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ABSTRACT 
 
 

The International Temperature Scale of 1990 (ITS-90) defines the present S.I. 

(“System International”) means of measuring temperature. The ITS-90 uses the 

freezing points of metals to define temperature fixed points. It also uses long-stem 

platinum resistance thermometers to interpolate between the fixed points from 660 °C 

down to 84 K (if one includes the Argon triple point). Impurities are a major source of 

uncertainty in the fixed point temperature (of the order of 1 mK). And a better 

understanding of the impurity effect is required to improve top-level metrological 

thermometry. Most historical experiments with impurities have worked at a much 

higher levels of impurities – say of the order of 100ppm - and in arrangements that are 

not used on a day-to-day basis in a metrology laboratory. 

 

This thesis describes the deliberate doping of tin and aluminium, each with three 

different impurities and the effects of these on the temperature of the tin and 

aluminium liquid-solid phase transitions. The impurities, of the order of 1-30 ppm, 

were Co, Pb and Sb in the tin and Cu, Si and Ti in the aluminium. 

 

The tin and aluminium samples were in the form of ~0.3 kg ingots that would 

normally be used to realise an ITS-90 fixed point. Measurements were made using 

equipment normally available in a metrological thermometry laboratory, rather than 

using specially prepared samples. 

 

The samples were chemically analysed (by Glow Discharge Mass Spectrometry 

(GD-MS)) before and after the doping. Using the amount of dopants introduced, 

and/or the chemical analysis data, the measured temperature changes were compared 

with those interpolated from the standard text. The experimental undoped liquid-solid 

transition curves were also compared against theoretical curves (calculated from a 

theoretical model MTDATA).  

 

The results obtained did not disagree with the Hansen interpolated values (though 

there was considerable uncertainty in some of the measurements (e.g. a factor of 2 or 

more) due to the measurement of small changes. Within these uncertainties it indicates 

that the Sum of Individual Estimates (SIE) method of correcting for, at least, metal 
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impurities in otherwise high purity metals remain valid. However the results also 

showed considerable discrepancies between the initial measured and calculated 

temperature shifts (based on the pre-existing impurities prior to doping) suggesting 

that there may be impurities that are not (separately) detected by the GD-MS method. 

 

There was evidence that the thermal history of the metal phase transitions can cause 

considerable segregation of some impurities, particularly those likely to increase the 

phase transition temperature through a peritectic (“positive” impurities), and that the 

effects of this segregation can be clearly seen on the shape of the melting curves of the 

tin doped with Sb.  

 

Some of the aluminium doped with Ti freezing curves may also show evidence of a 

“concave up” shape at the start of the freezing curve, as previously calculated by 

MTDATA, though the effect is not as pronounced. 

 

All individual phase transition measurements - made over tens of hours – were 

repeated at least three times and found to be reproducible, hence providing a real data 

set that can be used for comparison with theoretical models still under development. 
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Chapter 1 

Introduction 
 

 Thermal metrology is the study of the accurate measurement of temperature, 

which is one of the most basic parameters in key sectors of industry, significantly 

affecting the ability and efficiency of processes, and the environmental impact of 

industrial manufacturing processes. It can therefore be said that metrology enables 

quality measurements to be made in industry, and it is a guide to improve the accuracy 

of the production process. Metrology has a very significant role to play in sustaining 

industrial growth and competitiveness and enables industry to carry out accurate 

measurements for the statutory requirements of domestic and international trade 

agreements. It also facilitates economic activities in the international market by 

providing the same measurement standard throughout the world. The use of the same 

standard, which is internationally agreed, allows customers to accurately specify 

products and also to enhance reliability of the production process anywhere in the 

world. This reduces and eliminates technical trade barriers and enables trade 

liberalisation, which maximises economic efficiency and produces overall 

productivity gains. Precise measurement and/or control of temperature is an essential 

part of most operations in any processes, such as manufacturing industries; 

meteorology; medical services; aerospace; power generation; automotive industries; 

food and drink; these often affect the health and safety, all of which affect our daily 

life. An improved measurement system should help enhance the quality of life for the 

world’s population.  

 The general meaning of the word metrology is the study of measurement but it 

has come to mean the study of improvement of measurement. The Bureau 

International des Poids et Mesures (BIPM) is a standards organisation, which has 

the responsibility to ensure the global consistency and regularity of measurements and 

their traceability to the International System of the Units (SI), which has been 

recognized and accepted by the worldwide community. The definition of metrology 

specified by the International Bureau of Weights and Measures, which is the 

English translation of BIPM is “the science of measurement, embracing both 

experimental and theoretical determinations at any level of uncertainty in any field of 
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science and technology” [BIPM, 2004a]. This organisation is controlled and obtains 

its authority under an intergovernmental treaty called the Convention of the Metre 

(Convention du Mètre), which was signed in 1875 in Paris [BIPM, 2004b]. The 

purpose of this treaty is “to act in matters of world metrology, particularly concerning 

the demand for measurement standards of ever increasing accuracy, range, and 

diversity, and the need to demonstrate equivalence between national measurement 

standards.” [BIPM, 2004b]. The Convention of the Metre established three main 

organisations, namely the General Conference on Weights and Measures (CGPM), the 

International Committee for Weights and Measures (CIPM) and the International 

Bureau of Weights and Measures (BIPM) to maintain the metric standards and to 

provide the worldwide measurement system used around the world. Nowadays, there 

are 51 signatory Member States- including all the major industrialised countries- they 

are represented by the national metrology institutes (NMIs) who participate in the 

activities under the Metre Convention [BIPM, 2004b]. In 1999, the Convention of the 

Metre set up the Mutual Recognition Agreement (CIPM MRA) to demonstrate the 

level of accuracy that each national measurement standards is at and to enable 

calibration and measurement certificates issued by NMIs [BIPM, 2008] to be used in 

other countries. It provides benefits to participants by eliminating the technical 

barriers to trade (TBTs) and securing the technical basis for wider understandings 

between governments and other parties associated with international trade, commerce, 

and regulatory affairs.   

  The national metrology institutes (NMIs) are established to maintain the quality 

of their national measurement standards in their own countries in line with the CIPM 

MRA. In addition, the NMIs are responsible for disseminating the national 

measurement standard units to their users as well as developing a wide range of 

standards for research, calibration and testing. Moreover, the NMIs provide 

calibration services for the manufacturers, which enable them to have confidence in 

their measurements and products.    

 It can, therefore, be concluded that the job of metrology is to ensure that 

measurements are accurate and the obtained results are reliable and acceptable for use 

in the society. In brief, metrology plays in a significant role in three main fields.  

 1. In the scientific field, metrology provides an internationally agreed system of 

units (the SI), the means to realise these units practically and an ongoing means for the 



Patchariya  Petchpong                                                                                            Introduction 

 1-3

development of the new improved measurement methods. This assures the traceability 

of measurement results from the standards provider to users in society.  

 2. In the applied or industrial fields, metrology can guarantee the suitability of 

measurement equipment and maintains the quality control standards of measurements, 

used for manufacturing and other processes calibration.  

 3. In the field of regulatory measurement requirements, i.e. in legal metrology, it 

provides the necessary protection to humans and the environments.  

 

1.1 Essential Role of Fixed-Point Cells in Temperature Calibration  
 

 Generally, temperature is an indicator of hotness or coldness of a body or 

environment, which is measured from the average of the heat or thermal energy of the 

particles in a substance. It has a direct effect on daily life of everybody through the 

weather temperature. Temperature can be correctly measured with thermometers 

designed and calibrated for use in the temperature range of interest and if used by a 

person with appropriate “know-how”. In the International System of Units (SI), the 

unit of temperature is the kelvin (K), which is named after the British scientist, 

William Thomson, Lord Kelvin. It was defined as the fraction 1/273.16 of the 

thermodynamic temperature of the triple point of water in 1960 [Nicholas and White, 

2001a]. Nowadays, temperature can be measured using the latest scientific 

thermometers but if one goes as far back as the early sixteenth century a crude 

thermometer-like device appeared, which was referred to as a “thermoscope” 

[Middleton, 1966]. It was invented by Santorio Santorio, an Italian physicist. Galileo 

mentioned [Helden, 1995] that Santorio Santorio was the first inventor who applied a 

numerical scale to the instrument, which later evolved into a thermometer. In 1641, 

the first sealed thermometer using wine spirit as the thermometric medium was 

invented by Ferdinand II, Grand Duke of Tuscany [Nicholas and White, 2001a]. It 

was the first device referred to as a thermometer. However, one of the most important 

things for the thermometer is an accurate scale. Occasionally, the results of the 

measurement do not need to be the numeric that is it can be the suitable context, for 

example cat (kind of animals), grade B, and black colour. These are the symbolic 

representation, which the symbols are used to make predictions and measurements. 

The symbolic representation of measurement scales or nominal scales were the 
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fundamental systems, which were constructed in the sixteenth and seventeenth 

centuries that are still in use today. However, the nominal scales need to have its own 

definition or standard in each classification or naming, which is the one of the 

principal aspects [Nicholas and White, 2001b]. The scales of temperature 

measurement include kelvin (K), Celsius (oC), Fahrenheit (oF), and Rankin (oRa). The 

Celsius, Fahrenheit, and Rankin are based on an arbitrary scale must now be 

compared and derived from the Kelvin scale. These scales can be related by the 

expression of the relationships as follows: TK K = (TK - 273.15) °C = [1.80 x (TK - 

273.15) + 32] °F = 1.80 TK °R, where TK is Kelvin temperature. However, the kelvin is 

based on physics and universal properties of nature, i.e. it is a thermodynamic scale.  

The thermodynamic or Kelvin scale is the absolute measurement of 

temperature scale. This scale is based on two points, which are absolute zero of the 

zero point of the ideal gas temperature scale and the triple point of water. In theory, 

the volume of the most gas would directly proportional to the temperature and the 

pressure, therefore, the volume of the ideal gas at absolute zero would be zero and the 

motion of all molecular would stop. But in the actual conditions, all gases cannot be at 

the absolute zero state and the solid and liquid states would be above from this point. 

Absolute zero can be referred to the coldest possible temperature. Therefore, at 0 

degrees of the Kelvin temperature scale equals to -273.15 oC and at 273.16 K (the 

triple point of water) is equivalent to 0.01 °C. 

