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Abstract. We study the Gierer-Meinhardt system in one dimension in the limit of large reaction rates.

First we construct three types of solutions: (i) an interior spike; (ii) a boundary spike and (iii) two boundary

spikes. Second we prove results on their stability. It is found that an interior spike is always unstable; a

boundary spike is always stable. The two boundary spike configuration can be either stable or unstable,

depending on the parameters. We fully classify the stability in this case. We characterize the destabilizing

eigenfunctions in all cases. Numerical simulations are shown which are in full agreement with the analytical

results.

1. Introduction

In this paper, we study the Gierer-Meinhardt system in the limit of large reaction rates. Let us first

put it in the context of Turing’s diffusion-driven instability. Since the work of Turing [16] in 1952, many

models have been established and investigated to explore the so-called Turing instability [10]. One of the

most famous models in biological pattern formation is the Gierer-Meinhardt system [4], [8], [9], which in one

dimension can be stated as follows:

At = DA∆A−A +
Ap

Hq
, x ∈ (−1, 1), t > 0,

τHt = DH∆H −H +
Am

Hs
x ∈ (−1, 1), t > 0,(1)

Ax(±1, t) = Hx(±1, t) = 0, t > 0,

where all of the parameters are positive and (p, q, m, s) satisfy

1 <
qm

(s + 1)(p− 1)
< +∞, 1 < p < +∞.

In all of the recent mathematical investigations it was assumed that the activator diffuses much slower

than the inhibitor, that is

(2) DH À DA,
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a condition which is related to those required for Turing instability [16]. See Chapter 2 of [10] for a thorough

investigation. Mathematically, this assumption allows perturbation techniques to be employed, since the

inhibitor can be assumed to be a slow-varying variable, and the system becomes only weakly coupled, as

first observed in [15]. The activator then exhibits spikes – regions of steep gradients – separated by regions

where the activator is nearly zero. For any given number N , a steady state containing N such spikes can be

constructed. In [7] and [20] it was shown that there exists a sequence of numbers D1 > D2 > · · · (which has

been given explicitly) such that if DH < DN the symmetric N -spike solution is stable, while for DH > DN

the symmetric N -spike solution is unstable.

We now introduce the setting of this paper. In contrast with the above-mentioned works, we do not

assume the large diffusivity ratio (2). Instead, we study the the limit of large reaction rates of the

activator. More precisely, we assume that

(3) p,m À 1 with O
( p

m

)
= 1.

To simplify our analysis, we make the following assumptions:

(4) q = 1, s = 0.

Further, we require that

(5) τ = 0.

Assumption (5) will be important for the stability analysis. (We expect that the analysis in this paper can

be extended to the case τ small enough with minor changes. When τ is sufficiently large, Hopf bifurcations

can occur, see for example [19]. The analysis of the case τ large is more complicated, and is left for future

work.) For convenience, we rewrite m = (p − 1)r, r = O(1). By rescaling the space as x → √
DAx and

introducing D = DH

DA
, L = D

−1/2
A , the system becomes

At = Axx −A +
Ap

H
; τHt = DHxx −H + A(p−1)r, x ∈ (−L, L),

Ax (±L) = 0 = Hx (±L) ,(6)

L,D = O(1); p À 1; r > 1 and r = O(1).

Now we describe some previous work and motivate the study of large reaction rates from biological

applications.

Hunding and Engelhardt [5] considered the effect of large reaction rates on Turing’s instability for sev-

eral well-known reaction-diffusion systems (the Sel’kov model, Brusselator, Schnakenberg model, Gierer-

Meinhardt system, Lengyel-Epstein model). By increasing the reaction rate (or the so-called Hill constant

for Hill-type kinetics) which models cooperativity in the system, they showed, through a linearized stability



EXISTENCE AND STABILITY ANALYSIS 3

analysis, that pattern formation by Turing’s mechanism is facilitated by large reaction rates, even when the

ratio of the diffusion constants is close to one.

The Hill equation assumes that many molecules can interact simultaneously, which is not a very realistic

assumption [21]. Instead, it is a more realistic physical assumption that one ligand molecule after another

is being bound to a receptor. This can happen in basically two different ways: By a sequential binding

mechanism, for which the order in which the sites are filled is determined, or an independent binding

mechanism, for which the sites can be occupied independently. Although for these two processes the Hill

number is smaller than the number of sites, they can still lead to high Hill numbers.

A interesting case study about the molecular basis of cooperative interactions has recently been given

in [17]. The mechanism of the binding of Calcium ions to Calmodulin, a multi-site and multi-functional

protein, has been modeled quantitatively and the theoretical results have been confirmed by experimental

observations.

In [1] evidence has been found for the fact that protein subunits can degrade less rapidly when associated

in multimeric complexes, an effect which is called cooperative stability.

The assumption of large reaction rates is reasonable for models of pattern formation induced by gene

hierarchy due to their high degree of cooperativity [5]. High cooperativity plays an important role even for

rather primitive animals and plants like flatworm, ciliates, fungi and has been well investigated in Drosophila.

In the latter example the homeobox genes are known to play a major role [13], [22] in facilitating a high

degree of cooperativity. Key ingredients of the gene hierarchy have been identified such as the maternal gene

bicoid, the gap gene hunchback and the primary pair-rule genes, which are expressed in a series of seven

equally spaced and precisely phase shifted stripes. The occurrence of these stripes can be explained by a

Turing mechanism in combination with maternal and gap gene interactions. These mechanisms have been

reviewed in [6], [11], and [12].

The reason why cooperativity for homeobox genes is high is their ability to create proteins which can bind

to several other genes, in this process activating or inhibiting them. Experimentally reaction rates exceeding

8 have been found for several different gene control systems. (Note that even for p = 8 the steady state

solution u constructed below is already very well approximates by a spike on a real line since its spatial decay

rate is of the order e−14|x|.) An explicit example is the pair rule gene hairy which was originally connected

to the nervous system but plays a role in the initial body plan of Drosophila as well.

