
Speeding Up Simulation Applications Using WinGrid 
 

Navonil Mustafee 

Operational Research and Management Sciences Group 

Warwick Business School 

University of Warwick, Coventry, CV4 7AL, UK 

 

Simon J E Taylor 

Centre for Applied Simulation Modelling 

School of Information Systems, Computing and Mathematics 

Brunel University, Uxbridge, Middlesex, UB8 3PH, UK 

 

Abstract. The vision of grid computing is to make computational power, storage capacity, 

data and applications available to users as readily as electricity and other utilities. Grid 

infrastructures and applications have traditionally been geared towards dedicated, 

centralized, high performance clusters running on UNIX “flavour” operating systems 

(commonly referred to as cluster-based grid computing). This can be contrasted with desktop-

based grid computing which refers to the aggregation of non-dedicated, de-centralized, 

commodity PCs connected through a network and running (mostly) the Microsoft Windows 

operating system. Large scale adoption of such Windows-based grid infrastructure may be 

facilitated via grid-enabling existing Windows applications. This paper presents the WinGrid 

approach to grid enabling existing Windows-based Commercial-Off-The-Shelf (COTS) 

simulation packages (CSPs).  Through the use of two case studies developed in conjunction 

with  a major automotive company and a leading investment bank respectively, the 

contribution of this paper is the demonstration of how experimentation with the CSP Witness 

(Lanner Group) and the CSP Analytics (SunGard Corporation) can achieve speedup when 

using WinGrid middleware on both dedicated and non-dedicated grid nodes. It is hoped that 

this research would facilitate wider acceptance of desktop grid computing among enterprises 

interested in a low-intervention technological solution to speeding up their existing 

simulations. 

 

Keywords. Grid computing, desktop grids, grid middleware, commercial-off-the-shelf 

simulation packages, discrete-event simulation, Monte Carlo simulation. 

 

1. Introduction 

 

Grids are sharing environments implemented via the deployment of a persistent, standards-

based service infrastructure that supports the creation of distributed communities and sharing 

of resources like computers, storage space, sensors, software applications and data between 

them (Foster and Iamnitchi, 2003). These distributed communities, frequently referred to as 

virtual organizations, or virtual enterprises, comprise of a group of individuals and/or 

institutions engaged in some joint work who share resources based on strict sharing policies 

that define what is shared, who is allowed to share and the conditions under which such 

sharing occurs (Foster et al., 2002).  

 

Computer simulation has the potential to benefit from sharing access to computing resources, 

storage capacities and research equipments provided by grid computing.  Examples of large 

scale grid-based simulation projects include the Earth Grid System (Bernholdt et al., 2005) 

and NEESgrid (Spencer et al., 2004). The creation of such applications typically requires the 



installation of complex supporting software (like Globus) and an in-depth knowledge of how 

this complex supporting software works (Jaesun et al., 2003).  

 

The exponential growth of global computer ownership, local networks and Internet 

connectivity, coupled with the fact that desktop PCs in corporate and home environments are 

heavily under utilized, has given rise to enterprise/desktop grid computing, public resource 

computing and peer-to-peer (P2P) computing – all of which are different forms of Internet 

computing (Luther et al., 2005). Internet computing seeks to provide resource virtualization 

through aggregation of idle CPU cycles of the PCs connected over the Internet and the Local 

Area Network (LAN). When this form of computing is confined to an enterprise and the 

purpose of resource virtualization is to support the execution of enterprises’ applications then 

we use the term enterprise desktop grids (Chien et al., 2003).  

 

Desktop grid applications such as Platform LSF (Zhou, 1992), Entropia DCGrid (Kondo et 

al., 2004), United Devices GridMP (United Devices, 2007) and Digipede Network (Digipede 

Technologies, 2006) are increasingly being deployed within enterprises to tap into their PC-

based networks and maximize return on investment (ROI) on computing resources. In order to 

increase the enterprise-wide adoption of Windows-based grid technologies, it is also 

imperative to develop new grid software to specifically deal with Windows issues and grid-

enable existing Windows applications to encourage adoption. With regards to the former, for 

example, a .NET-based grid computing framework called Alchemi has been developed that 

provides the runtime machinery and programming environment required to construct 

Windows-based desktop grids and develop grid applications (Luther et al., 2005). As for the 

latter, it requires development of a grid-enabling solution that requires little or no change to 

existing Windows applications. Our system WinGrid (Mustafee and Taylor, 2006; Mustafee 

et al., 2006; Mustafee, 2007) aims to deliver such a low intervention technological solution to 

grid-enable existing Windows applications.  

 

In this paper we discuss how WinGrid can benefit users of Commercial-off-the-shelf 

Simulation Packages (CSPs).  CSPs are modelling support environments software widely 

used by simulation practitioners in the industry. Examples of CSPs include Arena™ 

(Rockwell Automation), AnyLogic™ (XJ Technologies), Automod™ (Brooks Software), 

Promodel™ (ProModel Corporation), Simul8™ (Simul8 corporation), Witness (Lanner 

Group) and Analytics (SunGard Corporation). Users of these packages tend to be skilled in 

simulation and not computer science (as many users of Grid computing are).  Vendors of 

CSPs change the functionality of their CSPs on an incremental basis.  Major possible changes 

to their packages are often prohibitively costly and do not have a guaranteed ROI.  

 

The practice of CSP-based simulation can widely benefit from Grid computing (Taylor et al., 

2004; Mustafee, 2007).  By means of two case studies, done in conjunction with a major 

automobile manufacturing company (the Ford Motor Company) and a leading European 

investment bank respectively, we investigate how a desktop grid implemented with our 

system WinGrid can increase the performance of both discrete event and Monte Carlo 

simulation experimentation.  Our approach differs to previous attempts to use distributed 

computing to speed up simulation experimentation (Anagnostopoulos et al., 2003; Biles and 

Kleijnen, 2003; Paris et al., 2001; Yücesan et al., 2001) by using a desktop grid specifically 

aimed at Windows applications and by transparently, in as much as possible, grid-enabling 

simulation within an enterprise context (i.e. by changing the existing simulation application as 

little as possible to encourage adoption of this technology).   

 



The paper is structured as follows.  In section 2 we review the current approaches to desktop 

grids.  The WinGrid architecture is described in Section 3.  Section 4 discusses the case study 

that was conducted together with Ford and how a Witness-based application called FIRST 

was grid-enabled using WinGrid.  This is followed by the investment bank case study in 

which WinGrid was used to speed up Monte Carlo credit risk simulations (section 5).The 

results of both the case studies are presented in section 6. Section 7 draws the paper to a close. 

