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Abstract—Robust stability serves as an important regulation
mechanism in system biology and synthetic biology. In this paper,
the robust stability analysis problem is investigated for a class
of nonlinear delayed genetic regulatory networks with parameter
uncertainties and stochastic perturbations. The nonlinear function
describing the feedback regulation satisfies the sector condition,
the time delays exist in both translation and feedback regula-
tion processes, and the state-dependent Brownian motions are
introduced to reflect the inherent intrinsic and extrinsic noise
perturbations. The purpose of the addressed stability analysis
problem is to establish some easy-to-verify conditions under which
the dynamics of the true concentrations of the messenger ribonu-
cleic acid (mRNA) and protein is asymptotically stable irrespec-
tive of the norm-bounded modeling errors. By utilizing a new
Lyapunov functional based on the idea of “delay fractioning”, we
employ the linear matrix inequality (LMI) technique to derive
delay-dependent sufficient conditions ensuring the robust stability
of the gene regulatory networks. Note that the obtained results
are formulated in terms of LMIs that can easily be solved using
standard software packages. Simulation examples are exploited to
illustrate the effectiveness of the proposed design procedures.

Index Terms—Genetic regulatory networks (GRNs), linear
matrix inequality (LMI), Lyapunov–Krasovskii functional, robust
stability, stochastic perturbation, time delays, uncertain system.

I. INTRODUCTION

THE PAST few years have witnessed the significant
progress in the research area of gene engineering and

other biological sciences. The mechanisms that have evolved
to regulate the gene expression are known as genetic regulatory
networks (GRNs). With the study of GRNs, scientists would be
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able to explain the interactions between genes and protein that
form complex biological systems. It is of great importance to
investigate and understand the gene regulatory process and the
dynamic behaviors of the GRNs in living organisms [1], [2],
[4], [7], [27].

The modeling of GRNs is largely dependent on powerful
tools of mathematics theory. In general, the GRNs can be
described by two types of models, i.e., the discrete model (such
as Boolean networks) and the continuous model (such as the
differential equation model) [1], [7], [8], [21], [32]. Recently,
among all the proposed GRN models, the differential equation
models have received an increasing amount of research
attention since the variables in gene dynamics are usually the
concentrations of gene products (i.e., messenger ribonucleic
acids (mRNAs) and proteins), which possess continuous values
of the genetic regulatory systems (see [2], [3], [13], [14], [20],
[27], [28], and the references therein). Our present research
further examines the continuous GRN models with both time
delays and norm-bounded parameter uncertainties.

It is well known that the existence of time delays is ubiqui-
tous in biological, physical, chemical, and electrical dynamical
systems [9]. In biological systems, particularly GRNs, time
delays are unavoidable primarily due to the finite speed in
the slow process of transcription, translation, and translocation.
It has been shown in [13] and [14] that the time delays in
GRNs may play an important role in the predictions of the
dynamics of the mRNA and protein concentrations. Moreover,
given the facts that GRNs are modeled from real-world gene
expression time-series data, and that there are certain limi-
tations with the current experimental techniques, it has now
been well recognized that the modeling errors and parameter
fluctuations are inevitable, which may cause poor performance
or even instability of real genetic networks [2], [4], [10]. It
should be pointed out that the system parameters identified
from experimental data may form an unknown but bounded
time-varying function (see [20] and [30]). When investigating
the dynamical behaviors of GRNs, the parameter uncertainties
(also called variations or fluctuations) should also be taken into
account, and therefore, the stability robustness issue for GRNs
emerges as a research topic of great importance.

On the other hand, the modeling of GRNs should be con-
ducted in a way to interpret vast amounts of experimental
data and the extracted functional information from observation
data. Given the fact that biology networks or genetic networks
are always subject to random fluctuations [1], [4], [18], [22],

1083-4419/$26.00 © 2009 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on February 5, 2010 at 04:29 from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

[23], it is vitally important to consider the random effects
including both the intrinsic and extrinsic noise perturbations
[1], [14], [27], [29]. Both the modeling error and the stochastic
disturbances could cause instability [29] of the networks and
make it difficult to know the true dynamics of the network
state. Therefore, an interesting problem of biological signif-
icance is to investigate the robust stochastic stability in the
presence of time delays, parameter uncertainties, and stochastic
disturbances for the addressed GRNs, which give rise to another
motivation for the present research.

Although the robust stability of GRNs has stirred some initial
research interests [2], [4], [20], one of the main issues aroused
here is how to reduce the possible conservatism induced by
the introduction of the Lyapunov functional when dealing with
time delays, which leaves much room for further research by
using the latest analysis techniques. Recently, the so-called
“delay fractioning” approach, which is arguably the up-to-date
delay-dependence analysis method, has independently been
originated from [12] and [19] and further developed in [16],
[17], [26], [33], and [35], and shown to lead to much less
conservative results than most existing literature. It is, therefore,
the main purpose of this paper to adopt the delay-fractioning ap-
proach for achieving a less conservative delay-dependence con-
dition to guarantee the robust stability of the addressed GRNs.

In this paper, we are concerned with the robust stability
analysis problem for a class of uncertain GRNs with and
without noise perturbations, where the time delays exist in both
the translation process and the feedback regulation process,
and the nonlinear function describing the feedback regulation
is assumed to satisfy the sector condition. By utilizing a novel
Lyapunov–Krasovskii functional and the linear matrix inequal-
ity (LMI) technique, sufficient delay-dependent conditions en-
suring the robust stability of the gene regulatory model are
established. The obtained results are formulated in the form
of LMIs that are easily solvable by using standard software
packages. Simulation examples with three component genetic
networks are used to illustrate the effectiveness of the developed
theoretical results.

Notations: The notations used throughout this paper are
fairly standard. Rn and Rn×m denote the n-dimensional
Euclidean space and the set of n × m real matrices, re-
spectively, and | · | is the Euclidean norm on Rn. P > 0
means that matrix P is real, symmetric, and positive definite.
I and 0 denote the identity matrix and the zero matrix with
compatible dimensions, respectively, diag{· · ·} stands for a
block-diagonal matrix, and col{· · ·} denotes a matrix column
with blocks given by the matrices in {· · ·}. The superscript
“T ” stands for matrix transposition, and the asterisk “∗” in
a matrix is used to represent the term that is induced by
symmetry. The Kronecker product of matrices Q ∈ R

m×n and
R ∈ R

p×q is a matrix in R
mp×nq and denoted as Q ⊗ R.

Moreover, let (Ω,F , {Ft}t≥0,P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual condi-
tions (i.e., the filtration contains all P-null sets and is right
continuous). Denote by Lp

F0
([−h, 0]; Rn) the family of all

F0-measurable C([−h, 0]; Rn)-valued random variables ξ =
{ξ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0 E{|ξ(θ)|p} < ∞,
where E{·} stands for the mathematical expectation operator

with respect to the given probability measure P . Matrix di-
mensions, if they are not explicitly stated, are assumed to be
compatible for algebraic operations.