 However, it is very difficult to perform calibrations and measurements directly 

in terms of thermodynamic temperature due to the lack of thermodynamic 

thermometers with adequate supply of repeatability and accuracy for both commercial 

and research uses [Nicholas and White, 2001c]. As a result, the first International 

Temperature Scale (ITS), which was then a “wire scale”, was created in 1927 

[Preston-Thomas, 1990] and was adopted by the seventh General Conference of 

Weights and Measures. It was introduced to eliminate the practical difficulties of 

direct measurement of thermodynamic temperatures based purely on a gas 

thermometer. It was also proposed as a substitute for unrelated, individual national 

temperature scales and enabled an agreed worldwide temperature scale. This ITS scale 

is an ordinal scale to an interval scale where is estimated the interpolating temperature 

between the defined point by using the phase transitions (melting, freezing and triple 

points) and physical properties (e.g. vapour pressure) of pure materials, called fixed 

points. Cells of these fixed-point materials were used to calibrate interpolating 
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thermometers, i.e. thermometers that enabled one to measure temperature between the 

reference fixed points. Over the years subsequent, ITS scales have been improved in 

such a way that the temperature value is a close numerical approximation to 

thermodynamic temperature. Moreover, the ITS scale was more precise, repeatable 

and practical to realise than the thermodynamic scale. Nowadays, the International 

Temperature Scale of 1990 (ITS-90) has been constructed and adopted internationally 

since 1 January 1990 [Preston-Thomas, 1990]. The ITS-90 defines a precise 

calibration procedure using thermometers, measured at the reference temperatures of 

the fixed points, to define an agreed temperature scale more reproducible than 1 mK. 

The interpolating thermometers specified in ITS-90 use interpolating equations to 

enable measurement over the full range of the scale. This scale extends from 0.65K 

(defined in terms of the helium vapour pressures) up to the copper fixed-point 

temperature (1084.62 oC) and then extrapolated in terms of the Planck radiation law to 

higher temperatures. The full details of the ITS-90 definition are mentioned in Chapter 

2.  

 In this thesis, the freezing point temperatures of high purity tin (231.928 oC) and 

aluminium (660.323 oC), which form part of a fixed-point series specified for use in 

the definition of the ITS-90, are studied in order to understand the effects of trace 

impurities on the melting and freezing transitions. Standard platinum resistance 

thermometers (SPRTs) are used for measurements on these temperature fixed points.  

    

1.2 Reasons for Doping the Impurities into the Fixed-Point Cell 
 

The temperature value, of a metallic fixed-point in the ITS-90, is based on the 

behaviour of high purity substances. However, it is difficult to produce the metallic 

elements at 100% purity. Therefore, as stated in CCT report [Ripple et al., 2005], the 

ideal pure metal can be replaced by the use of 6N (99.9999%) nominal purity metal 

with an estimated standard uncertainty due to the impurities. The precision of the 

fixed-point temperature is influenced by the purity of the metal used. At the level of 

1 mK a purity of nominally 99.9999% has a noticeable effect on the temperature 

realised. The influence of chemical impurities on the fixed-point is one of the most 

important contributions in the uncertainty budgets of the metal fixed-point 

realisations. If the impurity content and their specific affects on the pure fixed-point 
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metals were identified, the total correction to the temperature of the metal fixed-point 

would be more precise and reliable.   

The effect of impurity metal elements may either decrease or increase the 

equilibrium temperature plateaus depending on the behaviour of each impurity in the 

high purity sample. Each impurity can be considered as part of a binary alloy system 

between the impurity and host metal at the low impurity levels of impurities fixed-

point metals. It is presumed that the influence of each impurity in the host material 

remains independent of each other at low concentrations. The magnitude of each 

temperature effect depends on both the species type and the amount of that particular 

species and the total temperature change is the sum of the individual effects, taking 

into account of any sign. 

The investigation of this work is focused on the effects of low level doping on, 

the melting and freezing curves of tin and aluminium in order to improve the 

measurement of the temperature change caused by increasing the low level 

concentration of metal dopants. This will also test the interpolation of previous data 

[Hansen, 1958]; all of which were obtained from relatively high impurity 

concentrations. The reason why tin and aluminium fixed points have been selected for 

studying is because NPL responsible for tin and aluminium fixed points of “The 

European Association of National Metrology Institutes” (Euramet) 732 project. The 

aim of this project is toward more accurate temperature fixed points, (see more 

information in Chapter 3). An improved understanding of low-level impurities affects 

to reduce the uncertainty budget component for the realisation of tin and/or aluminium 

temperature fixed-points in the long term benefit. The shifts and shapes of equilibrium 

melting and freezing plateaus of tin and aluminium fixed points are determined by 

doping with small concentrations (mass fraction in parts per million by weight 

(ppmw). These experiments have been carried out using the normal conditions 

available in most national measurement institutes around the world, which is 

important in ensuring the applicability of these temperature measurements around the 

world.  

Finally, the tin and aluminium samples will be analysed by Glow Discharge 

Mass Spectrometry (GD-MS) after doping to detect the type and amount of impurity 

elements. This analysis will be compared with GD-MS results before doping, to 

confirm the increased dopant in the originally “pure” tin and aluminium cells. The 

“state-of-the-art” GD-MS analysis is a technique used to check the impurities contents 
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of the pure metal fixed-point cells with its low limit of detection down to ppb level, 

therefore, the sum of individual estimates (SIE) method [Ripple et al., 2005] (to be 

described in Chapter 3) can be used to estimate the uncertainty from all relevant 

impurities concentrations. This method allows the fixed-point temperature to be 

corrected for the influence of impurities. By applying the SIE method, the uncertainty 

budgets for temperature measurements at the tin and aluminium fixed points can be 

reduced from the overall uncertainty of measurement, which is referred to as an 

“Overall Maximum Estimate (OME) method [Ripple et al., 2005] used in the general 

uncertainty contribution. Furthermore, the GD-MS results will be used to calculate the 

theoretical temperature offset predicted by a special thermodynamic impurity model, 

i.e. “MTDATA” programme developed by the materials-science department of NPL. 

From the MTDATA analysis, the theoretical and actual measured melting curve 

shapes of the tin and aluminium fixed points, before doping, will be compared (there 

is sufficient background impurities in the samples (due to their age) to enable this 

prior to their specific doping).  

 In this thesis, the originally pure tin samples were doped with three types of 

impurities; cobalt, lead and antimony. Also, three types of impurities; copper, silicon 

and titanium were put into the originally pure aluminium samples, increasing the 

concentrations in order to study the influence of a trace impurity on tin and aluminium 

fixed point plateaus. 

 

1.3 Aims and Objectives 

  

The primary aim of this work is to study the quantitative effect of low level 

impurities on the freezing and melting temperatures provided by the tin and 

aluminium thermometric fixed-point cells. This will be complemented by a couple of 

further aims.  

The second aim: an improved understanding of low level impurities would 

provide the benefit of reducing the uncertainty budget of the realisation of the tin and 

aluminium temperatures fixed-point through the correction for impurities effect. It is a 

part of present development in thermal metrology. 

The third aim: to improve the accuracy of the standard temperature realisations 

based on the International Temperature Scale 1990 (ITS-90). It provides the potential 
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for better production process and the reliability of the products, which is important in 

terms of economic development.  

In order to achieve the key aims; the following research objectives have been 

specified: 

• To investigate the offsets and shape changes of the melting/freezing 

curves of high purity (99.9999%) tin and aluminium fixed-point cells caused by a 

variety of impurities at low levels of concentration.  

• To test the interpolation of previous data [Hansen, 1958] on Sn-X and 

Al-X binary alloy systems, all of which were obtained from relatively high impurity 

concentrations.  

• To complete a literature review of previous work/information on the 

effects of low levels impurities or dopants in binary alloy systems. This is needed due 

to the lack of reliable results on very low level impurity concentrations in existing 

databases [Hansen, 1958].  

• To reproduce such measurements within standard conditions by using 

normal NPL equipment, as available in most other national measurement institutes 

(NMIs) worldwide. This is important in ensuring the application of temperature-

impurity measurements around the world. 

• To use a state-of-the-art chemical analysis technique, i.e. Glow 

Discharge Mass Spectrometry (GD-MS), to detect the distribution, and measure the 

concentration of any background elements within “pure” tin and aluminium fixed-

point ingots before deliberately doping and re-analysing the impurity content after 

doping to confirm the increase in dopants within their ingots.   

• To compare the effect of the background trace impurities on the tin and 

aluminium temperature fixed-point both theoretically (i.e. MTDATA program) and 

experimentally.   

• To establish, implement and improve suitable impurity mixing 

techniques within the fixed-point cells. It is an important process to confirm that each 

impurity dopant is sufficiently well mixed throughout the fixed-point cells (see 

Chapter 4). 

 

The accomplishment of the overall objective will lead to an improvement of 

the realisation of standard temperatures provided by tin and aluminium metallic fixed-
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points based on the definition of the ITS-90 when using 99.9999% metal. 

Additionally, the effect of low-level impurities on temperature fixed-point will 

provide the relevant information for the database of the Sn-X and Al-X binary alloy 

systems. The improved data will be used to reduce the uncertainty of temperature 

realisation, which is a part of ongoing thermal metrology development.  

Research on the estimation of uncertainty of measurement evinces the 

reliability of measurement results and provides confidence to customers. Moreover, a 

thermodynamic model will be used to predict the temperature offsets, which will then 

compared with actual measured experimental offsets. In chapters 2 and 3 the general 

and specific backgrounds to this work are reviewed.  The experimental design and 

method details will be explained in Chapter 4 and 5. Then the measurement results for 

tin and aluminium are presented in chapters 6 and 7 respectively. Conclusions of this 

work are presented in Chapter 8, including a recommendation for future work.  
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Chapter 2 
Background of Temperature Measurement and Calibration 

 

In this chapter, the primary background of temperature measurement and 

calibration realised by the International Temperature Scale 1990 (ITS-90) is reviewed. 

The chapter begins with an overview of the fundamentals of thermometry, followed 

by a description of the principle and the definition of the International Temperature 

Scale of 1990 (ITS-90), which is an approximation to the thermodynamic temperature 

scale. The fixed-points, which are the essential reference point of the ITS-90, for 

calibration of standard platinum resistance thermometers (SPRTs) are described.  

Platinum resistance thermometers are used for temperature measurement.  Its 

characteristics in terms of the resistance values of pure platinum and their use as 

resistance ratios in temperature measurement are explained. The chapter ends with a 

discussion of the concepts of calibration and traceability, and the types of uncertainty.   
 