A high degree of cooperativity leads to a whole class of control systems with large reaction rates which can

explain the emergence of a variety of complex patterns. These systems can read out and remember gradients

in the positional information, a fact which is important since this information must often be used repeatedly

for example in the anterior-posterior or dorsal-ventral gradients in Drosophila. The systems further have the
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ability to react in an almost on-off manner to very shallow gradients in positional information, a property

which plays a major role for example in controlling the cell cycle governing mitosis, where the properties of

the system must change qualitatively if its size is increased by a factor two. Further behaviors of solutions

to the resulting nonlinear systems include time oscillations and multi-stability, the latter being important

for modeling cell differentiation.

In this paper, we give a first analysis on Turing’s nonlinear patterns in the case of large reaction rates.

The model we consider is the Gierer-Meinhardt system, although our analysis can be extended to other

reaction-diffusion systems with large reaction rates (as in [5]).

We now present the main results of the paper. The first result is about the existence of steady states with

one or two spikes which is formulated using the Sobolev space with Neumann boundary conditions defined

by

H2
N (−L,L) =

{
u ∈ H2(−L,L) : uz(−L) = uz(L) = 0

}
.

Theorem 1. (a) Consider the system

0 = Axx −A +
Ap

H
; 0 = DHxx −H + A(p−1)r,(7)

where

x ∈ (−L,L), Ax (±L) = 0 = Hx (±L) .(8)

We assume that D, r, L are positive and fixed and set

α :=
1

p− 1
.

If p is large enough (i.e. if α is small enough), then (7) admits a solution (A,H) ∈ (H2
N (−L,L))2 such that

A(x) =





(
H0η
3α

)α

wα
(√

η

α x
)

(1 + O(α)), |x| ¿ 1,

1
αα

cosh (|x| − L)
cosh (L)

(1 + O(α)), |x| À O(α),
(9)

H(x) = H0

cosh
(
|x|−L√

D

)

cosh
(

L√
D

) (1 + O(α)),(10)

where

H0 = αη−
r−1/2

r−1

[
2β−1D1/2 tanh

(
L√
D

)]1/(r−1)

(1 + O(α)),

η = tanh2(L),

β =
∫ ∞

−∞

(
1
2

)r

sech2r
(y

2

)
dy,

and w(y) = 3
2 sech2

(
y
2

)
is the unique ground state solution to

(11) wyy − w + w2 = 0, w > 0, wy(0) = 0, w(y) ∼ Ce−|y|, |y| → ∞.
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Figure 1. (a) The plot of the steady state A(x) (solid line) and its outer region asymptotic
approximation (dashed line) given by cosh(|x| −L)/ cosh(L) (b) The plot of A(x)p near the
origin. Its asymptotic approximation given by (9) is also drawn, but is indistiguishable by
eye from the numerical solution. The parameter values are p = 90, r = 2, D = 1, L = 1.
Note that Ap is localized near the origin, while A is not.

Further, the error is estimated in the following space:
∥∥∥∥αA1/α(αz)− H0η

3
w (
√

ηz)
∥∥∥∥

H2(−L/α,L/α)

= O(α).

(b) The restriction of the solution constructed in Part (a) to the interval (0, L) is a solution (A,H) ∈
(H2

N (0, L))2 the system (7), where

Ax(0) = Ax(L) = 0 = Hx(0) = Hx(L).(12)

(c) The extension of the solution constructed in Part (b) from the interval (0, L) to interval (0, 2L) by

even reflection at x = L is a solution (A,H) ∈ (H2
N (0, 2L))2 to the system (7), where

Ax(0) = Ax(2L) = 0 = Hx(0) = Hx(2L).(13)

Remarks. 1. The steady state in (a) has an interior spike for Ap located in the center x = 0 of the interval.

The solution in (b) has a boundary spike for Ap located at the left boundary x = 0. The solution in (c) has

two boundary spikes for Ap located at the boundaries x = 0 and x = 2L.

2. The key observation is that, unlike in the case of a slowly diffusing activator (DA ¿ DH), the activator

A does not look like a spike; nonetheless, its power Ap does. This is illustrated in Figure 1, where both A

and Ap are plotted. Note that Ap is localized near the origin, while A is not.
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3. A remarkable fact is that in the above theorem the ratio of the two diffusivities D can be any finite

number.

4. We will construct these steady-state solutions in §2. The solutions each consist of an inner and outer

region, and its construction is done by the method of matched asymptotics.

The second main result of this paper is the stability analysis for these solutions. We summarize it as

follows.

Theorem 2. Suppose p is large enough. Then we have the following results for the stability of the steady

states constructed in Theorem 1:

(a) The interior spike is unstable. The eigenvalue problem has an eigenvalue with positive real part of

exact order O(1) which is given in (67). The corresponding eigenfunction is an odd function.

(b) The boundary spike is stable.

(c) The steady state with two boundary spikes is stable if D < Dc and it is unstable if D > Dc, where Dc

is given by

(14) Dc =
(

L

arctan (1/
√

r)

)2

.

If D > Dc there is an eigenvalue λ with Re(λ) = O(p2). The corresponding eigenfunction is odd about x = L.

The two instabilities of Theorem 2 are shown in Figure 2. The instability of the interior spike induces

spike motion towards the boundary and, due to the small eigenvalue, happens on a slow timescale O(1). On

the other hand, the instability of the boundary spike occurs on a much faster timescale O( 1
p2 ), corresponding

to a “large” eigenvalue. As a result, one of the two boundary spikes is annihilated.

Note that a multi interior spike solution can be constructed from an interior spike solution by even reflec-

tion. However, since a single interior spike is unstable, this multi-spike configuration is also automatically

unstable. This is because an eigenfunction corresponding to one interior spike can be extended by even

reflection to an eigenfunction for K interior spikes. So an unstable mode of a single spike automatically

induces an instability for K spikes.

Finally, it should be mentioned that both Theorem 1 and Theorem 2 can be made rigorous by the method

of Liapunov-Schmidt reduction as used in [20]. We will give an outline of the proof of Theorem 1 in Remark

4 following the result.

