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with Repeated Scalar Nonlinearities and
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Abstract

This paper is concerned with the H∞ control problem for a class of systems with repeated scalar nonlinearities and

multiple missing measurements. The nonlinear system is described by a discrete-time state equation involving a repeated

scalar nonlinearity which typically appears in recurrent neural networks. The measurement missing phenomenon is

assumed to occur, simultaneously, in the communication channels from the sensor to the controller and from the controller

to the actuator, where the missing probability for each sensor/actuator is governed by an individual random variable

satisfying a certain probabilistic distribution in the interval [0 1]. Attention is focused on the analysis and design of

an observer-based feedback controller such that the closed-loop control system is stochastically stable and preserves a

guaranteed H∞ performance. Sufficient conditions are obtained for the existence of admissible controllers. It is shown

that the controller design problem under consideration is solvable if certain linear matrix inequalities (LMIs) are feasible.

Three examples are provided to illustrate the effectiveness of the developed theoretical results.
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I. Introduction

H∞ control problem has long been an important research topic for its theoretical and practical significance

in systems control. The main idea of H∞ control is to reduce the effect of the disturbance input on the

regulated output according to a prescribed level. Much effort has been made to H∞ controller design in order

to guarantee desired robust stability, see for example [1,9,16,26,32,33,36]. This control is often realized with

the assumption that the entire state is available. In many systems, such an assumption does not hold, and it

is necessary to design observers which produce an estimate of the system state. Therefore, it is not surprising

that, the dynamic output feedback H∞ control problem has recently gained particular research attention (see,

e.g., [11,18,19,22,24,31] and the references therein).

In the past decade, an increasing number of control applications, which have the control-loops closed via a

shared communication network, have been investigated, see [7,12,13,29,34,35,37] for some recent publications.

These control systems are known as networked control systems (NCS) that differ from traditional control
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systems using direct point-to-point links because the network introduces additional dynamics in the closed-

loop system. There are different ways of modeling the dynamics introduced in the closed-loop system by the

networks, such as packet losses, time-varying delays and data quantization, etc. The attention of this paper

is focused on observer-based feedback control of nonlinear systems subject to packet losses.

It should be pointed out that, in most of the existing literature, it has been implicitly assumed that the

packet loss problem occurs only in the channel from the sensor to the controller. Another typical kind of packet

losses, which happen in the channel from the controller to the actuator, has not yet been fully investigated

[29]. Also, in reported results concerning packet losses, the probability 0 is usually used to stand for an entire

signal missing and the probability 1 denotes the intactness (i.e., there is no signal missing at all), and all the

sensors or actuators are assumed to have the same missing probability (see e.g., the aforementioned literature

and [10,28]). Such a description, however, does have its limitations since it cannot cover some practical cases,

for example, the case when only partial information is missing and the case when the individual sensor or

actuator has different missing probability [30]. Furthermore, the networked control problem for nonlinear

systems has not been paid adequate research efforts due primarily to the mathematical difficulty. Therefore,

in this paper, we are motivated to develop a more reasonable model for a class of nonlinear systems in which

the missing probability for each sensor/actuator is specified by an individual random variable satisfying a

certain probabilistic distribution in the interval [0 1] that could be any commonly used discrete distribution.

In this paper, we aim to deal with the H∞ control problem for a class of nonlinear NCSs with random packet

losses in sensor-to-controller and controller-to-actuator channels. The packet loss phenomenon is assumed to

be random and could be different for individual sensor/actuator, which is modeled by an individual random

variable satisfying a certain probabilistic distribution on the interval [0 1]. Such a probabilistic distribution can

be any commonly used discrete distributions. The repeated scalar nonlinearity [4,6,8], which typically appears

in recurrent neural networks, is employed to describe the networked systems. The objective is to analyze and

design an observer-based controller such that the closed-loop system is stochastically stable with guaranteed

H∞ performance. Both the stability analysis and controller design problems are thoroughly investigated. It

is shown that the addressed controller design problem is solvable if certain linear matrix inequalities (LMIs)

are feasible. Three examples are exploited to illustrate the effectiveness of the proposed design method.

The rest of this paper is organized as follows. Section II formulates the problem under consideration. The

stability condition and H∞ performance of the closed-loop observer-based feedback control system are given

in Section III. The H∞ controller design problem is solved in Section IV. The validity of this approach is

demonstrated by three illustrative examples in Section V. Finally, in Section VI, the conclusion is given.

Notation. The notation used in the paper is fairly standard. The superscript “T” stands for matrix

transposition, R
n denotes the n-dimensional Euclidean space, R

m×n is the set of all real matrices of dimension

m × n; I and 0 represent the identity matrix and zero matrix, respectively. The notation P > 0 means

that P is real symmetric and positive definite; the notation ‖A‖ refers to the norm of a matrix A defined by

‖A‖ =
√

tr(ATA) and ‖ · ‖2 stands for the usual l2 norm. In symmetric block matrices or complex matrix

expressions, we use an asterisk (∗) to represent a term that is induced by symmetry, and diag {. . . } stands

for a block-diagonal matrix. In addition, E{x} and E{x| y} will, respectively, mean expectation of x and

expectation of x conditional on y. The set of all nonnegative integers is denoted by I
+ and the set of all

nonnegative real numbers is represented by R
+. OL denotes the class of all continuous nondecreasing convex

functions Γ : R
+ → R

+ such that Γ(0) = 0 and Γ(r) > 0 for r > 0. If A is a matrix, λmax(A) (respectively,

