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introduction

Computer simulation, or just simulation, is a deci-
sion support technique that allows stakeholders to 
conduct experiments with models that represent 

real-world systems of interest (Pidd, 2004a). It has 
been widely used for many years in domains such 
as manufacturing, logistics and telecommunication.. 
However, its use in healthcare is comparatively 
new. It is only really during the last decade that the 
application of simulation in health care has grown 

aBstract

Discrete-Event Simulation (DES) is a decision support technique that allows stakeholders to conduct 
experiments with models that represent real-world systems of interest. Its use in healthcare is compara-
tively new. Healthcare needs have grown and healthcare organisations become larger, more complex 
and more costly. There has never been a greater need for carefully informed decisions and policy. DES 
is valuable as it can provide evidence of how to cope with these complex health problems. However, the 
size of a healthcare system can lead to large models that can take an extremely long time to simulate. 
In this chapter the authors investigate how a technique called distributed simulation allows us to use 
multiple computers to speed up this simulation. Based on a case study of the UK National Blood Service 
they demonstrate the effectiveness of this technique and argue that it is a vital technique in healthcare 
informatics with respect to supporting decision making in large healthcare systems.
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substantially (Fone et al, 2003). Healthcare needs 
have also grown in the same period and healthcare 
organizations become larger, more complex and 
more costly. There has never been a greater need for 
carefully informed decisions and policy. Computer 
simulation is valuable as it can provide evidence 
of how to cope with these complex health prob-
lems. It can be used as an alternative to “learning 
by doing” or empirical research (Royston, 1999). 
Furthermore, if carried out correctly, simulation 
modelling gives stakeholders the opportunity to 
participate in model develop and, hopefully, gain 
deeper understanding of the problems that they 
face. As a result, decision-makers and stakeholders 
can gain a new perspective on the relationships 
between the available resources, the level of the 
system’s performance and the overall quality of 
the healthcare provision.

Many successful studies have been reported 
using simulation to address health care system 
problems (Jun et al, 1999; Cooper et al 2007). Of 
these, four simulation approaches have been used. 
These are Monte-Carlo Simulation, Agent-Based 
Simulation, System Dynamics and Discrete-Event 
Simulation. Monte-Carlo Simulation has its roots 
in World War Two and is a simulation technique 
that uses a sequence of random numbers according 
to probabilities assumed to be associated with a 
source of uncertainty, for example, stock prices, 
interest rates, commodity prices, etc. (Rubinstein, 
1981). In healthcare, Monte-Carlo Simulation has 
been used to evaluate the cost-effectiveness of 
competing technologies or healthcare strategies 
that require the description of patient pathways 
over extended time horizons. It is the main ap-
proach to modelling used in economic evaluations 
in health care interventions when there is a need 
to increase the number of states in the model to 
overcome the homogeneity assumptions inherent 
in Markov models and decision trees (Barton et al., 
2004). Agent-Based Simulation is a computational 
technique for modelling the actions and interac-
tions of autonomous individuals in a network, 
called agents, with a view to assessing their effects 

on the system as a whole but not independently. It 
is a technique used since the mid-1990s to solve 
a variety of financial, business and technology 
problems. Its application in the healthcare sec-
tor is not yet widespread but is has been used to 
study problems such as the spread of epidemics 
(Bagni et al., 2002). System Dynamics comes 
from Industrial Engineering in the 1950’s and is 
a modeling approach that takes a holistic view 
of the problem. In healthcare, Systems Dynam-
ics is used to model health systems from a more 
integrated or top-level approach. This simulation 
technique can assist the design of healthcare poli-
cies by examining how the fundamental structure 
might influence the progressive behaviour of a 
system. It takes into consideration factors such as 
the time variation both of tangible elements, such 
as waiting times and health care costs, as well as 
intangible, such as patient anxiety and the effects of 
various pressures on purchasing decisions (Taylor 
and Lane, 1998). In Discrete-Event Simulation, 
a technique that emerged in the UK in the late 
1950’s, systems are modeled in greater detail than 
with Systems Dynamics and with more complex 
temporal dependencies than with Monte-Carlo 
Simulation. It involves the modelling of a system 
as it progresses through time and is particularly 
useful for modelling queuing systems (Robinson, 
1994). Discrete-Event Simulation is therefore par-
ticularly well-suited to tackle problems in health-
care where, for example, resources are scarce and 
patients arrive at irregular times (for example in 
A&E departments). Some of the applications of 
Discrete Event Simulation is therefore to forecast 
the impact of changes in patient flow, to examine 
resource needs (either in physical capacity of beds 
and equipment or in staffing), to manage patient 
scheduling and admissions or to investigate the 
complex relationships among the different model 
variables (for example, rate of arrivals or time 
spent in the system). Discrete-Event Simulation 
therefore allows decision makers (namely, health 
policy makers, administrators and hospital manag-
ers) to effectively assess the efficiency of existing 
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health care delivery systems, to improve system 
performance or design, and to plan new ones. An 
extensive taxonomy of discrete event simulation 
studies in healthcare over the past twenty years 
is presented in Jun et al. (1999) and Fone et al. 
(2003). It has been shown that Discrete-Event 
Simulation can create significantly more insight 
than Monte-Carlo Simulation in areas such as 
health economics (Eldabi et al, 2000).

