
The Impact of Varying Memory Region Number on RTSJ Execution Time
(Short Paper)

H. HAMZA
Department of Computing,

Brunel University,
Uxbridge, Middlesex, UB8 3PH,UK

hamza.hamza@brunel.ac.uk

Abstract— Developing a real time, embedded system in Java
requires awareness of memory behaviour in addition to
program logic. Region-based memory management has certain
advantages over garbage collection in terms of predictability;
however, the use of regions is in many ways arbitrary, since it
is left to the developer to decide on the number of required
regions prior to program execution. In theory, a memory
model with a large number of regions will negatively impact
the execution time of software since the run-time system has
the overhead of managing the space in each of these regions. In
this paper, we explore the effect of varying the number of
regions on the performance of RTSJ execution times. RTSJ
code was used to allocate varying numbers of objects (100 to
2500) into regions and then execution times were recorded.
Results suggest that more regions do actually lead to increases
in execution time. By applying a relatively simple refactoring to
the original code, an improvement in execution times was
achieved.

Keywords-component, RTSJ, memory regions, Java, refactoring.

I. INTRODUCTION

Memory management in real time and embedded Java
systems is still an open research area. Previous studies in the
area have tended to focus on memory management for
preventing memory ‘leaks’ and for simplifying the
development of such systems [1]. Defining application
parameters such as the garbage generation rate is
problematic with respect to achieving low time and space
overheads in an application [2]. The Real-Time
Specification for Java (RTSJ) introduces a new
programming model - the memory region to circumvent the
need for garbage collection [3]. However, this model has
many drawbacks [4,5]. For example, the need for reference
checks between regions may introduce unexpected
overheads [6,7], and more germane, the arbitrary decision as
to how many regions is left to the developer to decide;
mismanagement of region numbers can often result in run-
time errors [8]. In this paper, the impact of increasing region
numbers on the execution time is investigated. RTSJ code
was executed with different number of regions with varying
numbers of objects and the execution times then recorded.
In theory, higher numbers of regions should lead to
increased execution times since the runtime system has to
determine where objects can be accommodated on a more
frequent basis (the memory management burden is naturally

higher). Results did confirm that with more regions,
execution times did increase. A programming refactoring
allowed execution times to be lowered.

II. MOTIVATION AND RELATED WORK

The motivation for this study stems from a number of senses.
The first is that to our knowledge, very little work has been
completed to assess the relative merits of different numbers
of regions and execution times. Yet, the decision that a
developer has to make on region numbers can have a
significant impact on potential application efficiency and
execution time. Second, we challenge the view that
increasing the number of regions always results in a perfectly
linear rise in execution times.

In terms of related work, work to evaluate real time Java
features and performance for real-time embedded systems
was undertaken by [9] who compared various RTSJ
implementations. Results showed that memory allocation
times were linear. Recent work by [10] evaluated the RTSJ
from different perspectives, the relationship between
allocation time and the object size allocated into memory
regions was explored - the relationship was again shown to
be linear. In another approach by [11], two different
implementations of the RTSJ were compared, namely
Jamaica VM from Aicas and Sun's RTSJ 1.0.0, their study
analyzed memory allocation, thread management,
synchronization and asynchronous event handling, and their
results regarding memory allocation showed that the creation
times for regions were again linear with region sizes.
Furthermore, object allocation times were also linear with
object sizes. The work presented in this paper focuses on the
impact of varying memory region number on RTS2.0
execution time.

III. REGION-BASED MEMORY MANAGEMENT

In standard Java, all objects are allocated on heap memory
and are subject to garbage collection. The RTSJ provides
two other types of memory which are not subject to garbage
collection: a) immortal memory which stores objects that
will be allocated forever and, b) scoped memory which has a
bounded life time and where similar length of lifetime
objects should reside. Objects allocated in scoped memory

mailto:@brunel.ac.uk

area are freed automatically when no active object exists,
however the scoped memory object itself can be stored in
heap, immortal, or scoped memory. For example, all objects
in a region will be freed automatically when a thread finishes
executing its ‘run’ method and when no other threads are
executing inside that scope or region of memory. In turn,
there are two types of scope memory in RTSJ: 1)
VTMemory and, 2) LTMemory. In LTMemory, allocation
time is linear with object size; however, in VTMemory
allocation time varies [3]. In this paper, we use LTMemory,
which thus guarantees linear-time allocation. In this study,
each memory region is created by defining a new object
memory area:

mem = new LTMemory(8*1024);

This creates a new LTMemory area with fixed size 8K bytes.
The new object ‘mem’ will point to that region of memory.
The next step is to start using the block of memory
referenced by ‘mem’. A ‘Runnable’ object should be used in
the enter method of the ‘mem’ object and the Runnable
interface is implemented by any class whose instances are
intended to be executed by a thread; the same class must
define a method of no arguments called ‘run’ as follows:

mem.enter(new Runnable(){
public void run(){

// create new objects and run other tasks
}});

All objects created inside the ‘run’ method of the Runnable
object will be allocated in the memory area referenced by
‘mem’. There are other ways to enter a memory region in
addition to the ‘enter’ method such as newArray and
executeInArea, each of which has its own use. For a full
description on the use of these methods and for the code
upon which we based our experiment see [3].