 

2. Desktop Grids 

 

While much of Grid computing is focussed on meeting the needs of large virtual 

organizations, Desktop Grid Computing or Desktop Grids addresses the potential of 

harvesting the idle computing resources of desktop PCs (Choi et al., 2004).  These resources 

can be part of the same local area network (LAN) or can be geographically dispersed and 

connected via a wide area network such as the Internet.  Studies have shown that desktop PCs 

can be under utilized by as much as 75% of the time (Mutka, 1992). This coupled with the 

widespread availability of desktop computers and the fact that the power of network, storage 

and computing resources is projected to double every 9, 12, and 18 months respectively 

(Casanova, 2002), represents an enormous computing resource.  The immediate implication 

of this is, software applications having non-trivial processing requirements can potentially run 

substantially faster using commonly available computing resources.  In enterprises, this also 

means that the ROI of enterprise computing resources can also be potentially increased. 

 

Two principal types of desktop grids have emerged.  These are Public Resource Computing 

and Enterprise Desktop Grid Computing. Both these are based on variants of the 

master/workers distributed computing architecture (Chakravarti et al., 2004). In such a model 

a user launches an application on a master computer that is responsible for allotting work 

generated by the application to the available worker computers for processing. The individual 

results are returned by the workers to the master for compilation by the application and 

presentation to the user.  

 

2.1 Public Resource Computing 

 

Public-resource computing (PRC) refers to the utilization of desktop grids comprising 

millions of desktop computers primarily to do scientific research (Anderson, 2004).  The 

Berkeley Open Infrastructure for Network Computing (BOINC) (University of California, 

2006) is the most widely used desktop grid application that supports scientific projects with 

diverse objectives such as searching for evidence of extraterrestrial intelligence, studying 

climate change, improvement in the design of particle accelerators, finding cures for human 

diseases and searching for gravitational waves from space. Non-BOINC based projects use 

their own software to facilitate research with similar objectives, for example, finding a cure to 

cancer (Parabon computation, 2006), understanding protein folding (Pande, 2006) and 

computing mersenne prime numbers (Woltman, 2006). The participants of PRC projects are 

volunteers who register with one or more such projects and install the required desktop grid 

software.  This software then contacts the central project servers and downloads work units 

for processing (in case of BOINC it also downloads project specific executable code as 

BOINC is a general purpose PRC client). The time it takes to complete the execution of a 

work unit and return back the result depends, among other things, on the machine hardware, 

the amount of time a PC is left running and user preferences.  The volunteers are themselves 

unable to use the underlying desktop grid infrastructure, of which they themselves are part of, 

to perform their own computations. 



 

2.2 Enterprise Desktop Grid Computing 

 

We use the term Enterprise Desktop Grid Computing (EDGC) to refer to a grid infrastructure 

that is confined to an institutional boundary, where the spare processing capacity of an 

enterprise’s desktop PCs are used to support the execution of the enterprise’s applications.  

User participation in such a grid is not usually voluntary and is governed by enterprise policy. 

Applications such as CONDOR (Litzkow  et al., 1988), Platform LSF (Zhou, 1992), Entropia 

DCGrid (Kondo et al., 2004), United Devices GridMP (United Devices, 2007) and Digipede 

Network (Digipede Technologies, 2006) are all examples of EDGC. Unlike the PRC model 

these applications usually allow users to submit jobs for processing.  

 

2.3 Desktop Grids and CSPs 

 

How can a desktop grid support the needs of CSP experimentation?  To recap, our aim is to 

create a system that takes into account that these packages are Windows-based, their users are 

specialists in simulation and not computing and any technological solution must be developed 

with little or no change to the CSP.  

 

Building on PRC and EDGC, one possibility is to “bundle” the CSP along with each desktop 

grid worker.  Thus, whenever a desktop grid worker is started the CSP is also loaded.  In an 

enterprise desktop grid the worker usually runs in a “sandbox”. We call this sandbox the 

Desktop Grid Virtual Machine (DGVM) and this provides logically separate, secure execution 

environment for both the host and guest processes.  

 

An alternative solution would be to install the CSP in the worker nodes as a normal 

application and then have the master communicate directly with that application.  The 

drawback with this is that the sandbox security mechanism which is present in most EDGC 

approaches would have to be forfeited.  However, as simulations are created by trusted 

employees running trusted software within the bounds of a firewalled network, security in this 

open access scheme could be argued as being irrelevant (i.e. if it were an issue then it is an 

issue with the wider security system and not the desktop grid).  

 

In the next section we consider the suitability of the existing approaches to desktop grids, 

namely PRC and EDGC, with regard to their use with CSPs in an enterprise environment. For 

this we select BOINC and Condor as representative forms of PRC and EDGC middleware 

respectively. As has been mentioned earlier, BOINC is an open source PRC middleware that 

allows users to create new BOINC-based projects to cater to their computational needs. 

Condor is an EDGC middleware that is used for both high throughput computing and for 

enterprise application processing. Both BOINC and Condor are cycle stealing systems (i.e., a 

system that harnesses the unused CPU cycles of idle PCs to process other jobs in the 

background) that can run on non-dedicated Windows PCs.  

 

The rationale of selecting BOINC as a representative form of PRC middleware is as follows. 

 It is presently the most popular PRC middleware. 

 It is presently the only PRC middleware that allows users to create their own projects. 

 It is free. 

 



The rationale of selecting Condor as a representative form of EDGC middleware is as 

follows: 

 It has the largest EDGC deployment base. More than 80,000 Condor hosts around the 

world make up approximately 160 production-level Condor pools (see 

<http://www.cs.wisc.edu/condor/map/> for updated Condor statistics). 

 It is free (but contributions to the CONDOR project are encouraged). Other EDGC 

middleware like Entropia DCGrid, United Devices GridMP and Digipede Network are 

commercial solutions. 

 

2.4 Selection Criteria 

 

This section discusses the section criteria for grid middleware for CSP-based simulation in 

industry, and tests the suitability of BOINC and Condor in this regard. In doing so, it takes 

into consideration the implementation and deployment aspects of the middleware. This 

discussion is informed by literature, by the authors’ interactions with simulation experts and 

IT staff, and the authors’ own experiences with implementing different grid-based solutions. 

 

This discussion is structured under five specific categories. Four of these categories directly 

map to the implementation aspects of the middleware (over which a user usually has no 

control) and are considered important when deciding upon the suitability of the middleware 

for deployment for CSP-based simulations in industry. These four categories refer to the 

operating system for which the middleware has been implemented, the number of ports that 

are opened by the middleware for communication, the job scheduling mechanism that is 

implemented and the task farming support that is provided by the middleware. The fifth 

category, namely, application support, is specific to the application that is being written to be 

executed over the grid and over which the user has some control. The programming language 

being used to implement the application is the important consideration here 

 

Operating system category: A grid middleware that can be installed on Windows PCs may be 

more appropriate for use with CSPs (almost all the CSPs only run on Windows). 