To recap, healthcare systems are becoming 
larger and more complex. Of our computer simula-
tion approaches, Discrete-Event Simulation (DES) 
is the most suitable technique to capture these 
complexities for to support meaningful decision 
making as it allows appropriate levels of detail 
and dynamic, stochastic behaviour to captured. 
However, a knock-on effect of this is that DES 
models are becoming larger, more complex, and 
significantly more computationally demanding. In 
some cases, the time taken to run the simulation 
of a single scenario can take over a day. These 
long run-times can make the whole simulation 
project untenable. However, research has shown 
that it is possible to reduce these run-times by 
using a technique called distributed simulation 
that utilises multiple computers to share the pro-
cessing load. This is, however, not at all easy! 
This chapter therefore reports on this recent, 
exciting advance in healthcare informatics that 
could widely benefit many large-scale modelling 
projects and, ultimately, broaden the application 
of this technique.

The chapter is structured as follows. In sec-
tion 2 we present more details on DES. Section 3 
gives an overview of distributed simulation, the 
approach to sharing the processing load of large 
models over several computers. Section 4 reports 
on our case study, the National Blood Service 
simulation. Section 5 presents some results from 
our case study that compares our work on the 
performance of the simulation running a single 
computer system against a simulation running on 
multiple computers using distributed simulation 
techniques. Section 6 discusses the implications of 

these results. Section 7 discusses some important 
future trends emerging from our demonstration 
of the benefits of distributed simulation. Section 
8 draws the chapter to a close.

discrEtE EvEnt simulation

A Discrete-Event Simulation (DES) model encom-
passes a number of important concepts, namely 
entities, state, events and logical relationships, 
which define the overall behaviour of the abstract 
representation of the real system being studied. 
Entities are the elements of the system that can 
be individually identified and processed (e.g., 
patients, orders, documents, etc.). These “flow” 
through the system requiring resources (e.g., 
nurses, beds, etc.) in order to perform activities 
(e.g., prognoses, operations, etc.). Waiting lines 
(queues) (e.g., reception areas, waiting rooms, 
clinics, etc.) are where entities wait for needed 
resources to become available or for events to 
take place (e.g., hospital admissions, doctor as-
sessment, etc.). Logical relationships link the 
different entities together and make them behave 
in a certain way. While a complete introduction to 
DES is outside the scope of this paper, excellent 
background literature includes Pidd (, 2004a), Law 
(2007) and many papers from the Winter Simula-
tion Conference series (www.wintersim.org).

The process of building DES models usually 
involves some form of software. The software can 
either be a high level programming language or a 
data-driven software system in which the model 
is specified using user-defined and default data 
items. These computer packages are described 
as Visual Interactive Modelling Systems (VIMS) 
(Pidd, 2004a), or Simulators (Law, 2007). Most 
of these have evolved into “black box” or “shrink 
wrapped” software with user interfaces that are 
familiar to users of Microsoft Windows™ pack-
ages such as Office™. We therefore refer to these 
as Commercial Off-The-Shelf (COTS) Simulation 
Packages (CSPs). Examples include AnyLogic™ 
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(XJ Technologies), Arena™ (Rockwell Automa-
tion), Flexsim™ (Flexsim Software Products, Inc), 
Simul8™ (Simul8 Corporation) and Witness™ 
(Lanner group). Moreover, some CSPs are spe-
cifically aimed at the health care industry, such 
as MedModel™ (ProModel Corporation) and 
Arena™ (Rockwell Automation) with a health 
care template.

The CSPs allow the users to create and experi-
ment with simulations visually and interactively. 
They are easy and intuitive to use and are popular 
among modellers. They enable relatively un-
skilled users to develop useful simulations in a 
short period of time without the need for detailed 
computer programming (Pidd and Cassel, 2000). 
Furthermore, the introduction of visually oriented 
graphical outputs not only aids in the verifica-
tion and validation of models and results (Gipps, 
1986), but also in the communication of results to 
decision makers. In addition, once the model is 
set and enhanced with user-friendly mechanisms 
for running different scenarios, these systems 
can be easily be reused by end-users alone. The 
number of health care organisations and govern-
ment agencies using these advanced simulation 
packages has grown (Jun et al., 1999).

These CSPs, although suitable for most systems 
that are modelled in industry (which includes 
the healthcare sector), may lack the capability to 
simulate large and complex models (Pidd, 2004b). 
Moreover, “there remain systems that cannot be 
sensibly simulated in this way, either because the 
application logic is too detailed or obscure for 
the simulators, or for other reasons such as the 
need to run an extremely fast or large simulation” 
(Pidd and Cassel, 2000). Therefore, there are still 
occasions that may justify the development of 
simulation programs from scratch using general-
purpose programming languages (such as Java or 
C++). However, since these bespoke simulation 
programs are usually tailor-made to investigate 
specific problems (i.e. lack flexibility) and because 
they usually lack in visual interaction and anima-
tion capabilities (i.e. CSPs have evolved over the 

years to give quite sophisticated capabilities that 
bespoke solutions typically cannot afford), they 
may not appeal to healthcare managers.

Nevertheless, as healthcare systems become 
more complex to manage there is a greater demand 
for quantifiable evidence to assist decision mak-
ing. Within the healthcare sector, only a limited 
number of simulation models have been developed 
to analyse complex multi-facility healthcare de-
livery systems (Jun et al., 1999). Most simulation 
models report on individual or local in scale units 
of healthcare facilities or problems in general. 
There is an emerging need for the development 
of more powerful high speed distributed simula-
tions which will could facilitate the creation of 
complex, but tractable, models of large integrated 
systems, with the results implemented more eas-
ily and frequently (Baezner et al., 1990). This 
book chapter therefore focuses on an approach 
to distributed simulation that is making the high 
speed simulation of large and complex healthcare 
systems using CSPs more possible.

