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ABSTRACT

A solution is obtained for the problem of the diffraction of
a plane wave sound source by a semi-infinite . plane. A finite
region in the vieinity of the edge has a soft {pressure release)
boundary condition; the remaining part of the semi-infinite
plane is rigid.
This Soivtion:is then used s de vt ;:.m;zpwx;maﬁm v the beha viowr
¢ = rigid barrier with an sbsorbing edge. It is concluded that
the absorbing material that comprises the edge need only be of the
order of a wavelength long to have approximately the same effect, on
the sound sttenuation in the shadow side of the barrier, as a completely

gbsorbent barrier.



Introduction

In recent years noise reduction by barriers has become s common
measure of environmental protection in heavily built-up areas.
In particular, noise from motorways, railways and sirports can be
shielded by a barrier which intercepts the line-of-sight from the
source to the receiver. The acoustie field in the shadow region of
a barrier, (when transmission through the barrier is negligivle)} is
due to diffraction at the edge alone,

The design of such noise barriers should meet two important
- requirements, namely, that they are effective noise attenuators, and
that their construction and maintenance should be economical. The
latter requirement is not difficult to appreciate when one considers
the miles of motorway which runs through built-up areas. One possible
economic barrier comstruction is to have a rigid barrier (hence reducing
transmitted noiée) of cheap material which is robust, and not necessarily
a good attenustor of edge diffracted noise, and to cover the surfaces
of the barrier with a sound absorbing lining which is a good attenuator
of sound. The provision of a barrier covered completely with an
absorbing lining presents several difficulties among them the cost of
construction and maintenance. However, since diffraction phenomena
are governed by conditions at the diffracting edge, it would be more
economic to cover the region only in the immediate vicinity of the edge
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with sound sbsorbing material,, A gquestion of some importance therefore
ig: what length of absorbing material would be required to obtain
approximately the same noise attenuation as a completely absorbent
barrier? It is hoped that the present theoretical work will help to
answer this question.

The presence of an acoustically absorbing lining on a surface is



usually described by an impedance relation between the pressure (p)
and the normel velocity fluctuation on the lining surface,5e¢ Morse
and Ingard [11] . This gives rise to a boundary condition on the

absorbing lining of the form
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where the sound wave has time harmonic variation < and

Rz “3/Q, , ¢ is the velocity of sound, n the normal pointing
into the lining, snd ﬁ the complex specific admittance of the
acoustic lining (see Rawlins [g] ).  An acoustically hard (or perfectly
reflecting) surfece has a vanishing admittance i.e. { {3 > O
and an scoustically soft surface (pressure fluctuation venishing on
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Tt the wavelength of the sound is much smaller than the length scale
associsted with the barrier, the diffraction process is governed to all
intents and purposes by the solution to the canonical problem of
diffraction by a semi-infinite half-plane,

Under g&i‘ab ve approximstions a mathematical model for a rigid
barrier with a Rabsorbing edge is given by the canonical problem of
diffraction by a semi-infinite rigid half-plane with a soft edge. We
propose to solve this mixed boundary value problem.

In section one the canonical boundary value problem is formulated.

Tn section two a solution is obtained for the formulated boundary value

problem. The mathemstical method used to solve the problem is Jones'

method and the Wiener-Hopf technigue, Noble [h'] . Section three consists
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We must now consider whaﬁ we mean when we talk about ax shsorbing
surface. The problem of mathematically describing a perfectly absorbing
surface {(or black surface) goes back to the last century. Such men
ags Kirchhoff, Kotl@r, Voig@ and Macdonald were interested in this
problem. A full discussion of the various theories is given in Baker
and Copson's book "Mathematical theory of Huygens principle"

Oxford 1949. The exact definipion of a perfectly absorbing surface

has never been satisfactorily resolved. One definitian which geems

to agree well with @xperimental megsurements, has the disadvantage

ihat it cannot be formulated as a mathematical boundary value problem.
This definiiiqn of a perfecﬁly absorbing surface is characterised

ags foliows: Le# an incidenﬁ pressure wave Doz ﬂo&pi“

be incident on & hard (rigid) surface Yyzo, —=0< x & G0 . The

total field (P;ﬂ in y>0 is given by

B

it

\:,w , | XKty >0,

]

bo + Eﬁcpiwlk(st@a":}s‘:"\eﬂ)} N X+YLO .
(prRsswie elscne.)
Let the same wave p, be incident on a softASur'face ¥4=9, 20 L XL