II. MODEL DESCRIPTION AND PRELIMINARIES

In this paper, we consider a GRN with time delays existing
in both the translation process and the feedback regulation
process, which can be described by the following differential
equations:

Σ :

⎧⎨
⎩

dmi(t)
dt = −aimi(t) +

n∑
j=1

bijfj (pj(t − σ)) + ηi

dpi(t)
dt = −cipi(t) + dimi(t − τ)

(1)

where i = 1, 2, . . . , n, mi(t), pi(t) ∈ R denote, respectively,
the concentrations of mRNA and protein of the ith gene at time
t, ai and ci are the degradation rates of mRNA and protein
of the ith gene, respectively, di represents the translation rate,
fj(pj(s)) denotes the feedback regulation of the protein on
the transcription, which is generally a nonlinear function with
monotonicity and satisfies certain conditions given later, the
two positive scalars τ and σ denote, respectively, the translation
time delay and the feedback regulation delay, ηi is the base
transcriptional rate of the repressor of gene i, and the matrix
B = (bij) ∈ Rn×n is defined as

bij :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0, if transcription factor j
is an activator of gene i

= 0, if there is no link from gene i to gene j
< 0, if transcription factor j

is a repressor of gene i

. (2)

For simplicity, the GRN Σ can be rewritten in the following
compact matrix form:

Σ′ :

{
dm(t)

dt = −Am(t) + Bf (p(t − σ)) + η
dp(t)

dt = −Cp(t) + Dm(t − τ)
(3)

where m (t) = col {m1 (t), m2 (t), . . . ,mn (t)}, p (t) =
col{p1(t), p2(t), . . . , pn(t)}, A = diag{a1, a2, . . . , an}, C =
diag{c1, c2, . . . , cn}, D = diag{d1, d2, . . . , dn}, η = col{η1,
η2, . . . , ηn}, and f(p(t − σ)) = col{f1(p1(t − σ)), f2(p2(t −
σ)), . . . , fn(pn(t − σ))} ∈ Rn.

The initial condition of the GRN Σ′ is given by

m(t) = φ(t) p(t) = ϕ(t) − 	 ≤ t ≤ 0 	
Δ= max{τ, σ}

where φ(·) and ϕ(·) are continuous functions.
Let col{m∗, p∗} ∈ R2n be an equilibrium point of Σ′, which

is a solution of the following nonlinear equations:{
−Am + Bf(p) + η = 0
−Cp + Dm = 0

. (4)

In the following, let us shift the unknown equilibrium point
col{m∗, p∗} to the origin by defining

x = m − m∗ y = p − p∗ (5)
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then, the system (Σ′) becomes

Σ′′ :

{
dx(t)

dt = −Ax(t) + Bg (y(t − σ))
dy(t)

dt = −Cy(t) + Dx(t − τ)
(6)

where g(y(t))=col{g1(y1(t)), g2(y2(t)), . . . , gn(yn(t))}, with
the ith component being gi(yi(t)) = fi(yi(t) + p∗i ) − fi(p∗i ).

As discussed in Section I, the GRN model parameters iden-
tified from real-world time series are largely dependent on the
selection of fixed points, and the relevant constants vary with
the experiment data. Therefore, we further take the structure
uncertainties into account and have the following more gener-
alized model:

Σ′′′ :

{
dx(t)

dt =− (A+ΔA(t))x(t)+(B+ΔB(t)) g(y(t−σ))
dy(t)

dt =− (C+ΔC(t)) y(t)+(D+ΔD(t)) x(t−τ)
.

(7)

Here, ΔA(t), ΔB(t), ΔC(t), and ΔD(t) are unknown ma-
trices with appropriate dimensions denoting the uncertain pa-
rameters, which satisfy the following admissible uncertainty
condition:[

ΔA(t) ΔB(t)
ΔC(t) ΔD(t)

]
=
[

M1

M2

]
H(t)[N1 N2] (8)

where Mi and Ni (i = 1, 2) are known real constant matrices,
and H(t) is a time-varying and unknown Lebesgue-measurable
matrix-valued function subjected to the following condition:

HT (t)H(t) ≤ I ∀t > 0. (9)

Remark 1: In practice, this kind of norm-bounded uncer-
tainty described by (8) and (9) is frequently encountered in
many engineering problems of robust analysis of uncertain
dynamic systems (see, for instance, [30] and the references
therein), which may result from the variation of operating
points, aging of devices, identification errors, etc. Many prac-
tical systems possess parameter uncertainties that can be either
exactly modeled or over bounded by (9).

For the sake of convenience, we denote the following here-
after:

A(t) = A + ΔA(t) B(t) = B + ΔB(t)
C(t) = C + ΔC(t) D(t) = D + ΔD(t).

Assumption 1: The nonlinear function fi(·) is continuous
and bounded and satisfies the following inequality:

0 ≤ fj(u) − fj(v)
u − v

≤ κj , j = 1, 2, . . . , n (10)

for all u, v ∈ R, u 
= v.
Remark 2: It follows from Assumption 1 that the non-

linear feedback regulation function gj(·) in system Σ′′′ satisfies
the sector-like condition, i.e., 0 ≤ gi(s)/s ≤ κi ∀s 
= 0, and
gi(0) = 0, i = 1, 2, . . . , n, which is equivalent to gT (y)[g(y) −
Ky] ≤ 0 with K = diag{κ1, κ2, . . . , κn}. Moreover, it should
be pointed out that this sector-like condition described by (10)
is more general than those that have been used in [13], [14], and
[24], where the derivative for each component of the regulatory

function is assumed to be the same, which is unrealistic. In our
description, such a restriction is removed.

Remark 3: Usually, various fixed-point theorems, such as
Brouwer’s fixed-point theorem, Schauder’s fixed-point theo-
rem, and the contraction mapping principle, can be exploited
to prove the existence of equilibrium points of the addressed
GRNs. For example, under Assumption 1, it is not difficult
to ensure the existence of an equilibrium point of the system
[see (7)] by using Brouwer’s fixed-point theorem. In the se-
quel, we shall analyze the globally asymptotic stability of the
equilibrium point, which in turn implies the uniqueness of the
equilibrium point.

Before stating the main results, we introduce the following
useful definitions and lemmas.

Definition 1: Let the equilibrium point of the nominal sys-
tem of Σ′′ be stable in the sense of Lyapunov. The nominal
system of Σ′′ is said to be globally asymptotically stable if

lim
t→+∞

{
|m(t) − m∗|2 + |p(t) − p∗|2

}
= 0.

Definition 2: The uncertain system Σ′′′ is said to be globally
asymptotically robustly stable if system Σ′′ is globally asymp-
totically stable for all admissible uncertainties.

Lemma 1 (Schur’s Complement) [34]: Given any real matri-
ces Ω1, Ω2, and Ω3, where ΩT

1 = Ω1, and Ω2 > 0, then

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0

if and only if [
Ω1 ΩT

3

Ω3 −Ω2

]
< 0.