 

Communication category: In the confines of an organisation, security is a prime concern. It is 

therefore expected that the grid middleware that will open the least number of channels for 

communication (ports) has a greater chance of acceptance by the network administrators. 

 

Job scheduling mechanism category: We may have the pull, push or broker job scheduling 

mechanisms. If the middleware implements the “push” mechanism then it periodically polls 

the grid nodes to find out the load levels and decide on whether new jobs are to be assigned to 

the node; on the other hand, a middleware that implements the “pull” mechanism allows the 

grid nodes to decide the best time to start a job and thereafter request a new job (Berlich et al., 

2005). In a “broker-based” approach to job scheduling a software process (for example, the 

matchmaking agent in Condor) is responsible for matching jobs with available resources. 

After a match has been found, the resource consumer may “push” the job to the resource 

provider (Robinson and DeWitt, 2007). Let us now consider the efficiency of “pull”, “push” 

and “broker-based” scheduling mechanisms in the enterprise environment. Garonne et al. 

(2005) have conducted performance studies related to the efficiency of “pull” and “push” 

approaches in the context of scheduling tasks on multiple local schedulers that are shared 

among many users. The results have shown that, in terms of performance for High 

Throughput Computing, the centralized “push” approach is better than the decentralized 

“pull” approach under ideal conditions (e.g., no network or hardware failures, no disk space 



shortage, no service failure, etc.). Similarly, a “broker-based” scheduling approach will 

generally be less efficient than the “push” based approach because the former introduces one 

more layer of communication between the nodes requesting resources and the nodes 

providing those resources. 

 

Task farming support category: In a task-parallel task farming application one master 

process is responsible for directing and coordinating the execution of multiple worker process 

and assimilation of the results; whereas in a job-parallel task farming application one 

application (or user) submits many jobs using standard middleware-specific job submission 

mechanisms to submit a batch of jobs, which may be different instances of the same job, 

single instances of different jobs or both. For conducting CSP-based simulation experiments, 

task-parallel applications will generally be better suited since one master process will be in 

control of the overall experimentation process. Thus, the simulation practitioner will usually 

be able to load the experiment parameters into the task-parallel application, which will in turn 

interact with the underlying grid middleware to schedule the experiments over different grid 

nodes, receive simulation results asynchronously from nodes, and finally collate the results 

and present them to the simulation user. 

 

Application support category: Java is widely used to program enterprise applications in 

industry. It is generally accepted that the two important reasons contributing to its popularity 

and widespread use are, Java applications can be run on any  operating system that has Java 

Runtime Environment (JRE) installed and Java is open source and available for free. Thus, in 

the application support category, it is arguable that a grid middleware that will be able to 

execute Java-based programs will be suitable for CSP-based simulation in the industry.  Table 

1 shows BOINC and Condor specific information regarding each of the five categories 

discussed above. 

 

In the remaining part of this section, we show that neither BOINC nor Condor can be 

considered as the ideal middleware implementation for supporting CSP-based simulation in 

industry under all the five categories. For example, under the operating system category 

Condor was found suitable for deployment; under the communication category BOINC, 

which uses the standard HTTP port for all its communication, was considered suitable since it 

does not require opening up extra ports; in the job scheduling mechanism category neither of 

the middleware were considered ideal since they did not implement the “push” model of job 

scheduling; in the task farming support category, however, both BOINC and Condor were 

considered appropriate since both the middleware supported task-parallel task farming 

applications; finally, in the application support category, the use of Condor with Java 

execution environment was considered appropriate. Table 2 below summarizes this 

information. 

 

The table shows that neither Condor nor BOINC has an ideal middleware implementation for 

running CSP-based simulation in industry. The ideal middleware would be the one which is 

supported on Windows, which uses only one communication channel, implements the “push” 

job scheduling mechanism, supports task-parallel task farming applications and would 

support Java-based user applications. The authors implemented WinGrid (Mustafee and 

Taylor, 2006; Mustafee et al., 2006; Mustafee, 2007) specifically for the purpose of executing 

CSP-based simulation over desktop grid. WinGrid is discussed in the next section. 

 

3. WinGrid Architecture 

 



WinGrid is an EDGC middleware that is targeted at the Windows operating system. The 

primary motivation for implementing WinGrid was to provide an ideal middleware 

implementation for supporting CSP-based simulations in industry. As such, WinGrid 

incorporates the five ideal middleware criteria that were identified in the last section and were 

considered important for grid-based simulations in industry. Thus, WinGrid is supported on 

Windows, it uses only one communication channel, it implements the “push” job scheduling 

mechanism, it supports task-parallel task farming applications and supporst Java-based user 

applications.  

 

WinGrid is based on the master-worker distributed computing architecture. This architecture 

(also referred to as task farming architecture) consists of one master entity and multiple 

workers entities, wherein the master entity decomposes the problem into small tasks, 

distributes these tasks among a farm of worker processes and gathers the partial results to 

produce the final result of the computation; and the worker entities receive message from the 

master with the next task, process the task and send back the result to the master (Heymann et 

al., 2000).  WinGrid implements this “push” approach (master pushes the job to the workers) 

by starting a server process for each worker. The server process enables the worker to listen 

continuously for incoming tasks from the master. The presence of multiple servers 

transparently incorporates a degree of fault-tolerance to the WinGrid architecture as it means 

that processing over WinGrid continues even if one or more workers fail (computer hangs, PC 

re-boots, etc). We now discuss the different components of WinGrid. 

 

As shown in Figure 1, WinGrid consists of four different parts: the manager application 

(MA), the WinGrid Job Dispatcher (WJD), the worker application (WA) and the WinGrid 

Thin Client (WTC). The MA runs on the manager computer (the application user’s computer) 

and is software written specifically for the management of the application running over the 

desktop grid.  The MA interacts with the WJD also running on the master computer and 

passes work to, and receives results from, the WJD.  The WAs and WTCs run on each worker 

computer.  The WJD sends and receives work to and from the WTCs.  The WTCs in turn send 

and receive work to and from their WA.  The WAs are unmodified application software 

connected via a COM interface with the WTCs.  The WTC is also responsible for advertising 

and monitoring local resources, accepting new jobs from the master process and returning 

back the results, and provides an interface through which the desktop user can set his 

preferences (when guest jobs are to be run, applications to share etc.).  A user submits a job 

through the MA (1), which in turn interacts with the WJD process (2) in the manager 

computer to send work (3) to the WinGrid workers and their WTCs (4).  The WTC pass this 

work to their WA for processing (5) and returns the result to the WJD (6). The results of all 

the sub-jobs are communicated back to the MA which then collates the results and presents it 

to the user.  The reader is referred to Mustafee (2007) for an in-depth discussion on WinGrid, 

CSP-WinGrid integration technology and WinGrid interfaces. 