We now summarize the contents of the paper. In §2 we use asymptotic analysis to construct the steady-

state solution given in Theorem 1. In §3 we derive the eigenvalue problem. In §4 we consider the large

eigenvalues and reduce the eigenvalue problem to a nonlocal eigenvalue problem. In Theorem 3 we fully

classify its unstable eigenfunctions and their eigenvalues. When r = 2 we are able to obtain necessary and
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Figure 2. (a) Motion of the interior spike towards the right boundary. Profiles of A(x)
are shown with increments of 0.1 time steps. The parameter values used were p = 50, r =
2, D = 1, L = 1. The initial condition was taken to be slightly to the right of the center.
(b) Competition instability of two boundary spikes. The profiles of A(x) are shown with
increments of 0.1 time steps. The spike at the right boundary eventually disappears. Here,
p = 50, r = 2, D = 4, L = 1.5 with x ∈ (0, 2L).

sufficient conditions for stability. In Theorem 4 we state the corresponding result on a large bounded interval.

In §5 we study the small eigenvalues. We show that all corresponding unstable eigenfunctions are odd. In §6
we apply the results of §4 and §5 to prove Theorem 2. Applying the results of §4, the stability of a boundary

spike is established. Applying the results of §5 to the case of an interior spike, we show that there is a small

eigenvalue with positive real part, so that an interior spike is unstable. Applying the results of §4 to the case

of a double boundary spike, we show that there is a large eigenvalue whose real part is positive or negative,

depending on the condition on D < Dc or D > Dc for some Dc > 0, respectively. All the other eigenvalues

have negative real part, so the double boundary spike can be stable or unstable. In §7 we discuss our results,

emphasize their relevance for pattern formation in reaction-diffusion systems and biological application, and

we conclude by stating some open problems.

2. Construction of the steady state

In this section we construct the steady state usinig asymptotic matching and prove Theorem 1. As a

motivation, note that a solution to the ODE

vxx − v + vp = 0, x ∈ R,
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is explicitly given by

v(x) =
[(

p + 1
2

)
sech2

(
p− 1

2
x

)] 1
p−1

.

Taking into consideration the scalings of the spatial variable and of the amplitude of this solution, for p ¿ 1,

this motivates the following change of variables:

(15) A(x) =
(

u(z)
α

)α

, z =
x

α
,

where

α =
1

p− 1
¿ 1.

With this rescaling, we anticipate that u will be independent of p at the leading order. We then obtain the

following inner problem:

0 = uzz − u2
z

u
+

u2

H
+ α

(
−u +

u2
z

u

)
+ O(α2), |z| ¿ 1

α
,

0 =
1
α2

DHzz −H + urα−r.

In the inner region |z| ¿ 1
α we expand

u(z) = U0(z)(1 + O(α)),

H(z) = H0(1 + O(α)).

Below, we will show that u = O (α) and H = O (α) so that the leading order equations are

(16) U0zz − U2
0z

U0
+

U2
0

H0
= 0, H0,zz = 0.

This, together with the boundary conditions, implies that H0 is a constant. A direct verification shows that

(16) admits a one-parameter family of solutions given by

U0(z) =
H0

3
ηw (

√
ηz) ,

where

(17) w(y) =
3
2

sech2
(y

2

)

is a solution to (11) and where η is an arbitrary parameter that corresponds to a scaling symmetry U0 =

ηÛ0, z = η−1/2ẑ of (16). The values for η and H0 are to be determined shortly.

In the inner region, we compute, using

w (y) = 6 exp (− |y|) + O(exp (−2 |y|)) as |y| → ∞,
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that

A(z) =
1

αα
exp (α ln u(z))

=
1

αα
exp

(
α ln(U0(z)) + O(α2)

)

=
1

αα

(
1− α

√
η|z|+ O(α2)

)
for |z| ¿ 1

α
.(18)

It follows that A(z) → 1
αα as |z| → ∞.

In the outer region α ¿ |x| (equivalent to 1 ¿ |z|), we have

Axx −A ∼ 0; Ax(±L) = 0

and the matching condition with the inner solution gives A(0) = 1
αα . This implies

A(x) =
1

αα

(
cosh (L− |x|)

cosh L
+ O(|x|2)

)
, α ¿ |x|.

Next we perform the matching of the inner and outer solution to the next order. For α ¿ |x| ¿ 1 we

expand the outer solution in a Taylor series to get

A =
1

αα

(
1− (tanh L) |x|+ O(|x|2))

=
1

αα

(
1− α (tanhL) |z|+ O

(
α2|z|2)) .(19)

Equating the O(α) terms in (18) and (19), we get

η = tanh2 L.

To compute H0, we note that in the outer region, |A(p−1)r| = o(1). We therefore write

DHxx −H ∼ −C0δ (x) ; Hx (±L) = 0,

where

C0 =
∫ ∞

−∞
A(p−1)rdx

=
α√
η

(
H0η

3α

)r ∫ ∞

−∞
wr dy

=
α√
η

(
H0η

α

)r

β

(20)

and

β =
∫ ∞

−∞

(
1
2

)r

sech2r
(y

2

)
dy.

It follows that

H(x) = B cosh
(

L− |x|√
D

)
(1 + O(α)),
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where B is determined by
√

DB sinh
(

L√
D

)
=

1
2
C0.

This implies that

H(0) = H0 (1 + O(α)) =
1
2

C0√
D

coth
(

L√
D

)
(1 + O(α)),

H0 = αη−
r−1/2

r−1

[
2β−1D1/2 tanh

(
L√
D

)]1/(r−1)

(1 + O(α)).(21)

Note that this verifies the consistency assumptions that U0 = O (α) and H0 = O (α) , which were required

in (16). This completes the construction of a boundary spike. The other two types of steady states (interior

spike on (−L, L), two boundary spikes on (0, 2L)) follow from the boundary spike on (0, L) by reflection at

x = 0 and x = L, respectively. This concludes the derivation of Theorem 1. ¥

A rigorous proof of this result using Liapunov-Schmidt reduction and following the approach of [20] can

be outlined as follows:

Note that for given u ∈ H2
N (−L/α, L/α), the solution (A,H) ∈ (H2

N (−L, L))2 can be expressed by using

Green’s function. Choosing a suitable approximation

u =
H0η

3α
w

(√
η

α
x

)
(1 + O(α))

which satisfies the boundary condition uz(−L/α) = uz(L/α) = 0, e.g. by using a cutoff function, it is not

too hard too show that this approximation solves the Gierer-Meinhardt system (7) up to an error of the

order O(α) in the norm of the space (L2(−L/α, L/α))2. Then, using Liapunov-Schmidt reduction, the proof

can be completed and an exact solution can be determined. The value of the constant η is calculated as part

of the process.