Lemma 2 [31]: Assume that D,E are real matrices with
appropriate dimensions, and H(t) is a real matrix function
satisfying HT (t)H(t) ≤ I . Then, for any positive scalar ε, the
following inequality holds:

DH(t)E + (DH(t)E)T ≤ εEET + ε−1DT D.

Lemma 3 (Jensen’s Inequality) [6]: Given a positive-definite
matrix P ∈ Rn×n and a scalar π > 0 for any vector x(t) =
col{x1(t), x2(t), . . . , xn(t)}, we have

t∫
t−π

ẋT (ω)P ẋ(ω)dω

≥ 1
π

[x(t) − x(t − π)]T P [x(t) − x(t − π)] . (11)

III. MAIN RESULTS

In this section, we aim to establish the general robust stability
results for the uncertain GRN with and without noise pertur-
bations. A Lyapunov functional method is developed based on
the idea of “delay fractioning” proposed in the literature. To
estimate the upper bound of the time delays for stability, we
partition τ and σ into several equal components, that is, τ =
Σr

i=1τi with τi = τ/r, and σ = Σr
i=1σi with σi = σ/r, where r
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is a positive integer denoting the number of fractions. Our main
results are delay dependent, which are formulated in terms of
LMIs to ensure the robustly asymptotic stability of the proposed
uncertain GRNs with and without noise perturbations.

A. Robust Stability Analysis of GRNs
Without Noise Perturbations

In this section, a theorem is presented to give the stability
condition for uncertain GRNs Σ′′′ without noise perturbations.
Some corollaries are then obtained for the special case when
there are no parameter uncertainties.

Theorem 1: Given any integer r ≥ 1, the uncertain system
Σ′′′ is globally asymptotically robustly stable with time delays
τ ∈ (0, h1], σ ∈ (0, h2] if there exist matrices Pi > 0, Si > 0,
and Γ = diag{γ1, γ2, . . . , γn} > 0, any matrices X

(i)
j , Y

(i)
j ,

and Z
(i)
j (i = 1, 2 and j = 1, . . . , r), and positive scalars εk

(k = 1, 2, . . . , 8) satisfying[
X

(i)
j Y

(i)
j

∗ Z
(i)
j

]
> 0 Ξ =

[
Ξ1 Ξ2

ΞT
2 Ξ3

]
< 0 (12)

where Ξ1 = Σ2
k=1Ξ1k, Ξ2 = ΩT

1 Φ, and

Ξ3 = − diag{ε1In, ε2In, ε5In, ε6In, ε3In,

ε4In, ε7In, ε8In}
Ξ11 = WT

P1
P̃1WP1 + WT

P2
P̃2WP2 + WT

Γ Γ̃WΓ + ΛT
P1

P̃1ΛP1

+ ΛT
P2

P̃2ΛP2 + ΩT
2 ΨΩ2

Ξ12 = UT
1 XU1 − UT

2 XU2 + V T
1 YV1 − V T

2 YV2

+ QT
1 S1Q1 + QT

2 S2Q2

WP1 =
[
−A 0n,(4r+3)n B

In 0n,4(r+1)n

]

WP2 =
[

0n,rn D 0n,(r+1)n −C 0n,2(r+1)n

0n,2(r+1)n In 0n,2(r+1)n

]

P̃i =
[

0 Pi

Pi 0

]
Γ̃ =

[
0 Γ
Γ −Γ

]

WΓ =
[

0n,(3r+2)n

√
2

2 K 0n,(r+2)n

0n,4(r+1)n

√
2In

]

ΛP1 =
[
−A 0n,rn −In 0n,(3r+2)n B

0n,(r+1)n In 0n,3(r+1)n

]

ΛP2 =
[

0n,rnD 0n,(r+1)n −C 0n,rn −In 0n,(r+1)n

0n,3(r+1)n In 0n,(r+1)n

]

U1 =
[

Irn 0rn,(3r+5)n

0rn,(r+1)n Irn 0rn,2(r+2)n

]

U2 =
[

0rn,n Irn 0rn,(3r+4)n

0rn,(r+2)n Irn 0rn,(2r+3)n

]

V1 =
[

0rn,2(r+1)n Irn 0rn,(r+3)n

0rn,3(r+1)n Irn 0rn,2n

]

V2 =
[

0rn,(2r+3)n Irn 0rn,(r+2)n

0rn,(3r+4)n Irn 0rn,n

]

X =
[

X(1) Y (1)

∗ Z(1)

]
Y =

[
X(2) Y (2)

∗ Z(2)

]

Q1 =
[

Irn 0rn,(3r+5)n

0rn,n Irn 0rn,(3r+4)n

]

Q2 =
[

0rn,(2r+2)n Irn 0rn,(r+3)n

0rn,(2r+3)n Irn 0rn,(r+2)n

]

Si =
[

S(i) −S(i)

∗ S(i)

]

Ω1 =

⎡
⎢⎣

In 0n,4(r+1)n

0n,(r+1)n In 0n,3(r+1)n

0n,2(r+1)n In 0n,2(r+1)n

0n,3(r+1)n In 0n,(r+1)n

⎤
⎥⎦

Ω2 =

⎡
⎢⎢⎢⎢⎣

In 0n,4(r+1)n

0n,rn In 0n,(3r+4)n

0n,(r+1)n In 0n,(3r+3)n

0n,2(r+1)n In 0n,(2r+2)n

0n,3(r+1)n In 0n,(r+1)n

0n,4(r+1)n In

⎤
⎥⎥⎥⎥⎦

Φ =

⎡
⎢⎣

P1M1 P1M1 0n,6n

0n,2n P1M1 P1M1 0n,4n

0n,4n P2M2 P2M2 0n,2n

0n,6n P2M2 P2M2

⎤
⎥⎦

Ψ = diag
{
(ε1 + ε5)NT

1 N1, (ε2 + ε4)NT
2 N2, h1S1,

(ε3 + ε7)NT
1 N1, h2S2, (ε2 + ε6)NT

2 N2

}
X(i) = diag

{
X

(i)
1 ,X

(i)
2 , . . . , X(i)

r

}
Y (i) = diag

{
Y

(i)
1 , Y

(i)
2 , . . . , Y (i)

r

}
Z(i) = diag

{
Z

(i)
1 , Z

(i)
2 , . . . , Z(i)

r

}
S(i) = − r

hi
(Ir ⊗ Si), i = 1, 2.

