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ABSTRACT

The problem of diffraction of a sound wave by a strip in
a moving fluid is investigated. The sound source is a line source
which is at a fixed finite distance from the strip. This system
is in a moving subsonic fluid, and a vortex sheet is assumed to be
attached to the trailing edge.

The above problem is supposed to be a theoretical model for
the situation when an engine is at a fixed distance and orientation

above an aircraft wing, the aircraft being in flight.




INTRODUCTION

In order to provide high speed transportation between city
centres, powered lift aircraft such as STOL (Short Take Off and
Landing and RTOL (Reduced Take Off and Landing) vehicles using
shorter runways have been proposed. However, the extra 1lift device
necessary for powered lift generates and redirects noise, which must
be compatible with existing noise level requirements. A possible
solution to the CTOL (Conventional Take Off and Landing), STOL and
RTOL noise problem is to place the engine over the wing, see the
review articles by Hubbard & Magglieri I[] and Brown and Blythe [2].
With such a configuration, the wing shields the ground from some of
the engine noise and redirects it above the aircraft. It has been
shown experiementsally by Reshotko et al [3] that such a configuration
does indeed reduce the noise below the wing by as much as 30 PN dB.

The object of the present work is to give a simple theoretical model
for the engine over the wing situation. The noise field of a jet
engine can be replaced by an equivalent distribution of point sources.
At present a research program is being carried out to locate the position
and magnitude of these equivalent sound sources. The magnitude, phase
and position of the sources will depend on the physical dimensions of
the jet and its speed. For the sake of clarity and to reduce the
mathematical formulae in the present work the engine is assumed to be
represented by a single line source which is fixed relative to a strip
which represents the wing. The system is assumed to be in a moving
subsonic fluid, this simulates flight conditions. A wake is assumed to
be attached to the trailing edge of the strip. The sound field below
the wing is investigated for different source orientations and flow Mach
number. An extension to the situation where more than one source is
above the strip is easily carried out by the principle of superposition.

For a unique solution to the theoretical model it is necessary that
we impose different 'tdge conditions" at the leading and trailing edge of
the strip, see Rawlins LS], Jones{@l. At the leading edge we impose the
usual edge condition associated wi%h acoustie diffraction theory. This
requires that the sound energy is bounded in a finite region around the
leading edge of the strip. Thus the velocity can be unbounded at the
leading edge but the velocity singularity must be integrable. At the
trailing edge, the attached wake, requires the imposition of a Kutta-
Joukowski edge condition, see Jones [éJ. This required that the velocity
must be bounded at the trailing edge.




In section two the boundary value problem for the model is
set up. In section thz;g\ed Qjﬂ’é)g}l&dgg\}; ckv(aﬁleuée rgglq,m is reformulated
using the Wlener—Hopf_technlqusw to give a system of Fredholm
integral equations. The integral equations are too difficult to
solve exactly and, therefore, for sufficiently large strip length
an asymptotic solution to the integral equation is derived in section
four. In section five some expressions for the far field are
derived. These results are used to give some graphical plots of
the attenuation in the shadow of the strip for various physical
parameter values. Section six gives some conclusions from the

graphical results and the model used.




FORMULATION OF THE BOUNDARY VALUE PROBLEM
Consider a small amplitude sound wave on a main stream moving

with velocity U parallel to the x-axis. A finite strip is assumed

to occupy ¥ = 0, -d < x €d, |z| < « (see figure 1). The strip is

assumed to be infinitely thin and rigid,w Uh awake alfache] & & T Piuy edye .

“Tre & tecks o:‘g— nSCos:& ﬁlj,_gﬁxui,’ig, dwd thermal L,..-)V\dUC. Vw:tly will be weg#ect‘e{h. 1}!&\0»\‘3.2 NS b

6hzeﬁMWﬁM&¢%VWmv®V\ the perturbation velocity u of the irrotational sound wave can 3
be expressed in terms of the velocity potential x(x,y) tw'&k==grad x{(x,y).

The resulting pressure in the sound field is given by

o (3 IRV
p=-p, (G +Uaphxxy),

where Py is the density of the undisturbed stream.