3. Stability

We now study the linear stability of the non-homogeneous steady state. Linearize around the steady state

as:

A(x, t) = A(x) + eλtφ(x),

H(x, t) = H(x) + eλtψ(x),

where (A(x),H(x)) is the steady state solution as given by Theorem 1. We obtain

λφ = φxx − φ + p
Ap−1φ

H
− Ap

H2
ψ,(22a)

0 = Dψxx − ψ + r (p− 1) A(p−1)r−1φ.(22b)

As before, we make the change of variables given in (15). Since A ∼ 1 near x ∼ 0 we have

Ap =
u

α
A ∼ u

α
.
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We obtain

α2(λ + 1)φ ∼ α2φxx +
u

H
φ + α

u

H
φ− α

u

H2
ψ,(23)

0 ∼ Dψxx − ψ + rα−r−1urφ.(24)

For an interior spike which is symmetric about the origin, there are two possible types of eigenfunctions:

either odd or even around the origin. Both satisfy Neumann boundary conditions on (−L,L). This yields

two separate problems. An even eigenfunction can be restricted to (0, L) and is the same as an eigenfunction

for a single boundary spike.

Finally, the double boundary spike on (0, 2L) requires an extra type of eigenfunction which is odd about

x = L. This leads to three different types of eigenfunctions which (0, L), whose boundary conditions and

symmetry properties are specified as follows:

• Even eigenfunction for an interior spike on (−L,L) or a boundary spike on (0, L):

(25) φx (0) = 0, φx(L) = 0; ψx (0) = 0, ψx(L) = 0;

• Odd eigenfunction for an interior spike on (−L,L):

(26) φ (0) = 0, φx(L) = 0; ψ (0) = 0, ψx(L) = 0;

• Eigenfunction which is odd about x = L for a double boundary spike on (0, 2L):

(27) φx (0) = 0, φ(L) = 0; ψx (0) = 0, ψ(L) = 0.

As will be evident shortly, problems (25) and (27) admit eigenvalues that have O(p2). We will refer to

these as large eigenvalues. These are analyzed in §4. On the other hand, problem (26) admits an eigenvalue

of O(1) which is studied in §5. We will refer to it as the small eigenvalue.

4. Large eigenvalues

We start by analyzing the large eigenvalues. Changing to inner variables, we have

x =
α√
η
y; u ∼ H0

3
ηw(y);

and we obtain
α2

η
(λ + 1)φ ∼ φyy +

1
3
wφ− α

3
ψ0

H0
w,

where

ψ0 = ψ(0)

and ψ (0) is determined by

(28) Dψxx − ψ ∼ C1δ(x); ψx (±L) = 0,
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C1 =
∫ ∞

−∞

(u

α

)r r

α
φ dx =

r√
η

(
H0η

3α

)r ∫ ∞

−∞
wrφdy.

This implies that

ψ(x) = −C1G(0),

where

G(x) =
cosh

(
L−|x|√

D

)

2
√

D sinh
(

L√
D

)

is the Green’s function satisfying

DGxx −G = −δ(x), Gx (±L) = 0.

On the other hand, from (21) we have

H0 =
α√
η

(
H0η

3α

)r ∫ ∞

−∞
wr dy G(0).

So the boundary conditions (25) lead to following dimensionless nonlocal eigenvalue problem:

(29) λ0φ = φyy +
1
3
wφ− r

3
w

∫∞
−∞ wrφ dy∫∞
−∞ wr dy

, λ0 ∼ α2

η
λ.

For the boundary conditions (27), the only difference is that the boundary conditions in (28) are changed to

Dirichlet conditions ψ (±L) = 0. Thus the Green’s function now is the one for Dirichlet boundary conditions

given by

Gd(x) =
sinh

(
L−|x|√

D

)

2
√

D cosh
(

L√
D

) .

A similar computation then leads to:

(30) λ0φ = φyy +
1
3
wφ− r

3
tanh2

(
L√
D

)
w

∫∞
−∞ wrφdy∫∞
−∞ wr dy

, λ0 ∼ α2

η
λ.

Equations (29), (30) are the starting point of our analysis. Both cases will be covered, once we prove the

following two key theorems.

Theorem 3. Let

(31) L0φ = φyy +
1
3
wφ

and consider the following nonlocal eigenvalue problem on all of R :

(32) L0φ− γw

∫ ∞

−∞
wrφdy = λφ, φ ∈ L∞(R), r ≥ 1

where w is given by (11). Let

(33) γ0 =
1
3

1∫∞
−∞ wr dy

.

We have the following:

(a) If γ < γ0 then (32) has a positive eigenvalue λ > 0.
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(b) If γ > γ0 and r = 2 then Re(λ) ≤ 0 for all λ. The only eigenfunction corresponding to λ = 0 is φ = wy

w

which is an odd function; all other eigenvalues have strictly negative real part.

Remark: We conjecture that (b) is true for all r ≥ 1. In fact one can show that (b) is true also when r = 1

(in this case the eigenvalues are purely real because the operator in (32) is self-adjoint). We do not know

how to prove (b) for general r. However, we see no reason why the result should not be true for general r,

for example there do not seem to be any bifurcations in the system for changing r.

Strictly speaking, the inner problem (32) is actually posed on a finite but large interval (−R, R) with

R = L/α. However, this does not affect the stability of the large eigenvalues, as we demonstrate in the

following theorem.

Theorem 4. Let R > 0 and consider the nonlocal eigenvalue problem on (−R, R):

(34) L0φ− γw

∫ R

−R

wrφdy = λRφ, φ ∈ L∞(−R, R), φy(±R) = 0, r ≥ 1.

Then there exists R0 > 0 such that for R > R0, we have the following:

(a) If γ < γ0, then (34) has a positive eigenvalue λR > 0.

(b) If γ > γ0 and r = 2, then either limR→∞ λR = 0 or Re(λR) ≤ −c0 for some c0 > 0.