2.1   Fundamentals of Thermometry 
 

As the James Clerk Maxwell mentioned, “the temperature of a body is its 

thermal state, regarded as a measure of its ability to transfer heat to other bodies 

[Michalski et al., 2001a]. Temperature can be obtained with a thermometer that may 

be calibrated to a variety of standard temperature scales, for example, the kelvin, the 

Celsius, the Fahrenheit and the Rankine scales. It is a valid question how those 

numbers on the scales can give people the confidence that they are accurate.  

For this reason, the definition of temperature in what is known as fundamental 

thermometry is used as the basis to explain the temperature scales.  The following two 

sections explain the concept of thermodynamic temperature and the units used for 

temperature measurement. 
 

2.1.1 Thermodynamic Temperature 
 

The study of thermodynamics concerns a spontaneous process related to the 

changes of heat, work, temperature, and energy in a physical system as it approaches 

an equilibrium state. Thermodynamic temperature, by definition, is the absolute 
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measure of temperature and is one of the principal parameters of thermodynamics. 

Moreover, thermodynamic temperature is an “absolute” scale because it is the 

measure of the fundamental property underlying temperature: its null or zero point, 

absolute zero, is the lowest possible temperature where nothing could be colder. 

Absolute zero is defined as a temperature of precisely 0 kelvins (−273.15 °C), at 

which the motion of particles in the matter is minimal. [Thermodynamics temperature, 

2008] 

  The standard temperature scale based on the laws of thermodynamics and 

thermodynamic systems is used to indicate the hotness or coldness of objects 

expressed in terms of numerical values. Certain numerical values on the scale 

correspond to the temperature fixed points defined by the freezing or melting of 

thermometric substances.  Other temperature values are obtained by interpolation 

between these fixed points. Evidently, the temperature fixed points depend on the 

physical property of each thermometric substance.  

 An ideal gas is the substance, which most closely approximate to the 

corresponding thermodynamic temperature value. The thermodynamic properties of 

an ideal gas are governed by the “ideal gas law”, derived from a combination of the 

experimental Boyle's law, Charles' law and Avogadro's law. The ideal gas law is 

written in an equation form as [Michalski et al., 2001b]: 

nkTpV =                                                     (2.1) 

where p is the pressure, V the volume, n the number of the moles, k the Boltzmann’s 

constant ( 23103807.1 −× J/K) and T the absolute temperature. 

  The thermodynamics laws and thermodynamic systems are used to measure 

the values of temperature on the scale. In the given temperature range on the scales, 

repeatability and reproducibility of the substance’s property are required. However, it 

still had the problem of the limitation of some finite range determined by the chosen 

thermometric substance’s thermal behaviour even though it may be applied in 

principle. Therefore, any temperature range and the thermometric substance have to 

be completely independent working for proposing suitable temperature scale. For 

more details of previous experiments, see Temperature Measurement Book [Michalski 

et al, 2001b] and Tracelable Temperatures [Nicholas and White, 2001d]. The 

thermodynamic temperature scale is defined by choosing the values of two points, 

namely absolute zero, and the triple point of water (temperature at which ice, water 
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and water vapour exist in thermal equilibrium) as accepted by international agreement. 

For standard temperature measurements, the values of practical thermometers are 

closely approximating the corresponding thermodynamic temperature value. Since it 

is very difficult to accomplish the real thermodynamic temperature, a series of fixed 

points specified in the International Temperature Scale (ITS-90) are used to measure 

the temperature values on the scale in practice.  

The international scales have been revised in 1948, 1960), 1968, 1976 and 1990. 

Nicholas and White [2001d] commented that “these revisions have provided 

improvements in respect of closer approximation of the thermodynamic temperature, 

improved interpolating equations, extensions to lower temperatures, and greater 

accessibility for users.” The ITS-90 is an approximation to the thermodynamic 

temperature scale. Standard thermometers such as the standard platinum resistance 

thermometer, SPRT, can be calibrated at the fixed points with the necessary high 

precision and reproducibility, and used for the comparison and dissemination of the 

scale, with uncertainties ranging from 0.1 mK to 1 mK.   
  

   2.1.2 Units of Temperature Measurement 
 

Thermodynamic temperature, denoted as T, is one of seven base quantities in 

the International System of Units (SI units). The unit of thermodynamic temperature is 

called the kelvin and is denoted by the symbol K.  The unit of thermodynamic 

temperature is defined as “the fraction 1/273.16 of the thermodynamic temperature of 

the triple point of water.” [Michalski et al., 2001b]  

This definition was introduced in 1967 at the Thirteenth General Conference 

on Weights and Measures (CGPM). A Celsius temperature (denoted by the symbol t) 

had been generated to replace the old centigrade scale since 1948, and it is expressed 

as the difference from the ice point (273.15 K). The degree Celsius (oC) is the unit of 

Celsius temperature. Thus, the degree Celsius t can be obtained from the 

thermodynamic temperature T from [Preston-Thomas, 1990] 

     t/°C = T/K - 273.15                                                (2.2) 

      The International Kelvin Temperature ( 90T ) and the International Celsius 

Temperature ( 90t ) as defined in the ITS-90 are now used to be the units of 

temperature. The conversion equation between 90T  and 90t  is 

                                              15.273// 9090 −= KTCt o              (2.3) 
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2.2 International Temperature Scale of 1990 (ITS-90) 
 

According to Mangum et al [1997], the purpose of ITS-90 is to specify 

internationally agreed procedures and practical thermometers that will enable 

laboratories to realise the scale independently and/or interdependently to determine 

highly reproducible values of temperature.  

Although the temperature values as defined in ITS-90 are only an 

approximation to the thermodynamic temperatures, they are actually a very good 

approximation and can be more easily evaluated than their thermodynamic 

counterparts.  

 ITS-90 has been accepted in 1989 by the International Committee for the 

Weights and Measures [Preston-Thomas, 1990; Rusby, 1987] and took effect from 1 

January 1990. Its adoption supplanted the International Practical Temperature Scale of 

1968, its revised edition of 1975 (IPTS-68(75)) and the 1976 Provisional 0.5 K to 30 

K Temperature Scale (EPT-76) [Preston-Thomas, 1990].  

The values of temperature as defined in ITS-90 were revised to be in nearer 

agreement with thermodynamic values. Figure 2.1 shows the numerical differences 

between the values of T90 and the corresponding values of T68 measured on the 

International Practical Temperature Scale of 1968 (IPTS-68). For more detailed 

information, see “Supplementary Information for the ITS-90” [Preston-Thomas et al., 

1990]. 

The ITS-90 is based on a number of defining fixed-points. Also, interpolation 

methods would be used for linking among the fixed points. The ITS-90 uses either of 

the two types of international unit temperature scales, namely kelvin (symbol T90) and 

Celsius (symbol t90). The principles and the definition of the International 

Temperature Scale of 1990 are described in Section 2.2.1. 
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Figure 2.1 The relation of the Temperature differences (t90 – t68) and the 

Celsius temperature (t90/oC) [Preston-Thomas, 1990]. 

 

2.2.1 Principles of the International Temperature Scale of 1990  
 

ITS-90 is subdivided into overlapping temperature (T90) ranges and sub-ranges 

from 0.65 K to above 961.78 oC; at the overlapping sub-ranges, differing definitions 

of T90 exist. The temperature values are identified in terms of the equilibrium states of 

the pure substances as a given set of defining fixed-points. Different types of 

thermometers are used for temperature measurement within the different ranges.  

According to Preston-Thomas [1990], “for measurements of the very highest 

precision there may be detectable numerical differences between measurements made 

at the same temperature but in accordance with differing definitions. Similarly, even 

using one definition, at a temperature between defining fixed points two acceptable 

thermometers may differ; of these differences are of negligible practical importance 

and are at minimum level consistent with a scale of no more than reasonable 

complexity.”  
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In ITS-90, there are three interpolation instruments used in establishing the 

scale:  

1. Fixed points (melting, freezing, boiling, and triple points of the high purity 

materials);  

2. Interpolating thermometers; and  

3. Interpolating equations. 

The temperatures are realised at each of the fixed points using the equation of 

a specified form that passes through each of the fixed point. The range and sub-ranges 

of the interpolation instruments as defined on the ITS-90 are as shown in Figure 2.2. 

For further details about the principles of the ITS-90 and the interpolation techniques, 

see “The ITS-90” [Preston-Thomas, 1990] and “Supplementary Information for the 

ITS-90” [Preston-Thomas et al., 1990].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.2 Diagram of the ranges, sub-ranges and the interpolation of 

instruments as defined on the ITS-90. The temperatures on the diagram are only 

approximate [Preston-Thomas et al., 1990]. 
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2.2.2 Definition of the International Temperature Scale of 1990 
  

The interpolation instruments used for the ITS-90 are divided into four 

different ranges as follows [Preston-Thomas, 1990]: 

   

Temperature range How is T90 defined? 

0.65 K to 5.0 K Using the vapour-pressure temperature 

relations of 3He and 4He. 

3.0 K to 24.5561 K (the triple point of 

neon) 

By calibrating a helium gas thermometer 

using interpolation techniques to realise 

three numerical (defining fixed points) 

temperature values.   

13.8033 K (the triple point of equilibrium 

hydrogen) to 961.78 oC (the freezing 

point of silver) 

With the platinum resistance thermometer 

calibrated at the appropriate set of 

defining fixed points using defined 

interpolation procedures.  

Above 961.78 oC  With the radiation thermometer calibrated 

at a defining fixed point referring to the 

Plank radiation law.  

 

There are 17 defining fixed points of ITS-90 throughout the ranges on the 

scale. These fixed points are listed in Table 2.1 [Preston-Thomas et al., 1990]. Each 

fixed point is highly reproducible, which means that the measured temperature is close 

to the thermodynamic temperature of the point. The defined functions information for 

interpolation at intermediate temperatures in each range can be found in the 

“Supplementary Information for the ITS-90” [Preston-Thomas et al., 1990] and the 

text in Preston-Thomas’s publication [Preston-Thomas, 1990]. 
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Table 2.1 Defining fixed point of the ITS-90 [Preston-Thomas, 1990]. 