 

4. Case Study: Grid enabling FIRST 

 

The Ford Motor Company makes use of computer simulation to design new engine 

manufacturing facilities and for process improvement in routine day-to-day operations.. The 

production of an engine is a complex operation as it involves the manufacture and assembly 

of a wide variety of components into several possible engine types based on orders from the 

customer (Taylor et al., 2008). Using simulation in this process helps to experiment with 

different machine configurations, buffer capacities, changeover schemes (switching 



production from one engine type to another), shift patterns, machine downtime, etc., and 

contributes to ensuring a smooth work-flow in the engine production line.  

 

Ford uses the CSP Witness at the Dunton Engineering Center in the UK. Wider adoption of 

simulation has been hindered due to the lack of expertise required in using Witness. Like any 

other CSP such knowledge is normally acquired over a period of time. In order to encourage 

faster adoption of simulation, the company felt the requirement for an application which 

would make it easier and quicker for people to use simulation (Ladbrook and Janusszczak, 

2001).  As a response to this the FIRST application was developed by the company with 

assistance from the Lanner Group suppliers of Witness.  

 

4.1 The Fast Interactive Replacement Simulation Tool (FIRST) 

 

Fast Interactive Replacement Simulation Tool (FIRST) is a proprietary tool that builds a 

Witness model of an engine manufacturing line based on data input through Microsoft Excel.  

The Excel-based application consists of more than 30 worksheets, 10 VBA modules and 

many Excel macros. It uses Visual Basic for Application (VBA) to interface between Excel 

and the Witness CSP, and dramatically cuts down the time it takes to build and run a Witness 

simulation model by automating much of the process of model building.  

 

To build a manufacturing line in Witness through FIRST, the application has to be provided 

inputs like the number of machines, corresponding buffer sizes, time and frequency of tool 

change, changeovers, shift patterns, user defined distributions, warm-up period, 

experimentation period etc. Once all the data has been entered and the “Run Simulation” 

button clicked (see Figure 2), the model is remotely built in Witness and the simulation starts. 

Results of the simulation are returned back to FIRST and are displayed using various Excel-

based mechanisms like tables, graphs (see Figure 3), conditional formatting, etc. FIRST is 

under continued development and new features are added to suit the requirements of the 

modellers at the automobile manufacturing company. 

 

4.2 Speeding up experimentation using FIRST 

 

The complexity of an engine manufacturing line means that a number of experiment scenarios 

may have to be run before an ideal solution can be identified. Each run would require setting 

experiment values using FIRST and then executing the model to determine the outcome. This 

commences with the process of parsing the various Excel worksheets (defined within the 

application) and executing appropriate Witness commands with arguments based on the 

extracted values. This, in turn, progressively builds the Witness model, and when the model is 

complete, Witness starts simulating it. The time taken to generate the model using FIRST is 

dependent upon the amount of data to be parsed. For example, in case of large models 

comprising multiple manufacturing lines it may take as long as 10-15 minutes to modify the 

model (re-parameterise for experimentation) and up to 60 minutes to run it. If 10 different 

scenarios were to be experimented using FIRST then the execution time is approximately 11 

to 12 hours to finish all the experiments using one computer.  Keeping in mind the fact that 

the company has multiple Witness licences which can be accessed from any computers, it 

would be reasonable to assume that the time taken to build and conduct multiple simulation 

experiments can be significantly reduced by utilizing all the available computing resources. 

One way to achieve this is through pooling unused resources by means of a desktop grid 

infrastructure and interfacing the FIRST application with it.  This case study with the 



automobile manufacturing company looks at how WinGrid was used to speed up 

experimentation using FIRST.  

 

4.3 Grid-enabling FIRST using WinGrid 

 

In order to grid-enable FIRST we integrated it with the WTC using the Component Object 

Model (COM). COM is a Microsoft technology that allows different software components to 

communicate with each other by means of interfaces (Gray et al., 1998). Since FIRST is an 

Excel-based application we have access to its COM interface. A custom built FIRST adapter 

has been developed which encapsulates the COM function calls required by WTC to interact 

with the FIRST application. In the WinGrid architecture FIRST is the WA.  

 

For the purpose of experimenting with multiple simulation scenarios, we have created an 

Excel spreadsheet based controller called FIRST Experiment tool which lists all the 

experiment parameters (as an integrated add-on to FIRST) (Figure 4). The First Experiment 

tool is the MA and it interacts with the WJD to send different parameters for experimentation 

to different FIRST applications through their corresponding WTCs. Once a FIRST application 

has completed simulating a model, it sends back to the MA the result it received from 

Witness. This communication is done through the corresponding WTCs and the WJD. For 

each result received by the FIRST application tool a new worksheet is created and the values 

stored. The worksheets are named according to the experiment numbers. The interaction 

between the MA and WJD is by means of an Excel Adapter. This adapter contains specific 

COM calls required by WJD to access MA. A screenshot of the FIRST experiment tool is 

shown below. The example shows experimentation with the various buffer sizes of the 

machines.   

 

Since WinGrid is written in Java (a non-COM compliant language), we have used Java Native 

Interface technology (Sun Microsystems, 2003) for communication between Excel Adapter, 

WinGrid and the First Adapter. Figure 5 shows the integration architecture of WinGrid and 

FIRST. 

 

5. Case Study: Grid enabling IRS-IBF simulation 

 

The investment bank uses CSP Analytics for Monte Carlo-based credit risk simulations of 

counterparty transactions. The transactions between the investment bank and the 

counterparties may involve agreements to exchange different sequences of payments over a 

period of time. Credit risk is the potential that the counterparty will fail to meet its obligations 

in accordance with the agreed terms (Basel Committee on Banking Supervision, 1999).  

 

In assessing credit risk from a single counterparty, an institution (in our case the investment 

bank) must consider three issues (Contingency Analysis, 2003):  

 

(1) Default probability: What is the likelihood that the counterparty will default on its 

obligation either over the life of the obligation or over some specified time period?  

(2) Credit exposure: In the event of a default, how large will the outstanding obligation be 

when the default occurs?  

(3) Recovery rate: In the event of a default, what fraction of the exposure may be recovered 

through bankruptcy proceedings or some other form of settlement?  

 



Credit risk simulations are usually used to calculate the credit exposure over a period of time. 

Analytics is the calculation engine for the Credient credit risk system that provides algorithms 

to calculate time-dependent profiles of credit exposure using MCSs (Credient Analytics, 

2007). Analytics consists of three separate applications, namely, Analytics Desktop, Market 

Data Manager (MDM) and Analytics Server COM Object. The Analytics Desktop application 

is a standalone application that uses a calculation engine to construct and analyse financial 

portfolios. It links to the Market Data Manager to derive both current and historical market 

data which serve as inputs to these calculations. Analytics Server COM Object is essentially a 

COM interface to the Analytics Desktop and can be invoked by external systems. 