λmin(A)) means the largest (respectively, smallest) eigenvalue of A. Matrices, if their dimensions are not

explicitly stated, are assumed to be compatible for algebraic operations.
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II. Problem Formulation

A. The Physical Plant

In this paper, we consider the discrete-time system with repeated scalar nonlinearities described as following:







xk+1 = Af(xk) +B2uk +B1wk

zk = C1f(xk) +D1wk

yck = C2xk +D2wk

(1)

where xk ∈ R
n represents the state vector; uk ∈ R

m is the control input; zk ∈ R
r is the controlled output; yck ∈

R
p is the process output; wk ∈ R

q is the disturbance input which belongs to l2[0,∞); A,B1, B2, C1, C2,D1

and D2 are known real matrices with appropriate dimensions. f is a nonlinear function satisfying the following

assumption as in [5].

Assumption 1: The nonlinear function f : R → R in system (1) satisfies

∀a, b ∈ R |f(a) + f(b)| ≤ |a+ b| . (2)

In the sequel, for the vector x = [x1 x2 · · · xn]T , we denote

f(x)
△
= [f(x1) f(x2) · · · f(xn)]T .

Remark 1: The model (1) is called a system with repeated scalar nonlinearity [4, 6, 8]. Note that f is odd

(by putting b = −a) and 1-Lipschitz (by putting b = −b). Therefore, f encapsulates some typical classes

of nonlinearities, such as i) the semilinear function (i.e., the standard saturation sat(s) := s if |s| ≤ 1 and

sat(s) := sgn(s) if |s| > 1 ); ii) the hyperbolic tangent function that has been extensively used for activation

function in neural networks; and iii) the sine function.

Remark 2: The plant model structure (1) can be used to describe a broad class of real-time dynamical

systems, such as marketing and production control problem [14, 20, 23], digital control systems having sat-

uration type nonlinearities on the state or on the controller [2, 15], recurrent artificial neural networks (see

e.g. [3] and the references therein), n-stand cold rolling mills [20], neural networks defined on hypercubes [21],

fixed-point state-space digital filters using saturation overflow arithmetic [5, 17], manufacturing systems for

decision-making [27] and so on.

B. The Controller

The dynamic observer-based control scheme for the system (1) is described by







x̂k+1 = Af(x̂k) +B2uk + L(yk − ŷk)

ŷk = C2x̂k

ûk = Kx̂k

(3)

where x̂k ∈ R
n is the state estimate of the system (1), yk ∈ R

p is the measured output, ûk ∈ R
m is the

control input without transmission missing, and L ∈ R
n×p and K ∈ R

m×n are the observer and controller

gains, respectively.

C. The Communication Links

Quality-of-Service (QoS) is an important performance index for NCS. As in [29], in this paper, we consider

the following two QoS measures: 1) the point-to-point network allowable data-dropout rate that is used

to indicate the probability of data packet dropout in data transmission and 2) the point-to-point network

throughput that is used to indicate how fast the signal can be sampled and sent as a packet through the

network. Obviously, the sampling period h and the data-dropout rate ρ determine the control performance.
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Different from [29], in this paper, we assume that the data are multiple-packet transmitted, and the dropout

rate varies as the packet varies. It is clear that the network allowable data-dropout rate is related with the

packet scheduler, backlog controller, and algorithm complex of loss dropper policy. In this paper, we are

concerned with the multiple random packet losses in both the sensor-to-controller channel and the controller-

to-actuator channel.

As discussed in the introduction, due to the existence of the communication links, the phenomenon of

data packet dropout will inevitably induce missing observations. That is, the process output is probably

not equivalent to the measured output (i.e. yck 6= yk). In this paper, the measurement with multiple

communication packet loss is described by

yk = Ξyck =

p
∑

i=1

αi(C2ixk +D2iwk), (4)

where Ξ := diag{α1, ..., αp} with αi (i = 1, ..., p) being p unrelated random variables which are also unrelated

with wk. It is assumed that αi has the probabilistic density function qi(s) (i = 1, ..., p) on the interval [0 1]

with mathematical expectation µi and variance σ2
i . C2i and D2i are defined by

C2i := diag{0, · · · , 0
︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0
︸ ︷︷ ︸

p−i

}C2, D2i := diag{0, · · · , 0
︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0
︸ ︷︷ ︸

p−i

}D2.

αi could satisfy any discrete probabilistic distribution on the interval [0 1], which includes the widely used

Bernoulli distribution as a special case. In the sequel, we denote Ξ̄ = E{Ξ}.

Similarly, the control input with multiple communication packet loss is described by

uk = Ωûk =
m∑

j=1

βjKj x̂k, (5)

where Ω = diag{β1, ..., βm} with βj (j = 1, ...,m) being m unrelated random variables and

Kj = diag{0, · · · , 0
︸ ︷︷ ︸

j−1

, 1, 0, · · · , 0
︸ ︷︷ ︸

m−j

}K.

It is assumed that βj has the probabilistic density function mj(s) on the interval [0 1] with mathematical

expectation ϑj and variance ξ2j . We define Ω̄ = E{Ω}.