Distributed simulation refers to the execution 
of a DES comprising two or more models, each of 
which runs on a separate processor or computer 
(the distinction is made as some computers have 
multiple processors). However, the CSPs do not 
have inbuilt support for distributed simulation. The 
objective of this chapter is therefore to propose 
and demonstrate a solution which enables the 
execution of large and complex healthcare mod-
els, developed in CSPs via the use of distributed 
simulation. We demonstrate via a case study how 
this approach has been used to support the National 
Blood Service (NBS) supply chain simulation in 
the Southampton area of the UK. This is arguably 
the first attempt to create a distributed simulation 
in healthcare. This research assumes added sig-
nificance because a CSP (Simul8™ from Simul8 
Corporation) has been used to create and execute 
the NBS models. This is unlike the majority of 
distributed simulations, in domains such as the 
military, where the models themselves are coded 
using a general purpose programming language. 
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We now introduce the technique of distributed 
simulation.

distriButEd simulation

This section will outline the motivations of using 
distributed simulation and highlight its applica-
tion areas. It will discuss the theory behind it and 
present an overview of different middleware being 
used to executing such simulations, in particular 
the High Level Architecture (HLA), which is 
increasingly becoming the de facto standard for 
distributed simulation.

definition

In a distributed simulation, a large computer model 
is executed over several processors. These proces-
sors can be a part of a multiprocessor computer 
or may belong to multiple PCs that are connected 
over a network. Parallel Discrete Event Simula-
tion (PDES) usually refers to the execution of 
such distributed DES on parallel and distributed 
machines (Page and Nance, 1994).

In the context of PDES, Fujimoto (2001) 
distinguishes between parallel and distributed 
simulation based on the frequency of interactions 
between processors during the simulation execu-
tion. A parallel simulation is defined as running 
a simulation on a tightly coupled computer with 
multiple central processing units (CPUs) where 
the communication between the CPUs can be very 
frequent (e.g., thousands of times per second). 
A distributed simulation, on the other hand, is 
defined as executing simulations on multiple 
processors over loosely coupled systems (e.g., a 
network of PCs) where the interactions take more 
time (e.g., milliseconds or more) and occur less 
often. Sometimes the terms parallel simulation 
and distributed simulation are used interchange-
ably (Reynolds, 1988). Fujimoto (2003) uses the 
term distributed simulation to refer to both the 
parallel and distributed variants of PDES. The 

rationale presented is that, although historically, 
the terms “distributed simulation” and “parallel 
simulation” referred to geographically distributed 
simulations and simulations on tightly coupled 
parallel computers respectively, new distributed 
computing paradigms like clusters of workstations 
and grid computing has made this distinction less 
obvious. This research takes a similar view and 
therefore does not distinguish between the parallel 
and distributed variants of PDES. We will there-
fore use “distributed simulation” to refer to the 
execution of simulations on both multiprocessor 
machines and over a network of PCs.

motivations

Some of the reasons for using distributed simula-
tion are as follows (Fujimoto, 1999a; Fujimoto, 
2003).

Distributed simulation can facilitate model • 
reuse by “hooking together” existing simu-
lations into a single simulation environ-
ment. It is usually far more economical 
to link existing simulations to create dis-
tributed simulation environments than to 
create new models within the context of a 
single tool or piece of software.
A large simulation may have memory and • 
processing requirements that cannot be 
provided by a single system. Distributing 
the simulation execution across multiple 
machines may allow the memory and pro-
cessors of many computer systems to be 
utilized. Thus, distributed simulation may 
enable large simulations to be executed that 
could not be executed on a single computer. 
This may also lead to the distributed model 
running faster than the single “standalone” 
alternative.
Executing simulations on a set of geo-• 
graphically distributed computers facili-
tates wider user participation in the simu-
lation experiments. This also alleviates the 
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cost and time that is normally associated 
with bringing participants to one physical 
place in, for example a joint training exer-
cise or decision making in a supply chain.

application areas

The current and potential application areas for 
distributed simulation are presented in Table 1 
(Fujimoto, 1999b).

Although the table lists only some of the appli-
cation areas of distributed simulation, the fact that 
CSP-based simulation has not been identified as 
either a current or potential distributed simulation 
application area may seem to suggest that there 
is very little work done in the area of CSP-based 
distributed simulation.

distributed simulation theory

A simulation has to process events in increasing 
timestamp order (the “timestamp” of an event is 
the time at which the event is scheduled to occur). 
Failure to do so will result in causality errors. 
A causality error occurs when a simulation has 

processed an event with timestamp T1 and sub-
sequently receives another event with timestamp 
T2, wherein T1 > T2. Since the execution of the 
event with timestamp T1 may have changed the 
state variables that will be used by the event with 
timestamp T2, this would amount to simulating 
a system in which the future could affect the 
past (Fujimoto, 1990). For a serial simulator that 
has only one event list and one logical clock it 
is trivial to avoid causality errors. In the case of 
distributed simulation, the avoidance of causality 
is a lot more difficult because it has to deal with 
multiple event lists and multiple logical clocks 
that are assigned to various processors. The reason 
for this is explained below.

