chosen from a distribution P,(q) which is seperable. In other words P,(q) =

P(q)/b, where P(q) is independent of n and

b = z Plo). 3)

In sequences of this type the average value of z,,, A, =< x, >, obeys
y n—1
An = An—l + b_ Z P(Q)Aq (4)
For general P(q), when v = 1, multiplying this equation through by b,,, and subtracting the
equivalent expression for n + 1, reveals
bn
An—i—l - 2An + b—An_l = 0. (5)
n+1

There is an interesting connection between Eq.(5) and orthogonal polynomials. It is well

known that the recurrence

fon (@) = fe(@) + apfr-1(x) =0 ar >0, .1 =0, fo=1, (6)

defines a family of symmetric monic polynomials with respect to a positive measure on
the real line [5]. Thus, A4, in Eq.(5) may be viewed as the value of the corresponding
orthogonal polynomial fy(z) with a) = b:ﬁ at x = 2. Moreover, as fr(2) # 0, the measure
will be supported on a subset of [—2,2]. A linear change of variables yields the polnomials
qr(r) = 27F fr(2x) orthogonal on a subset of [—1, 1], satisfying

Qg

41 (@) = 2u(2) + g1 (@) = 0. (7

Thus if we consider the sequence P(q) = 1 and hence b, = n, then we obtain the equation
for A, in [4],
n
App1 — 24, + ——A,_1 =0. 8
+1 + n 1 -t (8)

L1

;5,0), where X is either % or 2 and

The solution of this equation is in general A, = 2"P}(1 5

PMx;a,b) is a Pollaczek polynomial [5]. This is equal to the n'* Laguerre polynomial [6],

L,(—1). Thus the ezact solution for the average of x,, is
< &, >= Ly(—1). 9)

3



As n — oo we recover

<z >~ kin TV exp(2v/n) (10)

with £k, = 1/2y/er ~ 0.1711 [7]. This asymptotic form was obtained in [4] by using the
WKB method [8] on Eq.(8).
Using the same approach, we can easily show that for v # 1 but P(q) = 1 and hence

b, = n, for large n,

v—1 n
Aps1r — (2 A+ ——A,1 = 11

which has an ezact solution < x,, >= L,(—~). Asymptotically, < z, >~ k,n~Yexp(2,/7n).

In [4], it was shown numerically that when P(q) = 1 and v = 1 the average of the

sequence does not characterise its growth, and that the k' moment grows faster than the

r'" moment for all » < k. We can see this analytically by calculating the asymptotic growth

of the 2"¢ moment of the sequence with P(g) = 1 and general v > 0. This can be done by
introducing two averages

n—1
Vp=<az2> and M,= Z < Ty > . (12)

r=0

Using Eq.(2) it is a simple matter to show that V, and M, obey the coupled iterations
4+ 1) Vo1 — 2n+ (v+ D))V + (n+ 29) Voot = 2y(My, — My—y) (13)

and

(n+1)Myp1 — 2n+2y+ 1)My +nMy_y = (n+v+ 1)V, —nV,_1. (14)

These equations can be written in the continuum limit, and then obey the coupled second

order differential equations
(tV($)" = 2y + DV'(t) = y*V (1) = 29M'(1) (15)

and

(EM(1))" = M'(t) = 2yM(2) = (tV(£))" + V(1) + V(). (16)

In the limit ¢ — oo, we can assume that V(t) ~ t®exp(6y/t) and M(t) ~ t*+'2exp(5\/1).

Substituting these forms into Eqs.(15,16) and equating the leading order terms gives

5:\/27(4+7+\/16+72). (17)




When v = 1 we have § = /2(5++/17) ~ 4.27. This compares well with [4], where the
value 0 &~ 4.3 was obtained numerically. Note that, dropping pre-factors, the mean diverges
as exp(2,/7m) and the second moment as exp(d\/n), so that as 0 > 2,/7 for all v, < 22 >
diverges faster than <z, > for all v. As v — 00, § — 2,/7 and as v — 0 then § — 4,/7.

ITII. POWER-LAW P, (q)

Taking
P(g) = (¢+1)° (18)
and v = 1 yields four different classes of behaviour for « > -1, a = -1, =2 < a < —1 and

a < —2. We will deal with these in turn.