Proof: Based on Lemma 1, since Ξ3 < 0, (12) is equiva-
lent to Ξ1 − Ξ2Ξ−1

3 ΞT
2 < 0. To prove the theorem, we choose

a novel Lyapunov–Krasovskii functional candidate as follows:

V (t) = V1(t) + V2(t) + V3(t) (13)

where

V1(t) = xT (t)P1x(t)

+
r∑

k=1

t− k−1
r τ∫

t− k
r τ

[
x(s)
ẋ(s)

]T [
X

(1)
k Y

(1)
k

∗ Z
(1)
k

] [
x(s)
ẋ(s)

]
ds

V2(t) = yT (t)P2y(t)

+
r∑

k=1

t− k−1
r σ∫

t− k
r σ

[
y(s)
ẏ(s)

]T [
X

(2)
k Y

(2)
k

∗ Z
(2)
k

] [
y(s)
ẏ(s)

]
ds

V3(t) =

0∫
−τ

t∫
t+β

ẋT (α)S1ẋ(α)dαdβ

+

0∫
−σ

t∫
t+ν

ẏT (μ)S2ẏ(μ)dμdν

with r ≥ 1 (number of fractions) being an integer.
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Considering the derivatives of Vi(t) (i = 1, 2, 3) along the
trajectory of system Σ′′′, we have

V̇1(t)= 2xT(t)P1ẋ(t)+
[

x(t)
ẋ(t)

]T[
X

(1)
1 Y

(1)
1

∗ Z
(1)
1

][
x(t)
ẋ(t)

]

−
[

x(t − τ)
ẋ(t − τ)

]T[
X

(1)
r Y

(1)
r

∗ Z
(1)
r

][
x(t − τ)
ẋ(t − τ)

]

−
r−1∑
l=1

([
x
(
t − l

r τ
)

ẋ
(
t − l

r τ
) ]T

[
X

(1)
l − X

(1)
l+1 Y

(1)
l − Y

(1)
l+1

∗ Z
(1)
l − Z

(1)
l+1

]

×
[

x
(
t − l

r τ
)

ẋ
(
t − l

r τ
) ]
)

= 2xT (t)P1 [−A(t)x(t)+B(t)g (y(t−σ))]+
[
X (t)
Ẋ (t)

]T

×
[

X(1) Y (1)

∗ Z(1)

][
X (t)
Ẋ (t)

]
−
[ X

(
t − τ

r

)
Ẋ
(
t − τ

r

) ]T

×
[

X(1) Y (1)

∗ Z(1)

][X (
t − τ

r

)
Ẋ
(
t − τ

r

) ] (14)

V̇2(t)= 2yT (t)P2ẏ(t)+
[

y(t)
ẏ(t)

]T[
X

(2)
1 Y

(2)
1

∗ Z
(2)
1

][
y(t)
ẏ(t)

]

−
[

y(t − σ)
ẏ(t−σ)

]T[
X

(2)
r Y

(2)
r

∗ Z
(2)
r

][
y(t−σ)
ẏ(t−σ)

]

−
r−1∑
l=1

([
y
(
t− l

rσ
)

ẏ
(
t− l

rσ
) ]T

[
X

(2)
l −X

(2)
l+1 Y

(2)
l −Y

(2)
l+1

∗ Z
(2)
l −Z

(2)
l+1

]

×
[

y
(
t− l

r σ
)

ẏ
(
t− l

r σ
)]
)

= 2yT (t)P2 [−C(t)y(t)+D(t)x(t−τ)]+
[
Y(t)
Ẏ(t)

]T

×
[

X(2) Y (2)

∗ Z(2)

][
Y(t)
Ẏ(t)

]
−
[Y (

t− σ
r

)
Ẏ
(
t− σ

r

) ]T

×
[

X(2) Y (2)

∗ Z(2)

][Y (
t− σ

r

)
Ẏ
(
t− σ

r

) ] (15)

V̇3(t)= τ ẋT (t)S1ẋ(t) + σẏT (t)S2ẏ(t)

−
t∫

t−τ

ẋT (α)S1ẋ(α)dα

−
t∫

t−σ

ẏT (μ)S2ẏ(μ)dμ

≤h1ẋ
T (t)S1ẋ(t) + h2ẏ

T (t)S2ẏ(t)

−
r∑

k=1

t− k−1
r τ∫

t− k
r τ

ẋT (α)S1ẋ(α)dα

−
r∑

k=1

t− k−1
r σ∫

t− k
r σ

ẏT (μ)S2ẏ(μ)dμ (16)

where X (t)=col{x(t), x(t−(1/r)τ), . . . , x(t−((r−1)/r)τ)},
and Y(t) = col{y(t), y(t−(1/r)σ), . . . , y(t−((r−1)/r)σ)}.

From Lemma 3, for k = 1, 2, . . . , r, it readily follows that

−
t− k−1

r τ∫
t− k

r τ

ẋT (α)S1ẋ(α)dα

≤ − r

h1

[
x

(
t − k − 1

r
τ

)
− x

(
t − k

r
τ

)]T

S1

×
[
x

(
t − k − 1

r
τ

)
− x

(
t − k

r
τ

)]
;

−
t− k−1

r σ∫
t− k

r σ

ẏT (μ)S2ẏ(μ)dμ

≤ − r

h2

[
y

(
t − k − 1

r
σ

)
− y

(
t − k

r
σ

)]T

S2

×
[
y

(
t − k − 1

r
σ

)
− y

(
t − k

r
σ

)]

and then

−
r∑

k=1

t− k−1
r τ∫

t− k
r τ

ẋT (α)S1ẋ(α)dα

≤X T (t)S(1)X (t) + X T
(
t − τ

r

)
S(1)X

(
t − τ

r

)
− 2X T (t)S(1)X

(
t − τ

r

)
(17)

−
r∑

k=1

t− k−1
r σ∫

t− k
r σ

ẏT (μ)S2ẏ(μ)dμ

≤YT (t)S(2)Y(t) + YT
(
t − σ

r

)
S(2)Y

(
t − σ

r

)
− 2YT (t)S(2)Y

(
t − σ

r

)
(18)

where S(i) = −(r/hi)(Ir ⊗ Si), i = 1, 2.
From the sector condition in Assumption 1, for any scalar

γj > 0, one can see that

−2
n∑

j=1

γjgj (yj(t − σ)) [gj(yj (t − σ)) − κiyj(t − σ)] ≥ 0

which is equivalent to

2gT (y(t − σ)) ΓKy(t − σ)

−2gT (y(t − σ)) Γg (y(t − σ)) ≤ 0 (19)

where Γ = diag{γ1, γ2, . . . , γn}.
In view of (7), we obtain

ẋT (t)P1 [−A(t)x(t) + B(t)g (y(t − σ)) − ẋ(t)] = 0 (20)

ẏT (t)P2 [−C(t)y(t) + D(t)x(t − τ) − ẏ(t)] = 0. (21)
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Using (8), (9), and Lemma 2, for positive scalars εi > 0 (i =
1, 2, . . . , 8), we have

− 2xT (t)P1ΔA(t)x(t)
≤ xT (t)

[
ε−1
1 P1M1M

T
1 P1 + ε1N

T
1 N1

]
x(t) (22)

2xT (t)P1ΔB(t)g (y(t − σ))
≤ ε−1

2 xT (t)P1M1M
T
1 P1x(t) + ε2g

T (y(t − σ))
× NT

2 N2g (y(t − σ)) (23)

− 2yT (t)P2ΔC(t)y(t)
≤ yT (t)

[
ε−1
3 P2M2M

T
2 P2 + ε3N

T
1 N1

]
y(t) (24)