The system being modelled (e.g., a hospital) 
may be composed of a number of physical pro-
cesses (e.g., clinics and operating theatres within 
the hospital). In a distributed simulation, each 
physical process is usually mapped to a logical 
simulation process running on a separate machine. 
All the interactions between the physical processes 
(e.g., transfer of patients from clinic to the opera-
tion theatre) are modelled as messages that are 
exchanged between their corresponding logical 

Table 1. Application areas of distributed simulation 

Applications Type of Simulation

Military applications Analytical war game simulations are performed to evaluate different strategies for war. These simulations 
are typically composed of individual models that represent different military divisions and use algorithms 
for synchronisation of the models (discussed in section 3.3). Another application of distributed simulation 
in the military is for training, and Test and Evaluation (T&E). These are conducted in Distributed Virtual 
Environments (DVE) where both humans (human-in-the-loop) and devices (hardware-in-the-loop) take 
part in the simulation.

Telecommunication networks Analytical PDES have been used widely to evaluate networking hardware, software, protocols and services 
in the telecommunication industry.

Social interactions and business 
collaborations

Distributed Virtual Environments allow people to interact socially and to develop business collabora-
tions on the Internet. Note: This was identified as a potential application area of distributed simulation 
in 1999, but today it has become a reality with popular Internet-based 3-D social networks like Second 
Life (Linden Research, 2007).

Medical application (potential 
area)

Computer generated virtual environments have been created both for doctors (to practice surgical tech-
niques) and for patients (to treat various phobias). However, most of this work is currently limited to 
non-distributed virtual environments.

Transportation (potential area) PDES (multiprocessors) can reduce the time taken to experiment with different strategies for responding 
to unexpected events like congestion resulting from weather conditions, etc. This will help take decisions 
faster.
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processes. Each message will have a timestamp 
associated with it.

In figure 1, the simulation represents a physi-
cal system that has two physical processes, say, 
PP1 and PP2. Logical simulation processes LP1 
and LP2 model the two physical processes. The 
logical processes have their own simulation execu-
tive, simulation clock and an event list. During 
simulation initialisation the event lists of both 
LP1 and LP2 are populated with the events E1 
and E2 respectively. The timestamps for E1 and 
E2 are 10 and 20 respectively. It will be possible 
for LP1 to process event E1 without any causality 
error since the timestamp of E1 is less than the 
timestamp of E2. However, LP2 will not be able 
to execute event E2 at time 20 because causality 
error may then occur. The reason for this is that 
execution of E1 might schedule another event E3 
for LP2 at time 15. In such a case, if LP2 had been 
allowed to execute E2 at simulated time 20 then it 
would have resulted in a causality error because 
the timestamp of E3 is less than the timestamp 
of E2. Different synchronisation protocols exist 
for distributed simulation that prevent or correct 
such causality errors.

Synchronisation protocols are one of the most 
important research areas of distributed simulation. 
They can be broadly divided into conservative 
(pessimistic) protocols and optimistic protocols. 

In a conservative protocol a processor is never 
allowed to process an event out of order; whereas 
in an optimistic protocol a processor is allowed 
to process an event out of order, provided it can 
revert back to its previous state in the case of a 
causality error (Nicol and Heidelberger, 1996). 
Chandy and Misra (1979) created one of the 
first pessimistic approaches that implements 
the conservative synchronisation protocol. An 
optimistic synchronisation protocol like Virtual 
Time, and its implementation called the Time Warp 
mechanism, executes events without considering 
the event time ordering (Jefferson, 1985). It has 
to save its state frequently so that a rollback to 
a previous state can occur when an event with a 
time stamp less than the current simulation time 
is received. Today, synchronisation protocols are 
usually implemented through supporting software 
termed distributed simulation middleware. These 
are discussed next.

distributed simulation middleware

A distributed simulation middleware is a soft-
ware component that implements the distributed 
simulation algorithms to achieve synchronisation 
between individual running simulations (or LPs). 
Middleware such as HLA-RTI (IEEE 1516, 2000), 
FAMAS (Boer, 2005), GRIDS (Taylor et al., 2002) 
and CSPE-CMB (Mustafee, 2004), can be used 
to facilitate distributed execution of CSP-based 
simulations. Distributed simulation protocols such 
as Aggregate Level Simulation Protocol (ALSP) 
(Fischer et al., 1994) and Distributed Interactive 
Simulation (DIS) (Miller and Thorpe, 1995) have 
been used widely in defence training simulations. 
However, there has been no reported application 
of these technologies to CSP-based simulations. 
As such they fall outside the scope of this book 
chapter.

The our healthcare case study uses the HLA-
RTI middleware to couple together models cre-
ated using the CSP Simul8™ and executed on 
different computers. As such, the next section of 

Figure 1. Execution of events in a distributed 
simulation (Fujimoto, 1990)
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this chapter discusses the HLA-RTI middleware 
for distributed simulation.

the high level architecture

The High Level Architecture (HLA) (IEEE 
1516, 2000) was originally proposed to support 
distributed simulation between existing and new 
simulations within the U.S Department of De-
fense (DoD). This came from the need to reduce 
the cost of training military personnel by reusing 
computer simulations linked via a network. HLA 
is now a IEEE standard. In the HLA, a distrib-
uted simulation is called a federation, and each 
individual simulation is referred to as a federate. 
A HLA Runtime Infrastructure (HLA-RTI) is a 
distributed simulation middleware, conforming 
to the HLA standards, that provides facilities to 
enable federates to interact with one another, as 
well as to control and manage the simulation.