The total field("s) in y>» 0 is given by

Ps = \D“" ) XHY >,

= Po - %\3%—- Lh(xw59u~}5$aw99)?]

x4+ <o,
Iif the above two solutions ph and pS are added together and the result

divided by two one obtains

Fas.w;: ))S—I'Ph)::l)o) - aLxLee | Y >0

'Lh(xlcas e, +5 St 9&)}
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This new solution which we have denoted by py has the property
that the surface Y=o ~oo< XKD | gives no reflected
wave. Thus, it is as though all the energy of the incident wave
is absorbed by the surface. However the solution Py defies a
mathematical boundary value problem formulation, or & physically
mechanical consﬁruction. This éefiniﬁion does not depend on
absorptive properties of the surface because it is supposed to be
perf@ctly absorbing. As an upper bound to practical experimental work

it is probably a useful yard stick.



of asymptotic expressions for the far field which are useful in
obtaining graphs. These expressions are also conceptually easily
related to the physical problem. Sections four and five are the

graphical results and the conclusion drawn from them, respectively.

1. Formulation of the boundary value problem

A semi-infinite half-plane is assumed to occupy y = 0, x £ 03
see figure 1. The half-plane is assumed to be infinitely thin,
and over the interval (-, 0) to (0, 0) a highly absorbing material is
assumed to require the satisfaction of the soft boundary condition
p = 0; and on the intervals (—1, 0) to (=, O ) g rigid (hard)
surface requires the satisfaction of the boundary condition ?’P/a Y =0
where p is the perturbation sound ?ressure. The perturbation velocity
u of the irrotational sound wave can be expressed in terms of a velocity
potential X (2, ¥) by u = grad x (x, ¥). The resulting pressure in
the sound field is given by

p= - Pe 3%(’6)‘5))
ot

where t% is the density of the ambient medium.
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We shall assume that an incident plane wave sound field

B (x,9) = %F{,Lk(st@o +Y$in®s)- 500*73 ,

o< o <, (1)

In future work we shall drop the
- ok
time harmonic variation term € .

is diffracted by the half-plane.
Then our problem becomes

one of solving the wave equation

L L

2> , 2° +kz}%(x/9)= O,
dx®  2y*® )

subject to the boundary conditions

oY x <=1
(3}
;9__’3:/(75}0 ) = O
Y
X(x,ot)=C,
-—Z(x < O)
xX(x, 07) =9, (4)

X(x, ot)= X(x, o“))

%(xz o*) = ...3.;_2;'/(95, o).
2y 2y

We assume that a solution can be written in the following form

9<:>OJ (5)

Klx,9)= .02, 4) + P x,y), (6)
where 95 (x, v) represents the perturbed field due to the presence

of the half-plane.

For analytic convenience we assume k = kr +ik., (k , k,> 0);
i r i



in which case for a unique solution of the boundary value problem (1)

to (6) we also require the satisfaction of the radiation condition

m;ktr
?{)(x)‘ﬁ)": O .fi... )) Qs l"zd(xl--i-ﬂ?-) ~> o0
0

(1)

and also the "edge condition" see Jones [5]

X(x5,0)=0(1), and 3X(x,0)=O(x"%), as x> 0"
| Y (8)

X(x,0)=00), and ‘ﬁ(xjo) = O((x+2)m'/“‘)) as x> — L.
2Y

2. Solution of the boundary value problem

We introduce the Fourier transform

w %
Lol
P, 9) = E Py e dx,
e (9)
and its inverse (if it exists)
R V%
, ~edx
%(x}g);mim %(dl lj)-e d"( 3
27
—vd L (10)
vhere of= O+ v, The transform (9) and its inverse (10)
will exist provided — i:g;_ < < kL(’..o < B, 3 this follows

from the radiation condition (7) and the form of the incident wave (1).
Applying (9) to the equation (2) gives
51{3
=0
%{o{)g)m A(Of)ﬁ p 9 ?
(11)