Remark 3: It can be noticed from (4) and (5) that the diagonal matrices Ξ and Ω, which consist of random

variables, are introduced to reflect the random multiple packet losses in, respectively, the sensor-to-controller

and controller-to-actuator channels. The random packet-loss mode in the sensor output has been recently

studied in many NCS papers, most of which were concerned with the linear system with single packet-loss

in the sensor-to-controller channel only. To the best of the authors’ knowledge, so far, there has been little

research on the control problem for nonlinear systems in the presence of multiple packet losses in both sensor-

to-controller and controller-to-actuator channels, and the purpose of this paper is therefore to shorten such

a gap. More specifically, the description in (4)-(5) represents one of the first few attempts to reflect, in a

probabilistic way, the multiple packet loss phenomenon in both sensor-to-controller and controller-to-actuator

channels.

Remark 4: In real systems, the measurement data may be transferred through multiple sensors and actua-

tors. For different sensor or actuator, the data missing probability may be different. In this sense, it would be

more reasonable to assume that the data missing law for each individual sensor/actuator satisfies individual

probabilistic distribution. In equation (4), the diagonal matrix Ξ represents the whole missing status where

the random variable αi corresponds to the ith sensor. We notice that the data loss (also called packet dropout
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or measurement missing) phenomenon has been extensively studied and several models have been introduced.

The Bernoulli distributed model is arguably the most popular one in which 0 is used to stand for an entire

missing of signals and 1 denotes the intactness. However, due to various reasons such as sensor aging and

sensor temporal failure, the data missing at one moment might be partial, and therefore the missing proba-

bility cannot be simply described by 0 or 1. In (4), αi can take value on the interval [0 1] and the probability

for αi to take different values may differ from each other. It is easy to see that the Bernoulli distribution is

included as a special case. Similar discussion can be applied to the diagonal matrix Ω.

D. The Closed-loop System

Letting the estimation error be

ek := xk − x̂k, (6)

the closed-loop system can be obtained as follows by substituting (3), (4) and (5) into (1) and (6)







xk+1 = Af(xk) +B2Ω̄Kxk +B2(Ω − Ω̄)Kxk −B2Ω̄Kek −B2(Ω − Ω̄)Kek +B1wk

ek+1 = A[f(xk) − f(x̂k)] + (LC2 − LΞ̄C2)xk − L(Ξ − Ξ̄)C2xk − LC2ek

+
[
(B1 − LΞ̄D2) − L(Ξ − Ξ̄)D2

]
wk,

(7)

or, in a compact form,

ςk+1 = Ǎηk + Āςk + ψkÂςk + B̄wk (8)

where

ςk =
[

xT
k eTk

]T

, ηk =
[

fT (xk) fT (xk) − fT (x̂k)
]T

, Ǎ =

[

A 0

0 A

]

, Ā =

[

B2Ω̄K −B2Ω̄K

LC2 − LΞ̄C2 −LC2

]

,

ψk =

[

B2(Ω − Ω̄) 0

0 L(Ξ − Ξ̄)

]

, Â =

[

K −K

−C2 0

]

, B̄ =

[

B1

(B1 − LΞ̄D2) − L(Ξ − Ξ̄)D2

]

.

It should be pointed out that, in the closed-loop system (8), the stochastic matrices Ξ and Ω appear,

which make the difference from 1) the traditional deterministic system without random packet losses and 2)

the system with single random packet loss. Before proceeding further, we introduce the following definition,

assumption and lemmas, which will be needed for the derivation of our main results.

Definition 1: [25] The solution ςk = 0 of the closed-loop system in (8) with wk ≡ 0 is said to be stochastically

stable if, for any ε > 0, there exists a δ > 0 such that E {||ςk||} < ε whenever k ∈ I
+ and ||ς0|| < δ.

Assumption 2: [29] The matrix B2 is of full column rank, i.e., rank(B2) = m.

Remark 5: For the matrix B2 of full column rank, there always exist two orthogonal matrices U ∈ R
n×n

and V ∈ R
m×m such that

B̃2 = UB2V =

[

U1

U2

]

B2V =

[

Σ

0

]

, (9)

where U1 ∈ R
m×n and U2 ∈ R

(n−m)×n, and Σ = diag{τ1, τ2, · · · , τm}, where τi (i = 1, 2, · · · ,m) are nonzero

singular values of B2.

Lemma 1: [29] For the matrix B2 ∈ R
n×m with full column rank, if matrix P1 is of the following structure:

P1 = UT

[

P11 0

0 P22

]

U = UT
1 P11U1 + UT

2 P22U2, (10)

where P11 ∈ R
m×m > 0 and P22 ∈ R

(n−m)×(n−m) > 0, and U1 and U2 are defined in (9), then there exists a

non-singular matrix P ∈ R
m×m such that B2P = P1B2.
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Remark 6: [29] The purpose of Lemma 1 is to find a solution P to B2P = P1B2, which will later facilitate

our development of the LMI approach to the controller design. The assumption of B2 being full column

rank is just for presentation convenience, which does not lose any generality, as we can always conduct the

congruence transformation on B2. If the condition (10) holds, then P exists but it may not be unique unless

B2 is square and non-singular.

Lemma 2: [25] If there exist a Lyapunov function V (ςk) and a function Γ(r) ∈ OL satisfying the following

conditions

V (0) = 0, (11)

Γ(||ς||) ≤ V (ς), (12)

E {V (ςk+1)} − E {V (ςk)} < 0, k ∈ I
+, (13)

then the solution ςk = 0 of the closed-loop system in (8) with wk ≡ 0 is stochastically stable.

In this paper, we aim to design the controller (3) for the system (1) such that, in the presence of multiple

random packet losses, the closed-loop system (8) is stochastically stable and the H∞ performance constraint

is satisfied. To be more specific, we describe the problem as follows.