N

U
——
FLuid FLow

U

—
FLUID Flow

5;‘.,'3 \.

We shall assume a line source parallel to the edges exists at
(xo,yo), Yo 2 0, and is fixed in space relative to the rigid strip.
The line source is assumed to have time harmonic variation e—lwt;

this factor will be suppressed in future work. Then the problem

becomes one of solving the convective wave equation

{(i'ml)f +2kM2 "y kl% X(x )= SCux)dlg-9e)
dxc* % g+ (1)




subject to the boundary conditions

E_X(x, of) = O (-d< xs‘d) (2)
Y )

X (x oF) = OX(x 07)  Xlx ot)e Fry o :
é_g(xje) 5_ﬂ_(x/c , r(gnjo*')ﬂﬁ?fc/r/a)J (c<-d), ()

where k = w/c, ¢ is the velocity of sound and M (=U/c) is the Mach
number. The boundary condition (4) is the appropriate form which
expresses a wake, which is assumed not to spread, trailing off the
edge x = d of the strip, for subsonic flow)viz 0 <M< 1, Rawlinsi;d].
§ is an unknown constant which is determined by the field behaviour at
the trailing edge. 'T"\e second Q?LP???‘SW‘V\ G'f* () s obt‘*ﬁ;ahﬁ‘ci. 'bgj
dinect tmBgralion of The Boundany wndition
(<ik +M2 ) plx, ot = (~k+M2 );5(95/0“/}) (e >d),
o M.
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3. SOLUTTION OF THE BOUNDARY VALUE PROBLEM

Since we are dealing with subsonic flow we can make the real

substitutions

xX = (!“ME)I&X'J Xy = ('i‘Ml)%Xe ) ﬂ:’?);) 'ﬂo’:—yc

k= (1-M)"K,  d= (1-M)*D

which together with the substitution

Alxy) = EP(X,Y) MPD(}RMX]) (6)

reduce the boundary value problem (1) to (5) to

a* . CKMX,

o ._._. K g()("‘Xo)é(Y")’o)C Y

(axl ay: " )MX )= Ci-m3)"

2F(x, Y=o - (~D<x<D); (3)
DY

B% + = ' N) g T) e .
2y B0 %}qéi%o ) Plx, 07 = GE(X/O)J (X <-D). (9)

zg(x, ot) = Syﬁ?(x,o) Pix, ot - Wix,07) = Sexpli kx/m] - (x>D)
()

We shall asSume that a solution 05("() to (10) can be written in

th\i form _Ecx ), ,7é (x y‘)*ﬁ 9{>(;< y) (“)
wher
b, (x,Y) =% HCRN{ (x~xe) Cy-y) ") =

(.

= O S Q,CbLoéM(X~Xc +J(K- w) (Yo )’)51(11&

a=(i-M?) eplikmyg  “TC JK=u?

represents the line source fleld in the absence of the rigid strip.

The term ?[’(X}Y} represents the perturbed field due to the presence of

the strip.
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For analytic convenience we shall assumeAK = Kr + iKi (Kr’Ki > 0),
in which case for a unique solution of the boundary value problem (7)

to (11) requires the satisfaction of the radiation condition

LU’V\ l #’(X)Y)l < 0 5 where R= \/(’Xz*#*)’z) ) (12)

R->e0

and also the edge conditions
™ Cadx e = )l
b= 000, w2000 = O™, as x> b 43

$b(x,0) = O0) | ans %g_b(x/cs’)zO((x—-D)”i)j s X D (%)

see Jones‘iel and Peters and Stoker Y?].

The edge condition (13) is the appropriate form for the leading edge,
where there is no wake, and is the usual form used in diffraction theory
which requires that the edge does not behave like a source. The edge
condition (14) is s Kutta-Joukowski edge condition applied %&aﬁhe trailing
edge, at which is attached a wake. This condition requires the velocity
be finite at the edge. It is necessary, for a unique solution, to impose
a Kutta-Joukowski condition, rather than the edge condition associated
with diffraction theory, because of the wake, see Jones [ﬁj. However, we
shall assume initially that the edge condition at x = D is the usual

one associated with diffraction theory viz
95(?£,C2) = O() y and %ijé(}&(p) - Cj)(’(x‘iD) 'gl 6LS-><“%1¥7 (isj
Y

and in the end result we shall impose the condition (14) which will enable

us to determine 8, which occurs in the wake boundary condition (10).