2yT (t)P2ΔD(t)x(t − τ)
≤ ε−1

4 yT (t)P2M2M
T
2 P2y(t) + ε4x

T (t − τ)
× NT

2 N2x(t − τ) (25)

and similarly

−2ẋT (t)P1ΔA(t)x(t) ≤ ε−1
5 ẋT (t)P1M1M

T
1 P1ẋ(t)

+ ε5x
T (t)NT

1 N1x(t) (26)

2ẋT (t)P1ΔB(t)g (y(t − σ)) ≤ ε−1
6 ẋT (t)P1M1M

T
1 P1ẋ(t)

+ ε6g
T (y(t − σ))

× NT
2 N2g (y(t − σ)) (27)

−2ẏT (t)P2ΔC(t)y(t) ≤ ε−1
7 ẏT (t)P2M2M

T
2 P2ẏ(t)

+ ε7y
T (t)NT

1 N1y(t) (28)

2ẏT (t)P2ΔD(t)x(t − τ) ≤ ε−1
8 ẏT (t)P2M2M

T
2 P2ẏ(t)

+ ε8x
T (t − τ)

× NT
2 N2x(t − τ). (29)

Now, it follows from (14)–(29) and Lemma 1 that

V̇ (t) ≤ ξT (t)
(
Ξ1 − Ξ2Ξ−1

3 ΞT
2

)
ξ(t) (30)

where ξ(t) = col{X (t), x(t − τ), Ẋ (t), ẋ(t − τ),Y(t), y(t −
σ), Ẏ(t), ẏ(t − σ), g(y(t − σ))}, and Ξi (i = 1, 2, 3) is defined
in (12).

Furthermore, the condition in (12) indicates that there exists
a positive scalar λ such that

V̇ (t) ≤ −λ
(
|x(t)|2 + |y(t)|2

)
which implies from the Lyapunov stability theory that the GRN
in (7) is robustly globally asymptotically stable. Hence, the
proof is completed. �

For the nominal system Σ′′ without parameter uncertainties,
according to Theorem 1, it is not difficult to establish the fol-
lowing sufficient condition on the globally asymptotic stability.

Corollary 1: Given any integer r ≥ 1, the nominal sys-
tem of genetic networks Σ′′′ with time delays τ ∈ (0, h1]
and σ ∈ (0, h2] is globally asymptotically stable if there exist
matrices Pi > 0, Si > 0, Γ = diag{γ1, γ2, . . . , γn} > 0, and[

X
(i)
j Y

(i)
j

∗ Z
(i)
j

]
> 0 (i = 1, 2 and j = 1, . . . , r) satisfying

Ξ̃1 = Ξ̃11 + Ξ12 < 0 (31)

where

Ξ̃11 = WT
P1

P̃1WP1 + WT
P2

P̃2WP2 + WT
Γ Γ̃WΓ

+ ΛT
P1

P̃1ΛP1 + ΛT
P2

P̃2ΛP2 + Ω̃T
2 Ψ̃Ω̃2

Ω̃2 =
[

0n,(r+1)n In 0n,3(r+1)n

0n,3(r+1)n In 0n,(r+1)n

]

Ψ̃ = diag{h1S1, h2S2}

and the other symbols have the same meaning as those defined
in Theorem 1.

B. Robust Stability Analysis of GRNs With Noise Perturbations

It is now well known that the intracellular and extracellular
noise perturbations are unavoidable during the modeling of
genetic network models. Therefore, it would be interesting
to consider the dynamics for the genetic networks with both
parameter fluctuations and stochastic disturbances, and stability
analysis is obviously one of the most important problems. In
this section, by means of stochastic analysis theory, the globally
robustly asymptotic stability conditions in the mean-square
sense are obtained for the addressed uncertain stochastic GRNs.

Let us consider the GRNs with both parameter uncertainties
and noise perturbations described by the following stochastic
differential equations:

⎧⎪⎨
⎪⎩

dx(t) = [−A(t)x(t) + B(t)g (y(t − σ))] dt
+ ρ (t, x(t), y(t − σ)) dω1(t)

dy(t) = [−C(t)y(t) + D(t)x(t − τ)] dt
+ ρ (t, y(t), x(t − τ)) dω2(t)

(32)

where ω1(t) and ω2(t) are mutually uncorrelated one di-
mensional Brownian motions satisfying E{dωi(t)} = 0 and
E{dω2

i (t)} = dt (i = 1, 2). Furthermore, ρ(t, x(t), y(t − σ))
and ρ(t, y(t), x(t − τ)) are the noise intensity functions.

Assumption 2: There exist matrices U ≥ 0 and V ≥ 0
such that

ρT (t, u, v)ρ(t, u, v) ≤ uT
Uu + vT

Vv (33)

holds for all u, v ∈ Rn, t > 0.
The initial condition associated with the networks in (32) is

given as follows:

x(t) = φω(t) y(t) = ϕω(t) − 	 ≤ t ≤ 0

where 	
Δ= max{τ, σ}; φω(t), ϕω(t) ∈ L2

F ([−	, 0], Rn),
and L2

F ([−	, 0], Rn) denotes the family of all F0-
measurable C([−	, 0], Rn)-valued random variables satisfying
sups∈[−	,0] E{‖φω(s)‖2}<∞, sups∈[−	,0] E{‖ϕω(s)‖2}<∞.

We are now in a position to analyze the problem of globally
robust stability in the mean square sense for uncertain stochastic
GRNs [see (32)] by using the theory of stochastic functional
differential equations. We aim to establish criteria that ensure
the solvability of the robust mean-square stability problem.

Theorem 2: Under Assumptions 1 and 2, for a given an
integer r ≥ 1, the genetic network in (32) with time delays
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τ ∈ (0, h1] and σ ∈ (0, h2] is robustly asymptotically mean-
square stable if there exist positive definite matrices Pi, Ri, Si,
Q

(β)
α , and Γ = diag{γ1, γ2, . . . , γn}, matrices Mα, Nα, and

Ti, and positive constants �i and εj (i = 1, 2; α = 1, 2, . . . , r;
β = 1, 2, 3; j = 1, 2, . . . , 8) such that the following LMIs hold:

Pi + hiRi ≤ �iI (i = 1, 2) (34)

Ξ =

⎡
⎣Ξ1 Ξ2 Ξ3

∗ Ξ4 0
∗ ∗ Ξ5

⎤
⎦ < 0 (35)

where

Ξ1 = QT
j ΛjQj (j = 1, 2, 3, 4)

Ξ2 = WT Ω

Ξ3 = ΘT Φ

Ξ4 = diag
{
− r

h1
Ir ⊗ S1, −

r

h2
Ir ⊗ S2, −Ir ⊗ R1,

− Ir ⊗ R2

}

Ξ5 = diag{−ε5In, −ε6In, −ε1In, −ε2In, −ε7In,

− ε8In, −ε3In, −ε4In}

Q1 =
[

Irn 0rn,(2r+5)n

0rn,n Irn 0rn,(2r+4)n

]