The HLA is composed of four parts: a set of 
compliance rules, the Federate Interface Specifi-
cation (FIS), the Object Model Template (OMT), 
and the Federate Development Process (FEDEP). 
The rules are a set of ten basic conventions that 
define the responsibilities of both federates and 
the federation in the context of their relationship 
with the HLA-RTI. The FIS is an application 
interface standard which defines how federates 
interact within the federation. The FIS standard 
is implemented by the HLA-RTI. The HLA-RTI, 
thus, forms a base into which existing simulations 
(federates) can be “plugged into” to form a large 
distributed simulation (Fujimoto and Weatherly, 
1996). There are several implementations of HLA-
RTI available, for example, DMSO HLA-RTI 
and Pitch pRTI (Karlsson and Olsson, 2001). The 
OMT provides a common presentation format for 
HLA federates. FEDEP defines the recommended 
practice processes and procedures that should 
be followed by users of the HLA to develop and 
execute their federations.

For models created using CSPs to interoperate 
using the HLA standard, some of the FIS-defined 

interfaces have to be implemented. The FIS or-
ganises the communication between federates 
and the HLA-RTI into six different management 
groups. These are:

• Federation management: HLA-RTI calls 
for the creation and deletion of a federa-
tion, the joining and resigning of federates 
from the federation, etc.

• Declaration management: These pertain 
to the publication and subscription of mes-
sages between federates.

• Object management: Calls that relate to 
the sending and receiving of messages to 
and from federates.

• Ownership management: Calls for trans-
fer of an object and attribute ownership.

• Time management: These provide syn-
chronisation services.

• Data distribution: For efficient routing of 
data between federates.

Mustafee and Taylor (2006a) have shown that 
a HLA-based CSP interoperability solution is 
possible by using services defined in at least four 
of these six management groups, viz., federation 
management, declaration management, object 
management and time management.

The time management component of the HLA 
supports interoperability among federates that use 
different time management mechanisms. These 
include federates executing simulations using both 
conservative and optimistic synchronisation pro-
tocols (Fujimoto and Weatherly, 1996). However, 
almost all research in CSP interoperability using 
the HLA standard is concerned with conservative 
synchronisation. For example, HLA-RTI has been 
used with CSPs AnyLogic™ (Borshchev et al., 
2002), AutoSched™ (Gan et al., 2005) and Wit-
ness™ (Taylor et al., 2003). However, these indi-
vidual research projects developed different and 
incompatible approaches to using CSPs together 
with HLA standard for distributed simulation.

Building on the lessons learnt from these work, 
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a standardization effort, described in Taylor et 
al. (2006), specifically addressing the problems 
of HLA-based distributed simulation and CSPs 
began in 2002. This has led to the development of 
a suite of CSP Interoperability (CSPI) standards 
under the Simulation Interoperability Standards 
Organization’s (SISO) CSPI Product Development 
Group (CSPI PDG). The CSPI PDG’s standards 
are intended to provide guidance on how specific 
requirements of HLA-based distributed simulation 
can be supported with CSPs.

This section has presented a detailed discus-
sion on distributed simulation and the HLA-RTI 
middleware. In the next section the authors discuss 
the case study, the National UK Blood Service 
distributed simulation, wherein the HLA-RTI 
middleware has been used to execute a large and 
complex healthcare simulation model that was 
created using the CSP Simul8™.

thE hEalthcarE 
simulation casE study

Our blood supply chain study was carried out 
with the collaboration of the UK National Blood 
Service (NBS) and its main concern has been the 
analysis of policies for managing the blood inven-
tory system in typical UK hospitals supplied by 
regional blood centres (Katsaliaki and Brailsford, 
2007; Katsaliaki et al., 2007). The model was built 
using the CSP Simul8™. In order to overcome 
time execution problems of this large and complex 
healthcare model the researchers had to interface 
different copies of Simul8™, each executing part 
of the model in separate computers, with the HLA-
RTI middleware for distributed simulation.

Background to the Blood 
supply chain

The NBS consists of 15 Process, Testing and 
Issuing (PTI) Centres which together serve 316 
hospitals across England and North Wales. Each 

PTI Centre serves around 20 hospitals. Our case 
study was performed with the Southampton PTI 
Centre.

The NBS schedule collections of whole blood 
from voluntary donors in local, community venues 
or places of employment. The blood is transported 
back to the nearest PTI Centre where it is tested for 
ABO and Rhesus grouping and infectious diseases 
such as HIV. A unit (450ml) of whole blood is then 
processed into around 115 different products, of 
which the main three are red blood cells (RBC), 
platelets and plasma. RBC have usually a shelf 
life of 35 days and platelets of 5 days. Plasma 
can be frozen and stored for up to a year. In this 
study we consider only RBC and platelets which 
together comprise 85% of issues and are the chief 
source of wastage and shortages.

Blood products are stored in the PTI Centre’s 
blood bank until they are requested by the hospi-
tals served by that Centre. There are mainly three 
types of delivery. Routine scheduled deliveries are 
usually made on a daily basis on milk runs and 
are free of charge. The NBS also makes additional 
deliveries to an individual hospital in response to 
specific requests by charging a small fee. These 
are: emergency deliveries, which are prioritised 
on receipt for immediate dispatch and transporta-
tion and ad-hoc deliveries, which are additional 
to routine deliveries. There is also a nationally 
coordinated scheme for transferring excess stock 
between PTI Centres.