We introduce the Fourier transform

0, y) = J Fix,y) e dx |

(16)

and its inverse
b N ot

§£<X)y):; BE S a}(% yv LMXCl
AT

- 00 Y

(17)

where o = 0 + iT. The transform (15) and its inverse (17) will exist

provided —Ki < T < Ki; this follows from the radiation condition (12) and

the form of the incident field.
Applying (16) to equation (7) gives on solving the ordinary

differential equation

Y7
Fltyyo= RO | (yao
J (18)
_.tﬂﬁ)/
= RB@) ¢
- (>’<:o)) (19)

where k = /(K2 - ag) is defined on the cut sheet for which Im(x) > 0
when |Im(a)| < K, From the equations (18) and (19) and the boundary
conditions (8) to (10) we obtain us»nﬁ Jones “"QW\DC& Noble L71

—o«D

%’, (of, O) + &P (Of ot)+e % (0( O+) = Q(O( (20a)
efcab ; ‘ E;/ , ADy 4 -
P (,0) + S @0) +€ P (a0) =(HRE)
~AD T A ] - oD
&PE_(x,0) + F,(q07) + € dD@r(“’} 0)=Be&) (@)
2

AT ¢ / KD ,
< %_ (0{;, 0)4‘?'(%0) + € Sﬁr_(q‘,a):z“c%BCof)). (21b)




W ke,ve,

Bl y)= [ ogne Y ax
D

J
(22)
~5 ‘
: _ L LY X+D)
0= | dogne dx,
Zou (23)
éi} D
>, (o, %) = S y) e X
' cncates } o
— ‘ x4+l
?w (0‘/ o) = "',;Z,f,‘:' J BLZMX"‘"WY‘”?@“@‘-“)D _i(o(-u)b‘d
/7“‘,7’.—0@ +i b (w~ut) - ¢ 4, (25)
and the dashes denote derivatives with respect to Y. ik;l<’k'é‘

Eliminating A(a) from (20) and B(a) from (21) and adding the

resulting equations gives
.ei-CAKIZié / (o, <) =i, vaXD 4 )
- ’ —+ §,(°€,o) + € @4_(9@@):‘:'_

aasea (‘/% é( . — G R _ul ¢ - . -
{ 105}0) Q;,(vf,o)j/.z +6%{§+<q}oﬁ)_@4.[06(5‘)}@&%??
@e)
From the boundary condition (10) we also have
coD g
€ : , , -\ e P -
I Bl 09)= By 0] = C8 CRpLi0taricmn)] (ot i)
Hence we can write (26) in the form

C’_C@é/[d Y+ v (). I )
P (A, 0) + () + € 4}_,_(0('/@): SCQ('), (o7)
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where \/\J,(d);‘*‘il(égfé‘/@*)“ $, @) f/2
)
(28)

wiih’ . )
« [uxe+7Yy,]
SH) = L& p LUKt RN . R
€ {@ o “)j_)__ é'o(rz(-w)b ok

4L7t—¢0+4l) <?<"L4)

— RS Cap| C(xtk/m)D] [ (i > (o0

and from (22) and (24) the terms with subscripts + denote functions
analytic and regular in Im(a) > K, and Im(a) < K, respectively. The
functlonJ\'(u) is an entire function in the whole o-plane, Equations
of the form,(27) have been considered in Rawlins D_] and it can be shown
that the edge conditions (13) and (15) can be used to reform it into a

system of Fredholm integral equations viz

0.4 Ly .

&) Al [ pitd b
Ty = ) S LCOSON 1 [ €000 e
_Soria (k-8 (E+e) k-6 (t+4) 7

=~00+¢E

= o)

o0 4ils

Yilw) i [ oikDfp ' :
- = e s(-€)-sO)] d
S [' k'_.«_l. qj Eki(f) '<J£ (:Eéu

+o) 2T vv ‘
V(ierat) T iy WD (E0) TS NGO (b+) 7

_JE;ﬂ(bO >~—1>2>~=Af;
J

oo4¢b

wnere [} ()= P, (, 0)4-%(*0(@) Xp(x) = % (%,0) - %("( o). B2)

The exact solution of the integral equations (30) and (31) is too

difficult and, therefore, we shall make some asymptotic approximations.