 

Analytics Desktop application is installed on multiple workstations within the credit risk 

division of the investment bank. It is currently used to support five different financial 

products, namely, currency swaps, default swaps, forward rate agreements, interest rate swaps 

(IRS) and risky bond forwards (RBF). 

 

5.1 IRS-RBP simulation application 

 

The investment bank uses the IRS-RBF application to simulate five different financial 

products. This application comprises of different Excel spreadsheets, VBA modules and CSP 

Analytics. Analytics is invoked by the VBA modules (present in the Excel spreadsheets) 

through the Analytics Server COM Object. The IRS-RBF application takes its name from two 

different products, namely, Interest Rate Swaps (IRS) and Risky Bond Forwards (RBF), 

which it simulates. The name has been given by the author to represent the collective 

components that logically make up this application.  

 

Simulations of the financial products are a two-stage process. In the first stage, risk profiles 

are generated by invoking Analytics through Excel. The parameters passed-on include 

different currency codes like GBP, INR and USD. Analytics outputs the results of the 

simulation in the form of text files. The first stage is subsequently referred to as the generate 

profiles stage.  

 

In the second stage, referred to as the create table stage, PFE and EPE tables are generated by 

Excel. These tables are based on the values present in the text files that are created in the 

generate profiles stage. PFE or Potential Future Expose is the maximum amount of 

counterparty exposure (i.e., the maximum outstanding obligation if counterparties were to 

default) that is expected to occur on a future date with a high degree of statistical confidence; 

EPE or Expected Positive Exposure is the average counterparty exposure in a certain interval, 

e.g., a month or a year (Canabarro and Duffie, 2003).  

 

Stage one and stage two processing of the IRS-RBF application involves three distinct 

operations that have to be “manually-executed”. These operations are (1) generate profiles, 

(2) create EPE tables, and (3) create PFE tables. The EPE/PFE create table operations can 

only start after successful execution of the generate profile operation. The time taken to 

execute both these phases for the IRS-RBF application is shown in table 3. The total number 

of currencies used for simulating these products is also indicated. The data for this table has 

been provided by the credit risk analysts who have developed the IRS-RBF application. 

 

The numbers of currencies that are simulated by these products are 23 and 13 respectively. 

Ideally, the bank would expect to run the IRS and RBF simulations with 37 currencies. This 

means that the execution time will be further increased. It has been discussed in the 



automobile company case study (section 4) that WinGrid could be used to reduce execution 

time of simulation experiments over dedicated nodes. WinGrid could, therefore, arguably be 

used for the investment bank case study to speed up the IRS-RBF application. However, 

unlike the automobile manufacturing company, where the simulation department had access 

to dedicated resources over which to run their simulations, the computers being used by the 

credit risk division of the investment bank are non-dedicated resources. These resources are 

the desktop PCs that are used by the credit risk analysts at their work place. Thus, for this case 

study WinGrid would have to be executed over non-dedicated PCs. 

 

5.2 Grid-enabling the IRS-RBF simulation 

 

For the IRS-RBF application to utilize the resources made available through WinGrid, it has 

to be integrated to the WTC and the WJD. Integration of the Excel-based IRS-RBF 

application with WTC is achieved using Excel’s COM interface. A custom built IRS-RBF 

adapter has been developed which encapsulates the COM function calls required by WTC to 

interact with the IRS-RBF application. In the WinGrid architecture, the IRS-RBF application 

is the Worker Application (WA).  Further discussion on WinGrid architecture can be found in 

section 3.  

 

In this case study the WinGrid Master Application (MA) that controls the IRS and RBF 

simulation execution is called the WJD Application Specific Parameter (ASP) Tool for IRS-

RBF application (figure 6). It is an Excel-based tool that consists of specific parameters that 

are required for processing the IRS-RBF application; for example, the name of the output 

directory, the name of the product to simulate (IRS or RBF), the operation to perform (create 

table, create profiles or both), the filename to simulate, whether the WJD process had crashed 

during an earlier run, etc. All this information is present in the worksheet called “General”. 

The WJD APS tool also consists of two other worksheets, namely “RBF” and “IRS”. These 

worksheets contain data specific to the RBF and the IRS simulations respectively. Each 

worksheet has a list of currencies. Each currency is a separate unit of computation (job). The 

interaction between the MA and WJD is by means of an Excel Adapter. This adapter contains 

specific COM calls required by WJD to access the MA. The WinGrid and IRS-RBF 

application integration architecture is similar to the one presented in Figure 5.  

 

6. Results 

 

The results from the automobile manufacturing company case study and the investment bank 

case study are now presented. 

 

6.1 Results: Automobile manufacturing company case study 

 

In order to evaluate the performance of FIRST over WinGrid, a 4-node experimental test bed 

was set up consisting of PCs with PIII 648 MHz processors and 256MB RAM, connected 

through an isolated 100Mbps switch. Three of these nodes were configured as WinGrid 

workers and were installed with WTC, Witness, the FIRST application and FIRST adapter. 

The fourth PC served as the WinGrid master and had the WJD, FIRST Experimentation Tool 

and Excel adapter installed on it.  

 

In our example FIRST application, preset values automatically built a Witness model 

consisting of one main and one supplementary assembly line. The data present in FIRST 

provided, among other details, the number of machines in each assembly line and their 



corresponding buffer sizes. To test our approach, it was decided to conduct multiple 

experiments with FIRST over WinGrid by varying the size of the buffer, such that each 

experiment was conducted using a different set of buffer parameters and was run to a preset 

simulation time. The FIRST experimentation tool defined the buffer capacities of each 

machine in the main assembly line for all the experiments that were to be conducted. The 

performance was measured in terms of the time taken to execute 25, 50, 75 and 100 runs of 

the experiment respectively. So as to demonstrate the potential of achieving speedup when 

using FIRST over WinGrid, the same experiments were repeated using a standalone version 

of FIRST. An Excel spreadsheet similar to FIRST Experimentation Tool was used to 

automate the running of the standalone version. The results obtained by the 4-node WinGrid 

version and the standalone version of FIRST are shown in figure 7 below. 

 

The results show that the 4-node WinGrid version of FIRST completes execution of all the 

experiments approximately three times faster when compared to the standalone execution. 

This is to be expected since three WTCs are processing jobs sent by the master computer and 

are dedicated to this task. 

 

6.2 Results: Investment bank case study 

 

Identical IRS-RBF experiments for this case study were conducted on, (1) one dedicated 

WinGrid node (running both WJD and WTC), (2) 4 non-dedicated WinGrid nodes connected 

through the investment bank’s corporate LAN, and (3) 8 non-dedicated WinGrid nodes 

connected with the corporate LAN. The grid-enabled IRS-RBF application was used for 

running experiments over the different test beds. The reasons for not using the original IRS-

RBF application for execution over one dedicated, standalone PC were as follows. 