The blood remains in the hospital bank until it 
is cross-matched (tested for compatibility) for a 
named patient after a doctor’s request. Individual 
doctors are responsible for the quantity of blood 
products ordered for each patient in the hospital. 
It is common place for doctors to over-order to 
be on the safe side although there is some guid-
ance from the Maximum Surgical Blood Ordering 
Schedule (MSBOS) which specifies how much 
blood is required for a given operation.

After cross-matching, blood is then placed in 
the “assigned inventory” for that patient for some 
time until the transfusion and for some “safety” time 
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after if not used at that instant. If unused, it returns 
to “unassigned inventory” and is cross-matched to 
another patient. Blood units are usually sorted in a 
FIFO order (not age-based) in the hospital bank and 
issued accordingly. Ideally the oldest units should 
be issued first but this is not always the case since 
doctors prefer to use fresher blood, and moreover 
sorting the stock according to its age, especially in a 
big blood bank, is a painstaking procedure to which 
not all the hospitals devote the necessary time. In 
practice, only just above half of the cross-matched 
blood is actually transfused, and on average a unit 
will be cross-matched around three times before it 
is used or outdated. This clearly represents a huge 
potential for savings since the cost of a single unit 
of RBC is around £132 and for platelets is £214. 
Moreover, patients should ideally be given blood 
of the same type (a blood component is a set of 
eight products specified by the ABO and Rhesus 
group) but “mismatching” is possible in emergen-
cies; for example, O-negative blood can be given 
to anybody. However, this practice is prohibited 
and is perceived as poor quality service.

Overall, there are two mechanisms for placing 
orders for blood; doctors who place orders to the 
hospital blood bank for their patients and hospital 
blood bank managers who place orders to the NBS 
Centre for stock replenishment. There are also two 
stocking processes; one at the central blood bank 
and one at the hospital bank; in the latter, stock 
can be either assigned or unassigned. Figure 2 
illustrates all these processes in a flowchart.

the standalone nBs model

The blood supply system described above is 
undoubtedly a stochastic system with variable 
demand for blood (even for elective surgery) 
depending on the number of patients, type of 
operations and the occurrence of complications 
requiring extra transfusions. The supply is vari-
able too since it relies on volunteers showing up 
to donate. Organisational issues also arise from 
the fact that the NBS manages the supply side 
and the hospitals manage the demand side of the 
logistics chain. As discussed earlier, DES was 

Figure 2. Lifecycle of a blood unit (Katsaliaki, 2008)
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chosen to investigate the problems of this supply 
chain as complex stochastic multi-product, multi 
echelon perishable inventory problems have been 
shown to be intractable by analytic techniques 
(Donselaar et al, 2006; Goyal and Giri, 2001) 
or other simulation methods. DES was also the 
technique which the majority of the researchers 
have adopted to tackle parts of this problem since 
some decades ago.

The model was built using the CSP Simul8™. 
The supply chain model is very large and com-
plex, and as such requires extensive data. Up 
to nineteen months’ data were acquired for the 
years 2003 and 2004 by the NBS information 
system (PULSE) providing details about collec-
tions, processed and issued units, stock holding 
and discards. This gave details of the products 
supplied to each hospital, by date, time, delivery 
type, quantity and blood group. Questionnaires 
were also sent to the hospitals supplied by the 
Southampton centre, and interviews conducted 
with NBS staff and hospital blood bank managers. 
There are two main categories of entities in the 
model; items and orders. Items are the individual 
blood units (RBC and platelets) delivered from the 

NBS Centre to the hospitals in a one-way direction, 
since returns of products are not allowed. Items 
are also delivered internally from the hospital bank 
to the patient changing their stage in the system. 
In the latter returns within the hospital bank are 
allowed. Orders are placed both by the doctors 
to the hospital blood bank and by the hospitals’ 
blood bank managers to the NBS Centre for blood 
products, and represent the backwards flow of 
information. Requests are matched with items 
according to their characteristics (attributes) as in 
a Kanban system and delivered as appropriate.

While the model runs, data are reported in an 
Excel file, such as the day and time of placing an 
order with the Centre, the type of order (routine, 
ad-hoc or emergency), the requested product and 
the amount by blood group. The model time units 
are minutes, and the remaining shelf-life of blood 
products is counted in minutes. However, the 
hospitals’ blood bank stock for placing orders to 
the NBS is checked only every hour. Moreover, 
the decision to run the model in minutes was 
enforced by the fact that many processes, such 
as physician requests and delivery times, could 
be better approximated in small units of time. In 

Figure 3. Screenshot of a simplified version of the Simul8 model showing one hospital
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addition, an attempt to run the model in hours 
did not significantly accelerate the overall run-
ning time.

The basic version of the model contains the 
processes of the NBS Centre, from collection of 
whole blood to delivery of blood products, and 
the processes within a single medium-volume 
hospital. The model captures all the main processes 
of the supply chain. Figure 3 shows a simplified 
illustration of this simulation model. The black 
arrows represent blood units flow and the thick blue 
arrows represent information flow, i.e. orders.

The expanded version of this model incorpo-
rates the Centre’s supply of multiple hospitals. 
Figure 4 shows an example of the relationships 
between the NBS supply centre and hospitals it 
serves, which in the “conventional” approach is 
simulated on a single computer. Note that this 
shows four hospitals. Ideally, there should be up 
to twenty!