Q2 =
[

0rn,(r+2)n Irn 0rn,(r+3)n

0rn,(r+3)n Irn 0rn,(r+2)n

]

Q3 =

⎡
⎢⎣

0rn,(r+2)n Irn 0rn,(r+3)n

0rn,(2r+4)n Irn 0rn,n

0rn,(2r+5)n Irn

⎤
⎥⎦

Λ1 =
[

Q1 + M + MT −M
∗ −Q1

]

Λ2 =
[

Q2 + N + N T −N
∗ −Q2

]

Λ3 =

⎡
⎣ 0 Ir ⊗ KT ΓT 0
∗ Q3 − Ir ⊗ (Γ + ΓT ) 0
∗ ∗ −Q3

⎤
⎦

Q4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In 0n,(3r+4)n

0n,rn In 0n,(2r+4)n

0n,(r+1)n In 0n,(2r+3)n

0n,(r+2)n In 0n,(2r+2)n

0n,2(r+1)n In 0n,(r+2)n

0n,(2r+3)n In 0n,(r+1)n

0n,(2r+4)n In 0n,rn

0n,(3r+4)n In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W =

⎡
⎢⎣

Irn 0rn,(2r+5)n

0rn,(r+2)n Irn 0rn,(r+3)n

Irn 0rn,(2r+5)n

0rn,(r+2)n Irn 0rn,(r+3)n

⎤
⎥⎦

Θ =

⎡
⎢⎣

In 0n,(3r+4)n

0n,(r+1)n In 0n,(2r+3)n

0n,(r+2)n In 0n,(2r+2)n

0n,(2r+3)n In 0n,(r+1)n

⎤
⎥⎦

Φ =

⎡
⎢⎣

P1M1 P1M1 0n,6n

0n,2n T1M1 T1M1 0n,4n

0n,4n P2M2 P2M2 0n,2n

0n,6n T2M2 T2M2

⎤
⎥⎦

Ω =

⎡
⎢⎣
M 0 M 0
0 N 0 N
0 0 0 0
0 0 0 0

⎤
⎥⎦

Λ4 =
[

Π(1) Π(2)

∗ Π(3)

]

Π(1) =

⎡
⎢⎢⎢⎣

Π(1)
11 0 −ATT T

1 0
0 Π(1)

22 0 DPT
2

−T1A 0 Π(1)
33 0

0 P2D 0 Π(1)
44

⎤
⎥⎥⎥⎦

Π(2) =

⎡
⎢⎣

0 0 0 P1B
0 DTT T

2 0 0
0 0 0 T1B
0 −CTT T

2 0 0

⎤
⎥⎦

Π(3) = diag{�1V, h2S2 − T2 − T T
2 , 0, (ε2 + ε6)NT

2 N2}

Π(1)
11 = − P1A − AT P1 + �1U + (ε1 + ε5)NT

1 N1

Π(1)
22 = �2V + (ε4 + ε8)NT

2 N2

Π(1)
33 = h1S1 − T1 − T T

1

Π(1)
44 = �2U + (ε3 + ε7)NT

1 N1 − P2C − CT P2

M = diag{M1, M2, . . . , Mr}

N = diag{N1, N2, . . . , Nr},

Qβ = diag
{

Q
(β)
1 , Q

(β)
2 , . . . , Q(β)

r

}
(β = 1, 2, 3).

Proof: By setting

x(α) = − A(α)x(α) + B(α)g (y(α − σ))
y(α) = − C(α)y(α) + D(α)x(α − τ) (36)

we consider the following Lyapunov–Krasovskii functional
candidate for the model in (32):

V (t, x(t), y(t)) =
5∑

i=1

Vi (t, x(t), y(t)) (37)
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where

V1 (t, x(t), y(t)) = xT (t)P1x(t)

+
r∑

k=1

t− k−1
r τ∫

t− k
r τ

xT (s)Q(1)
k x(s)ds

V2 (t, x(t), y(t)) = yT (t)P2y(t)

+
r∑

k=1

t− k−1
r σ∫

t− k
r σ

yT (s)Q(2)
k y(s)ds

V3 (t, x(t), y(t)) =
r∑

k=1

t− k−1
r σ∫

t− k
r σ

gT (y(s)) Q
(3)
k g (y(s)) ds

V4 (t, x(t), y(t)) =

0∫
−τ

t∫
t+β

xT (α)S1x(α)dαdβ

+

0∫
−τ

t∫
t+θ

ρT (s, x(s), y(s − σ))

× R1ρ (s, x(s), y(s − σ)) dsdθ

V5 (t, x(t), y(t)) =

0∫
−σ

t∫
t+β

yT (α)S2y(α)dαdβ

+

0∫
−σ

t∫
t+θ

ρT (s, y(s), x(s − τ))

× R2ρ (s, y(s), x(s − τ)) dsdθ

with r ≥ 1 (number of fractions) being an integer.
Let L be the weak infinitesimal operator of the stochas-

tic process {x	 = x(t + s), y	 = y(t + s)|t ≥ 0, s ∈ [−	, 0]}
along the trajectories of the genetic network in (32). By Itô’s
differential formula [11], one has

LV1(t) = 2xT (t)P1 [−A(t)x(t) + B(t)g (y(t − σ))]

+ ρT (t, x(t), y(t − σ)) P1ρ (t, x(t), y(t − σ))

−X T
(
t − τ

r

)
Q1X

(
t − τ

r

)
+ X T (t)Q1X (t)

(38)

LV2(t) = 2yT (t)P2 [−C(t)y(t) + D(t)x(t − τ)]

+ ρT (t, y(t), x(t − τ)) P2ρ (t, y(t), x(t − τ))

− YT
(
t − σ

r

)
Q2Y

(
t − σ

r

)
+ YT (t)Q2Y(t)

(39)

LV3(t) =GT (y(t)) Q3G (y(t))

− GT

(
y

(
t − 1

r
σ

))
Q3G

(
y

(
t − 1

r
σ

))
(40)

LV4(t) = τxT (t)S1x(t) −
t∫

t−τ

xT (α)S1x(α)dα

+ τρT (t, x(t), y(t − σ)) R1ρ (t, x(t), y(t − σ))

−
t∫

t−τ

ρT (s, x(s), y(s − σ))

× R1ρ (s, x(s), y(s − σ)) ds (41)

LV5(t) =σyT (t)S2y(t) −
t∫

t−σ

yT (α)S2y(α)dα

+ σρT (t, y(t), x(t − τ)) R2ρ (t, y(t), x(t − τ))

−
t∫

t−σ

ρT (s, y(s), x(s − τ))

× R2ρ (s, y(s), x(s − τ)) ds (42)

where GT (y(t)) = col{g(y(t)), g(y(t−(1/r)σ)), . . . , g(y(t −
((r − 1)/r)σ))}.