= B(
(e 5 3<0; (12)



where K= \I ( hz_o(l) is defined on the cut sheet for
which Im( K)>O when I T (Vf)l < hL . From the

equations (11) and (12) we have

P @, 0N+ B (0, N+ Bulx,0)= Al

éﬂédz = (%, O%) + 3, (of, O*)+ &, (x,0)= (W AE) )

«eiédz $_ (x,07) + P (x,5) + &, @,0)= B(=),

~cal . _ ' (1)
< P («,07) + &, («, o*)+@;.(d)o)=~tqc Bx)

where

i"ém,m:j’ Pocy e dx

o

-1 Cw (15)
@’_.(of)‘j).—.- '( Plx,4) e d&?),ﬂ) ’

- OO

B, ()= j b=, y) € doe.

The primes denote differentiation with respect to y, and the + subscripts
denote functions which are regular and analytic in the upper (Tm ) >~k( )
and lower { Im (%)< Ricos®, ) « -plane. Eliminating Alof} from

(13) and B(Y) | from (1k4) yields the equations

--.w(?, I}

e & («0F)+ %: (o, 0F) + &, «,0)

= +ix% [é m@_ (x,0%) + D, (%, 0F) + B, (x 0)] ,

(16a, b)

Applying the Fourier transform to the boundary condition (3) gives
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Na{~§<¢@+¢)a'*ax} =0
Y L Zoo y=to
i . (:k?,(cs@c,
%__ (g{J Qi") — hﬁu’\.ee e
(0( - k(,eseo) (17)

Similarly the boundary condition () gives

' ~C(ol-keos®L)] -
B (o, oty L=

(O("‘ k6a59«9> ‘ (18)

Substituting (17) and (18) inmto (16a, b) gives

— ksinOe —i(xt- ReosBall / ;
e P, («,0t) + P

+ o, O + X, O

(d-kws@:ﬂ P ) +( ’ )

-+ iK [e*‘—“zi)_(%oi) el ['_ éwéfaf-k’cosec)z]

+ @r (’-"\’,O)]'

(o( - k'COS 80)
(19a, b)
7 Adding snd subtracting the equations (19a, b) gives
. —cod { - i i ‘
- (K E . - + - i
(;Zﬂ [@__ (a,0*) - B (2,0 3] + [BeN+ P (“)O_)J + B/ (,0)
r

- - kf’;'\,v\,eo é’b(ﬂ(WRdoseo)z

(0(“' kcos&) | (20)
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—ial ) N : —y '
- e [@},_coc)o*z)a-%?_(«,oﬂ + l;{lfi@f(d,o*)—?f(oso“)] _ §;"J+(q)o)
( c

L [ [ — eai(dw kcoseo)ZJ

s
e

(Q( — kCoi‘Sae‘)
(21)

The equations (20) and (21) cen be written in the more convenient forms

{:k‘ZCOSQG)

N_(x) + 6ch\/\’+ () —— Rsin®. € )
ViR+a) (d-keos,)

(22)

-t ] . — (et~
o (i_” o) + L () \ii(o{')+ Li+(0():_~ L[@ (et k(,os&)?;__ []
(%~ keos®,)

(23)
‘/\/.. («)= J(k-a) [ P (o, t) - $_ («, o“)]
2 >
N, (w)= i [E/,00)+ &/ wor)]
+ \/(kq-a(.) a JO ] + @4,(0(}0)}) (2))
)= [ B, 0M)+F_(w,07]
2- 2

L= i B (40h)— B/ («,07)]
a 3
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%—4-("_“) = @-r(“)o‘))
L) = (R a2 L= LGl (o)

Le)= (Rea) "

Before we proceed further with equations (22) and (23) we shall require
to know how the various quantities in (24) grow as (& |-> 0.
The edge condition (8) means that the transformed functions satisfy

the following as | & | ~» o0

B, () O(1a1™) R () O™ in Tm)>- ki

o

E )~OOa«™ B («) v O(1x17%) 4y Tm() < Ricostl
ol - ¢ -
‘ewf %l(o()NO( L« i) ) e,qziz}f(o()zu O(io{i /2), o Im () >-Ri 5

§>] (o)~ O( | ot lwl) , @f () MO(iq’r%) i Tm ()< kicosg ,

’ (26)
Using the asymptotic estimates (26), in the expressions (24}, we have,

as (o)~ o0 .