Problem HCMDL (H∞ control with multiple data losses):

For given the communication link parameters Ξ̄ and Ω̄ and the scalar γ > 0, design the controller (3) for the

system (1) such that the closed-loop system satisfies the following two performance requirements:

i) (stochastic stability) the closed-loop system in (8) is stochastically stable in the sense of Definition 1;

ii) (H∞ performance) under zero initial condition, the controlled output zk satisfies ||z|| E ≤ γ||w||2, where

‖z̄‖
E

, E







√
√
√
√

∞∑

k=0

zT
k zk






, (14)

and ‖ · ‖2 stands for the usual l2 norm.

If the above two conditions are satisfied, the closed-loop system is said to be stochastically stable with a

guaranteed H∞ performance γ, and the problem HCMDL is solved.

III. H∞ Control Performance Analysis

In this section, the problem HCMDL formulated in the previous section will be tackled via a quadratic

matrix inequality approach described in the following theorem.

Theorem 1: Suppose that both the controller gain matrix K and the observer gain matrix L are given. The

closed-loop system in (8) is stochastically stable with a guaranteed H∞ performance γ if there exist positive

definite matrices P1, P2 and two scalars ρ1 > 0, ρ2 > 0 satisfying

[

Λ + Λ1 Λ2

ΛT
2 Λ3

]

< 0, (15)

P1 ≤ ρ1I, P2 ≤ ρ2I (16)
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where

Λ = 2

[

B2Ω̄K −B2Ω̄K

LC2 − LΞ̄C2 −LC2

]T [

P1 0

0 P2

][

B2Ω̄K −B2Ω̄K

LC2 − LΞ̄C2 −LC2

]

+

[

2ρ1λ1I − P1 0

0 2ρ2λ1I − P2

]

+

m∑

j=1

ξ2j B̄
T
j P1B̄j +

p
∑

i=1

σ2
i C̄

T
i P2C̄i,

B̄j =
[

B2Kj −B2Kj

]

, C̄i =
[

−LC2i 0
]

,

Λ1 =

[

ρ1λ1I + 2λ2I 0

0 ρ2λ1I

]

,

Λ2 =




(B2Ω̄K)TP1B1 + (LC2 − LΞ̄C2)

TP2(B1 − LΞ̄D2) +
p∑

i=1
σ2

i (LC2i)
TP2(LD2i)

−(B2Ω̄K)TP1B1 − (LC2)
TP2(B1 − LΞ̄D2)



 ,

Λ3 = 2BT
1 P1B1 + 2(B1 − LΞ̄D2)

TP2(B1 − LΞ̄D2) +

p
∑

i=1

σ2
i (LD2i)

TP2(LD2i) + 2DT
1 D1 − γ2I,

λ1 = λmax(A
TA), λ2 = λmax(C

T
1 C1). (17)

Proof: We first prove the stochastic stability of the closed-loop system. For this purpose, assume wk ≡ 0

and define the following Lyapunov function candidate as:

Vk = xT
k P1xk + eTk P2ek, (18)

where P1 and P2 are solutions to (15)-(16). Then, along the trajectory of (7), we have

E {∆Vk} = E {Vk+1|xk, ..., x0, ek, ..., e0} − Vk

= E
{
xT

k+1P1xk+1 + eTk+1P2ek+1

}
− xT

k P1xk − eTk P2ek

= E

{

[Af(xk) +B2Ω̄Kxk −B2Ω̄Kek +B2(Ω − Ω̄)Kxk −B2(Ω − Ω̄)Kek]
TP1

×[Af(xk) +B2Ω̄Kxk −B2Ω̄Kek +B2(Ω − Ω̄)Kxk −B2(Ω − Ω̄)Kek]

+[A(f(xk) − f(x̂k)) + (LC2 − LΞ̄C2)xk − L(Ξ − Ξ̄)C2xk − LC2ek]
TP2

×[A(f(xk) − f(x̂k)) + (LC2 − LΞ̄C2)xk − L(Ξ − Ξ̄)C2xk − LC2ek] − xT
k P1xk − eTk P2ek

}

= [Af(xk) +B2Ω̄Kxk −B2Ω̄Kek]
TP1[Af(xk) +B2Ω̄Kxk −B2Ω̄Kek]

+[A(f(xk) − f(x̂k)) + (LC2 − LΞ̄C2)xk − LC2ek]
TP2[A(f(xk) − f(x̂k))

+(LC2 − LΞ̄C2)xk − LC2ek] − xT
k P1xk − eTk P2ek

+E{[B2(Ω − Ω̄)Kxk −B2(Ω − Ω̄)Kek]
TP1[B2(Ω − Ω̄)Kxk −B2(Ω − Ω̄)Kek]}

+E{[−L(Ξ − Ξ̄)C2xk]
TP2[−L(Ξ − Ξ̄)C2xk]}.