 

Additionally, the depth to which a thermometer sensor is inserted into the 

fixed point cell affects the equilibrium temperature because of the hydrostatic 

pressure. The pressure below the liquid surface is called the hydrostatic head. The 

effect of pressure on the temperature in each of fixed point is given on Table 2.2 

[Preston-Thomas, 1990]. The constant values for 3He and 4He vapour pressure 

temperature equation, which is used to find the T90 is given in Table 2.3. 

Number Temperature Substance a State b Wr (T90) c 

  T90/K t90/°C       
1 3 to 5 -270.15 to -268.15 He V  
2 13.8033 -259.3467 e-H2 T 0.001 190 07
3 ~17 ~-256.15 e-H2 (or He) V (or G)  
4 ~20.3 -252.85 e-H2 (or He) V (or G)  
5 24.5561 -248.5939 Ne T 0.008 449 74
6 54.3584 -218.7916 O2 T 0.091 718 04
7 83.8058 -189.3442 Ar T 0.215 859 75
8 234.3156 -38.8344 Hg T 0.844 142 11
9 273.16 0.01 H20 T 1.000 000 00

10 302.9146 29.7646 Ga M 1.118 138 89
11 429.7485 156.5985 In F 1.609 801 85
12 505.078 231.928 Sn F 1.892 797 68
13 692.677 419.527 Zn F 2.568 917 30
14 933.473 660.323 Al F 3.376 008 60
15 1234.93 961.78 Ag F 4.286 420 53
16 1337.33 1064.18 Au F  
17 1357.77 1084.62 Cu F  

a All substances except 3He are of natural isotopic composition, e-H2 is hydrogen at the
equilibrium concentration of the ortho- and para-molecular forms. 

b For complete definitions and advice on the realization of these various states, see 
"Supplementary Information for the ITS-90". The symbols have the following meanings: V: 
vapour pressure point; T: Triple Point (temperature at which the solid, liquid and vapour 
phases are in equilibrium); G: gas thermometer point; M,F melting point, freezing point 
(temperature, at a pressure of 101 325 Pa, at which the solid and liquid phases are in 
equilibrium) 

c Wr (T90)  is the polynomial reference functions as given in the definition of the ITS-90
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Table 2.2 Effect of pressure on the temperatures of some defining fixed points# 

[Preston-Thomas, 1990]. 
 

Substance 
Assigned Value of 

equilibrium temperature 
T90/K 

Temperature with pressure, 
p, (dT/dp)/10-8K.Pa-1)* 

Variation with depth, l, 
(dT/dl)/10-3 K.m-1)** 

e-Hydrogen 
(T) 13.8033 34 0.25 

Neon (T) 24.5561 16 1.9 
Oxygen (T) 54.3584 12 1.5 
Argon (T) 83.8058 25 3.3 
Mercury (T) 234.3156 5.4 7.1 
Water (T) 273.16 -7.5 -0.73 
Gallium  302.9146 -2.0 -1.2 
Indium 429.7485 4.9 3.3 
Tin 505.078 3.3 2.2 
Zinc 692.677 4.3 2.7 
Aluminium 933.473 7.0 1.6 
Silver 1234.93 6.0 5.4 
Gold 1337.33 6.1 10 
Copper 1357.77 3.3 2.6 
*Equivalent to millikelvins per standard atmosphere  

**Equivalent to millikelvins per metre of liquid  

#The Reference Pressure for melting and freezing points is the standard atmosphere (p0 = 101 
325 Pa). For triple points (T) the pressure effect is a consequence only of the hydrostatic head 
of liquid in the cell  
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Table 2.3 Values of the constants for the helium vapour-pressure equations and the 

temperature range for which each equation, specified by its set of constants, is valid 

[Preston-Thomas, 1990]. 
 

 
3He 

0.65 K to 3.2 K  
4He 

1.25 K to 2.1768 K 
4He 

2.1768 K to 5.0 K 
A0 1.053 447 1.392 408 3.146 631 
A1 0.980 106 0.527 153 1.357 655 
A2 0.676 380 0.166 756 0.413 923 
A3 0.327 692 0.050 988 0.091 159 
A4 0.151 656 0.026 514 0.016 349 
A5 -0.002 263 0.001 975 0.001 826 
A6 0.006 596 -0.017 976 -0.004 325 
A7 0.088 966 0.005 409 -0.004 973 
A8 -0.004 770 0.013 259 0 
A9 -0.054 943 0 0 
B 7.3 5.6 10.3 
C 4.3 2.9 1.9 

 

 

2.3 Defining Fixed-Points of ITS-90 for Resistance Thermometers  
 

Standard platinum resistance thermometers (SPRTs) are used as the 

interpolating instrument for temperatures between the fixed points in the range of 

13.8033 K to 961.78 oC. There are three types of SPRTs in general use for calibration. 

For an explanation on PRTs see Section 2.4. This section introduces the definition and 

the methods of the realisation of the fixed points as the ITS-90 for the calibrations of 

long stem thermometers, which were used in the experiments reported in this thesis. 

Thus, the fixed-points are focused on the temperature ranges at the triple point of 

water, the freezing points of tin and aluminium respectively.  
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2.3.1 Triple Point of Water  

 

When liquid water, ice and water vapour are in thermal equilibrium, it is called 

“the triple point of water”. By the definition of ITS-90, the temperature value of the 

triple point of water on the scale equals 273.16 K or 0.01°C. This fixed-point 

temperature plays an important role in measuring and defining the unit of the kelvin 

thermodynamic temperatures and also it is the most significant defining point on the 

ITS-90 scale. In practice, sealed glass cells, like the one shown in Figure 2.3, 

containing high purity water are used as accurate temperature references. By 

definition, the isotopic composition of ocean water is used to make the cell. The 

assorted isotopic composition in the water can affect the temperature at the triple point 

of water. It depends on the distillation method, water sources, and freezing technique. 

For more details on the construction and preparation of the triple point of water, see 

Barber et al. (1994) and “Supplementary Information for the ITS-90” [Preston-

Thomas et al., 1990]. The long-stem thermometers will be used for measurements. 

The water triple point cell, with proper control of the impurity level can attain a 

reproducibility of better than 0.1 mK [Furukawa and Bigge, 1982].  

The water triple point cell is made of a cylinder of sealed glass, with a re-

entrant thermometer well for measurements with long-stem thermometers, filled with 

high-purity, gas-free water. After an ice mantle – item (4) in Figure 2.3 - is frozen 

around the well and a thin layer of this ice mantle is melted next to the well by 

inserting a metal rod into the well, the triple point of water temperature can be 

measured in the well with the thermometer. The triple point of water also provides the 

stability check of the thermometers used for the highest accuracy application. 
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Figure 2.3 Schematic diagram of water triple point cell, which was contained in an ice 

bath. (1) PRT; (2) plug of glass wool; (3) water vapour in cell; (4) high purity water; 

(5) ice sheath; (6) plastic container; (7) crushed ice; (8) opaque cover; (9) 

thermometer leads; (10) insulation break in stainless-steel container wall; (11) 

stainless-steel container; (12) polystyrene-form insulation; (13) air gap; (14) base 

containing drain holes; (15) supports and (16) water container [Preston-Thomas et al., 

1990]. 
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2.3.2 Metal Fixed Points 
  

 The metal fixed points are defined to extend the areas of reproducible 

temperature on the ITS-90 scale. The liquid-solid phase transition of metal is used to 

realise and reproduce the uniform temperature, which is directly measured from the 

fixed points of metal. On the ITS-90 scale, PRTs are placed into the thermometer well 

in the fixed point cells to measure and realise the temperature for all defining fixed 

points of the ITS-90.  There are two types of fixed point cells, the sealed cell and the 

opened cell as shown in Figure 2.4 and 2.5 respectively. For this research, the metal 

fixed points specified for the calibration of the freezing points of tin and aluminium 

will be explained. For the realisation details for other metal fixed points, see 

“Supplementary Information for the ITS-90” [Preston-Thomas et al., 1990]. 
 

(a) Freezing point of tin (231.98 oC) 
 

 As discussed in the “Supplementary Information for the ITS-90” [Preston-

Thomas et al., 1990], a freezing point (liquid to solid direction) is the most accurate 

realisation of a liquid-solid phase transition in metal. The pressure of the inert gas, 

which also affects the fixed-point temperature, needs to be at 1 atmosphere 

(101.325 kPa) inside the cell while the temperature is set at the tin fixed point as 

defined in ITS-90.  

The freezing curve of tin is obtained when the temperature slowly cools down and 

approaches the freezing temperature of the tin. Because the tin metal has a dip of 

supercooling at the beginning of the freeze, the extremely small crystals of tin thus 

formed are unstable and compact together rather than grow unless they are beyond a 

critical size. To avoid this, the following nucleation technique is used to encourage 

external shell formation of uniform thickness at the outer walls of the crucible:.   

1. The furnace temperature is first lowered to 10 oC below the freezing point.   

2. The tin ingot is lifted out of the furnace when the temperature of the 

monitoring thermometer indicates the recalescence point.   

3. The tin ingot is re-inserted immediately back into the furnace block.   

4. The temperature of the furnace is increased to the tin freezing temperature.   

 To start the inner nucleation, a cold rod is put into the thermometer well. A 

mantle of solid tin then begins to grow rapidly on the wall of the thermometer well. 

What the thermometer records is the freezing temperature of tin at the inner interface 
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on the well. For more information, see “Supplementary Information for the ITS-90” 

[Preston-Thomas et al., 1990]. 

The reproducibility of the temperature realisation can be better than 1 mK if the 

tin metal is very pure (typically better than 99.9999% pure) [Nicholas and White, 

2001e]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 An example of the opened metal fixed point cell for resistance 

thermometry [Preston-Thomas et al., 1990]. 
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 Figure 2.5 Schematic diagram of sealed metal fixed point cell. (a) Sealed cell in 

an inconel container for the indium, tin, zinc, aluminium, and silver fixed-point cells. 

Stainless steel can be used for tin and zinc. (b) Sealed cell in silica container; (1) 

graphite crucible, (2) metal ingot, (3) silica re-entrant well, (4) graphite disk shields, 

(5) pure silica wool, (6) argon atmosphere, and (7) graphite well [Preston-Thomas et 

al., 1990]. 