IV. VARYING REGION NUMBERS

A. RTSJ experiments’code

Creating the objects in the RTSJ program was facilitated
through an array of objects (see line 12 in Appendix A). The
code can then easily be updated with larger numbers of
objects (in this case of this study, from 100 to 2500
incremented by 100 objects each execution). Appendix A
includes a class definition for a simple, real-time thread
(Example 1). In this thread, two new objects ‘mem1’ and
‘mem2’ are created to point to two regions of memory each
with size 8*1024 bytes. The region itself is created when its
‘enter’ method is executed by a ‘Runnable’ object. All
objects created in the run method of the ‘Runnable’ object
are allocated to that memory area. The array H of integer
objects (50 objects) is created in mem1, and the array L of
integer objects (50 objects) created in mem2 (see lines 13
and line 22 in Appendix A, respectively). Example 1 shows
only 2 regions allocating 100 objects; we then updated the
code to include 5, 10, 15, 20 and 25 regions respectively. All
regions have the same size “8K bytes” and the number of

objects distributed into each region for each set of region
experiments is approximately equal. For example, for 5
regions and the allocation of 500 objects, each region has
100 objects allocated to it. These regions are de-allocated
when Runnable objects finish executing their ‘run’ methods.
A for-loop is used to execute the re-activation of the regions
multiple times according to the number of parameters
entered. The type of parameter is thus Integer, and the values
of these parameters are the value of the Integer objects
allocated into the regions. In our experiments we use two
integer parameters to execute the for-loop twice. Execution
time was measured using Java clock statements
clock.getTime(). The code was run in RTSJ 2.0 Sun
implementation, Linux openSUSE11.1 operating system-
kernel 2.6.27.7-9 and on a stand-alone computer with Intel
Pentium Dual core processor speed 2.8 GHZ and RAM,
capacity 2GB.

B. Data analysis

Figures 1 and 2 show the impact of increasing memory
regions on execution time for 5 and 10 regions, respectively
with 100-2500 objects, at intervals of 100, giving 25 data
points in total for each region. We ran the experiments 50
times for each data point and we calculate the average of the
execution time. The R2 (correlation coefficient) value for 5
regions is significantly higher than that for 10 regions (0.587
versus 0.379). It is interesting that the steepness of the curve
in Figure 1 is greater at lower numbers of objects and that
there are a number of falls in the execution times along the
graph even though the trend is generally upwards. One
suggestion is that, however many regions are defined, there
is a lower limit on execution time due to the overheads of
creating the regions and allocating the first n objects. After
that point, the system ‘stabilises’.

R2 = 0.587

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 500 1000 1500 2000 2500 3000

No. objects

E
x
e
c
u
ti
o
n

ti
m

e

Figure 1. 5 region data (2500 objects)

For 10 regions (Figure 2), the execution time is higher than
that of 5 regions, but the larger number of regions seems to
provide greater flexibility to the run time system above the
900 object threshold not afforded by 5 regions. Of all the
regions studied, 10 regions had the lowest R2 value (0.38).

We also see that for 10 regions there is a sudden fall in
execution time at 1900 objects and a further fall at 2500
objects. Again, 1900 objects might represent a threshold
(borderline) region limit beyond which allocation of objects
and region space limitations becomes less prevalent. Overall
however, allocating 5 regions will lead to faster execution

times than for 10 regions (for the object configuration
described). Figure 3 shows the effect on execution time of 15
regions.

R2 = 0.3795

0.00

5.00

10.00

15.00

20.00

25.00

0 500 1000 1500 2000 2500 3000

No. objects

E
x
e
c
u
ti
o
n

ti
m

e

Figure 2. 10 region data (2500 objects)

R2 = 0.916

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000

No. objects

E
x
e
c
u
ti
o
n

ti
m

e

Figure 3. 15 region data

Figure 4 and 5 show the execution times for 20 and 25
regions, respectively. The smooth rise in execution times is
evident from both figures and is again in contrast to that for 5
and 10 regions.