1.

4. APPROXIMATE SOLUTION OF EQUATIONS (30) and (31) FOR 2KD > 1.

Substituting (29) into (30) and (31) and restricting the path of
¢
integration in the t-plane to b < b < Ki gives

w%—iy cx)-H.Ls

l‘( (c() \ i ’ (:[(Xw'"l))%-}""kl){n
e, |
J{K%—%) L “ ,2_;@ Y(k- 6)(lf+o<)((7+vx)

o Y -L»Uoi s -fr»«.,

. ocH—L!gi . . .

+ La e[ KXo kD) + %Yo | co4ib

— 2 du. ) & dF
_ m_‘%g 2T

LkDM o+l

\/(k L) (o) (t--)

-l

i ée l \/(’< 7 LKD oa-f—(.la '
T ) O b e (T 0 £

5
AT —

VSR ) T 2 T ,

Sailhy Srons, (E+KIM) (1)

+ 1 J Cazbc X
2 ri(&’ _ o ‘[(Xu'f”f)‘)

(’%m.do V(-0 (E+ol) ) w‘ S “tw] du

. ( 4w

f
thf #lo

_ ia e Lx-Du+wx]

/‘F"”_Wgu (& ~u)

JZ dt ~Lny (oc)zb b <A</< (23)

Py Lb coiih
YY) _ la J - u[(xe, D)+ %] i | Je
J{kt) 4T W OLM’_Z.TL[ V(K- E) (o) (1)
mw:>+ , oo
J ot L O +Dutn), ] J
Zavsiy zrri L (bt o) ()
-5 k'be woilh ;
- T J(K-\-’t At , KD wﬂb 1%
< 2wl ) - 8¢ ~_{iM Vik+t)e ZDLJZ'
el (B k) (b)) 2 e
-1 j o0+b LQD&* B) " , =g [{t"#}(/M)(e—-.t_o()
JTLMME,\I K- E) (b4t i +(0) + ““" 6"5()‘“""”)“*’%%]0{%

--ém-tla ( E+u)

Rl [CXQ D)H-+7<)”c.j
e i 9 e, —Toiwi<b, b'<b<i; (34)

4T m._‘l_ﬂiini (‘{—mfﬂu\
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In the expressions (33) and (34) the first four integrals, integrated

'
with respect to t, can be evaluated explicitly for b < b < Ki’ Im(-o) < D.
Ta the first two terms of (33) and (3L4) we close that path of

integration in the lower t-plane, thus avoiding branch cuts. The only

poles captured are t = —o and t = + u. To avoid branch cuts we close

the path of integration, in the third and fourth term of (33) and (34),
in the upper t-plane. The only pole  captured s t = K/M, and therefore
it will be seen that the fourth term is identically zero. Carrying out
the above calculations and letting

. cotib' XDk % Vo]
Gele)= T¥(8) - ca j e du

4T i (t+w)

oy

°°*‘“°;Z:a [ (Xe-DYu+ %Y ]

_— L W

‘i g (E—w) ) (35)

e O

T R
9ule) = Yo (6) + e v ® O rP)uk 1Y ]
) \/ (‘6 + L )

— oy,
u oLk T exom .
- % e’ (wa)ur-:-foxﬁjom
- : )
Seosil (+-—wt)
(36)
gives eventually
G (o) = £ 30 (o) + G F N pers)
(37)

li

g () { $26) = g () f(ke4=t)

(38)
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- NM‘O
where coriby L O -Dig + WX’J ” [(Xa“'b)%v‘- L7 )/@J
S (O() o LCL e, C(M, - ta