 

 

(a) (b) 
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(b) Freezing point of aluminium (660.323 oC) 
 

The freezing point of aluminium (660.323 °C) is one of the metallic fixed-

points specified for use in the definition of the ITS-90 [Preston-Thomas, 1990]. First 

of all, the aluminium ingot is completely molten at the temperature at 10 oC above the 

freezing point. To make sure the aluminium metal is well mixed, the temperature 

should be left at least 2 hours at the high temperature. Then, the ingot is cooled down 

by setting the temperature of the furnace at 0.5 oC below the aluminium freezing 

point. The supercooling of aluminium is generally about 0.4 to 0.6 oC. When the 

recalescence is recognised, a fused-silica or an alumina rod is inserted into the well in 

order to induce an inner-solid aluminium mantle on the well. Then, thermometer is 

replaced into the cell and the freezing curves could be recorded.  

The reproducibility of the aluminium temperature realisation is approximate 

1 mK [Preston-Thomas, 1990]. However, the stability of the thermometers used is the 

limitation of the measurements.     
 

2.4    Platinum Resistance Thermometry  
 

One of the instruments, which are used to approximate the temperature in the ITS-

90 definition, is the interpolating thermometers. There are four types of highly 

reproducible thermometers, i.e. helium vapour-pressure thermometer, helium or 

hydrogen gas thermometer, platinum resistance thermometer, and radiation 

thermometer [Nicholas and White, 2001d]. In this work, only the platinum resistance 

thermometer is used as the interpolation device, which covers the temperature range 

of freezing point of tin and aluminium. The platinum resistance thermometer (PRT) is 

a remarkable device, measuring temperatures accurately on the ITS-90 scale. The 

PRTs can realise the temperature over the range 13.8 K to 960 oC, with accuracies 

approaching 1 mK. The PRTs can be divided into 3 kinds as follows [Preston-Thomas 

et al., 1990]: 
 

• Capsule PRTs, as shown in Figure 2.6, are designed for use at low 

temperature between 13.8 K and 156 oC. They have resistances of 25.5 Ω at the triple 

point of water.  
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• Long-stem PRTs are intended to cover the range 84 K to 660 oC. The long 

glass or quartz tubes (8 mm diameter and 450 mm long), as presented in Figure 2.7, 

are mounted and filled with dry air at a pressure of approximately 30 KPa at room 

temperature. They also have triple point of water resistance of 25.5 Ω.  

•    High temperature PRTs are used to cover the temperature range between 

0.01 oC and the freezing point of silver (961.78 oC). In these thermometers, the 

resistances are from 0.25 Ω to 2.5 Ω, which is lower than the capsule and long-stem 

PRTs, to minimise the electrical leakage problem. Figure 2.8 shows the high 

temperature PRT.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6  A 25 Ω capsule-type PRT: (A) platinum sheath 5 mm in diameter and 50 
mm long,  (B) the two glass tubes containing the 0.07 mm diameter coiled platinum 
wire, (C) flame welds to platinum leads, and (D) glass/platinum seal [Preston-Thomas 
et al., 1990]. 
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Figure 2.7  Schematic diagram of 25 Ω long-stem type PRTs [Preston-Thomas et al., 

1990]. 
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Figure 2.8 Schematic diagram of typical designs of high temperature platinum 

resistance thermometers; (a) resistance at the triple point of water 0.25 Ω and (b) 

resistance at the triple point of water 2.5 Ω [Preston-Thomas et al., 1990]. 

 

 

(a) (b) 
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All three kinds of PRTs have high purity platinum as the sensing resistor. For 

their construction details, see “Traceable Temperatures” [Nicholas and White, 2001f] 

and “Supplementary Information for the ITS-90” [Preston-Thomas et al., 1990].  

The temperature is measured according to the ITS-90 requirements by means 

of the resistance ratio W(T90) defined as: 
 

                                             W(T90) = R(T90)/R(273.16 K)                                     (2.4) 
 

          where         R(T90)  is the resistance at T90 

                            R(273.16 K) is the resistance at the triple point of water 
 

The pure platinum used in the PRT must satisfy [Preston-Thomas et al., 1990]: 

                                      W(29.7646 oC)   ≥ 1.11807,           (2.5a) 

                                      W(-38.8344 oC)  ≤ 0.844235                                   (2.5b) 

For PRTs that measure up to the freezing point of silver, the resistance ratio 

must also satisfy: 

                                      W(961.78 oC)  ≥ 4.2844                                            (2.6) 

For each thermometer calibration, the resistance ratio is determined by the 

interpolation formula: 

          W(T90)  =  Wref (T90) + ΔW(T90)                                    (2.7) 

where    Wref (T90) is the polynomial reference functions (shown in Table 2.1). 

and ΔW(T90) is the deviation functions.  
 

Precision measurements of the PRTs rely on accurate resistance values. The 

sources of errors may be due to mechanical shock and vibration (generating strains), 

self-heating, insulation resistance, thermometer immersion (hydrostatic pressure) and 

radiation effects. For further sources of errors information, see “Temperature 

Measurement and Calibration” [NPL, 2003b]. 
  

2.5 Calibration 
 

 Calibration expresses the relations and the comparisons of the values of the 

scale between the definition of SI and a measurement of instrument to ensure a 

precisely qualitatively determination and correspond to the international standards 

temperature scale, which is the ITS-90. Additionally, the uncertainty measurement 

and the reliability of the instrument are estimated in the calibration. The calibration is 

also a process transferring the values on the scale of ITS-90 from primary standard to 
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secondary instruments. By definition, Calibration is defined that “the set of operations 

which establish, under specified conditions, the relationship between values indicated 

by a thermometer and the corresponding known values of temperature” [NPL, 2003c]. 

This definition is applied to temperature measurement. For temperature measurement, 

the calibration comprises two main procedures as follows: 
 

2.5.1 Calibration using fixed points  
 

 There are 4 kinds of realisation using the fixed points: freezing, melting, 

boiling, and triple point. As previously discussed about the fixed point, the phase 

change and equilibrium state of the substance are used as highly reproducible 

reference points on the temperature scale.  For more information, see the section 2.2.2 

on the definition and fixed points of the ITS-90. The thermometer to be calibrated is 

measured at the equilibrium temperature and measurement of its thermometric 

parameter (e.g. resistance) is produced.   

 To complete the calibration of the thermometer, it needs the measurement at 

several temperatures with the interpolation technique. Using the specified fixed points 

as defined in the ITS-90 in the calibration is the most accurate method for the 

calibration [NPL, 2003d]. But the temperature ranges for calibrating are restricted 

only in the number of available fixed points. See more detailed realisation, see 

“Temperature Measurement and Calibration” [NPL, 2003e]. 
 

2.5.2 Calibration by comparison 
 

 As described in “Temperature Measurement and Calibration” [NPL, 2003c], in 

calibration by comparison technique, the thermometer to be calibrated is inserted into 

an environment together with a standard thermometer and measurements are made on 

both.  The environment may be a bath or furnace whose temperature can be controlled 

manually or electrically.  
Compared with the fixed points, the advantages of calibration by comparison 

are: the technique is easier, faster, and cheaper; several thermometers can be 

calibrated simultaneously; and use of high purity substance is not essential.   
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2.6  Uncertainty and Traceability of Measurement 
 

In this section, the concept of uncertainty and traceability of measurements 

will be described. The accreditation of measurement in science and commerce can be 

accepted with both quantities (i.e. uncertainty and traceability), which are important 

requirements for calibration.  
 

2.6.1 Uncertainty  
 

The ISO Guide to the Expression of Uncertainty in Measurement [GUM, 1993] 

gives the general principles for expressing and estimating uncertainty in measurement 

including the interpretation of uncertainties as:  
 

Uncertainty of Measurement 

“The parameter associated with the result of a measurement that characterises 

the dispersion of the values that could reasonably be attributed to the measurand.” 
 

The uncertainty measurement of the result can show the accuracy of a 

measurement. There are two categories of uncertainty: Type A and Type B.  Type A 

uncertainty is evaluated by statistical methods whilst Type B uncertainty is evaluated 

by other methods. These are explained further in the following two sections.  
 

2.6.1.1 Evaluation of Type A uncertainty 
 

This method of the uncertainty estimation uses both the actual measurements 

and the statistical analysis of a series of observations. The statistic calculation of the 

standard deviation of repeated measurements follows well-established practice. As an 

example of a Type A evaluation [NPL, 2003f], consider an input quantity ( q ) whose 

value is estimated from n independent observations kq of q obtained under the same 

conditions of measurement. In this case the input estimate q  is simply the average 

value q  where 

∑
=

=
n

k
kq

n
q

1

1                                                  (2.8) 

and the standard uncertainty u(xi) to be associated with q  is the estimated standard 

deviation of the mean (s); 
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The standard deviation (s) is likely to be a safer estimate of the Type A standard 

uncertainty, unless a very large number of measurements are made. This type 

corresponds with the normal distribution, which indicates the probability of attaining a 

result. See more information in the National Physical Laboratory book [NPL, 2003f]. 
 

2.6.1.2  Evaluation of Type B uncertainty 
 

Type B uncertainties can be estimated from the physical theory of the 

measurement, prior data from handbook or other experiments, calibration certificates, 

the general knowledge of the action and properties of the materials and equipment 

including the intuition and experience. For further information, see “Traceable 

Temperatures” [Nicholas and White, 2001g].  

For each measurement, all the components of uncertainty must be evaluated and 

then combined, by summing in quadrature or similarly adding the variances linearly 

(u 2  = u 2
1 + u 2

2 + u 2
3 + …), into one standard uncertainty. The uncertainty (u) is taken 

and multiplied by the suitable coverage factor to show the total uncertainty for the 

measurement at the required level of confidence [Nicholas and White, 2001g]. This 

value is called the combined uncertainty.  
 

2.6.2 Traceability 
 

The International Vocabulary of Basic and General Terms in Metrology (ISO 

1993) defines the traceability [NPL, 2003g] as; 
 

“The property of the results of a measurement or the value of a standard 

whereby it can be related to stated references, usually national or international 

standards through an unbroken chain of comparisons having stated uncertainties.” 
 