Note that Theorems 3 and 4 imply the threshold (14). It also shows that the interior spike is stable with

respect to even perturbations.

Before proving Theorem 3, we first summarize the properties of the local operator L0. Note that

L0w = w − 2
3
w2; L−1

0 w = 3(35)
∫ ∞

−∞
w2 dy = 6;

∫ ∞

−∞
w dy = 6.(36)

In addition we have the following characterization of the spectrum of L0.

Lemma 5. The eigenvalue problem

(37) L0φ = φyy +
1
3
wφ = λφ, φ ∈ L∞(R)

has two nonnegative eigenvalues. The first eigenvalue is

λ1 =
1
4

corresponding to an even eigenfunction given by

φ1 = w1/2.

The second eigenvalue is

λ2 = 0
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corresponding to an odd eigenfunction given by

φ2 =
wy

w
.

All other eigenvalues satisfy λ < 0 and are embedded in the continuous spectrum covering the negative real

axis.

Finally, we will need the following key lemma.

Lemma 6. Consider the eigenvalue problem

(38) L0φ− 1
18

w

∫ ∞

−∞
wφ dy = λφ, φ ∈ L∞(R).

It admits an eigenvalue λ = 0 whose eigenspace is spanned by the even eigenfunction φ = 1 and the odd

eigenfunction φ = wy

w . All other eigenvalues satisfy λ < 0. As a consequence, we have the following inequality

(39)
∫ ∞

−∞

(
(φy)2 − 1

3
wφ2

)
dy +

1
18

(∫ ∞

−∞
wφ dy

)2

≥ 0, ∀ φ ∈ H1(R).

Proof of Lemma 5. We proceed as in [2]. Let γ =
√

λ, where we take the principal branch of the square

root. Next, substitute φ(y) = wγ(y)F (y). Then F satisfies

(40) Fyy + 2γ
wy

w
Fy +

(
1
3
−

(
γ +

2
3
γ(γ − 1)

))
wF = 0.

We introduce the following new variable

(41) z =
1
2

(
1− wy

w

)
.

Then
wy

w
= 1− 2z, w = 6z(1− z),

dz

dx
= z(1− z).

This gives the following equation for F as a function of z:

(42) z(1− z)F
′′

+ (c− (a + b + 1)z)F
′ − abF = 0,

where

(43) a + b + 1 = 2 + 4γ, ab = 2(2γ(γ − 1)− 3(
1
3
− γ)), c = 1 + 2γ.

The solutions to (42) are standard hypergeometric functions. See [14] for more details. Now there are two

solutions to (42):

F (a, b; c; z) and z1−cF (a− c + 1, b− c + 1; 2− c; z).

By our construction, F is regular at z = 0. At z = 1, F (a, b; c; z) has a singularity

lim
z→1

(1− z)−(c−a−b)F (a, b; c; z) =
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
,
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where c − a − b = −2γ < 0. Note that since γ =
√

λ, the real part of γ is positive. So a solution that is

regular at both z = 0 and z = 1 can only exist if Γ(x) has a pole at a or b, respectively. In other words, we

have

(44) a = 0,−1,−2, . . . or b = 0,−1,−2, . . . .

From (43), we compute that

a = 2γ − 1, b = 2γ + 2 or b = 2γ − 1, a = 2γ + 2.

By assumption, Re(γ) ≥ 0, so we must choose either γ = 0 or γ = 1
2 in order to satisfy (44).This gives

λ =
1
4

or λ = 0.

In case λ = 1
4 , we have γ = 1/2, a = 0, b = 3, c = 2, F (0, 3; 2; z) = 1. Thus the corresponding eigenfunction

is w1/2 (taking a = 3, b = 0 also yields the same eigenfunction). In case λ = 0 we get a = −1, b = 2, c = 1.

Now F (−1, 2, 1, z) = 1− 2z and it then follows from (41) that φ = wy

w . This concludes the proof of the first

part of the lemma. Standard spectral properties of elliptic operators in combination with these results imply

the second part of the lemma. ¥

Proof of Lemma 6. We consider two cases. First, if

(45)
∫ ∞

−∞
wφ dy = 0,

then we have L0φ = λφ. Then by Lemma 5 either φ = Cw1/2, λ = 1
4 or φ = C

wy

w , λ = 0, where C is some

nonzero constant. The former case contradicts (45) since w > 0; so only the latter case is possible. Moreover,

since w is even, any odd eigenfunction φ satisfies (45) and hence by Lemma 5 must be equal to a multiple

of φ = wy

w , corresponding to zero eigenvalue.

Next suppose that (45) does not hold. Since φ is defined up to a constant multiple, we may rescale it so

that
∫ ∞

−∞
wφ dy = 18;

equation (38) then becomes

(L0 − λ)φ = w.

Defining

f(λ) ≡
∫ ∞

−∞
w(L0 − λ)−1w dy,

then λ solves the equation

(46) f(λ) = 18.
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Since (38) is self-adjoint, all its eigenvalues are real and it suffices to show that f(λ) 6= 18 for λ > 0. Note

that

(47) L01 =
1
3
w

so that

(48) f(0) = 18

and therefore λ = 0 is an eigenvalue of (38) corresponding to the eigenfunction φ = 1. Next, we compute

f ′(λ) =
∫ ∞

−∞
w(L0 − λ)−2w dy =

∫ ∞

−∞

[
(L0 − λ)−1w

]2
dy > 0

so that f(λ) is an increasing function. Finally, note that the local operator L0 admits a single positive

eigenvalue λ0 = 1
4 . This implies that f(λ) has a single pole at λ = 1

4 and no other poles along the positive

real axis λ > 0. On the other hand, for large values of λ we have

f(λ) ∼ − 1
λ

∫ ∞

−∞
w2 dy → 0− as λ → +∞.