¥

1) =)V ickw) 4 (o< +ulCie-w)
O,

—on.4-1b

— 8 J(k+kim) ecp[ckDM] f§2 (xabcsm)? 5

(39)

o
S - ¢ ™ %)é‘ "»

Sy (o) = — La j 'e’e[(x D)+ ]d/u_.+-56l bl(xo+o)0t+ky"]¢\[¢(
BT ot Veru) (x-u) b

Mk-u) ()
ool
—  S(ktkim) % [ckD/n] /{1 (& + k/M) f )
b C2DE
G )= & Gult) Y
il V(k-6) (b4a)

(o)

)

o%(«)_mj € g,+cb>ait—

- 00+Ud> \/(k° C') U: 4—0() (k2)

Now substituting (37) into (41) and (38) into (42) gives
eo+th
: L2D(-
()= L j € g(Si(é’)ﬂ'—(j/ (lf))\/(/&k)fd’(:
%/4, lTr(_,

V0ie-) (b +=) (43)
ook

+b
N c2bl

dt
2(6) = Y ()NKHE)
G 0= 27 Y\/(k t-)(f"""(){(s G j w

_mﬂb




1k,

So far no approximation has been made, we have simply put the integral
equations (33) and (34) in a more convenient form amenable to asymptotic
methods. If the contour of integration in (43) is distorted into the

region Im(a) > b no poles are captured and the expression can be asymptotically
approximated, for 2KD > 1, by the integral with its path of integration
wrapped around the branch (Wt t = K.  The part of the integrand of (43)

within the curly bracket is regular and analytic in this region and

will vary slowly in the vicinity of t = K. Thus since the dominant

part of the integrand comes from the region t = K the term in the curly

bracket can be removed from under the integral sign and t be replaced by K.

Thus

e S - (2DE y
G ()2 V2K (S G+ Gati). L | € t
| 5 ) V6 (e vt) ?
and it is not difficult to show that brench |

cuid-

bk .
o S < - €K oo lapy

27%¢ = — €
o \\‘/(k -6) (4 ) e S el

brae o ul2(utork)

C(24D~ /)

FLVE k)T = W, [ Dlktn))]

= -2 €
V((iea)
where [C"rﬂ (k‘f‘v()'{ g Dx>o

F® (- 15@&) o the Freowd gl

z

Thus

G () N2i( Sik) + Gy () Wy [V (2D(ke+)) ]

(45)
and by a completely analogous methed
, Y Py _ s |
Vy/f.-@():— V2K (Sg.(k) %(k)) W_, LV@otikrx))] 6)
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In the expressions (45) and (L46) the unknowns '+(K) and%(K)
sre determined by putting a = K into (45) and (46) and solving the

resulting equations for +(K) and ¢ +(K).
We can now obtain explicit expressions for ¢);;_(OL,O) by using the

expressions (32), (35) to (40), (45) and (46), viz

co+ib’
@{” (0(,0):- fi_@_ ‘/[()(e.—‘b)b(-f- %VJ/
4’77.&004-[,{) (9{“'“>

fetol jsz

/(+M
— Sencpl ikl J( ket kfm)ikera) [{2( avicsm)}

A+ k) (K (31(K) = S5 (k) + G, () +u,7¢0<)) W Ve Cera) T [ . 4y)
?é_, (o( Q) — o uu, oot , ) " . A
Li—*n;a@_&w( (o o) / [ — l//fff)jm

+ W NI (S, 00+ 52 09+ G 0~ ) Wy oo Ge-t)] 5 )

Thus A(a) and B(o) are given by (20b) and (21b) as

| cab O+ Tk, - .
IQ(O(’):—-B(Q(’): —aé 7 €C[<Xo D)LL4.. Mx’]

“4-T \/(k——“)_ oy (o) ik +w)

W

. a{/é‘ oD f QL[CXO+D) ut+ 7(/%;_7
4T (ko) oancy (=) (k-u)

s L sy
—c(k~a)h gexd

e\ VE(5.(k) -5, (k)4 ]4{/f)+og//’f))’f\/—l[‘/éﬁ(wc())]/f
-L(K-}w*ﬁ() ‘e \/k(S (K)+3, C/<)~i—9, (k) - ‘ﬁ/[k) N—/[\/(Zh(k-—a(})]/\/ﬁ