Traceability is, therefore, the ability to exhibit the precision of measurement 

result by means of proper national and international standards – for example, the SI 

Kelvin that is defined on the temperature scale. The traceability chain for the primary 

standard measurement links in terms of international comparisons of calibration with 

the ITS-90. “The purpose of traceability is to enable different users, potentially on 

opposite sides of the world, to compare measurement results meaningfully.” (Nicholas 
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and White [2003h]). An example of the traceability chain in temperature measurement 

in the UK is explained in Figure 2.9, which links the final end user’s measurement 

with the ITS-90, through the calibration chain. For more detailed traceability 

information, see “Traceable Temperatures” [Nicholas and White, 2001h] and 

“Temperature measurement and calibration” [NPL, 2003g]. 
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* UKAS Accreditation = the UK accreditation is managed by the United 

Kingdom Accreditation Service 

 

Figure 2.9 Chain of traceability in temperature measurement in UK [NPL, 2003h]. 
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Chapter 3   
Literature Review 
 

An overview of the previous research to improve the temperature realisation at 

two types of metallic fixed-points; namely tin (231.928 oC) and aluminium 

(660.323 oC) is presented in this chapter. The study emphasises the influence of trace 

impurity concentrations on the shapes of the melting, and offsets of freezing, curves of 

high purity tin, and aluminium fixed-point cells. A better understanding of low-level 

impurities will provide the benefit of reducing the uncertainty budget of the 

temperature fixed-point realisation, where impurities are the biggest contribution to 

the fixed-point temperature uncertainty. This will be revealed for the advantage of the 

temperature measurement community. Unlike the previous work, which was often 

carried out by using specially designed equipment, such measurements in this work 

will be produced by using standard NPL equipment, under standard conditions, as 

used in most national measurement institutes around the world.  

 This chapter is separated into three parts. The first part introduces the impurity 

distribution and segregation behaviour in the solution of substances, which affects the 

fixed-point temperature. The second part describes the influence of chemical 

impurities on the uncertainty budgets. The third part investigates the temperature 

offsets and the shape change as various types of impurities affected the “pure” tin and 

aluminium fixed points.  
 

3.1 The Influence of Impurities on the Fixed-Point Temperature 
 

 For the metallic fixed points in the definition of the International Temperature 

Scale of 1990 (ITS-90), the temperature realisations are measured from the solid-

liquid phase transitions (freezing, melting, or triple points). In spite of the fact that the 

temperature realisation is based on the behaviour of the highest purity substances 

available, trace impurities always exist in the pure metal. Working Group 1 of the 

Consultative Committee for Thermometry has made recommendations about how to 

estimate uncertainties due to impurities, based on the information available  [Ripple 

et al., 2005]. Where the information is lacking or the analysis is incomplete, they 

recommend that the nominal purity, e.g. ‘six nines’ (99.9999%) or 1 ppm impurity, is 
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used to estimate the standard uncertainty. They also calculate the effect of a total of 1 

ppm of impurity on the freezing point temperatures, assuming that Raoult’s law is 

obeyed.  

In general, the pre-existing trace impurities in the sample cause a change 

(depression or elevation) to the 100% pure metal phase transition curve at the fixed-

point temperature. This temperature deviation makes the uncertainty of the fixed-point 

temperature realisation difficult to estimate. Uncertainty budgets of fixed points 

realised according to ITS-90 are influenced by many factors such as chemical 

impurities and isotopic effect, hydrostatic head correction, error in gas pressure, etc. 

One of the most important contributions to the uncertainty is the chemical impurities 

effect. Impurity elements, at the level of parts per million, in the metals at nominally 

six nines purity level is already enough to generate a major contribution to the overall 

uncertainty of the temperature realised. Due to such strong effect, the analysis of the 

content of impurities and their effects on the temperature fixed-point is essential so 

that a corresponding correction can later be applied. This will lead to a reduction of 

the uncertainty budgets and eventually benefit the temperature metrology overall as 

more precise measurement can be attained.  

Consider the presence of trace impurities in the metal fixed-point: these 

solutions act like a binary solute-solvent system. In order to evaluate the quantity of 

phase transition temperature departure from the high purity fixed-point curves due to 

the impurity effect, the influence of the solute concentrations (impurities) on the base 

metal solvents must be analysed. This influence is explained by using the basic 

behaviour of the crystallisation of the dilute solutions, which also determines the 

shape of the curves. Furthermore, the segregation of the solute in the solution during 

the freezing and melting, which can be likened to “Zone Refining”, will be provided. 

The effects of impurity on the initial temperature have traditionally been approached 

by following Raoult’s law [Fellmuth, 2003]. It can be formulated to show the change 

of temperature )( TΔ of the 100% pure fixed-point material )( pureT and the observed 

sample temperatures )( obsT , using the following equation [Fellmuth, 2003]: 
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AcTTT lobspure /=−=Δ             (3.1) 

where lc is the mole fraction impurity concentration in the liquid, the subscript 

is ‘l’ for ‘liquid’ and A  is the first cryoscopic constant. A  is specified as: 

2TR
LA
⋅

=                                              (3.2) 

where L  is the heat fusion of the fixed-point material, R is the gas constant 

and T  is the melting temperature of the pure fixed-point substance. The first 

cryoscopic constants and the latent heats of fusion for the fixed-point materials 

specified in the ITS-90 are expressed in Table 3.1. 

Table 3.1 First cryoscopic constants ( A ) and latent heat of fusion ( L ) of the 

ITS-90 defining fixed-point materials [Ripple et al., 2005]. 

Substance 90T (K) L  (KJ/mol) A ( 1−K ) 
Purity for  
( ) 5.01 ≤=− FTT obspure mK

e-H2 

Ne 

O2 

Ar 

Hg 

H2O 

Ga 

In 

Sn 

Zn 

Al 

Ag 

Au 

Cu 

13.8033 

24.5561 

54.3584 

83.8058 

234.3156 

273.16 

302.9146 

429.7485 

505.078 

692.677 

933.473 

1234.93 

1337.33 

1357.77 

0.117 

0.335 

0.444 

1.188 

2.292 

6.008 

5.585 

3.264 

6.987 

7.385 

10.79 

11.3 

12.364 

13.14 

0.0739 

0.0668 

0.0181 

0.0203 

0.00502 

0.00968 

0.00732 

0.00213 

0.00329 

0.00185 

0.00149 

0.000891 

0.000831 

0.000857 

99.996 

99.997 

99.9991 

99.9990 

99.9997 

99.9995 

99.9996 

99.99989 

99.9998 

99.99991 

99.99993 

99.99996 

99.99996 

99.99996 
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However, equation (3.1), representing Raoult’s law, is only valid when all 

impurities are insoluble in the solid phase of the host material. In this case the 

impurity concentration lc  is inversely proportional to the fraction F of the sample 

which is liquid and in equilibrium with the pure solid phase. That is to say  

         Fcc ll /1=               (3.3) 

where 1lc  is the overall impurity concentration when the material is completely 

melted ( 1=F ), F is the fraction of sample melted.  

Corresponding to equation (3.1), the temperature difference is given by the 

expression 

                                   ( )
AF

c
FTTFT l

obspure ⋅
=−=Δ 1)(                                 (3.4) 

Basically, Raoult’s law works for ideal mixtures of two liquids [Clark, 2005]. 

For the mixing solution, when solute is added to the solvent then almost always the 

freezing point of the solution is decreased from the pure solvent. As stated in the ideal 

solution law, the decrease of freezing point occurred because of the different sizes of 

the crystal lattice between the solute and solvent particles. That is, the solute particles 

that fundamentally remain in solution prohibit other solvent particles from 

crystallising during the freezing process. Thus, in the ideal case the solution in the 

solid state, after the freezing process, is almost pure solvent.  

Nevertheless, the approach based on Raoult’s law applies only for all 

impurities that are insoluble in the solid state of the fixed-point material, as several 

reports in recent years [Fellmuth, 2003; Ripple et al., 2005; Fellmuth and Hill, 2006]. 

If this ideal law is used in the case that the impurities are still in the liquid solution 

when the solution freezes, it presumes that there are no concentration gradients in the 

liquid as the slow freeze process occurs. The shift in the freezing temperature of the 

solution relative to the freezing temperature of the pure substance ( TΔ ), is estimated 

directly using equation (3.4). Furthermore, the effect of the total impurity 

concentration ( 1lc ) is proportional to the factor ( F1 ). At the 100% fraction of sample 

melted or liquidus point ( F = 1), the depression of the freezing temperature caused by 
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the impurities is shown approximately as: AcT l /1=Δ . This is not reliable and valid 

for most of the fixed-point substances used in the ITS-90. This is because there is 

some solubility of impurities in the solid state. Therefore, the use of Raoult’s law 

could lead to the errors.  

For the impurities which are soluble in the solid state, the basic facts of 

crystallography phase diagram and the segregation of impurities in the freezing 

process is considered. First of all, “zone refining” is used to explain impurity 

segregation and the fixed-point temperature change. In fact, deliberate zone refining is 

a technique used to control the soluble impurities distribution in any solute-solvent 

systems including metals, alloys, semiconductors, and other materials [Pfann, 1958a]. 

The significant object of zone refining is to prepare high purity materials by use of 

zone melting methods. It aims to decrease the level of impurities in materials, which is 

a purification process. The movement of the impurities distribution in the solution 

depends on the effect they have on the melting point of the pure solvent substances. 

They move along the zone when impurities increase the melting point of the solvent 

substances and to the opposite direction when they decrease, which was reported in 

1958 by Pfann [1958b]. The impurities are more concentrated at one side, or one end 

of the substances, after such operations, thereby purifying the other end. From the 

reason previously mentioned, it can be applied to concentrate required impurities as 

well as to remove unrequired ones. Furthermore, zone refining technique can be 

applied, in conjunction with conventional methods, as a particular analytical device to 

detect unknown or unobservable impurities in the substances. 

An essential parameter of the material, which describes the zone refining 

procedure, is the equilibrium distribution coefficient, designated 0k [Pfann, 1958c]. It 

is defined as the ratio of impurity concentrations in solid and liquid equilibrium 

phases of the solutions, which is given by the relation 

      
l

s

c
c

k =0               (3.5) 

In equation (3.5), sc  and lc  are the mole fraction concentration of impurity in 

the solid and liquid equilibrium phases of the sample, respectively. Values of 0k  can 
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be either smaller or larger than unity, and their significance can be explained from the 

phase diagram of a binary system as shown in Figure 3.1 [Fellmuth, 2001]. The value 

of 0k  virtually designates the solubility or the segregation of the impurity in the solid 

and liquid phases of the solvent material. Also, it is a characteristic of a particular 

impurity.  