 

 The original IRS-RBF application was modified to a large extent by the authors to enable 

faster execution of the grid-version of the application. 

 To run the IRS and RBF simulations using the original application meant that three 

different operations (create profiles, create EPE tables and create PFE tables) had to be 

manually invoked by the user. The execution of the grid-version of this application, on the 

other hand, was fully automated.  

 

The experiments were conducted over a period of two days during normal working hours of 

the investment bank. The 4-node and the 8-node WinGrid experiments were run using 

production machines that were also being used by the analysts to do their jobs. The one node 

experiments were conducted using a PC that was not being used. The configurations of the 

machines used for the experiments are shown in table 4 below.  

 

The dedicated WinGrid node used for performing the standalone experiments had a 2.99GHz 

HTT Intel Pentium IV processor with 512MB RAM. The 4 non-dedicated WinGrid nodes 

used for the experiments comprised of different subsets of the machines at different times. 

The results of the IRS and RBF simulations are presented in figure 8. These results are based 

on two separate runs for each workload. The execution of all the four workloads, pertaining to 

either IRS or RBF simulation, was fastest using the 8 non-dedicated WinGrid nodes. The 

slowest execution was recorded by the standalone, dedicated WinGrid node. 

 

For workloads [30 workunits (IRS)], [69 workunits (IRS)] and [15 workunits (RBF)] the time 

taken to execute the IRS-RBF simulations using the 4 node WinGrid test bed was comparable 

to its 8 node counterpart. One reason for this may be that, with 8 nodes the number of Excel 



files created in Phase 2 (create EPE table) and Phase 3 (create PFE table) of the workflow are 

double the number of Excel files created when running the simulation using 4 nodes. Thus, 

the sequential MA operation in phases 4 and 5 (collate data from the EPE and PFE tables) 

would generally take more time in the case of the former. An additional reason could be the 

specific usage pattern of the PCs during the experiments. It is therefore possible that the 

majority of the PCs in the 8 node set-up had their WTC clients manually or automatically shut 

down because the analysts were using the computers for their own work. The WTC program 

can be shut down manually through WinGrid’s graphical user interface. This can also happen 

automatically as the WTC program is designed to continuously monitor CPU and the memory 

usage on a PC, and if the resource usage crosses the pre-determined CPU/RAM threshold 

levels then the user jobs are immediately stopped. Similarly, jobs are started automatically 

again when the CPU and memory usage decreases as a result of a resource not being used. 

Thus, the time taken to execute the simulations on non-dedicated WinGrid nodes is very 

much related to the usage pattern of the underlying desktop PCs. Arguably, this is best shown 

by the results of workload [30 workunits (RBF)] in relation to its execution over 4 non-

dedicated WinGrid nodes, where the time taken to complete the simulation is comparable to 

that of its standalone counterpart. 

 

7. Conclusions 

 

This paper has introduced WinGrid, a desktop grid computing middleware specifically 

designed for executing CSP-based simulations on Windows computers. We have discussed 

the use of WinGrid in support of FIRST, a specialist simulation application using the CSP 

Witness, and the IRS-RBF simulation, a credit risk simulation application using the CSP 

Analytics.  A Grid-enabled version of FIRST and the IRS-RBF simulation has been 

developed with minimum technological intervention. We have presented the performance 

results of the grid-enabled version of FIRST and the IRS-RBF simulation. The speed-up that 

this promises over the small desktop grids at the automobile company and the investment 

bank, and the ease with which grid enabling has been accomplished, will give users of FIRST 

and the IRS-RBF simulation a competitive advantage as results will be delivered significantly 

faster with minimum technological intervention (i.e. by completely re-implementing FIRST / 

IRS-RBF simulation).  It is hoped that this paper will focus attention on the benefit that small 

desktop grids can give to simulation in industry as a whole.   

 

Acknowledgements 

 

The authors would like to thank Tony Waller, product manager at Lanner, for granting the use 

of Witness licenses in support of our research. For help with the case studies, thanks are due 

to John Ladbrook from the Ford Motor Company; Jonathan Berryman, Rahul Talwalkar and 

Robert Watson from the counterparty risk management group at the investment bank; and 

Anders Alstad and Bjørn Larsen from Brunel University.  

References 

Anagnostopoulos D. and Nikolaidou M. (2003) Executing a Minimum Number of 

Replications to Support the Reliability of FRTS Predictions. In Proceedings of the 7
th

 IEEE 

International Symposium on Distributed Simulation and Real-Time Applications, October 

23 – 25 2003, Delft, The Netherlands, 138-146. 

Anderson D.P. (2004) BOINC: a system for public-resource computing and storage. In 

Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing. 

November 2004, 4-10. 



Basel Committee on Banking Supervision (1999). Principles for the management of credit 

risk. Available online http://www.bis.org/publ/bcbs54.pdf. [9/5/2008] 

Beckles B., Se-Chang S. and Kewley J. (2005) Current methods for negotiating firewalls for 

the Condor system. In Proceedings of the 4th UK e-Science All Hands Meeting. Available 

online http://www.cs.wisc.edu/condor/doc/CondorandFirewalls.pdf. [9/5/2008] 

Berlich R., Kunze M. and Schwarz K. (2005). Grid computing in Europe: from research to 

deployment. In Proceedings of the 2005 Australasian Workshop on Grid Computing and e-

Research, 21-27. Australian Computer Society, Darlinghurst, Australia. 

Bernholdt D., Bharathi S., Brown D., Chanchio K., Chen M., Chervenak A., Cinquini L., 

Drach B., Foster I. and Fox P. (2005). The Earth System Grid: Supporting the Next 

Generation of Climate Modeling Research.  In Proceedings of the IEEE, 93(3), 485-495.  

Biles W.E and Kleijnen J.P.C. (2003) Statistical Methodology for WEB-Based Simulation. In 

Proceedings of the 7
th

 IEEE International Symposium on Distributed Simulation and Real-

Time Applications, October 23 – 25 2003, Delft, The Netherlands, 147-149. 

Canabarro E. and Duffie, D. (2003). Measuring and marking counterparty risk. In Tilman, 

L.M. (ed.), Asset/Liability Management of Financial Institutions (chapter 9). London, UK: 

Euromoney books. Available http://www.stanford.edu/~duffie/Chapter_09.pdf. [9/5/2008]



 

Casanova H. (2002) Distributed computing research issues in grid computing. ACM SIGACT 

News, 33(3), 50-70. 

Chakravarti A.J., Baumgartner G. and Lauria M. (2004) Application-specific scheduling for 

the organic grid. In Proceedings of the Fifth IEEE/ACM International Workshop on Grid 

Computing; November 2004, 146-155. 