(49)
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Tf we let M= 0 and § = 0 in (49) we obtain the solution o§
W o %‘AMA alk reat

the problem of diffraction of a line source by a rigid strlpAa We

now impose the Kutta-Joukowski edge condition (14) to account for the

wake when 0 < M < 1, The edge condition (14) requires that in the

expression for A(a) and B(a) the terms of order O(e 1uD' | ~3/2 ) must

vanish as | | + «,  Hence i

. ot < : ~
- CkD/m o[ (o-D)yu+%#Ye ]
= ac | y[’ \
JCerkm) 2t ) .o (k)
—oatib

— V2K acp[ iffe-ym)ied +rid[(5:(1c) - S;,(w)+Cg/+(&<)+u%(k))/f\/(57kﬂ)\/(i+i/m )f

(50)

where the last term of (50) is obtained by using the dominant term

in the asymptotic expansion of W_J;/(ZD(K + a){], viz

W- i[\/[zD(_KﬁLo()):],\, - %q:[ c(26D+11) ] " O(/‘?’/*:y/ a3 [l —> oo
V(zip) (x+k)

The solution to the original boundary value problem is now known and is

given by

/75(%/ (;/)) = .y H”(k\/{(/\' Xe) 4—[)/__)/6).2‘?) &F’[" ‘:KM()(-XQ)] (I__M’-)"!/Z/Lf_

BOLY orih !
T ecpl-ikmoon] j / acp[CFo (x4D)ERY O DN ] | du
8T *(j-m )_mc? (X =)V (et ) V(k-u)
tya-MT cxa+30 "
T axp [- ckmOe-xe) ] J ecpl ¢ 0 F— o (X=D) +#Y + (Ko =D, D) AUk wD% G | du dix
e Jli-7)_ J Nt (k) (o™ (s sl ) )"
T LKMo, . sdaT
:‘:%F[ M(XX)JJ eﬂcp[ozmo((x+b)+7¢)/f](\/(__,__ S,(k) 4 S2 (i)
2T Z(kﬂ"‘%’)
OOy, T

G, ()=l [N [Veo(k-w)] Jdw &
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oo+

£ exp kMO [ ey [eF-wGen = 2V2] [ [/ \ 1
. Scp[cd-alx )-&:%Vf]( ng)ig’,m—x‘;(@

—OSALT

+ %/*' (1) 4"‘/;%-(@} W_i [V (ZD(KM)ﬂ-z— i 2cp[c (’ZI'(D+’7T/q,ﬂ\. o
. v Crkd) (o k/m) /

(52)

where the upper sign corresponds to y > O and the lower sign to y < 0.
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5. ASYMPTOTIC EXPRESSIONS FOR THE FAR FIELD IN THE SHADOW OF THE STRIP

We shall assume that the line source is placed such that

2,1 _ -1 o |
kr01(1 M7) = KRy, > 1, kr02(1 M) = KR, > 1 where X - D =R, cos @DOT’
= i 5 = = 1 ) 3 >
YO R01 sin @01, Xo + D R02 cos@oz, Yo R02 sin 002' This assumption

means that the source is not too near the edges. We shall also assume that

the observation point is not too near the edges, i.e. kr1(1 - Mg)“1 = KR1 > 1,

kr2(1 - Mg)‘1 = KR, > 1, where X - D = R, cos@v Y =R, sin@1,

X+D= R2 cos @2, and Y = 32 sin @2. Making these transformations the last
two integrals of (52) can be evaluated asymptotically by the standard method of
stationary phase. In the second doubke integral of (52) the integrand with
the pole o = ~K/M is separable so that the o and u integration can be carried
out independently of each other. This integral is evaluated by using the
standard method of stationary phase for the u-integration. The o-integration
also uses the stationary phase method, due allowance being made for the wake
pole a = -K/M, see Rawlins [5] . In the remaining double integrals the
integrands are not separable because of the pole u = a. However by using a