Consider Figure 3.1(a), the 0k  value is smaller than 1 ( 0k  < 1). It shows the 

melting point of the solvent, which is decreased due to the effect of the solute. At 

temperatures above the upper curve (liquidus), the entire solution is completely 

melted. Therefore, the solute concentration contained in the solution is in the liquid 

phase ( lc ). When the temperature is slowly reduced to the liquidus temperature (T), 

the freezing process of the solution starts. The atoms of solvent in liquid phase, such 

as melted metal, will come together at nucleation points and start to form crystals, 

which separate out from the solute. The rejected solute will be concentrated in the 

liquid just ahead of the advancing solid front. However, the crystals of solvent still 

contain the solute concentration in the solid phase ( sc ). At the sc  point on the phase 

diagram in Figure 3.1(a), it is at the intersection point of the temperature horizontal 

and the lower curve (solidus), where ls ckc 0= . This relationship remains valid when 

the solution is under equilibrium freezing. As freezing continues, the concentrations in 

the liquid and freezing solid constantly increase, following the solidus and liquidus 

lines until the whole sample is frozen. Of course, both lc  and sc vary during the 

freeze, but the relationship ls ckc 0=  always applies at the interface. If the impurities 

diffuse in the solid phase (so the concentration is uniform in the shaded part of Figure 

3.2), i.e. the whole solid (not just new solid) is always on the solidus line, and the 

freezing is complete when the solidus line reaches the initial value of lc  (because that 

is the overall concentration of the sample). In fact diffusion is too slow and the solid 

supports a concentration gradient (starting from the initial low value of sc ) and 

freezing is not complete until some point further down the solidus line (lower 

temperature, higher concentration) to accommodate all the impurities.  

Given the distribution coefficient 0k >1 as shown in the system of Figure 

3.1(b), the melting point temperature of the mixture solution is higher than the pure 
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solvent resulting from the solute concentrations. The solidification procedure is the 

same as Figure 3.1(a), but both the slopes of solidus and liquidus are upward. The end 

of the freezing process will be reached when the solute concentration is 0kcl . Again, 

if diffusion is too slow, the freezing range is wider. 

 

 (a)              (b) 

Figure 3.1 Parts of phase diagrams in which the freezing point and melting 

point of the pure solvent is (a) lowered ( 0k  < 1), (b) raised ( 0k  > 1), by the solute 

[Fellmuth, 2001]. 

Additionally, the solution solidification processes, which are referred to as 

normal freezing operations, can be described schematically as in Figure 3.2 [Pfann, 

1958d].  This method is usually used for preparing monocrystals, which is mentioned 

by Gilman [1963]. It leads to segregation along the solid sample, which is called 

“normal segregation”. The impurity is commonly (for 0k  < 1) accumulated in the last-

to-freeze region of the substance. The impurities are re-distributed or segregated since 

the atoms at the liquid-solid interface prefer the liquid phase to the solid phase. 

Besides the value of 0k , another important factor affecting the impurity distribution in 

the solution during freezing is the experimental conditions, especially the freezing 

rates and the degree of mixing in the liquid [Pfann, 1958e]. The freezing rate affecting 

the coefficient has been reported by Thurmond [1959]; that is, the effective 

distribution coefficient value would fall with an increasing freezing rate.  
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Figure 3.2 Schematic representation of normal freezing [Pfann, 1958d]. 

Different conditions of a normal freezing process affect the impurity 

segregation. The crystallographic behaviour of impurities under various experimental 

conditions is reviewed. There are four distinguishable conditions to the degree of 

impurity segregation when solid solutions of a fixed-point substance and its impurities 

are produced (solid solution/liquid solution) as explained in Figure 3.3 [Gilman, 

1963].  

 

 

 

 

 

 

 

 

Figure 3.3 Four distinct conditions of solute distributions in a solid frozen 

from liquid of the initial concentration Lc [Gilman, 1963]. (a) equilibrium freezing, (b) 

complete mixing, (c) no mixing, and (d) partial mixing. 

These conditions can exist in dependence on the impurity distribution in the 

liquid as Pfann and document CCT/99-11 reported [Pfann, 1958; Mangum et al., 

2000]. Four conditions of segregation are as follows: 
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1. Equilibrium freezing 

2. Complete equilibrium mixing in the liquid 

3. Partial mixing in the liquid 

4. No mixing in the liquid  

The impurity segregation, which has an influence on the freezing curves in the 

case of these four conditions, is described in more detail. 

1. Equilibrium freezing 

It has been explained by Gilman [1963] that “equilibrium freezing” exists if 

the temperature and the concentration gradients are infinitesimal or insignificant. It is 

because diffusion processes in the liquid and solid of the sample are completed. This 

case occurs when the rate of freezing of the sample is extremely slow, slow enough to 

eliminate all concentration gradients. Therefore, there is no segregation in this case. 

However, in practice, diffusion rates in the solid phase would have to be very slow, 

which is almost impossible, thus, the reason the theory rarely applies in the real world.  

2. Complete equilibrium mixing in the liquid 

For this condition, as illustrated by Gilman and in document CCT/99-11 

[Gilman, 1963; Mangum et al., 2000], the rate of freezing needs to be slow, i.e. 

sufficiently slow to allow complete and uniform mixing in the liquid. The convection 

can prevail over the tendency for impurity concentration gradients to diffuse in the 

liquid phase. At the same time, the freezing rate has to be fast enough to produce 

negligible diffusion in the solid. As a result of convection and diffusion effects, all 

concentration gradients are erased. This leads to the highest possible degree of 

impurity segregation. Dependence of the observed liquidus temperature ( obsT ) on the 

liquid fraction F of the sample is given by equation 3.6 below [Mangum et al., 2000]; 

       ∑ −∂∂−=−
i

kii
obspure

i

FcTcTT 01
1111 /)/(                           (3.6) 

Where ic11 is the total concentration of the impurity i at the liquidus point, ic1 is 

the mole fraction concentration of the impurity i in the liquid equilibrium phase, ik0  is 
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the equilibrium distribution coefficient of impurity i and icT 11 / ∂∂  is the derivative im1  

of the liquidus temperature line ( 1T ) with regard to the concentration of impurity i in 

the phase diagram. The derivative im1  is expressed from the following relation: 

   AkcTm iii /)1(/ 0111 −−=∂∂=                           (3.7)   

This equation (3.7) is applied at low impurity concentrations [Mangum et al., 

2000]. If it has no solid solution ( 0=sc  in the solid phase i.e. 00 =
ik ), the equation 

(3.4) is used to estimate for all impurities, with TΔ  dependent on F/1 . However, if 

00 ≠k  that means the solid solutions are formed and therefore the impurity 

concentrations in the liquid/solid interface are not homogeneous. This is the reason for 

the impurity concentration to change as freezing occurs. It yields a more complex 

dependence on the temperature difference or TΔ  versus F .  

Considering at 10 =
ik , the observed temperature does not depend on the liquid 

fraction F of the sample. Furthermore, it has no segregation in the solution and TΔ  is 

constant. Therefore, the impurity effect cannot be determined by defining the melting 

or freezing curves for this condition. The relationship between TΔ and F/1 , which is 

affected from equation (3.6) at various 0
ik values are shown in Figure 3.4.  
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Figure 3.4  Relationship between ))1(/())(()1(/)( =−−==ΔΔ FTTFTTFTFT obspureobspure  

and F1  range from for the complete mixing in the liquid resulting from equation (3.6) for 

different ik0 values [Mangum et al., 2000]. 

 For ik0 >1, TΔ  has a negative value and its absolute value becomes less as 

freezing increases. For this situation, the value of obsT  clearly deviates from pureT when 

F/1 gets close to 1, which is at small liquid fraction of the sample. For ik0 <1, the 

temperature difference TΔ  is the positive and the line gradually rises as more and 

more increased solid fraction of the sample.  

 In Figure 3.4, an application of Raoult’s law as expressed in equation (3.4) is 

considered to estimate the influence of impurities on obsT . Raoult’s law is valid if ik0 = 

0 (no impurities in the solid phase) at the liquidus point ( 1=F ). Therefore, if 00 ≠
ik , 

then the application of Raoult’s law to estimate the freezing temperature change 

caused by impurities is not valid. For the case when impurities are soluble in the solid 

phase ( ik0 > 0.01), the curves of the relationship between TΔ  and F/1 are not straight 

lines and hence the application of Raoult’s law cannot estimate and determine the 
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influence of impurities on obsT . For an example for this under-reckoning as described 

in document CCT/99-11 [Mangum et al., 2000] is specified: “For instance, the 

influence is underestimated by a factor of nearly 5 if equation (4) is used to 

approximate )1(/)( =ΔΔ FTFT versus F/1 in the F/1 range from 1.1 ( 9.0=F ) to 

10 ( 1.0=F ) for impurities having an equilibrium distribution coefficient ik0  of 0.5.”. 

(In CCT/99-11, equation (4) refers to Raoult’s law, which is equation (3.4) in this 

Chapter). 

The errors resulting from a misapplication of Raoult’s law are clarified in 

Document CCT/03-12 [Fellmuth, 2003]. It is described in Figure 3.5. This is the 

simple case, which is considered at one dominant impurity i. From equation (3.6), the 

temperature change of the freezing curve at the liquidus point ( 1=F ) is expressed by 

the relation 

    ii
obsliquidus mcFTT 111)1( −==Δ=Δ                                (3.8) 

 Equation 3.8 would be the slope of the freezing curve, corresponded as the 

relationship between obsT− and 1/F if Raoult’s law is valid ( 00 =
ik ). 

 The misapplication of Raoult’s law to calculate the freezing curve i.e. applied 

when 00 ≠
ik  will lead to an inaccurate estimation of change in the freezing 

temperature. The estimation will be lower than the actual temperature value.  

The misapplication of Raoult’s law is given as the procedure of which a 

straight line is fitted to the freezing curve )/1( FTobs  by choosing two different F 

ranges (represented by 1F and 2F , respectively). Fellmuth [2003] has reported that we 

can estimate the freezing curve from the slope of this straight line, which is given by 

)/1/1/()/1/1( 21
1
2

1
1111

00 FFFFmc
ii kkii −− −− . This slope line will give the inaccurate 

estimate ( wrongTΔ ) when the slope of the freezing curve is considered at 00 =
ik . 