It follows from the definition (4) and (5) that

E{αi − µi}{αl − µl} =

{

σ2
i i = l

0 i 6= l,
(i, l = 1, . . . , p),

E{βj − ϑj}{βq − ϑq} =

{

ξ2j j = q

0 j 6= q,
(j, q = 1, . . . ,m),

(19)
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and then we can obtain that

E
{
[B2(Ω − Ω̄)Kxk −B2(Ω − Ω̄)Kek]

TP1[B2(Ω − Ω̄)Kxk −B2(Ω − Ω̄)Kek]
}

(20)

= E









B2

m∑

j=1

(βj − ϑj)Kj (xk − ek)





T

P1



B2

m∑

j=1

(βj − ϑj)Kj (xk − ek)











=

m∑

j=1

m∑

q=1

E{βj − ϑj}{βq − ϑq}[B2Kj (xk − ek)]
TP1[B2Kj (xk − ek)]

=

m∑

j=1

ξ2j [B2Kj (xk − ek)]
TP1[B2Kj (xk − ek)],

E{[−L(Ξ − Ξ̄)C2xk]
TP2[−L(Ξ − Ξ̄)C2xk]} =

p
∑

i=1

σ2
i [LC2ixk]

TP2[LC2ixk]. (21)

From the elementary inequality 2aT b ≤ aTa+ bT b, it follows that

2fT (xk)A
TP1B2Ω̄K(xk − ek) ≤ fT (xk)A

TP1Af(xk) + (xk − ek)
T (B2Ω̄K)TP1(B2Ω̄K)(xk − ek) (22)

and, in the same way, we have

2[f(xk) − f(x̂k)]
TATP2[(LC2 − LΞ̄C2)xk − LC2ek]

≤ [f(xk) − f(x̂k)]
TATP2A[f(xk) − f(x̂k)]

+[(LC2 − LΞ̄C2)xk − LC2ek]
TP2[(LC2 − LΞ̄C2)xk − LC2ek]. (23)

Next, we obtain from (2) and (16) that

fT (xk)A
TP1Af(xk) ≤ ρ1λmax(A

TA)xT
k xk, (24)

[f(xk) − f(x̂k)]
TATP2A[f(xk) − f(x̂k)] ≤ ρ2λmax(A

TA)eTk ek, (25)

then from (18)-(25), we have

E {∆Vk} ≤ 2ρ1λmax(A
TA)xT

k xk + 2(B2Ω̄Kxk −B2Ω̄Kek)
TP1(B2Ω̄Kxk −B2Ω̄Kek) + 2ρ2λmax(A

TA)eTk ek

+2[(LC2 − LΞ̄C2)xk − LC2ek]
TP2[(LC2 − LΞ̄C2)xk − LC2ek] − xT

k P1xk − eTk P2ek

+

m∑

j=1

ξ2j [B2Kj (xk − ek)]
TP1[B2Kj (xk − ek)] +

p
∑

i=1

σ2
i (LC2ixk)

TP2(LC2ixk)

= ςTk Λςk.

By Schur complement, (15) implies that Λ < 0, hence

E {∆Vk} = ςTk Λςk < 0

which satisfies (13). Taking Γ(xk, ek) = λmin(P1)x
2
k + λmin(P2)e

2
k such that Γ(xk, ek) ∈ OL, we obtain

Γ(||xk, ek||) = λmin(P1)||xk||
2 + λmin(P2)||ek||

2 ≤ xT
k P1xk + eTk P2ek = V (xk, ek),

which satisfies (12). Considering V (0) = 0, it follows readily from Lemma 2 that the closed-loop system in

(8) with wk ≡ 0 is stochastically stable.
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Next, the H∞ performance criterion for the closed-loop system in (8) will be established. For presentation

convenience, we denote

Ξ̂1 := Af(xk) +B2Ω̄Kxk +B2(Ω − Ω̄)Kxk −B2Ω̄Kek −B2(Ω − Ω̄)Kek +B1wk (26)

Ξ̂2 := A(f(xk) − f(x̂k)) + (LC2 − LΞ̄C2)xk − L(Ξ − Ξ̄)C2xk − LC2ek

+((B1 − LΞ̄D2) − L(Ξ − Ξ̄)D2)wk]
T (27)

Now, Assuming zero initial conditions and in view of the above notations, an index is introduced and calculated

as follows:

J = E {Vk+1} − E {Vk} + E
{
zT
k zk

}
− γ2

E
{
wT

k wk

}

= E{Ξ̂T
1 P1Ξ̂1 + Ξ̂T

2 P2Ξ̂2 − xT
k P1xk − eTk P2ek} + [C1f(xk) +D1wk]

T [C1f(xk) +D1wk] − γ2wT
k wk

≤ ηT
k Ληk + (B1wk)

TP1[Af(xk) +B2Ω̄Kxk −B2Ω̄Kek +B1wk] + [Af(xk) +B2Ω̄Kxk −B2Ω̄Kek]
TP1B1wk

+E{[(B1 − LΞ̄D2)wk − L(Ξ − Ξ̄)D2wk]
TP2[A(f(xk) − f(x̂k))

+(LC2 − LΞ̄C2)xk − L(Ξ − Ξ̄)C2xk − LC2ek]}

+E{[A(f(xk) − f(x̂k)) + (LC2 − LΞ̄C2)xk − L(Ξ − Ξ̄)C2xk − LC2ek]
TP2

×[(B1 − LΞ̄D2)wk − L(Ξ − Ξ̄)D2wk]}

+E{[(B1 − LΞ̄D2)wk − L(Ξ − Ξ̄)D2wk]
TP2[(B1 − LΞ̄D2)wk − L(Ξ − Ξ̄)D2wk]}

+[C1f(xk) +D1wk]
T [C1f(xk) +D1wk] − γ2wT

k wk

=

[

ςk

wk

]T [

Λ + Λ1 Λ2

ΛT
2 Λ3

][

ςk

wk

]

,

where Λ, Λ1, Λ2, Λ3 come from (17). It follows from (15) that J < 0, that is,

E {Vk+1} − E {Vk} + E
{
zT
k zk

}
− γ2

E
{
wT

k wk

}
< 0. (28)

Summing up (28) from zero to ∞ with respect to k yields

∞∑

k=0

E{‖zk‖
2} < γ2

∞∑

k=0

E{‖wk‖
2} + E {V0} − E {V∞} .