From Assumption 2 and the condition in (34), we have

ρT (t, x(t), y(t − σ)) (P1 + τR1)ρ (t, x(t), y(t − σ))

≤ �1ρ
T (t, x(t), y(t − σ)) ρ (t, x(t), y(t − σ))

≤ �1
[
xT (t)Ux(t) + yT (t − σ)Vy(t − σ)

]
(43)

ρT (t, y(t), x(t − τ)) (P2 + σR2)ρ (t, y(t), x(t − τ))

≤ �2ρ
T (t, y(t), x(t − τ)) ρ (t, y(t), x(t − τ))

≤ �2
[
yT (t)Uy(t) + xT (t − τ)Vx(t − τ)

]
. (44)

In addition, for any matrices Mk and Nk (k = 1, 2, . . . , r),
the following relationships hold:

2xT

(
t − k − 1

r
τ

)
Mk

×

⎡
⎢⎣x

(
t − k − 1

r
τ

)
− x

(
t − k

r
τ

)
−

t− k−1
r τ∫

t− k
r τ

x(α)dα

−
t− k−1

r τ∫
t− k

r τ

ρ (α, x(α), y(α − σ)) dω1(α)

⎤
⎥⎦ = 0 (45)

2yT

(
t − k − 1

r
σ

)
Nk

×

⎡
⎢⎣y

(
t − k − 1

r
σ

)
− y

(
t − k

r
σ

)
−

t− k−1
r σ∫

t− k
r σ

y(α)dα

−
t− k−1

r σ∫
t− k

r σ

ρ (α, y(α), x(α − τ)) dω2(α)

⎤
⎥⎦ = 0. (46)
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Then, it follows from Lemma 2 that

− 2xT

(
t − k − 1

r
τ

)
Mk

t− k−1
r τ∫

t− k
r τ

x(α)dα

≤ τ

r
xT

(
t − k − 1

r
τ

)
MkS−1

1 MT
k x

(
t − k − 1

r
τ

)

+

t− k−1
r τ∫

t− k
r τ

xT (α)S1x(α)dα (47)

− 2yT

(
t − k − 1

r
σ

)
Nk

t− k−1
r σ∫

t− k
r σ

y(α)dα

≤ σ

r
yT

(
t − k − 1

r
σ

)
NkS−1

2 N T
k y

(
t − k − 1

r
σ

)

+

t− k−1
r σ∫

t− k
r σ

yT (α)S2y(α)dα (48)

− 2xT

(
t − k − 1

r
τ

)
Mk

×
t− k−1

r τ∫
t− k

r τ

ρ (α, x(α), y(α − σ)) dω1(α)

≤ xT

(
t − k − 1

r
τ

)
MkR−1

1 MT
k x

(
t − k − 1

r
τ

)

+

⎛
⎜⎝

t− k−1
r τ∫

t− k
r τ

ρ (α, x(α), y(α − σ)) dω1(α)

⎞
⎟⎠

T

× R1

⎛
⎜⎝

t− k−1
r τ∫

t− k
r τ

ρ (α, x(α), y(α − σ)) dω1(α)

⎞
⎟⎠ (49)

− 2yT

(
t − k − 1

r
σ

)
Nk

×
t− k−1

r σ∫
t− k

r σ

ρ (α, y(α), x(α − τ)) dω2(α)

≤ yT

(
t − k − 1

r
σ

)
NkR−1

2 N T
k y

(
t − k − 1

r
σ

)

+

⎛
⎜⎝

t− k−1
r σ∫

t− k
r σ

ρ (α, y(α), x(α − τ)) dω2(α)

⎞
⎟⎠

T

× R2

⎛
⎜⎝

t− k−1
r σ∫

t− k
r σ

ρ (α, y(α), x(α − τ)) dω2(α)

⎞
⎟⎠ (50)

whereas

E

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝

t− k−1
r τ∫

t− k
r τ

ρ (α, x(α), y(α − σ)) dω1(α)

⎞
⎟⎠

T

×R1

⎛
⎜⎝

t− k−1
r τ∫

t− k
r τ

ρ (α, x(α), y(α − σ)) dω1(α)

⎞
⎟⎠
⎫⎪⎬
⎪⎭

= E

{ t− k−1
r τ∫

t− k
r τ

ρT (α, x(α), y(α − σ))

× R1ρ (α, x(α), y(α − σ)) dα

}
(51)

E

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝

t− k−1
r σ∫

t− k
r σ

ρ (α, y(α), x(α − τ)) dω2(α)

⎞
⎟⎠

T

×R2

⎛
⎜⎝

t− k−1
r σ∫

t− k
r σ

ρ (α, y(α), x(α − τ)) dω2(α)

⎞
⎟⎠
⎫⎪⎬
⎪⎭

= E

{ t− k−1
r σ∫

t− k
r σ

ρT (α, y(α), x(α − τ))

× R2ρ (α, y(α), x(α − τ)) dα

}
. (52)

On the other hand, for k = 1, 2, . . . , r, one can see from the
sector condition in Assumption 1 that

2gT

(
y

(
t − k − 1

r
σ

))
ΓKy

(
t − k − 1

r
σ

)

−2gT

(
y

(
t − k − 1

r
σ

))
Γg

(
y

(
t − k − 1

r
σ

))
≥ 0.

(53)

With the definitions in (36), for any matrices T1 and T2, we
also have

2xT (t)T1 [−A(t)x(t) + B(t)g (y(t − σ)) − x(t)] = 0 (54)
2yT (t)T2 [−C(t)y(t) + D(t)x(t − τ) − y(t)] = 0. (55)

By using Lemma 2, we obtain

− 2xT (t)T1�A(t)x(t) ≤ ε−1
1 xT (t)T1M1M

T
1

× T T
1 x(t) + ε1x

T (t)NT
1 N1x(t) (56)

2xT (t)T1�B(t)g (y(t − σ)) ≤ ε−1
2 xT (t)T1M1M

T
1

× T T
1 x(t) + ε2g

T (y(t − σ)) NT
2 N2g (y(t − σ)) (57)

− yT (t)T2�C(t)y(t) ≤ ε−1
3 yT (t)T2M2M

T
2

× T T
2 y(t) + ε3y

T (t)NT
1 N1y(t) (58)

2yT (t)T2�D(t)x(t − τ) ≤ ε−1
4 yT (t)T2M2M

T
2

× T T
2 y(t) + ε4x

T (t − τ)NT
2 N2x(t − τ). (59)
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Similarly, it can be obtained that

− 2xT (t)P1ΔA(t)x(t)
≤ xT (t)

[
ε−1
5 P1M1M

T
1 P1 + ε5N

T
1 N1

]
x(t) (60)

2xT (t)P1ΔB(t)g (y(t − σ))
≤ ε−1

6 xT (t)P1M1M
T
1 P1x(t)

+ ε6g
T (y(t − σ)) NT

2 N2g (y(t − σ)) (61)
− 2yT (t)P2ΔC(t)y(t)

≤ yT (t)
[
ε−1
7 P2M2M

T
2 P2 + ε7N

T
1 N1

]
y(t) (62)

2yT (t)P2ΔD(t)x(t − τ)
≤ ε−1

8 yT (t)P2M2M
T
2 P2y(t)

+ ε8x
T (t − τ)NT

2 N2x(t − τ). (63)

Taking the mathematical expectation and considering
(38)–(63), one has

E {LV (t, x(t), y(t))}
= ζ(t)T

(
Ξ1 − Ξ2Ξ−1

4 ΞT
2 − Ξ3Ξ−1

5 ΞT
3

)
ζ(t) (64)

where ζ (t) = col {X (t), x(t − τ), x(t),Y(t), y(t − σ), y(t),
G(y(t)), g(y(t − σ))}, and Ξi (i = 1, . . . , 5) is defined in (35).