R2 = 0.858

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0 500 1000 1500 2000 2500 3000

No. objects

E
x
e
c
u
ti
o
n

ti
m

e

Figure 4. 20 region data

The highest execution time amongst all configurations in fact
belongs to 25 regions (29.87ms for 2100 objects), suggesting
further that as the number of regions increases, there is an
associated natural overhead in execution time. The rise in
execution times becomes flatter as the number of regions
increases. It also interesting that of all regions (5, 10, 15, 20
and 25), 10 regions caused the widest variation in execution
times (11ms to 20ms – an interval of 9ms).

C. Summary data

Table 1 provides summary data (Mean, Median (Med.) and
Standard Deviation (SD)) for each of the set of regions. The
widest variation in execution times is for 10 regions (SD of
2.35); the narrowest times are for 5 and 20 regions (1.54 in
each case).

R2 = 0.8564

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 500 1000 1500 2000 2500 3000

No. objects

E
x
e
c
u
ti
o
n

ti
m

e

Figure 5. 25 region data

Table 1. Summary data for regions

Regions Mean Med. SD
5 11.05 11.58 1.54

10 16.63 16.85 2.35
15 19.52 20.00 1.98
20 23.33 23.38 1.54
25 27.33 27.46 1.61

V. A PROGRAMMING VARIATION

In some cases, if the run methods of two or many Runnable
objects are the same, then it would be useful to create just
one Runnable object and then make a reference to it. Each
time a memory region is entered, this reference will be used
in the enter method of the memory region instead of creating
a new Runnable object. For example, if we have an object
‘foo’, shareable between two threads and is allocated in one
memory region, each thread will modify this object in a
synchronized way. Each thread will run in a different region,
but both will run concurrently and both are instantiated from
the same class (NoHeapRealTimeThread). The ‘run’ method
of both new Runnable objects in mem1 and mem2 include
the creation and start of a new NhRTT thread; the same code
exists in the two run methods. In this case, we can then
refactor the code [12] by creating one Runnable object and
make a reference to it (x). Hence, we updated the code to
make mem1 and mem2 use the same Runnable object as
shown Figure 6. We ran the code twice, the first time
without changing the code (see Appendix B), and the second
time by using the changes in Figure 6.

Runnable x = new Runnable(){
public void run() {

NhRTT nhrtt = new NhRTT(2, foo);
System.out.println(" new Thread started");
nhrtt.start();

} };
mem1.enter(x);
try { //Put a little delay between the threads

sleep(100);
} catch (InterruptedException e) { };

mem2.enter(x);

Figure 6. Refactored Code

1300.00

1320.00

1340.00

1360.00

1380.00

1400.00

1420.00

1440.00

1460.00

1480.00

5 10 15 20 25 30 35 40 45 50

Original Code
Execution Time

Refactored Code
Execution Time

Region Numbers

Figure 7. Effect of refactoring original code

Results show that execution time decreases after refactoring
the code to have only one Runnable object instead of two,
three or more.

For example, when using 10 regions, the execution time for
the original code where 10 Runnable objects are created is
1381 milliseconds. In the refactored code, where only one
Runnable object is created, the execution time is 1371
milliseconds. This supports our view that Runnable objects
causes the creation of regions to take longer. We note that
this programming approach works only when many
‘Runnable’ objects have similar run methods. Figure 7 shows
the results after refactoring the code, i.e. reducing the
number of Runnable objects in the application, leading to a
reduction in execution time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the impact of the number of memory regions
on the execution time of RTSJ software was investigated.
Sample RTSJ code was executed with different numbers of
regions. The results showed that increasing the number of
regions did tend to lead to longer execution times. One
obvious conclusion from the study is ‘if increasing the
number of regions increases execution time, why not have
just one large region or at least a minimum number of
regions?’ Of course, such a policy has to be judged against
the advantages of scoped memory (i.e., the ability to free up
unused regions or expired memory and storage of similar
object (lifetime) types in dedicated regions). Additionally,
with fewer regions, the possibility of dead objects lying
around and being unable to be reclaimed is also a feature.

Future work will focus on extending the analysis to different
types of objects and region numbers. In particular, we will
explore the reasons behind the sudden fall visible in Figure
2. Furthermore, we will investigate other methods to
decrease the impact of varying region numbers on execution
time in order to cover different patterns in the code. The
impact of having nested scopes on the execution time of the
application will be explored. We also will develop tools to

help developers to define the lifetime of objects and
distribute them into different regions; this will aid
specification of the right number of regions in an effective
way. We encourage further studies in this area – to that end,
the dataset used as part of this empirical study can be made
available for further analysis upon request of the authors.

REFERENCES

[1] F. Pizlo and J. Vitek, "Memory Management for Real-Time
Java: State of the Art", in Proceedings of the 11th IEEE
Symposium on Object Oriented Real-Time Distributed
Computing, IEEE Computer Society, Orlando, Florida, USA,
2008, pp. 248-254.