To summarize, f(λ) has a vertical asymptote at λ = 1
4 ; f(0) = 18, f → 0− as λ → ∞ and f is increasing

for λ 6= 1
4 . It follows that f(λ) 6= 18 for all λ > 0 and this proves the lemma. To prove (39), we proceed by

contradiction. Suppose (39) does not hold. Then we have a function φ ∈ H1(R) such that

(49)
∫

R

(
|φy|2 − 1

3
wφ2

)
dy +

1
18

(∫

R
wφdy

)2

< 0

which implies that for R large, the first eigenvalue for the following eigenvalue problem

(50) L0φR − 1
18

w

∫ R

−R

wφR dy = λRφR, y ∈ (−R, R), φR(±R) = 0

is positive. In fact,

(51) −λR = infRR
−R

φ2 dy=1, φ∈H1
0 (−R,R)

∫ R

−R

(
(φy)2 − 1

3
wφ2

)
dy +

1
18

(∫ R

−R

wφ dy

)2

.

Thus 0 < λR. Moreover, by (49), λR ≥ λ0 > 0 for R large. We may also assume that maxy∈(−R,R) φR(y) = 1.

Letting R → +∞ and λR → λ, we see that φR → φ which satisfies (38) with λ > 0. This is impossible. ¥

Proof of Theorem 3. We start with the proof of (a).

Define a function

(52) f(λ) ≡
∫ ∞

−∞
wr(L0 − λ)−1w dy

so that the eigenvalue λ solves the equation

(53) f(λ) =
1
γ

.

By (35), note that

(54) f(0) =
1
γ0

<
1
γ

.
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Note that the local operator L0 admits a single positive eigenvalue λ0 = 1
4 . We claim that

(55) f(λ) → +∞ as λ → λ−0 .

To see this, let λ = λ0 + δ with δ ¿ 1 and let φ = (L0 − λ)−1w. That is, φ satisfies

(L0 − λ0) φ− δφ = w.

Let φ0 = w1/2 be the eigenfunction corresponding λ0. We project w onto φ0 so that we write

w = aφ0 + w1; a =

∫∞
−∞ wφ0 dy∫∞
−∞ φ2

0 dy
.

Therefore in the limit δ → 0, we get

φ ∼ −a

δ
φ0 + O(1), δ ¿ 1.

Hence we get

f(λ0 + δ) ∼ −1
δ

∫∞
−∞ wφ0

∫∞
−∞ wrφ0∫∞

−∞ φ2
0

, δ → 0.

Since w and φ0 are positive, this proves (55). On the other hand, f(λ) has no other vertical asymptotes

since L0 has only one positive eigenvalue λ0. It follows that (53) has a solution with λ < 0 ≤ λ0 whenever

0 ≤ γ < γ0. This implies part (a).

Next we prove part (b). Since the operator (32) is not self-adjoint, the eigenvalues are in general complex.

Therefore we write

λ = λr +
√−1λi

φ = φr +
√−1φi.

When r = 2, we have

L0φ
r − γw

∫ ∞

−∞
w2φr dy = λrφr − λiφi(56)

L0φ
i − γw

∫ ∞

−∞
w2φi dy = λrφi + λiφr.(57)

Multiply (56) by φr and (57) by φi, then integrate and add to obtain

(58)
∫ ∞

−∞

(
φrL0φ

r + φiL0φ
i
)

dy − γA = λrB

where

A =
∫ ∞

−∞
wφr dy

∫ ∞

−∞
w2φr dy +

∫ ∞

−∞
wφi dy

∫ ∞

−∞
w2φi dy;(59)

B =
∫ ∞

−∞
((φr)2 + (φi)2) dy.(60)
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Multiply (56) and (57) by w, integrate, then use integration by parts. This yields
∫ ∞

−∞
φr

(
w − 2

3
w2

)
dy − 6γ

∫ ∞

−∞
w2φr dy = λr

∫ ∞

−∞
φrw dy − λi

∫ ∞

−∞
φiw dy

∫ ∞

−∞
φi

(
w − 2

3
w2

)
dy − 6γ

∫ ∞

−∞
w2φi dy = λr

∫ ∞

−∞
φiw dy + λi

∫ ∞

−∞
φrw dy.

Eliminating λi we then obtain

(61) (λr − 1)C +
(

2
3

+ 6γ

)
A = 0

where A is given by (59) and

C =
(∫ ∞

−∞
wφr dy

)2

+
(∫ ∞

−∞
wφi dy

)2

.

Next we use the following estimate, see Lemma 6:
∫ ∞

−∞
φL0φ dy ≤ 1

18

(∫
wφ dy

)2

.

Then (58) becomes

λrB + γA ≤ 1
18

C.

Combining with (61) we obtain

λrB − γ
(λr − 1)(
2
3 + 6γ

)C − 1
18

C ≤ 0

and so

(62) λr

[
B − γ(

2
3 + 6γ

)C

]
≤

[
1
18
− γ(

2
3 + 6γ

)
]

C.

Note that

γ0 =
1
18

;(63)

1
18
≤ γ(

2
3 + 6γ

) <
1
6

whenever γ0 ≤ γ < ∞(64)

so that

λr

[
B − γ(

2
3 + 6γ

)C

]
≤ 0, γ ≥ γ0.

Now by Cauchy-Schwarz inequality we have

(65) C ≤ 6B ⇐⇒ B − 1
6
C ≥ 0.

Combining (64) and (65) we have

B − γ(
2
3 + 6γ

)C ≥ 0.

Therefore λr ≤ 0. Further, if λr = 0, then from (62) and (64) we have

0 ≤
[

1
18
− γ(

2
3 + 6γ

)
]

C ≤ 0;

this can only happen if γ = 1
18 = γ0. This case is excluded from the assumption of Theorem 3. Therefore,

λr < 0. ¥
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Proof of Theorem 4. Notice that since L0 is self-adjoint, L0 admits a single positive eigenvalue λ0,R =

1
4 + o(1) for R large. Part (a) follows from a simple perturbation argument.

To prove part (b), we proceed by contradiction. Suppose that for R large problem (34) has an eigenfunction

φ with eigenvalue λR such that Re(λR) ≥ −c0 for some c0 > 0 independent of R small enough. We decompose

φ into a sum of an odd and an even function. If φ is odd, then
∫ R

−R
wrφdy = 0 and (34) is reduced to

L0φ = λRφ, φ ∈ L∞(−R, R), φ is odd, φy(±R) = 0.