Based on the derivation conducted in Theorem 1, it follows
that the uncertain stochastic model in (32) is robustly asymp-
totically stable in the mean square. �

Remark 4: Similar to Corollary 1, we can obtain sufficient
conditions ensuring the globally asymptotic stability of the
genetic network in (32) without uncertain parameters. Further-
more, if there are no stochastic disturbances, we can further
obtain specialized results, which are omitted here to save space.
It is also worth pointing out that the main results in this paper
can easily be extended to GRNs with time-varying delays by
the same approach used in [26]. Note that we mainly focus on
the effects brought by the norm-bounded uncertainty and the
random fluctuations in this paper.

Remark 5: Lemma 2 is used to tackle the norm-bounded
parameter uncertainties in the proof of Theorem 1. Comparing
to existing literature, we apply the “delay-fractioning” approach
and construct a more general Lyapunov functional to analyze
the stability problem of the uncertain GRNs with time delays
existing in both the translation process and the feedback regu-
lation process. The novel delay-dependent conditions presented
in Theorem 1 are formulated in the form of LMIs that can
readily be solved by standard numerical software.

IV. NUMERICAL EXAMPLE

In this section, two simulation examples are presented to
illustrate the effectiveness of the proposed design procedures.
The examples are concerned with the synthetic oscillatory
network. This kind of model has theoretically been predicted
and experimentally investigated as a mathematical model of the
repressilator in [5].

Example 1: In the transcriptional regulators of the model
mentioned above, three repressor-protein concentrations pi and
their corresponding mRNA concentrations mi (where i = lacl,
tetR, or cl) are considered as the continuous dynamical vari-
ables. Each of the six molecular species participates in the tran-
scription, translation, and degradation reactions. Here, we only
investigate the symmetrical case in which all three repressors

Fig. 1. mRNA concentrations.

are identical, except for their DNA-blinding specificities. By
incorporating time delays and adjusting some parameters, the
kinetics of the system is described by the following equations
with the vector form:

ṁ(t) = − A(t)m(t) + B(t)f (p(t − σ)) + η

ṗ(t) = − C(t)p(t) + D(t)m(t − τ)

where A=diag{1, 2, 3}, C =diag{2.5, 2.5, 2.5}, D=diag{1,
1, 1}, and

B =

⎡
⎣ 0 0 −0.6
−0.6 0 0

0 −0.6 0

⎤
⎦

M1 =

⎡
⎣ 0.1 0.08 0.04

0.08 0.04 −0.04
0.02 −0.06 0.1

⎤
⎦

M2 =

⎡
⎣ 0.2 0.1 −0.15

0.1 −0.3 0.05
0.15 −0.2 0.1

⎤
⎦

N1 =

⎡
⎣ 0.4 0.1 −0.2

0.1 0.4 −0.1
−0.2 −0.1 0.3

⎤
⎦

N2 =

⎡
⎣ 0.2 −0.3 0.15
−0.1 0.2 0.1
0.2 −0.2 0.1

⎤
⎦

η =

⎡
⎣ 0.6

0.6
0.6

⎤
⎦ .

The nonlinearities are taken as fj(pj) = (p2
j/(1 + p2

j )) (j =
cl, lacl, tetR), and therefore, we have K =diag{0.65, 0.65,
0.65}. Furthermore, H(t) = diag {(1/2) sin(4t), cos(2.25t),
cos(1.25t)}.

By using the Matlab LMI toolbox, it can be found that the
LMIs in (12) are feasible. When we set r = 1, the time delays
can be achieved as τ = 2.5, and σ = 3.6. The simulation results
of the trajectories of mi(t), pi(t) are shown in Figs. 1 and 2,
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Fig. 2. Protein concentrations.

where the different initial states for system in (1) are taken
as [0, 1] × [0, 1]. The simulation results further indicate that
the given GRN with time delays and uncertain parameters is
asymptotically robustly stable.

Example 2: In this example, we consider the uncertain ge-
netic networks in (32) with noise disturbances with τ = 2 and
σ = 3, in which there are five nodes denoting the regulation
factors, and the designed parameters in (32) are given by A =
diag{1, 2, 3, 4, 5}, C = 2.5I , and D = 2I , and the coupling
matrix is given as

B = 0.8 ×

⎡
⎢⎢⎢⎣

0 0 −1 0 0
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 −1

⎤
⎥⎥⎥⎦

where the coefficient 0.8 is the transcriptional rate. The pa-
rameter uncertainties satisfy Ml = Nl = 0.25I(l = 1, 2) and
H(t)=diag{sin(2t),cos(5t),cos(1.5t),0.5 sin(4t),cos(4.25t)}.
The noise intensity vectors satisfy Assumption 2 with U =
V = 0.5I . The nonlinear function is given by fi(s) = s2/(1 +
s2) (i = 1, 2, . . . , 5), i.e., K = 0.65I .

By using the Matlab LMI toolbox, we can find that the LMIs
in (34) and (35) are feasible (the solutions are not given here for
the purpose of space saving). When we set r = 1, the numerical
simulation results are given in Figs. 3 and 4, with the initial
states randomly taken in [0, 1] × [0, 1], which further implies
that the uncertain GRN with noises perturbations is globally
robustly asymptotically stable in the mean square.

V. CONCLUSION

In this paper, we have dealt with the robust stability analy-
sis problem for GRNs with time delays, norm-bounded pa-
rameter uncertainties, and state-dependent Brownian motions.
By using a Lyapunov functional approach, stochastic analysis
tools, and the LMI technique, we have constructed a novel
Lyapunov–Krasovskii functional and then derived sufficient
conditions in terms of LMIs to ensure globally asymptotically

Fig. 3. State response of m(t) of GRNs [see (32)].

Fig. 4. State response of p(t) of GRNs [see (32)].

robust stability of the addressed delayed uncertain genetic net-
works. Moreover, the LMI-based criteria can readily be verified
by using standard numerical software. An important feature
of the results reported here is that the stability condition is
dependent on the upper bounds of the time delays, which is
made possible by utilizing the most updated techniques for
achieving delay dependence. To the best of our knowledge, the
present research represents the first attempt to develop a novel
computational approach specifically for the robust stability of
uncertain GRNs with or without noise perturbations. In the end
of this paper, two simulation examples have been exploited
to illustrate the applicability and usefulness of the developed
theoretical results.
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