‘f\/..(o{)NO(fofriﬁ)) (ﬂ,w(’oﬂfv O(ldl-l) , %I(d),\,oadl"&)

Lo ()= O1arr%) , in Iml) <kieose.
| ) 3 ) (27)

M@~ OCart), Uy~ OGar), 4 @0, %)

2

Ly (@)~O(1a1™), tn Tm () > =k,

(28)

The eguation (22) can be written in the form



Lkl‘-ﬁﬁ@o
W () 4+ RsunbB. @ _

\/(k+‘26c>sea)(o(— kwsf%) B

. J— -eba‘%Aq_ (0() — k S;«V\ 99 i _ \ Sei’kacﬁsgn
(« - keosBe) LI (Ruat) J(k+ReosBo) (29)

where the left-hand side of the equality sign is regular, analytic
and asymptotic to iq‘ﬂ-bﬁ as |15 KR in the
region Lim ()< kL cas ec ; and the right-hand side of
the equality sign is regular, snalytic, and asymptotie to ‘0(\al
as |of{—> o9 in the half-plane Im(x)> -kt .

Hence by the usual Wiener-Hopf argument, Noble [ﬁ] the analytic

function which is a continuation of the left~hand side and the right-

hand side of equation (29) in the whole o -plane is zero. Thus

U%?, s @.9

\f\,_,(oz):.-,- ~ Rsun®. €
J{ kR +ReasO) (o6 - Reos©e)

or

1Rleos @,
E_(a0)-B(«,07)= -2iJ(k-ReesbC

(k=) (x— keos Bo)

(30)
The equation (23) cannot be split by the standard Wiener-Hopf
argument because of the second term on the left-hand side. However,
it can be shown that egquation (23) can be put in an equivalent form
in terms of Fredholm integral equations of the second kind., Without
going through the details, which in any case can be found, Mutatis

Mutendis, in Noble [4| , pp. 196-199, we obtain



Sf(o{)-: LJ(Ra-ReosO0) 4 & eirle(ie-?) Sf.(kf)d‘g
\/(hu\-ﬁ()(o(-- hws&) 3w d(ky o) ( ;9_,, 9() ’

—C i,

~Tmlx)< @ < RicosPo,

sopio, (31)
’ t

Z *
Di()= i(ReReos®) ¢ kn) DECe) 1
(Reot) (%~ ReosBe)  2miN(Raal) (+)

—E0+ LA,

_Tm(x)<a< \%Lco:z@o)

(32}

where

. { h?ws 9@

)= L, +X (o) + 1 — ‘e ,
) (- Reos Oo) (&+Reos 8)

(33)

, ckleos ©,
:Df(oz):-_ \ﬂ_,..(oc)-‘.’l_(-of)-;- L - (€ lees®

(a(..hcos@a) (o(-l-— hc,osac)

(34)
The asterisks denote that a pole is present at & = Reos O
in the region Im(o(j oS k{. s , otherwise the functions are
regular and analytic in this domain.

An exact solution of the eguations (31) and (32) would be too
difficult to obtain. We therefore obtain an approximate asymptotic
solution for the situation where iz’l, >y, The physical
meaning of this condition is that the soft tip covers a region greater

that & wavelength.



In the expression (31) the path of integration is moved vertically
so that it crosses the pole o= Rtos©a of  ST(x).
However the path is not allowed to cross the branch point o = R .
Thus the third term of (33) will give a residue contribution so that
cklces®.
S¥()= _iV(RtkeosB) o W(k-keosh) €
J(rao) (o6~ Reos0e) V(o) (A ReosOo)

L \ ¢ k-9) SICE) gy
2ridlkaa) I (B4 o)

- Oy

. (35)
RicosBo < < RU

gince RI>>1

the dominant term of the asymptotic expansion for the integral appearing
in (35) comes from the region near ?‘—-" R so that
0¥l Rfle |

el * .
i S & T WD SIAY o g3 e‘“«h-mmﬂ)

2 .
"ru‘w.mg (‘5’4— o) 2wi v (‘{-1- )
whae R o _| +O [ - (36)
2 kL(I-cosBe) ((7?7)2) ’

%
provided S (k) is well behaved in this region, which it will be provided
B, ¢ 0, T, The integral (36) can now be evaluated by

wrapping the contour of integration around the branch cut \15 =k .