A. a>-1

Here we have b, /b,1 =1 — (o +1)/n+ O(1/n?) for large n and hence Eq.(5) becomes

a+1

An+1 - 2An + An,1 = Anfl. (19)

As before, this equation can be solved exactly, this time in terms of generalised Laguerre

polnomials [6]. In particular, A, ~ L% (—(a+1)). Hence as n — oo we have

1
Ap ~ co—srerp{2y/(a+ 1)n} (20)
n=a

with ¢, = (o + 1) N/e=(a4D)/2 /9 /7.

B. a=-1

When o = —1 we have b, /b1 =1 —1/(n+ 1)logn + O(1/n(logn)?) and

1

Api1 —2A,+ A4, 1= ————
i T (n+ 1)logn

A,y (21)
for large n. Using the WKB [8] approximation we find that

A, ~ zp{2

\/_lo o — 1 (22)

logn



C. 2<ax<x-1

When o < —1 we have b, /b, 1 =1— (n+1)*/{(—a)+ O(n*"!') where  is the Riemann

zeta function [9]. Hence for large n Eq.(5) can be rewritten as

n+1)“
An+1 - 2An + Anfl = ﬁflnl (23)
and using the WKB approximation [8] yields
1 ) nl—l—a/?
A, ~ —Fex ) 24
G m} 24
for =2 < a < —1. For @ = —2 the divergent asymptotic behaviour of A, is purely power-law
with
Ay otV (25)

where the exponent 1/2 + 1/4/((2) ~ 1.108 is greater than 1.

D. a<-=-2

When o < —2 then the right hand side of Eq.(23) can be neglected and as n — oo,

A, ~n.

IV. EXPONENTIAL P,(q)

Here we consider P(q) = a?. When a = 1 the solution in Eq.(9) is recovered. When a < 1

then b, — 1/(1 —a) as n — oo and A, =n. When @ > 1 then b, ~ a"/(a — 1) as n — o0

1+\/;r. (26)

and hence

Ay~

V. NON-RANDOM SEQUENCE
Consider the non-random sequence

Tp = Tp—1 + TB(n—1) (27)



where 0 < 3 < 1is fixed. If # = 0 then x,, = n whereas if 3 =1 thenz, =2". For0 < g < 1
we can solve the asymptotics of this sequence by converting Eq.(27) to a continuous first-

order non-local differential equation

dx

i z(ft) (28)

where ¢ is the continuous counterpart of n. By substituting a power series solution for z(t)

into Eq.(28) and solving for the coefficients, we can find

0 trﬁ%r(r—l)

(t) =3

r=0

(29)

r!

For large ¢ this summation is dominated by the term r ~ log(t)/log(1/3) and hence it is

possible to evaluate the summation for large ¢ and show that for large n

T, ~ exp] (30)

2log(%) '
VI. SUMMARY

We have generalised previous studies to model random sequnces with a tunable memory.
We have obtained an exact solution for the mean of the sequence z,, = z,,_; +yx, when ¢ =
0,1,2,...,n — 1 is chosen at random with probability P,(¢) = 1/n. We showed analytically
how the 2" moment < z2 > diverges faster than the mean < z, >. We also considered
more general forms of P,(q), power-law, exponential and the non-random sequence P,(q) =
8g,8(n—1)- We found that these sequences exhibit exponential growth when P,(¢) is dominated
by ¢ ~ n and linear growth when P, (¢) is dominated by ¢ ~ 1. Between these two extremes
an intermediate type of growth occurs. We were able to calculate this growth and determine
the boundaries of the different types of behaviour, which are summarised in Table 1. Though
the results in these sections were obtained for v = 1, the critical values of the parameters at
the boundaries of the different regimes are valid for all v > 0, a general v merely changes
the form of the divergence in the intermediate regime.

This sequence, although much simpler than the random Fibonacci sequence studied in
[1, 2], as no negative numbers are allowed, displays a surprising rich phase space and a wide

range of different types of behaviour.
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TABLE I: Summary of Results

Linear |Intermediate|Exponential
Py(q) ~(g+1)¥a< -2 a>-2 -
P,(q) ~ a a<1 a=1 a>1
Po(q) = 0gpm-1y| B=0| 0<B<1 | B=1
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