Since ς0 = 0 and the system (8) is stochastically stable, it is easy to conclude that

∞∑

k=0

E{‖zk‖
2} < γ2

∞∑

k=0

E{‖wk‖
2},

which is equivalent to (14). The proof is complete.

IV. Controller Design

In this section, we will deal with the controller design problem and derive the explicit expression of the

controller parameters, that is, to determine the controller parameters in (3) such that the closed-loop system

in (8) is stochastically stable and the controlled output zk satisfies (14).

Theorem 2: Consider the system (1). There exists a dynamic observer-based controller in the form of (3)

such that the closed-loop system in (8) is stochastically stable with a guaranteed H∞ performance γ, if there

exist positive-definite matrices P11 ∈ R
m×m, P22 ∈ R

(n−m)×(n−m), P2 ∈ R
n×n, real matrices Mj ∈ R

m×n

(j=1,...,m), N ∈ R
n×p and two scales ρ1 > 0, ρ2 > 0 satisfying

[

Π1 ΠT
2

Π2 Π3

]

< 0, (29)
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P1 ≤ ρ1I, (30)

P2 ≤ ρ2I. (31)

Where
Π1 = diag

{
−P1 + 3ρ1λ1I + 2λ2I,−P2 + 3ρ2λ1I,−γ

2I + 2DT
1 D1

}
,

Π3 = diag
{

−P1,−P2,−P1,−P2,−P1,−P2,−P̂1,−P̂2

}

,

Π2 =





















m∑

j=1
ϑj B2Mj −

m∑

j=1
ϑj B2Mj P1B1

NC2 −N Ξ̄C2 −NC2 P2B1 −N Ξ̄D2
m∑

j=1
ϑj B2Mj −

m∑

j=1
ϑj B2Mj 0

NC2 −N Ξ̄C2 −NC2 0

0 0 P1B1

0 0 P2B1 −N Ξ̄D2

B̂ −B̂ 0

Ĉ 0 D̂





















,

B̂ = [ξ1M
T
1 B

T
2 , · · ·, ξmM

T
mB

T
2 ]T , Ĉ = [−σ1C21

TNT , · · ·,−σpC2p
TNT ]T ,

P̂1 = diag{P1, · · · , P1
︸ ︷︷ ︸

m

}, P̂2 = diag{P2, · · · , P2
︸ ︷︷ ︸

p

},

D̂ = [−σ1D21
TNT , · · ·,−σpD2p

TNT ]T , P1:= UT
1 P11U1 + UT

2 P22U2.

(32)

Furthermore, the controller parameters are given by

K =

m∑

j=1

V Σ−1P−1
11 ΣV TMj , L = P−1

2 N. (33)

Proof: From Theorem 1, we know that there exists a dynamic observer-based controller such that (8) is

stochastically stable with a guaranteed H∞ performance γ if there exist positive definite matrices P1 and P2

satisfying (15). Noticing

P1B2Ω̄K =

m∑

j=1

ϑj P1B2Kj ,

and applying the Schur complement to (15), we have

[

Π1 Π̂T
2

Π̂2 Π3

]

< 0,
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where

Π̂2 =





















m∑

j=1
ϑj P1B2Kj −

m∑

j=1
ϑj P1B2Kj P1B1

P2LC2 − P2LΞ̄C2 −P2LC2 P2B1 − P2LΞ̄D2
m∑

j=1
ϑj P1B2Kj −

m∑

j=1
ϑj P1B2Kj 0

P2LC2 − P2LΞ̄C2 −P2LC2 0

0 0 P1B1

0 0 P2B1 − P2LΞ̄D2

B̌ −B̌ 0

Č 0 Ď





















,

B̌ = [ξ1(P1B2K1)
T , · · ·, ξm(P1B2Km)T ]T , Ĉ = [−σ1(P2LC21)

T , · · ·,−σp(P2LC2p)
T ]T ,

Ď = [−σ1(P2LD21)
T , · · ·,−σp(P2LD2p)

T ]T .

(34)

Since there exist P11 > 0 and P22 > 0 such that P1 = UT
1 P11U1 + UT

2 P22U2, where U1 and U2 are defined

in (9), it follows from Lemma 1 that there exists a non-singular matrix P ∈ R
m×m such that B2P = P1B2.

Now let us calculate such a matrix P from the relation B2P = P1B2 as follows:

P1U
T

[

Σ

0

]

V T = UT

[

Σ

0

]

V TP,

i.e.

UT

[

P11 0

0 P22

][

Σ

0

]

V T = UT

[

Σ

0

]

V TP,

which implies that

P = (V T )−1Σ−1P11ΣV
T . (35)

Since B2P = P1B2, we define

Mj = PKj , N = P2L, (36)

and we can obtain (29) and (33) readily. The proof is now complete.