It can then be shown that
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m-&-;.fc\,

RA)
LN K o J(k-%)
2mhw+m (%4 ) s (k)

Lkl - e /2
S e &

Al

At Te(a)>-x,

(R +1)

- B , i A
@ N (Reot) + ?
InT {l w2 llheal PO "‘m}

Z}QJ i (L(ﬁ(_hsi"d.‘)\ < H}

= Wo [Y{ke0l]

o o (37)
where F(z) = 6—'L22’J eft A!_ )
z
is the Frésnel integral. Hence on substituting the above results
into (35) we obtain
Sf(ag) = U J(R«\- Rccsec> 4= L%j(kﬂ keos Bc) etkhos&?

\/(hi—d«) (ot~ k‘-«‘-’se“) \/(k_\-o() («+ Reos Oo)

+ SE(w W, [V(kea)]]
V( kat)

(38)
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The term §, (k) can be obtained by letting o= R in (38) and

. *
solving for S_ (k).

By a completely snalogous method the equation {32) gives

Df(o()-_-_-_ L\](k-\-kms@& _ LJ(R“MOS%QMCQSQ

\/C’R*-ol) (0( - 326«0539”) VC Ri-ot) (e + hcoséz)

— DL W, [(kewt]
J{r+ o)

(39)

where D j(k) is obtained by putting o= R  in the above expression
and solving for D_:E(k). Expressions (38) and (40), on being
substituted into (33) and (34%), give expressions for (fj__F(a{) ,
from which, in conjunction with (24) and (30) produce expressions for

o 4 . . .
%4. (°(; O>J E_ﬁ__ (0(, O»—) . Substituting these latter expressions

together, with (18), into the first equations of (13) and {(1k) gives:

Aty = __L { I Rokeos®) a\/(k_meaé”"‘**‘“-"@“”}
(a—keoz Bl J(rta) J(k-=)

+ We [J(k%—d)l} ggf(k)#

, DY (k)]
A k+)
ety
o (k“—“)l]{ S+*(k)+1)r(k)j
2J(k —x) ’

(ko)



B(o() = (f \/(‘124“}%(03 6@) | + WG[‘/(f‘ﬂ»o()?«] .
Hrred (- keos®) 20 { SE(R-Drw}

€ WL [ 1]
2\/(h-ex

{ + k)“?—b*(k)}

(k1)

The solution to the boundary problem is now known and is given by

m+LY A v
K lx4) = o, 4-_}._J AGE Y
21 . 4= O)
-4
(42)
YL
T C T
= Poloy) + L B(« J
o059 E‘ri'j ) e a'oe) ‘j-(t})_
-
(43)

~ ki< < Rices,

3. Asymptotic expressions for the far field

For the purposes of plotting the poler diagram of the scattered
far field the expressions (42) and (43) are asymptotically evaluated
for kr large.  The results below can be obtained by an application
of the saddle point method, modified slightly because of the presence

of the pole A= ReosBo , see Jones [5] or Rawlins [37 .

Thus, for O« B, <77 , without going through the detailed
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analysis, one obtains

x(r,@): T +RF + .b'a for T-Po < 19’.47,«,

- I -RF + Dy, fov 1j/<7r~90<8J
= I+D, | for o< B<T-Oo,
- _[+-D2_3 £ g.-mw< ©«<« O,
=D for ~T< B<O -1,
= a v
p)
(k)
where )c:::l'(,cs@) Y o= rswa8 5 -Trg Pg i
and incident plsne wave - | = @ tRreos (@~ 6e) ,
reflected wave = RF = Q:;-kr'c,os (©+8)
7
Diffracted edge wave in the illuminated region = D,
| L(kr-T)
DI —— “e