In our “conventional” or standalone single 
computer approach the execution times increased 
dramatically when the number of hospitals in-
creased in the model (see section 5). We now 

describe our distributed simulation approach to 
this problem.

the distributed nBs model

In our distributed simulation of the NBS supply 
chain, we (1) divided up the conventional NBS 
model into different model elements, (2) used the 
HLA-RTI middleware and (3) interfaced different 
copies of CSP Simul8™ with the HLA-RTI. The 
version of the HLA-RTI we have used for our 
research is the DMSO RTI 1.3NG (Rtiexec.exe). 
Figure 5 shows the logical relationship between the 
different parts of the distributed NBS model.

The model decomposition creates individual 
models of the Southampton PTI and hospitals (in 
this example four different hospitals were used). 
These models run in separate copies of Simul8™. 
Together they form federates that interact by time-
stamped messages that represent the interaction 

Figure 5. NBS distributed model with NBS PTI 
and four hospitals

Figure 4. NBS conventional model with the NBS 
PTI and four hospitals
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of one model part with another (e.g., when an 
entity leaves one part of a model and arrives at 
another). These are mapped onto HLA interactions. 
The complete model, constituted of distributed 
federates, form our NBS supply chain federation. 
Note that in this work, Simul8TM, like most of the 
other CSPs, does not provide inbuilt support for 
distributed simulation. The modifications made 
to the Simul8™ CSP are described in Mustafee 
and Taylor (2006).

In this investigation, to make our approach as 
easy to use and support as possible, interaction 
between the models/Simul8 and the HLA-RTI is 
via an Excel file. For example, entities representing 
orders are written into the file by Simul8 during 
the execution of hospital models. The HLA-RTI 
then correctly transfers this information to the 
NBS model by means of HLA interactions. This 
approach was adopted as it did not require spe-
cial modifications to the CSP and modellers are 
typically skilled to use the CSP with Excel (the 
HLA-RTI/Excel link is very simple). The incoming 
orders from each hospital are collected into their 
corresponding queues in the NBS model and the 
orders are matched with the available stock of 
blood. The resulting matched units are written into 
an Excel spreadsheet in the NBS federate. This 
information is then sent to the different hospital 
models in a similar manner. As mentioned above, 
the decision to implement the distributed supply 
chain in this manner was motivated by issues of end 
user transparency and ease of implementation.

ExpErimEnts and rEsults

To investigate the distributed approach against 
the conventional approach, four scenarios were 
investigated. These were one NBS supply centre 
serving one, two, three and four hospitals respec-
tively. The hospitals which were added to the 
models were all of the same size. For instance, 
physician requests were around 1000 blood units 
for each hospital per month, with each hospital 

diverging by a small percentage (≤6%) from the 
mean. Before experimentation commenced, the 
outputs for the conventional and distributed mod-
els were compared to check that the same results 
for a year’s run was produced. This was done to 
validate the minor modifications to link Simul8/
Excel/HLA-RTI in the distributed model did not 
artificially increase/decrease the workload. All 
experiments were conducted on Dell Inspiron 
laptop computers running Microsoft Windows 
XP operating system with 1.7GHz processors and 
1GB RAM connected through a 100Mbps CISCO 
switch. The same computer specifications were 
used to guarantee consistency in runtimes. The 
results of the execution times for each of the models 
are based on the average of 5 runs (selected as an 
isolated network was used – low variance).

Figure 6 shows the execution time in seconds 
for both conventional and distributed approaches 
as the NBS simulation progress, month by month. 
The results show that the conventional model 
with one hospital took approximately 14 minutes 
to run for a whole simulated year. The run time 
rose to 78 minutes when the model ran with two 
hospitals and to approximately 17.5 hours with 
three hospitals. The addition of the fourth hospital 
increases the execution time to 35.8 hours. The 
distributed model with one NBS supply centre 
and one hospital ran in approximately 8.5 hours, 
with two hospitals in 9.8 hours, with three hos-
pitals in 12.7 hours and with four hospitals in 
16.5 hours.

discussion

The NBS simulation is representative of a large 
model. Looking at the results as the system size 
grows, runtimes increase rapidly from the trivial 
(for one hospital) to the extravagant (for only four 
hospitals!). From the results it is apparent that 
the versions with one or two hospitals are less 
time consuming to run using the conventional 
approach. Conversely, when a third and fourth 
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hospital are added then the distributed method 
bests the runtime of the conventional approach. 
There also appears to be an exponential escala-
tion of the runtime in the conventional version 
while increasing the number of hospitals in the 
model. This is quite a contrast to the substantially 
smaller and smoother rise in the runtime in the 
distributed method.