technique of Clemmow's [}/] the following result is not difficult to derive
j o FOu) <xp [1VE +v)rl4p 5o +UREAD17:1 § | dlyefu
= Yo VOREVI VR ) (V)
. % @L(/Wom—/@% %‘;ﬁj‘eiﬁwmz st kees2), 2 INLF (INT)
4 PoLE conTaiBuTodS,

whse, , s -
? = !Occ;s 79’) ‘77:/3“’\79; ?9 -:/0@ ws’%/ 7 :/&aswb%,

R (cos V% (10345’5;)

o | _ B cosaF-cosTe .
o<BxT, octsr N= R (Lt gy

Thus carrying out the above asymptotic evaluations and using (53) the

expression for the far field is given by

X (&) = Lo (58)+Zy(r9) "&"“/f@"’ TS @ < O
) @ < @, < - @z
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— Z (,—@) z(',,.a)_r;ef‘/(,-g) m[ﬁ:— ,<@<77"
O < Wy < @,,

“T< @< @,, =1
_ o / G/
B Z([ [/] &) - @02 ‘< @1 <' O

where
X. (5 8) = e pl= KM J YL e I (ko) (vt ) D) g

V(1) =—ia 2ep [-ckmtx] HE(kAfox-xds ex)?}) J

and

Xd (68)= "DQP[“"“KZ?KW""/{") - MX]]‘, o V(-tos @, ,)\/(/-wu,(:?,)
VrkRo) 27k R,) e "

+_Z /® ’/F(/Qf/)
(I/M — oS @i) f

— oxp [ CKF (Rt ) bx ) I o llsesm y
% @3 @oa) (1105 @)
\/(27!'/(/@2) V/(Z'ﬂ‘/(/{)z) 2 Q/Q‘Z'IF(/Q/

+ epl ] (ks 41y, - kox j] |
V/(ZT;'klez) - /[\/(7k0(/+co3@ )]\/(//«f-c.o.s@ )/

K(sut) 5,004 ¢ F0) = g2 00) 5 ¢
+4kﬁ}ﬁk@+n%)ka

J(zriR,) (N"[ Wokdli-cos @)1 & sepf o f]>

( l//"/ aos@)\/&r/()
(36)

XV(1=cos®,) ke (Sik) - 32000 + Gor () +<HL (1)) /2




wcwe, 20.

Q{ = \/KRik:Qop?(___b Cos @, + Cos O
2. VR Tsin Pe Rl e )2
Ro 1 [$4n@®,[ "+ kR | $1n @)

——

®, = fm(

2.

%S@l -+ Cos @02 7
\/(k/eéllsa‘\@z)l‘f‘ k R iSU/\ @01’2-) )

rb_~ ——y *
c Su, ®, ’

S[ (k) = G 4
& et
2¢ /( /2/(]“C(?5 @m) Q‘ﬂ

-+ o
vy ¢ ‘%C, E(’\(k&l“r/} ;
20k (1-cos @) \/(én-/cz?z)u“‘ Wl-co36u) s [0k, -7,)]

- S s 7 /

Sa (k)= a
) ‘T—m“ P . . %C’ ’?[’;(k’é’w ~T7e.)
2 K /1\/( /“5435 @a«)) \/ %)J

iz kp,, )

% (k)= , (/ } \/(#- /(D)J




. 21.
A= tos® 5:rsm8 Xo =Toces 8o, Yo =Tesinbo
V4

Rot = V(R cosOe —cd)*(i-MY 4 1 sinbe f @, = cos[(rcostu - )ffi-m) &3]
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A more useful quantity is the attenuation in the shadow region. The
attenuation is given by 20 logml Xd (/;Q)/% ('::‘9) I y
which is s measure of the effective shielding provided, and is independent of

the typeifsource. More specifically the wlEwaalion o 3»(}6&« by/
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GRAPHICAL RESULTS

As a practical numerical example the expression (37) is used to give
graphs of the attenuation in the shadow on an aeroplane wing. The wing
chord is taken as 10 ft., and the observation point is assumed to be 1000 ft.
below the wing. The sound source, of frequency 1,128 KHz, is assumed to
be positioned 1 ft. above the wing and (a) 1 ft. from the trailing edge,