[2] G. Salagnac, C. Rippert, and S. Yovine, "Semi-Automatic
Region-Based Memory Management for Real-Time Java
Embedded Systems", in Proceedings of the 13th IEEE
International Conference on Embedded and Real-Time
Computing Systems and Applications. IEEE Computer
Society, Daegu, Korea. 2007, pp. 73-80.

[3] P.C. Dibble, "Real-Time Java Platform Programming", 2 ed.,
BookSurge, 2008.

[4] F. Pizlo and J. Vitek, "An Emprical Evaluation of Memory
Management Alternatives for Real-Time Java", in
Proceedings of the 27th IEEE International Real-Time
Systems Symposium, IEEE Computer Society, Rio de
Janeiro, Brazil, 2006, pp. 35-46.

[5] W. Magato and J. Hauser. "Real-Time Memory Management
and the Java Specification", In 48th IEEE International
Midwest Symposium on Circuits and Systems, Cincinnati,
Ohio, 2005, pp. 1767-1769.

[6] Y. Chang, "Garbage Collection for Flexible Hard Real-Time
Systems", PhD thesis, York University, 2007.

[7] A. Borg, A. Wellings, C. Gill, and R.K. Cytron, "Real-Time
Memory Management: Life and Times", in Proceedings of the
18th Euromicro Conference on Real-Time Systems, IEEE
Computer Society, Dresden, Germany, 2006, pp. 237 – 250.

[8] J. Kwon and A. Wellings, "Memory Management Based on
Method Invocation in RTSJ", in On the Move to Meaningful
Internet Systems Workshops, Springer, Agia Napa, Cyprus,
2004, pp. 333-345.

[9] A. Corsaro and D.C. Schmidt, "Evaluating real-time Java
features and performance for real-time embedded systems", in
Proceedings of The 8th IEEE Real-Time and Embedded
Technology and Applications Symposium, IEEE Computer
Society, San Jose, CA, USA, 2002, pp. 90-100.

[10] J.F. Schommer, D. Franke, S. Kowalewski, and C. Weise,
"Evaluation of the Real-Time Java Runtime Environment for
Deployment in Time-Critical Systems", in Proceedings of the
7th International Workshop on Java Technologies for Real-
Time and Embedded Systems, ACM, Madrid, Spain. 2009,
pp. 51-60.

[11] J.M Enery, D. Hickey, and M. Boubekeur, "Empirical
Evaluation of Two Main-Stream Rtsj Implementations", in
Proceedings of the 5th international workshop on Java
technologies for real-time and embedded systems, ACM
Vienna, Austria, 2007, pp. 47-54.

[12] M. Fowler, "Refactoring : Improving the Design of Existing
Code", Addison-Wesley, 1999.

http://www.ececs.uc.edu/mwscas2005/
http://www.ececs.uc.edu/mwscas2005/
http://www.ececs.uc.edu/mwscas2005/

APPENDIX A –

A

1.public class Example1with2regions100objects extends RealtimeThread {
2.---------------
3. public void run(){
4. mem1 = new LTMemory(8*1024);
5. mem2 = new LTMemory(8*1024);
6. for (int i = 0; i < this.args.length; ++i) {

7. mem1.enter(new Runnable(){ //50 objects will be allocated
8. public void run()
9. {

10. final int k = i;
11. Integer [] H= new Integer[50];
12. for(counter=0, counter<50, ++counter){
13. H[counter]= Integer.valueOf(args[k]);
14. }
15. }});

16. mem2.enter(new Runnable(){//50 objects will be allocated
17. public void run()
18. {
19. final int y = i;
20. Integer [] L= new Integer[50];
21. for(counter=0, counter<50, ++counter){
22. L[counter]= Integer.valueOf(args[y]);
23. }
24. }});
25. } //for loop
26. newTime= clock.getTime();
27. interval=newTime.subtract(oldTime);
28. System.out.println(interval);

29. }; // for the run method

30.static public void main(String [] args){ // main method of the class Example1with2regions100objects

31. RealtimeThread rt = new Example1with2regions100objects(args);
32. oldTime= clock.getTime();

33. rt.start();
34. try {
35. rt.join();
36. }
37. catch (Exception e) { };
38. }
PPENDIX B –

39. }

1. // Start the threads.
2. mem1.enter(new Runnable () {
3. public void run() {
4. NhRTT nhrtt = new NhRTT();
5. System.out.println(" Thread started");
6. nhrtt.start();
7. } });
8. try { //Put a little delay between the threads
9. sleep(100);
10. } catch (InterruptedException e) { };

11. mem2.enter(new Runnable () {
12. public void run() {
13. NhRTT nhrtt = new NhRTT();
14. System.out.println(" Thread started");
15. nhrtt.start();
16. } });