Remark 7: As we can see from Theorem 2, in the presence of multiple random packet losses, the H∞

control problem is solved for systems with repeated scalar nonlinearities, and an observer-based feedback

controller is designed to stochastically stabilize the networked system and also achieve the prescribed H∞

disturbance rejection attenuation level. The possible future research directions include real-time applications

of the proposed filtering theory in telecommunications, and further extensions of the present results to more

complex systems with unreliable communication links, such as sampled-data systems, bilinear systems, time-

delay systems and more general nonlinear systems.

Remark 8: The packet dropout or missing measurement problems have recently attracted considerable

research interest [7, 12, 13, 29, 34, 35, 37]. In particular, in [25, 29], the filtering and control problems have

been investigated for a general class of nonlinear discrete-time stochastic systems with single packet loss

where the missing probability is assumed to be either 0 (complete loss) or 1 (no loss). In [30], the filtering

problem has been considered for a class of discrete-time uncertain stochastic nonlinear time-delay systems

with probabilistic missing measurements, which are assumed to occur only in the channel from the sensor to

the controller, and the control problem has not been taken into account. Different from existing literature,

this paper exhibits the following distinctive features: 1) the packet loss phenomenon is assumed to be random

and could be different for individual sensor/actuator; 2) the packet loss is modeled by an individual random
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variable satisfying a certain probabilistic distribution on the interval [0 1], which is not restricted to be 0 or

1; 3) the random packet losses in both sensor-to-controller and controller-to-actuator channels are considered;

and 4) the observer-based H∞ control problem is dealt with that facilitates the investigation on the packet

loss from controller to actuator.

V. Illustrative Examples

In this section, three simulation examples are presented to illustrate the usefulness and flexibility of the

observer-based controller design method developed in this paper.

Example 1: In this example, we are interested in designing the observer-based controller for systems with

repeated scalar nonlinearities and multiple missing measurements. The system data of (7) are given as follows:

A =






−1 0 0

0 0.8 0.5

0.5 0 0




 , B1 =






0.1 1 0.4

0.2 −0.2 1

0.2 −0.1 0.1




 , B2 =






1 0 0.6

0 0.3 0.5

1 1.2 −0.5




 , C1 =






0.5 0 0

0.4 0.5 0.5

1 0.2 0.2




 ,

C2 =






1 1 5

0.2 −0.4 0.4

0 0 0.3




 , D1 =






0.1 −1 0.3

0.2 −0.3 0.3

1 0.1 −0.1




 , D2 =






−0.2 0.1 0.2

0 0.2 1

1 0.4 0




 .

(37)

Assuming that the probabilistic density functions of α1, α2 and α3 in [0 1] are described by

q1(s1) =







0 s1 = 0

0.1 s1 = 0.5

0.9 s1 = 1

, q2(s2) =







0.1 s2 = 0

0.1 s2 = 0.5

0.8 s2 = 1

, q3(s3) =







0 s3 = 0

0.2 s3 = 0.5

0.8 s3 = 1

, (38)

from which the expectations and variances can be easily calculated as µ1 = 0.95, µ2 = 0.85, µ3 = 0.9,

σ1 = 0.15, σ2 = 0.32 and σ3 = 0.2. In the same way, we assume the probabilistic density functions of β1, β2

and β3 in [0 1] to be

m1(s1) =







0 s1 = 0

0.4 s1 = 0.5

0.6 s1 = 1

, m2(s2) =







0.05 s2 = 0

0.15 s2 = 0.5

0.8 s2 = 1

, m3(s3) =







0 s3 = 0

0.2 s3 = 0.5

0.8 s3 = 1

,

(39)

from which we can calculate that ϑ1 = 0.8, ϑ2 = 0.875, ϑ3 = 0.9, ξ1 = 0.245, ξ2 = 0.268 and ξ3 = 0.2. Here,

the nonlinear function f(xk) = sin(xk) satisfies (2). By applying Theorem 2, we can obtain an admissible

solution as follows:

K =






−0.0364 0.0708 −0.3856

−0.0242 0.0550 −0.3159

0.0255 −0.0579 0.3356




 , L =






0.0509 0.3040 0.8950

0.1242 0.4020 0.3154

0.0040 0.0247 0.0488




 .

For the purpose of simulation, we let the initial conditions be x0 = [1 0 0]T , x̂0 = [0 0 0]T , and the

disturbance input be wk = [k−2 k−2 k−2]T . Fig. 1 displays the state responses of the uncontrolled system,

which are apparently unstable. Fig. 2 shows the state simulation results of the closed-loop system, from which

we can see that the desired objective is achieved.

Example 2: In this example, we aim to illustrate the effectiveness of our results for different measurement

missing cases. Here

A =






−1 0 −0.9

2 0.8 0.5

0.5 0 1.2




 ,
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Fig. 2. The state evolution xk of controlled system in Example 1
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Fig. 3. The state evolution xk when the packet-loss probability is relatively lower in Example 2
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Fig. 4. The state evolution xk when the packet-loss probability is relatively higher in Example 2
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and the other system data of (7) is the same as in Example 1. First, we assume the probabilistic density

functions of α1, α2, α3 and β1, β2, β3 are the same as (38) and (39) respectively, and obtain an admissible

solution as follows:

K =






−0.0276 0.0551 −0.3031

−0.0087 0.0295 −0.1799

0.0095 −0.0318 0.1967




 , L =






0.0514 0.3017 0.8770

0.1217 0.3971 0.3288

0.0042 0.0236 0.0414




 ,

for which the simulation result of the state responses is given in Fig. 3 that confirms the realization of our

design goal.