(b) at the centre of the wing, and (c) 1 ft. from the leading edge (see fig. 2).
The speed of the plane is assumed to be such that the Mach number can be
0.1, 0.5 and 0.9. In terms of the variables used in this paper:

f = 1,128 KHz; k = omft. 'y M = 0.1, 0.5, and 0.9;

kd = 10w; kr = 2000 m;

() kn=2Jiiw , 6 =lan i) 14

®) kn= 270, Go= M= 907

(&) k= 277 | Go= T-Tan!(y) 2 166

'Flgures 3 to 8 are plots of the attenuation given by the expression (37) in the

shadow region of the stip for Mach number M = 0.5 and the three source positions.
The oscillations of the attenuation are due to the constructive/destructive
interaction of the diffracted fields from the edges of the strip. The number
of oscillations increase as M increases because the apparent wavelength is
proportional to the source wavelength multiplied by (1 - M ); Thus the
apparent wavelength decreases as !Ml increases. The important part of the

to from the point of noise measurement is the upper envelope, i.e.
the profile of the maxima of these graphs. This profile gives the least, or
worst, possible attenuation in the shadow of the wing. Thus these profiles
are given 1n-§&gwmﬁwdvto & for various Mach numbers and source positions.
Tt should be remarked that the results given here are for the situation
where the source, shield and observer are moving. In the flyover situation,

the source and shield are moving but the observer is stationary.

Tt is possible that the present work, together with a Lorentz transformation
technique used by Cooke [ﬁéj, can be combined to give theoretical results for

the flyover situation.
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Fig. 2.
The graphs show:
(i) As the Mach number increases the sound level decreases in the shadow
of the strip for all source positions.
(ii) For a given fixed M and source position the sound level in the

shadow of the leading edge decreases more slowly (as we go into the shadow
of the strip) than it does at the trailing edge.

(iii) TFor M = 0.5 and 0.9 the sound level at the leading (trailing) edge
shadow region is least for source position (a) ((ci) For M = 0.1 the

sound level at both the leading and trailing edge is least for source position (b).
(iv) The source position (b) gives the largest shadow region and its least
attenuation is greater than all the other source positions at approximately
= -90°, It also appears that the average least attenuation is greater
for this position than for source positions (a) and (c).

(v) In graphs 4 to 6 it can be seen that the best source position, as far
as attenuation is concerned, is (b). These graphs show that the wake does

have & shielding effect which becomes more prominent as the Mach number gets

larger.
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CONCLUSTIONS

For a choice of source position the best would seem to be that which
gives the largest angular shadow region below the wing. Thus if the source
vas Tixed at a specific height above a wing a central position would yield the
best attenustion in the shadow of the wing. The effect of the wake is to
produce a shield at the trailing edge of the wing. This shield is more

effective at Mach numbers which are vathep higheo Wan are achieved by most aircraft

o mhe oft and approachconditions, -

For the more practical situation where the engine consists of a jet then
the jet can be modelled by a line of sources. The present work can, in fact,
be extended to cope with this situation by the principle of superposition.
Thus if the jet was modelled by spparent sources at positions (a1), (a2),
(a3), ces (an) then by the principle of superposition the attenuation is given
be 20 logmH”Xa.I + Xa,, +’X:a3 ....)/(¢Oa K SURNE K N )] where Xa,
represents the field produced by a source ¢oa. at pos%tion (ai). Without
going through the exact detailed solution for'such a situation the analysis
for one source would seem to indicate that the jet should be placed on the
centre line of the wing so that the apparent sources down stream of the jet
will be shielded by the weke. This assumes the apparent sources are all
equally noisy. If this is not the case it might be more expedient to
arrange the jet so that the noisiest apparent source is at the centre line of
the wing.

Finally, we note that the present technique together with the work
Rawlins [H], [é] , can be extended to consider the situation where an
sbsorbing strip replaces the rigid strip. Ttwould be expected that such an

arrangement would give even greater attenuation in the shadow of the strip.
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