Thus by Lemma 5 we conclude that λR → 0 as R → +∞ which implies the first alternative in Theorem 4

(b).

Suppose φ is even. Similar to the proof of Theorem 3, we have

(66)
∫ R

−R

(
φrL0φ

r + φiL0φ
i
)

dy − γA = λr
RB

where λr
R is the real part of λR and φ = φr +

√−1φi. Thus |λr
R| ≤ C where C is independent of R for R

large. Similarly, we also have that |λi
R| ≤ C. Thus |λR| ≤ C. Therefore we may assume that λR → λ as

R → +∞. Since without loss of generality ||φ||L∞(−R,R) ≤ 1, the limit of φ exists and satisfies (32) with

Re(λ) ≥ −c0 for some c0 > 0 and φ being even, which gives a contradiction to Theorem 3 (b) if c0 is chosen

small enough. Thus this is not possible and Theorem 4 (b) follows. ¥

5. Small eigenvalue

It remains to study the stability of small eigenvalues. In particular, we prove the following result.

Theorem 7. Consider the eigenvalue problem (22a,22b) with the boundary conditions (26). If p À 1 this

problem admits a positive eigenvalue λ that satisfies

(67)
√

λ + 1 tanhL tanh
(
L
√

λ + 1
)

= 1 + O

(
1
p

)
.

To start with, expand the inner region to two orders for both the eigenfunction and the steady state:

x = αz;

u = U0(z) + αU1(z) + · · · H = H0 + αH1(z) + · · ·

φ = Φ0 (z) + αΦ1(z) + · · · Ψ = Ψ0 + · · ·

The leading order equations are

(68) Φ0zz +
U0

H0
Φ0 = 0; U0z − U2

0z

U0
+

U2
0

H0
= 0; H0 ≡ const.

The solution to Φ0 is given by

(69) Φ0(z) =
U0z

U0
.
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We now formulate a solvability condition with Φ0 as a test function. Multiplying (23) by 1
αΦ0( x

α ) and

integrating on the half-interval (0, L), we have,

(70) α2(λ + 1)
∫ L

0

φ(x)Φ0(
x

α
)
dx

α
=

∫ L

0

(
α2φxx +

u

H
φ + α

u

H
φ− α

u

H2
ψ

)
(x)Φ0(

x

α
)
dx

α
.

First we estimate the left hand side of (70). In the outer region we use w(y) ∼ C exp(− |y|), |y| → ∞ so that

Φ0 ∼ −√η, z À 1.

On the other hand, up to exponentially small terms we have

φxx ∼ (λ + 1) φ, |x| À α; φx (L) = 0

so that we may write

φ ∼ A0

cosh
(√

λ + 1(x− L)
)

cosh
(√

λ + 1L
)

where A0 is obtained by matching φ as x → 0 to Φ0 as z →∞. This yields

A0 = −√η.

Therefore we estimate
∫ L

0

φ(x)Φ0(
x

α
) dx ∼ η

∫ L

0

cosh
(√

λ + 1(x− L)
)

cosh
(√

λ + 1L
) dx

∼ η√
λ + 1

tanh
(√

λ + 1L
)

and finally

(71) lhs(70) = αη
√

λ + 1 tanh
(√

λ + 1L
)

.

Next we must estimate the right hand side of (70). Since u decays exponentially as z →∞, the inner region

provides the dominant contribution there. After changing variables x = αz and expanding, we obtain,

rhs(70) =
∫ ∞

0

Φ0

(
Φ0zz +

U0

H0
Φ0

)
dz + α

∫ ∞

0

Φ0

(
Φ1zz + Φ1

U0

H0

)
dz

+ α

∫ ∞

0

Φ2
0

(
U1

H0
− U0H1

H2
0

)
dz + α

∫ ∞

0

U0Φ2
0

H0
− α

∫ ∞

0

U0Φ0

H1
0

Ψ0 dz + O(α2).

The first term is zero by (68); we write the remaining terms as

rhs(70) = α(I0 + I1 + I2 + I3)

where

I0 =
∫ ∞

0

Φ0

(
Φ1zz + Φ1

U0

H0

)
dz

I1 =
∫ ∞

0

Φ2
0

(
U1

H0
− U0H1

H2
0

)
dz

I2 =
∫

Φ2
0

U0

H0
dz

I3 = −
∫ ∞

0

U0Φ0

H2
0

Ψ0 dz.
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Now define

L0Φ ≡ Φzz +
U0

H0
Φ.

First, we integrate by parts to obtain

I0 =
∫ ∞

0

Φ0L0Φ1 dz = [Φ1zΦ0 − Φ1Φ0z]
∞
0 = 0.

Next, U1 satisfies

(72) U1zz − 2U0zU1z

U0
+

U2
0z

U2
0

U1 + 2
U0U1

H0
− U2

0

H2
0

H1 − U0 +
U2

0z

U0
= 0.

Now define

Û1 ≡ U1

U0
.

Then Û1 satisfies

(73) Û1zz +
U0

H0
Û1 − U0H1

H2
0

− 1 +
U2

0z

U2
0

= 0.

Differentiating (73) we obtain

L0Û1z = −U0zÛ1

H0
+

U0zH1

H2
0

+
U0H1z

H2
0

−
(

U2
0z

U2
0

)

z

= −Φ0
U1

H0
+

Φ0U0H1

H2
0

+
U0H1z

H2
0

+ 2
U0z

H0
.

Therefore we have

I1 = −
∫ ∞

0

Φ0L0Û1z dz +
∫ ∞

0

Φ0U0H1z

H2
0

dz + 2
∫ ∞

0

Φ0U0z

H0
dz.

Integrating by parts, we get ∫ ∞

0

Φ0L0Û1z dz = Φ0(∞)Û1zz(∞).

Note that U0 → 0, Φ0 → −√η as z →∞ and using (73) we obtain

Û1zz(∞) = 1− η

so that ∫ ∞

0

Φ0L0Û1z dz = −√η + η3/2.

Next we compute ∫ ∞

0

Φ0U0H1z

H2
0

dz =
1

H2
0

∫ ∞

0

U0zH1z dz = − 1
H2

0

∫ ∞

0

U0H1zz dz.