Chien A. A., Calder B., Elbert S. and Bhatia K. (2003). Entropia: architecture and 

performance of an enterprise desktop grid system.  Journal of Parallel and Distributed 

Computing, 63(5), 597-610.  

Choi S., Baik M., Hwang C., Gil J. and Yu H. (2004) Volunteer Availability based Fault 

Tolerant Scheduling Mechanism in Desktop Grid Computing Environment. In Proceedings 

of the 3
rd

 IEEE International Symposium on Network Computing and Applications, August 

2004, 366-371. 

Contingency Analysis. (2003). Credit  risk glossary. Website  

http://www.riskglossary.com/link/credit_risk.htm, [9/5/2008] 

Credient Analytics. (2007). Credit risk management system - Credient Analytics 2.3 user 

guide. SunGard Corporation http://www3.sungard.com/financial/, [9/5/2008] 

Digipede Technologies. (2006) The digipede network. Website 

http://www.digipede.net/products/digipede-network.html. [9/5/2008] 

Foster I. and Iamnitchi A. (2003) On Death, Taxes, and the Convergence of Peer-to-Peer and 

Grid Computing. In: Proceedings of the 2
nd

  International Workshop on Peer-to-Peer 

Systems (IPTPS’03); February 21-22, 2003; Berkeley, CA, USA; 118–128.  

Foster I., Kesselman J., Nick J. and Tuecke S. (2002). The physiology of the grid: An open 

grid services architecture for distributed systems integration. Open Grid Service 

Infrastructure WG, Global Grid Forum, June 2002.  

Garonne, V., Tsaregorodtsev, A. and Caron, E. (2005). A study of meta-scheduling 

architectures for high throughput computing: pull versus push. In Proceedings of the 4th 

International Symposium on Parallel and Distributed Computing (ISPDC’05), pp. 226-233. 

IEEE Computer Society, Washington, DC, USA. 

Gray D.N., Hotchkiss J., LaForge S., Shalit A. and Weinberg T. (1988) Modern languages 

and Microsoft's component object model, Communications of the ACM, 41(5), 55-65. 

Heymann E., Senar M.A., Luque E. and Livny M. (2000) Adaptive scheduling for master-

worker applications on the computational grid. Grid Computing - GRID 2000, Lecture 

Notes in Computer Science; R. Buyya and M. Baker, Eds.; Springer Berlin / Heidelberg, 

214–227.  

Jaesun H. and Daeyeon P. (2003) A lightweight personal grid using a supernode network. In 

Proceedings of the 3
rd

 International Conference on Peer-to-Peer Computing, Sept 1-3 2003, 

168-175.  

Kondo D., Chien A. and Casanova H. (2004) Resource management for rapid application 

turnaround on enterprise desktop grids. In Proceedings of the 2004 Conference on 

Supercomputing (SC’04), Paper 17. IEEE Computer Society, Washington, DC, USA. 

Ladbrook J. and Janusszczak A. (2001).  Ford’s Power Train Operations – Changing the 

Simulation Environment.  In Proceedings of the 33
rd

 Winter Simulation Conference, 

December 9 – 12 2001, Arlington, Virginia, 863-869. 

Litzkow M., Livny M. and Mutka  M. (1988) Condor - A Hunter of Idle Workstations. In 

Proceedings of the 8
th

 International Conference of Distributed Computing Systems, June 

1988, 104-111. 

Luther A., Buyya R., Ranjan R. and Venugopal S. (2005) Alchemi: A. NET-Based Enterprise 

Grid Computing System. In Proceedings of the 6th International Conference on Internet 

Computing (ICOMP'05), June 2005, Las Vegas, USA, 27-30.  

http://www.riskglossary.com/link/credit_risk.htm
http://www.digipede.net/products/digipede-network.html


Mustafee N. (2007) A grid computing framework for commercial simulation packages. PhD 

thesis. School of Information Systems, Computing and Mathematics, Brunel University, 

UK. 

Mustafee N. and Taylor S.J.E. Using a desktop grid to support simulation modelling. In 

Proceedings of the 28
th

 Information Technology Interfaces Conference (ITI2006), June 19-

22 2006, Dubrovnik, Croatia, 557-562. 

Mustafee, N. and Taylor, S. J. E. (2006). Using a desktop grid to support simulation 

modelling. In Proceedings of the 28th Information Technology Interfaces Conference (ITI 

2006), Stiffler, V.L. and Dobric, V. H. (eds.), pp. 557-562. IEEE Computer Society, 

Washington, DC, USA. 

Mustafee, N., Alstad, A., Larsen, B., Taylor, S. J. E., Ladbrook, J. (2006). Grid-enabling 

FIRST: speeding up simulation applications using WinGrid. In Proceedings of the 10th 

International Symposium on Distributed Simulation and Real-Time Applications (DSRT 

2006), Alba, E., Turner, S. J., Roberts, D. and Taylor, S. J. E. (eds.), pp. 157-164. IEEE 

Computer Society, Washington, DC, USA. 

Mutka M.W. (1992) Estimating capacity for sharing in a privately owned workstation 

environment.  IEEE Transactions on Software Engineering, 18(4), 319-328. 

Pande V. (2008) Folding@Home,  http://folding. stanford.edu/ [9/5/2008].  

Parabon computation Inc. (2008) Compute against cancer, www.computeagainstcancer.org/ 

[9/5/2008]. 

Paris J.L. and Pierreval H. (2001) A Distributed Evolutionary Simulation Optimization 

Approach for Configuration of Multiproduct Kanban Systems. International Journal of 

Computer Integrated Manufacturing, 14 (5), 421-430. 

Robinson E. and DeWitt D. J. (2007). Turning cluster management into data management: a 

system overview. In Proceedings of 3rd Biennial Conference on Innovative Data Systems 

Research (CIDR). Available  online http://www-

db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p14.pdf. [9/5/2008] 

Spencer B., Finholt T., Foster I.,  Kesselman C., Beldica C., Futrelle J., Gullapalli S.,  

Hubbard P., Liming L. and Marcusiu D.  (2004) Neesgrid: A distributed collaboratory for 

advanced earthquake engineering experiment and simulation. In Proceedings of the 13
th

 

World Conference on Earthquake Engineering, August 1-6 2004, Vancouver, BC, Canada, 

Paper No. 1674. 

Sun Microsystems Ltd. (2003) Java Native Interface. http:/java.sun.com/j2se/1.4.2/ 

docs/guide/jni [9/5/2008]. 

Taylor S.J.E., Bohli L., Wang X., Turner S.J. and Ladbrook J. (2005) Investigating 

Distributed Simulation at the Ford Motor Company.  In Proceedings of the 9
th

 IEEE 

International Symposium on Distributed Simulation and Real-Time Applications, October 

10-12 2005, Montreal, Quebec, Canada, 139-147. 