Next, let us consider the case when the multiple packet-loss probability becomes higher. Take the proba-

bilistic density functions of α1, α2 and α3 in [0 1] as

q1(s1) =







0 s1 = 0

0.3 s1 = 0.5

0.7 s1 = 1

, q2(s2) =







0 s2 = 0

0.3 s2 = 0.5

0.7 s2 = 1

, q3(s3) =







0 s3 = 0

0.5 s3 = 0.5

0.5 s3 = 1

,

and the probabilistic density functions of β1, β2 and β3 in [0 1] as

m1(s1) =







0.8 s1 = 0

0.1 s1 = 0.5

0.1 s1 = 1

, m2(s2) =







0.2 s2 = 0

0.1 s2 = 0.5

0.7 s2 = 1

, m3(s3) =







0.2 s3 = 0

0.1 s3 = 0.5

0.7 s3 = 1

.

By calculating the expectations and variances of the random variables, we have arrived at the following

solution:

K =






−0.0135 0.0676 −0.2887

0.0424 0.0102 0.1361

−0.0465 −0.0465 −0.1507




 , L =






0.0570 0.3216 1.0009

0.1433 0.4253 0.3136

0.0071 0.0317 0.0495




 ,

Again, the simulation result of the state responses are depicted in Fig. 4. As we can see from Figs. 3-4, when

the packet losses are severer, the dynamical behavior of the NCS takes longer to converge and, furthermore,

the robustness of the closed-loop system is rather degraded.

Example 3: Following [14, 20, 23], we consider a factory that produces two kinds of products (j = 1, 2)

sharing common resources and raw materials, like colour TV and black/white TV, PC and laptop computer,

etc. Fig. 5 shows the schematic diagram of the system under consideration. The information transmissions are

conducted through networks which are subject to possible missing measurements. Due to the unknown distur-

bance input and probabilistic packet losses, it would be of practical significance to design an observer-based

controller to stabilize the systems while maintaining certain system performances, for which the developed

theory in this paper can be ideally applied.

During the kth period (quarter or season), we define

sjk : amount of sales of product j

ajk : advertisement cost spent for product j

i jk : amount of inventory of product j

pjk : production of product j

Let

xk =








p1,k+1

p2,k+1

i1k

i2k







, uk =








s1k

s2k

a1k

a2k







.
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Fig. 5. Closed-loop system with data losses

The effect of advertisements on sales in the marketing process and the interlink between production and the

amount of sales in the production process (assuming one-period gestation lag) may be expressed dynamically

by the following form:

xk+1 = Af(xk) +B1wk +B2uk + △B2uk−d1

where f(xk) is a saturation nonlinearity function, △B2uk−1 describes the uncertain changes in advertisements

cost, d1 denotes the time-delay and yk represents the measured production of product j. The purpose of this

example is to design an observer-based H∞ control that renders the closed-loop system stochastically stable

and guarantees an appropriate level of performance. It is readily seen that the above model is a special case

of (1) when △B2 = 0.

Now, let’s consider a specific example for the above combined marketing and production control problem,

where

A =








0.7 0 0 0

0 0.5 0 0

−0.7 0 0.9 0

0 −0.5 0 0.9







, B1 =








0 0.2 0 0

0.1 0 0 0

0 −0.2 0 0

−0.1 0 0 0







, B2 =








1 0 0.8 0

0.1 0 0 0

0 −0.2 0 0

−0.1 0 0 0.4








C1 =








0.5 0 0.7 0

0.4 0.5 0 0.5

1 0 0.5 0

0.2 −0.5 0 0.9







, C2 =








1 0 1 0

0.4 0.5 0 0.5

1 0 1 0

0 −0.5 0.2 1







,D1 =








0.1 0 −1 0.3

0.4 0.5 0 0.5

1 0 0.5 0

0.2 −0.5 0 1







,

D2 =








−0.5 0.2 0.7 0

0.4 0.5 0 0.5

−1 0 0.5 0

0.2 −0.5 0 0.9








We assume the probabilistic density functions of α1, α2, α3 and β1, β2, β3 are the same as (38) and (39),

respectively, and α4 and β4 are described by

q4(s4) =







0.05 s4 = 0

0.15 s4 = 0.5

0.8 s4 = 1

, m4(s4) =







0.1 s4 = 0

0.1 s4 = 0.5

0.8 s4 = 1

.

Here, the saturation nonlinear function f(xk) satisfies







f(xk) = xk |xk| ≤ 1

f(xk) = 1 xk > 1

f(xk) = −1 xk < −1

The state response of the closed-loop system is shown in Fig. 6, which illustrates the effectiveness of the

H∞ controller design.
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Fig. 6. The state evolution xk of Example 3

As a summary of this section, all the simulation results have further confirmed our theoretical analysis

for the problem of observer-based H∞ control for systems with repeated scalar nonlinearities and multiple

missing measurements.

VI. Conclusions

In this paper, A novel H∞ control problem has been considered for systems with repeated scalar nonlinear-

ities under multiple missing measurements. The random communication packet losses have been allowed to

occur, simultaneously, in the communication channels from the sensor to the controller and from the controller

to the actuator, and the missing probability for each sensor is governed by an individual random variable sat-

isfying a certain probabilistic distribution in the interval [0 1]. In the presence of random packet losses, an

observer-based feedback controller has been designed to stochastically stabilize the networked system. Both

the stability analysis and controller synthesis problems have been investigated in detail. Simulation results

have demonstrated the usefulness and feasibility of the addressed control scheme.
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