Note that H satisfies

0 = DHxx −H + urα−r

so that

DH1zz(z) ∼ −α1−rUr
0 (z)

and ∫ ∞

0

Φ0U0H1z

H2
0

dz ∼ α1−r

DH2
0

∫ ∞

0

Ur+1
0 dz.
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Finally,

2
∫ ∞

0

Φ0U0z

H0
dz =

2
H0

∫ ∞

0

U2
0z

U0
dz =

2
3
η3/2

∫ ∞

0

(wy(y))2

w(y)
dy =

2
3
η3/2.

In summary, we obtain

I1 =
√

η − 1
3
η3/2 +

α1−r

DH2
0

∫ ∞

0

Ur+1
0 dz.

Now

I2 =
∫ ∞

0

U0Φ2
0

H0
dz =

1
3
η3/2

and finally, we write

I3 =
∫

U0
Ψ0z

H2
0

dz.

Now we have

DΨ0zz

α2
−Ψ0 + rα−r−1Ur

0

U0z

U0
= 0

so that

Ψ0z ∼ −α1−r

D
Ur

0 ;

I3 ∼ −α1−r

DH2
0

∫ ∞

−∞
Ur+1

0 dz.

Therefore, we finally obtain

rhs(70) = α
√

η.

Combining this result with (71) and recalling that η = tanh2 L (Theorem 1) yields (67). Note that

lhs(67)|λ=0 = tanh2 L < 1; on the other hand lhs(67)→ ∞ as λ → ∞. This shows that (67) admits a

positive eigenvalue. ¥

We now verify Theorem 7, by solving the full eigenvalue problem (22a, 22b, 26) numerically. The numerical

algorithm consists of re-formulating the eigenvalue problem as a boundary value problem, by adjoining an

extra equation d
dxλ(x) = 0 along with an extra boundary condition φx(0) = 1. The inner approximation (69)

was used as an initial guess. We then compare the resulting λnumeric with λasymptotic, obtained by solving

numerically the algebraic equation (67). Using r = 2, D = 1, L = 1 and with p = 90 or p = 180 we obtain:

p = 90 : λnumeric = 1.21197, λasymptotic = 1.13769; error = 6.5%

p = 180 : λnumeric = 1.1729, λasymptotic = 1.13769; error = 3.4%.

These data indicate that doubling p halves the error. This provides a good numerical verification of Theorem

7.
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6. Proof of Theorem 2

We now complete the proof of Theorem 2. First, consider the case of a single boundary spike. In this

case, the eigenfunction satisfies the boundary condition (25). The corresponding eigenvalue problem is given

by (29); this is equivalent to (32) with γ = r
3

1R∞
−∞ wr dy

. But since we take r > 1, we have γ > γ0 where γ0 is

given by (33); hence Re(λ) ≤ −c0 < 0 by Theorem 4. This proves the stability of a single boundary spike.

Next, consider the case of an interior spike centered at the origin. It admits two eigenvalues with corre-

sponding eigenfunctions satisfying the boundary conditions given by (25) or (26), respectively. The former

is stable as just shown. However the latter (small eigenvalue) is always unstable, as proven in Theorem 7.

Finally, we consider the double boundary spike case. This admits two eigenvalues. The first corresponding

eigenfunction has boundary conditions (25) while the second eigenfunction satisfies boundary conditions (27).

The former is stable as just shown. The latter leads to the nonlocal eigenvalue problem (30) as derived in

Section 4. It follows from Theorem 3 that the corresponding eigenvalue is unstable if r tanh2
(

L√
D

)
< 1 and

is stable if r = 2 and r tanh2
(

L√
D

)
> 1. The threshold is given by D = Dc where Dc is given by (14). This

completes the proof of Theorem 2.

7. Discussion

In this paper we have studied the Gierer-Meinhardt system with large reaction rates. Formal asymptotics

were used to construct the steady state solutions; their stability was analyzed using a combination of formal

computations and rigorous analysis. The main result, Theorem 2, is the classification of the stability of

interior and boundary spike solutions. The behavior of the system differs significantly from the “standard”

GM system (1). In particular, an interior spike is unstable with respect to translation instabilities, and moves

towards the boundary. This is phenomenologically similar to the shadow GM system [18]. In contrast, the

interior spike of the standard GM system is stable [7], [20]. Therefore we expect that as the nonlinearity

strength p is increased, the interior spike can be destabilized. It is an open question to determine this

instability threshold.

In agreement with the GM system and the shadow GM system, then single boundary spike is single. In

contrast to the shadow GM system and in agreement with the GM system, the double boundary spike can

be stable or unstable depending on the value of the diffusion constant of the inhibitor.

To summarize the stability results, we observe a new and interesting mixture of properties from the GM

system and the shadow GM system.

In Theorem 3 we proved the stability of the large eigenvalue for a single spike under the assumption that

r = 2. We also conjecture that the theorem remains true for any r > 1. It is an open question to prove this

conjecture.
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In our analysis, we assumed that the inhibitor has infinitely fast response (τ = 0). We expect that our

analysis can be extended to the case of τ small enough without too much extra effort. On the other hand,

it is known that for sufficiently slow response rates (large τ), the spikes in the usual GM model can exhibit

oscillatory instability due to a Hopf bifurcation in the large eigenvalue (see [19]). We believe that this is

true also for the case of large reaction rates. However, the precise analysis of this bifurcation as well as the

critical scaling of τ in the case of large reaction rates is an open question.

We have shown that large reaction rates are able to create spiky patterns for the GM system in a similar

way as has been shown before for small diffusion constant of the activator. In this sense, large reaction rates

increase the potential of the system for pattern formation. This effect corresponds well to results in [5],

where it is shown that Turing instability is possible for large reaction rates, even if the diffusion constants

are very close to each other.

Biologically, this is important, as it widens the range of possible applications for Turing systems to explain

pattern formation into areas where there is no good justification for vastly different reaction rates but it is

known that there are large reaction rates. If there is a high degree of cooperativity between the components,

which is often the case for many gene hierarchies, a large reaction rate can often be explained theoretically

and measured experimentally, thus opening the door for suitable Turing systems to explain the patterns

observed.
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