Taylor, S.J.E., Pullen, J.M.. Popescu, G.V. and Turner, S.J. (2004) Panel on Distributed 

Simulation and the Grid. In Proceedings of the 8
th

 IEEE International Symposium on 

Distributed Simulation and Real-Time Applications, October 21 – 23 2004, Budapest, 

Hungary, 144-149. 

United Devices (2007) Grid MP: The technology for enterprise application virtualization. 

Website http://www.ud.com/products/gridmp.php. [9/5/2008] 

University of California (2008) Berkeley Open Infrastructure for Network Computing, 

http://boinc.berkeley.edu/   [9/5/2008] . 

Woltman G. (2008) GIMPS, http://www.mersenne.org [9/5/2008]. 

Yücesan E., Luo Y.C., Chen C.H. and Lee I.. (2001) Distributed Web-Based Simulation 

Experiments for Optimization. Simulation Practice and Theory, 9(1), 73-90. 



Zhou S. (1992) LSF: Load sharing in large-scale heterogeneous distributed systems. In 

Proceedings of the 1992 Workshop on Cluster Computing. Supercomputing Computations 

Research Institute, Florida State University, Florida, USA. 



 

 

Tables and Figures 
 



 

Table 1: Implementation and deployment aspects of BOINC and Condor (adapted from 

Mustafee, 2007) 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Category BOINC Condor 

Operating 

system 

UNIX / Linux to host BOINC 

server. The clients can be Windows 

based.  

Supported on Windows. Some 

components are only supported in Unix / 

Linux, but for CSP-specific services 

Windows installation is adequate. 

Communication Uses port 80 Uses multiple, bi-directional, static and 

dynamic ports (Beckles et al, 2005). 

Job scheduling 

mechanism 

“pull” based model of the master-

worker architecture  

Implements “broker-based” job 

scheduling mechanism (a Condor 

matchmaker agent acts as a broker and 

tries to find a match between the 

resource consumer agents and the 

resource provider agents.   

Task farming 

support 

Supports task-parallel applications  Supports job-parallel applications. 

Condor Master-Worker (Condor MW) 

supports both job-parallel and task-

parallel applications. 

Application 

support 

Supports applications written using 

C++. User applications have to be 

compiled with the BOINC client 

C++ APIs. 

Different Condor universes support user 

applications written in C, C++ and Java. 

For creating job-parallel and task-

parallel applications, the user 

applications have to be compiled with 

the C++ Condor MW library. 



 

 

Table 2: Ideal middleware implementation for CSP-based simulation 
 
 

Category Criteria Middleware that implements 

this feature 

Operating system Middleware is supported 

on Windows operating 

system 

Condor 

Communication Middleware opens only 

one communication port 

BOINC 

Job scheduling 

mechanism 

Middleware implements 

“push” job scheduling 

mechanism 

None 

Task farming support Middleware supports 

task-parallel task farming 

applications 

BOINC and Condor 

Application support Middleware supports 

Java-based user 

applications 

Condor with Java execution 

environment 

 

 



 

 

Table 3: Execution time for different products using the original IRS-RBF application 
 

 

Products 

Generate 

Profiles Create Tables Currencies 

Interest Rate 

Swaps (IRS) 

1 hour 15 

minutes 

12 hours 23 

Risky Bond 

Forwards 

(RBF) 

4 hours 30 

minutes 

1 hour 20 minutes 13 

 

 



 

Table 4: Configuration of WinGrid nodes 
 

 

PC no. CPU RAM Operating System 

PC1 
2.99GHz Intel Pentium IV 

Processor  (hyper-threaded) 
512MB 

Microsoft XP 

Professional 

PC2 
2.99GHz Intel Pentium IV 

Processor  (hyper-threaded) 
512MB 

Microsoft XP 

Professional 

PC3 
2.79GHz Intel Pentium IV 

Processor  (hyper-threaded) 
512MB 

Microsoft XP 

Professional 

PC4 
2.13GHz Intel Pentium II 

Processor  (hyper-threaded) 
2GB 

Microsoft XP 

Professional 

PC5 
2.13GHz Intel Pentium II 

Processor  (hyper-threaded) 
2GB  

Microsoft XP 

Professional 

PC6 
2.13GHz Intel Pentium II 

Processor  (hyper-threaded) 
2GB 

Microsoft XP 

Professional 

PC7 
2.13GHz Intel Pentium II 

Processor  (hyper-threaded) 
2GB 

Microsoft XP 

Professional 

PC8 
2.13GHz Intel Pentium II 

Processor  (hyper-threaded) 
2GB 

Microsoft XP 

Professional 
 

 



 

 

 

 

Figure 1: WinGrid Architecture 
 

 

. 

WinGrid Job 

Dispatcher 

(2) 

Manager 

Application 

(1) 

Worker 

Application 

(5) 

WinGrid 

Thin Client 

(4) 
(6) 

(3) 

(6) 

(3) 

WinGrid 

Thin Client 

(4) 

Worker 

Application 

(5) 

 



 

 

 
 

Figure 2: FIRST application main menu 

 

 



 

 
 

Figure 3: Graph generated by FIRST using data returned by Witness 

 



 

 

 
 

Figure 4: FIRST Experimentation Tool showing a list of experiments 



 

 

Figure 5: Architecture of WinGrid and FIRST 
 

Excel Adapter 

Excel 

Experiment 

Parameters 

WinGrid Job 

Dispatcher 

JNI calls 

COM calls 

COM Interface 

Witness CSP 

FIRST Adapter 

FIRST 

WinGrid Thin 

Client 

COM Interface 

JNI calls 

COM calls 

Witness CSP 

FIRST Adapter 

FIRST 

WinGrid Thin 

Client 

COM Interface 

JNI calls 

COM calls 

Network 

Communication 

. 

. 



 
 

Figure 6: WJD Application Specific Parameter (APS) tool for IRS-RBF application 
 

 



 

 

0

5000

10000

15000

20000

25000

30000

35000

25 50 75 100

Experiment Runs

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

Single computer execution

3-node WinGrid execution
 

 

Figure 7: Time taken to build and simulate Witness using models using the FIRST 

application 
 

 



 

Comparing execution speed of IRS-RBF application

0

2000

4000

6000

8000

10000

12000

14000

30 w orkunits

(IRS)

69 w orkunits

(IRS)

15 w orkunits

(RBF)

39 w orkunits

(RBF)

IRS / RBF workunit size

s
e
c
o

n
d

s

1 dedicated PC

4 non-dedicated WinGrid nodes

8 non-dedicated WinGrid nodes

 
Figure 8: Time taken to execute the IRS-RBF application using different workloads 

 