21GVFIQD  V( 1+cosOV(itcosy)
J(Z'n'kr) (Cos ©+ cosBs)

i(kE*Tr/cp)

. _2allFdQ) 5y, - hlees,
\/(zka) (665&4-6059&)‘ \/(i 0515")\/(!_@38@)@

+ &

' d'(kRWTT/t;-)
- 4(66) + & a,p,)
J(zrkR) ’

+

\/(mrh r)
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Diffracted edge wave in the shadow region = Dm.

c",(kr-»'ﬁla) |
D,= ~ R 2lal FOQ'_)_“ J(H‘Lose)‘j‘:f*i-(,cpsau)

\/( 2RT) (Cos® + tos Oc)

i (Re-T/s) (R R-Tr i)
+ £ Q(8,0) + € G (08,
YOwkr) Ve k R)

In 1 | and 1D, the various gquantities

appearing are given by

Q___ }}i_r'-(m.sa--l—cos@a)} Q':\/EE, Cosq9'+c.oseu
S g - Stn 9 g

a

R ra_,.rf_;,_Er’Zc,o:sS) 4}’: th(e). ms-—*(“mois 9)
| R

G,(86.)= W, .
- Lk os9) & (st - DI(R))6 Y
4.2—];; \/—2—.1 } (H—Co&@)

(&8)“ W [\/k’l +cost)
(i &Jgi(sz-(k)*b*(k))}\/“
\IZE N + "Cogﬁ‘)J

B O
- '
and [:( izﬂ = e y e Jdr ,
=
which is the Fresnel integral. For large z the Fresnel integral can

be replaced by the dominant term of its asymptotic series i.e.

FO=D)a <

2l=zj
l“"j%.\«mn
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From the first expression of (44) it will be noticed that the sign
of the relected wave corresponds to reflection from the rigid part.
of the barrier. In the second expression of (44) the reflected wave
sign corresponds to reflection from the soft region of the barrier.
' the solulion for

Butler [ }] has observed tha.ti\the perfectly absorbing semi-
infinite plane agrees well with the experimental results of
Maekawa L6]1 on absorbing barriers .The perfectly absorbing semi-infinite

solution

plane . is given by adding the hard and soft semi-infinite plane

A
solu“t?ions and dividing by two. E\Ia“;urally the same incident wave

is used in the hard and soft half plane solutions. The same technique
can be used in the present work. By simply adding the solu“l;ion

for a hard half plane, say 5[;1(’“,‘:)) , to X( %,9)  ana aividing

by %;wo the Solution for a p@rfecé;ly absorbing strip of lengt}h
(-—-2()&{0) connected to a hard plane (—-00<>c<-2)

is given, say ,'Kﬂ(x/g) (z:. (ckl(x,:j)+%(x/'§)3/‘2) . ?%(96/5)
sa‘bisfies the conditions (1), (2), {5), (6}, and the boundary conditions
(3) ana (k) are replaced by 94{;(79 Ot) /33 =0 , (x< 0) . The
appropriate expliecit solution for 9’%[ x,4 ) is given in Noble [W.

The eguivalent expressions to (41), (42) and (44) for a perfectly

absorbing styrip are given by

ﬁ;ﬁ‘): {F)(oc)u.£\/(hwtqc.os&)/(o(*hwsso)\f(ie~°<)}/‘2, e )

B, &) -,-.-{ Blx) +¢ J(k«kcoseo)}(d—-kaoseo)\[(k-m()} fz ;
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x,q(l’)ﬁ)w—- I +RF +D; +D; , e “ﬁ'wedia('ﬁ')

=1 +D, +Dy ) e o< B<T-Do
=T+ =05, fot BT < B<O

D, -D - S e
e ES- SN Sor _-—a‘r<8<90“'1‘_

where (RT-T g

D=L . 21Q\F(i@_i)_ \/,(i——ca59)\!(f-(_a395),

Jlowkr)  2(CosDHos0o)
It wiil be no‘blced that the reflected wave from the absorbent strlp

region has disappeared.