The enormous number of entities in the system, 
each of which carries many attributes, increases 
the computation time of the conventional model 
exponentially even though there is no exponential 

element in the functions of the model. This expo-
nential increase appears to result from a combina-
tion of two different factors. Firstly, the massive 
amount of information generated by the model 
cannot be accommodated in the random access 
memory (RAM) alone, and hence the operating 
system has to keep swapping information to the 
hard disk. The part of the hard disk which is kept 
aside for use as swap space is called virtual mem-
ory. It takes much more time for the processor to 
recall information from the virtual memory when 
compared to RAM. Thus, as the models get bigger, 

Figure 6. Runtimes of conventional (s) and distributed method (d) for one NBS PTI centre with one to 
four hospitals
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more information is generated resulting in more 
swaps between the RAM and the virtual memory, 
thereby contributing to an increase of execution 
time. Secondly, the behaviour of the system being 
modelled is such that all entities (blood units) in 
the system have a limited shelf life. This behaviour 
is modelled in the NBS simulation by continually 
scheduling events that decrease the shelf life of 
each entity by the minute. This results in more 
computations as the number of entities flowing 
through the system increases. Thus, the increase 
in runtime appears to be primarily due to a large 
event list caused by a combination of the volume 
of entities and the “counting down” of the shelf 
life. The large event list in turn causes swapping 
between RAM and virtual memory which further 
causes long runtimes. Our results suggest that the 
distributed approach allows the processing and 
memory demands made by large event lists to be 
shared over several computers.

What does this mean overall? In this particu-
larly large scale simulation, our distributed simula-
tion effectively halved the time taken to perform a 
single of the NBS simulation with four hospitals. 
The trend appear to indicate that this performance 
gain will become better with more hospitals. The 
magnitude of the problem means that runtimes will 
never be trivial. However, our approach to using 
distributed simulation, one that is generalizable to 
many different CSPs and large scale simulations, 
means that one may expect large runtimes to be 
reduced. As mentioned previously, this work is 
important as it is the first demonstration that an 
effective distributed simulation technique can help 
in the reduction of unrealistic runtimes and thus 
make possible decision support systems for large 
scale problems that were hitherto unfeasible.

FuturE trEnds

To introduce this problem we commented that 
CSPs, although suitable for most simulations 
that are modelled in industry, may be unable to 

simulate large and complex models (Pidd, 2004b), 
as was the case with our NBS simulation. Argu-
ably, one reason for this is, the larger the model, 
the greater the processing power and memory 
required to simulate the model. Simulation is a 
computationally intensive technology that has 
benefitted from increasing processor speeds made 
possible through advances in computer science; 
and with ever increasing processing speeds, the 
CSPs, in future, will possibly provide features that 
may not presently seem possible (for example, 
dramatic decrease in model runtime, execution 
of increasingly large and complex models, etc.) 
(Hollocks, 2006).

However, it is also true that with more pro-
cessing power available the simulation user may 
tend to develop even larger and more complicated 
models simply because it is possible to do so 
(Robinson, 2005). This, in turn, may again mean 
that standalone CSPs will not be able to support 
execution of some user models because of their 
sheer size and complexity. We have demonstrated 
that distributed simulation can be used to help 
reduce the impact of size and complexity in terms 
of reducing runtimes. Our approach involved 
interfacing to the CSP via an Excel spreadsheet. 
However, if it was possible to interface directly to 
the CSP, then further performance gains could be 
made. Thus, CSPs that implement synchronisa-
tion algorithms or which allow interfacing with 
distributed simulation middleware like HLA-
RTI, could make possible the simulation of large 
complex systems that are currently beyond the 
capability of many CSPs and thus beyond the 
reach of health care management.

conclusion

This chapter has described an investigation into 
the decision support of large healthcare systems. 
The chapter has presented Discrete-Event Simula-
tion (DES) as an approach to decision support but 
suffers from long runtimes when large systems 
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are simulated. The chapter also introduce COTS 
Simulation Packages (CSPs) as the main tools 
used for DES. We then introduced distributed 
simulation as a possible technique for sharing 
the processing load of large healthcare systems 
simulations. A case study comparing conventional 
and distributed approaches to simulating the sup-
ply chain of blood from a National Blood Service 
Centre to hospitals with the simulation package 
Simul8™ was then presented. Our results show 
that it is possible to use multiple computers to 
reduce the runtime of large simulations using 
distributed simulation. Further performance gains 
could be made if this technique and its associ-
ated technologies are directly integrated into the 
CSPs used for simulation. We therefore argue that 
Discrete-Event Simulation, supported by CSPs 
with integrated distributed simulation technology, 
could make possible a range of large scale deci-
sion support tools for healthcare that are currently 
not possible. As healthcare systems are growing, 
and the need for carefully considered decisions 
increase, the lack of such technology could place 
a significant barrier to effective healthcare in the 
future. We hope that our demonstration shows 
that this barrier could be overcome and that it 
is entirely possible that healthcare systems, and 
healthcare informatics as a field, could widely 
benefit from this complex, but simply realised, 
technique.
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kEy tErms and dEFinitions

COTS: Commercial, Off-The-Shelf (COTS). 
This term is used to refer to software applications 
that can be purchased from software vendors.

CSP: COTS Simulation Package (CSP). In this 
thesis the term CSP is used to refer to simulation 
packages for both Discrete-Event Simulation 
(DES) and Monte Carlo Simulation (MCS).

HLA: The High Level Architecture (HLA) is 
an IEEE standard for distributed simulation.

HLA-RTI: The High Level Architecture-Run 
Time Infrastructure (HLA-RTI) is distributed sim-
ulation middleware that implements the interface 
specifications outlined by the HLA standard.

Rtiexec: rtiexec.exe is the HLA-RTI middle-
ware program.

Discrete Event Simulation (DES): DES is 
an approach to modelling using interconnected 
blocks to represent interaction between specific 
processes and is run on a computer using math-
ematical models. The latter are stochastic, that is 
they involve input generated according to prob-
ability distributions. A discrete model assumes that 
the state of the system changes only at specific 
times, often referred to as events.