4., Graphical results

The expressions (4k4) and (U46) were used to give graphical polar
plots of the modulus of the far field i.e. IiL’C-‘;@)f , Iwﬂ (': 8'”;
for kr-; 10w . The values of \Z‘L that were chosen were O} 27?) Sv?, {55
and 2. The case of hZ:O and kZ:W correspond to the completely
hard and completely soft/perfectly absorbing semi-infinite plane
solutions respectively. These polar diagrems are given in graphs (1)
to {9) for an angle of incidence of o = 20% . Graph (©) is the
attenuatlon of the sound field, i.e. Zoit{gm‘%w’ 8)' , ln the

i ?’\, (“(&, ‘3(:/?9-‘2-"!\ bu\,‘k‘o\ Q,gb-‘s- ‘ :
shadow region of = a .»Stn,p for ‘9.9 = 90 , and |l= O'fﬁ 21, 20,
Graph (11) is the attenuation of the sound field, i.e. C>Q03;0\?3ﬁ(f'9)\
A fuouid Soreem wtha &-PEK%€6¥23 G)DS@HE

in "the shadow region of A .st'rupf for 99~—9O , and leZ—— 2T, o0
For the purpose of comparison the attenuatlon for a completely hard
sem1~1nf1n1t@ plane is also shown in graphs (o) and (11). WWLQ.gfm?hA ¥wf'kt G ot
ﬁwm\ by T, &M&W Lowa d eleliom P, 4), gwen tin NobRa [4]

From the graphs 00) and (1]) it can be seen that the atﬁ@nuatlon
in the shadow region of the screen is very insensitive to the quanﬁlty'kz 5t¢ﬁ¥th\

o 1Ratnd Vo Ban width of the etk and the wuot Rength of e souind,

Provided that 2>i the field in the shadow region is, to all
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inﬁents and purposes, the same a8 ﬁhat for k2’= AR . The
difference in attenuation between the soft and hard half plane is‘gr@ater
than that between the perfectly absorbing and hard half plane. The

sound field level and orienﬁation on the illuminated gide of the screen
is more acgtely affected by the quanﬁity' ki . However, it can be

seen from graphs (1) to (2) that provided k1>15 the sound field

in the illuminated region is approximately the same as that for k=

Conclusions
From the graphical resul?s we msy infer that mosﬁ of the increased
at@enua?ion, in the shadow reglon, which is pr@dicted for a completely
absorbent sereen over a rigld screen is ob@ainable by applying sound
absorbent material to Within a wave length of the edge of a rigid screen.
Some rﬁcenﬁ experimeﬁﬁal work by Buﬁler [6] would seem to fully support
this inference. |
The magnitude of a@tenuation in thelshadow region for the
soft sﬁrip problem is much more than one would expect to achieve
in practice with an absorbing Strip. However, this is to be expected
becsuse no practical surface is enﬁirely soft. Closer agreement
with experimental measurements, for an absorbing strip, is probably given
by ﬁhe att@nuation graphs for a perfectly abgorbing strip.
The orientation and magnitude of the far field on the soﬁrce gide
gf the semiuinfinite plane seems to depend more critically on kZ .
This is due'to the constructive/destructive inﬁeraction of the edge
diffracted fields with the reflected wave from the hard region
- <~ L , wﬁﬁ@xwﬂmmﬂmweﬂmnﬂ@r%kmmzax<o.
The attenuation of the far field, in this half space, will probably be

greatly affected by the absorptive properties of the gtrip. For
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instance, in the second expression of (k) the reflected wave tern

will be mul“‘;ipli@d by a Fresnel reflec“;ion coefficient. This Fresnel

coefficienf_,, which will be a function Qf the angle of incidence and the

absorptive parameter of the s’;riy, could vanish for cez'ta:irz value of

these variables. In such a siﬁ:ua.ﬁiqn the far field would be congiderably

reduced. A more de*;ailed analysis of the fieid in ‘;:his x{egiqn will

appear in a forthcgming publica‘gionj ﬁt wohick, %130%@% (,g. gw@v\. %—v*\“ s,
fnove g enersil p tob B oﬂy o strip withoon o pedamnien bmvdmﬂ) cond Won

cgnnec‘ted to & rigid semi-infinite plang.
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