Therefore, liquidusTΔ (as referred in equation 3.8) is underestimated by the factor  

)/1/1/()/1/1(/ 00 1
2

1
121

ii kk
wrongliquidusR FFFFTTE −− −−=ΔΔ=              (3.9) 
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In Figure 3.5, the factor RE depends on the distribution coefficient 0k  in two 

selected F ranges ( 9.0,1.0 21 == FF  and 9.0,5.0 21 == FF , respectively). The 

freezing curve estimations normally use the closer range because different effects may 

alter in their shape at lower F values. The factor RE  of the estimated change in the 

liquidus temperature can be applied by Raoult’s law when the distribution coefficient 

is very small ( 10 <<
ik ), i.e. it approaches 1. At ik0 =0.5, the factor RE  is increased to 

about 2.5. However, the value of RE becomes very large when ik0 comes near one, for 

example 15≈RE  for ik0 = 0.9 and 9.0,5.0 21 == FF .  

Fellmuth [2003] also reviewed that the evaluation of the freezing curves 

cannot determine the effect of impurities at 10 ≈
ik . Considering ik0 > 1, the application 

of Raoult’s law will give an incorrect direction for the liquidus temperature change in 

spite of the temperature is increased compared with pureT . The factor RE value shows 

the negative number as seen in Figure 3.5 (two lower lines). Moreover, at F = 0 

(completely solid phase), the difference obspure TT − has its smallest absolute value. The 

reason for the wrong direction of the factor RE  is described by Fellmuth and Hill 

[2006], which it is specified: “Impurities with ik0 > 1 are especially troublesome 

because their influence can reduce the apparent width of the freezing curve compared 

with that which would result from the remainder impurities (with ik0 < 1) in their 

absence.”  
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Figure 3.5 Relationship between distribution coefficient ik0  and the underestimate 

factor of the influence of impurities when Raoult’s law is inappropriately used 

[Fellmuth, 2003].    

3. Partial mixing in the liquid  

In document CCT/99-11 [Mangum et al., 2000], diffusion and convection are 

two effects resulting in the movement of impurities in the liquid phase. This condition 

causes intermediate segregation [Gilman, 1963]. The freezing conditions mainly affect 

the segregation of impurities. It is controlled by an effective distribution coefficient 
i
effk [Brice, 1965; Fellmuth, 2001]. The definition of the i

effk value is the ratio of the 

solute concentration in the solid to that in the bulk liquid. This is illustrated by the 

information obtained by Brice [1965]. The value of i
effk is given by  

             ))/exp()1(/(/ 0001
i

c
iiiii

s
i
eff Dkkkcck νδ−−+== ∞            (3.9) 

Where cδ is the thickness of the boundary layer in the freezing direction, ic ∞1  is 

the impurity concentration i outside the layer, υ  is the velocity of the interface and 
iD  is the diffusion coefficient in the liquid metal. As equation (3.9), the i

effk value 

depends on a function of the layer thickness and it can be determined by considering 

the velocity of solute at the growing interface.  

ik0
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There are two limiting cases for applying equation (3.9), which are as follows;  

1. If i
c D/νδ <<1, the condition becomes complete mixing case due to the 

growth-freezing rate is very small: i
effk = ik0  

2. If i
c D/νδ >>1, the condition becomes no mixing, which will be explained 

in the following section, as the velocity of distribution in the liquid/solid interface is 

high, and accordingly, the i
effk value comes close to 1. 

The accumulated impurity concentration exists just ahead of the advancing 

solid-liquid interface or the diffusion boundary layer. i
effk  has a value in the range that 

of the limits ik0 ≤≤ i
effk 1. A significant condition for the impurities analysis in the 

partial mixing case, the i
effk  value has closely the same as the ik0 value. The partial 

mixing is the usual case in practice [Gilman, 1963].  

4. No mixing in the liquid 

 In this condition, only liquid diffusion produces an effect on the distribution 

of impurity at the solid/liquid interface. It results from a rapid freezing rate. 

Consequently, diffusion is not strong enough to mix the impurities through the whole 

of the liquid during the typical time of a temperature fixed-point realisation. Then only 

slight segregation will occur which is frequently realised in practice [Gilman, 1963]. 

The segregation will reduce when the freezing process increases. Consider progressive 

freezing, the amount of solute concentration in the liquid ( lc ) in the boundary layer is 

dependent on the value of 0k . If the impurities are rejected by the freezing solid 

( 0k < 1), then lc  increases. On the other hand, lc  decreases as the amount of the 

accumulated impurities ( 0k > 1). The solute concentration in the boundary layer 

continually increases until the concentration of impurities in the liquid will be ii kc 011  

and the impurity concentration segregation of freezing into the solid is ic11 . It is under 

the steady state conditions. As a result, there is no further impurities segregation and 

the influence of impurities analysis cannot be determined from the freezing or melting 

curves. In the case of no mixing in the liquid can be described by the equation, which 

is given by Tiller et al. [1953]. This equation shows the impurity distribution in the 

solid that is written as 
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       ))/exp()1(1( 0011
iiiii

s Dxkkcc υ−−−=                               (3.10) 

where x is the distance of the liquid-solid interface from the location where 

freezing started. 

From four different conditions of segregation, it can be concluded that the 

impurity effects are efficiently analysed if the mixing in the liquid is complete. As 

already explained above, it is because the maximum possible segregation in the 

solution, which is provided by equation (3.6).  

There are usually several impurity components in the metal fixed-points, even 

through materials of high purity (99.9999%) are used. Accordingly, there can be 

different equilibrium distribution coefficient ( ik0 ) values in a substance as seen in 

Figure 3.6. The ik0  value not only impacts on the temperature change of observed 

freezing curves, but also the shapes of curves. The shapes of the curves containing the 

concentration of impurities are mainly controlled under the different experimental 

conditions, particularly the freezing rate, or the time length in the liquid state before 

freezing process [Mangum et al., 2000]. The variations in the impurity segregation 

occur in slowly and rapidly frozen metals affects the shape of the subsequent melting 

curve in the fixed-point cell [Ancsin, 2007; Nicholas and White, 2001i]. Bongiovanni 

et al. [1975] reported that the oxygen content, which dissolved in the silver fixed-

point, might affect the shape change of the silver-melting curve.   
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Figure 3.6 Periodic dependence of equilibrium distribution coefficients ik0  on the 

atomic number of the solutes B in Al [Fellmuth, 2001].   
 

 An example of the fixed-point Al material as illustrated in 3.6 shows the 

equilibrium distribution coefficient of solutes (impurities), which remain in pure 

aluminium fixed point (one of fixed point materials of interest). It indicates that the 

majority of impurities have ik0  < 1 causing a decrease in the temperature of the 

freezing curve of this Al. This is the generally happening case for realising the metal 

fixed-point materials.   

 It can be briefly summarised that the behaviour of impurities at low 

concentrations in the host material may result in the change of the freezing 

temperature, although the metals, which are used to realise the fixed point 

temperatures, are normally produced from very high purity grade metal. The freezing 

process based on the elemental physics enables to comprehend the impurity behaviour 

on the freezing and melting curves. The freezing process is not able to reliably 

estimate temperature changes or to investigate the amount of the impurity 

concentrations. Therefore, more reliable methods are needed as tools to estimate the 

uncertainty in the correction for the effect of impurities applied to metal fixed-point 

materials. These methods will be mentioned in more detail in the next section. 
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3.2 Methods for Evaluation of Uncertainty Budgets and Correction of 

Fixed-Point Temperatures ascribable to the Influence of the Chemical 

Impurities  
 

Accurate temperature measurement relies on accurate measurement techniques 

and high stability temperature equipment, and also an evaluation of the uncertainty. 

The uncertainty assessment generally comprises many components, which are 

grouped into two categories, namely type A and type B, according to the method used 

to estimate the numerical value. Type A is calculated by statistical means and type B 

is evaluated by all other means (e.g. Hydrostatic-head correction, Bridge-measurement 

errors, Self-heating of the SPRT errors and Standard resistor etc). The impurity effect 

is one of components in the standard uncertainty of type B.  

As presented in the reported CCT Key Comparisons (CCT-K3 and CCT-K4) 

[Mangum et al., 2002; Nubbemeyer et al., 2002], one of the agreements is the 

evaluation of uncertainties and the correction of the fixed-point temperatures that are 

resulted from chemical impurity effects. The accurate realisation of the temperature, 

which plays an important role in the provision and dissemination of standard 

temperature values in the definition of the ITS-90, strongly depends on the purity level 

of the material used. It has been already reviewed on the previous section that the 

impurities remaining in the high purity fixed-point materials cause the temperature 

shifts and the shapes of melting and freezing curves during phase transformation.  

An improved understanding of the effects of low-level impurities would allow 

one to reduce the magnitude of the “impurity” component, which is a significant part 

of the budget. It is supported by Rudtsch that the impurity effect is the biggest 

contribution to the uncertainty budgets of the temperature realisation [Rudtsch et al., 

2008]. The uncertainty of the best fixed-point realisations for the fixed-point materials 

is importantly affected by the natural variability of impurities of the available samples. 

If the impurities content and their specific effects of the pure fixed-point metals are 

identified, the correction temperature of metal fixed-point could be more precise and 

reliable.  

Therefore, the evaluation of uncertainties attributed to chemical impurity 

effects in a variety of approaches and the fixed-point temperature correction are 

revealed in this section.  
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Uncertainties of the temperature measurements, as mentioned in Chapter 2, are 

used to estimate for the achievement of high-accuracy temperature measurements. At 

the present time, the uncertainty procedure of measurement for chemical analyses is 

published by the International Organization for Standardization (ISO) in the “Guide to 

the Expression of Uncertainty in Measurement”, which referred as GUM [ISO/IEC 

Guide 98, 1995]. The influence of impurities on the fixed-point temperature is one of 

the main important component uncertainties. The uncertainty budgets of the 

temperature realisation can be reduced if this component can be estimated very 

carefully considering the base crystallographic behaviour as previous mentioned.  

The component uncertainties of the temperature realisation attributable to the 

impurity effect can be estimated from three different significant methods. These 

methods are discussed in CCT/01-02 and CCT/05-08 document reports [Fellmuth, 

2001; Ripple et al., 2005]. Their methods comprise the “Sum of Individual Estimates” 

(SIE), the “Overall Maximum Estimate” (OME) and the “Estimate based on 

Representative Comparisons” (ERC). Additionally, the combined SIE/OME method 

will be provided. 

3.2.1 Sum of Individual Estimates (SIE) 

This method is applied to estimate the uncertainty component and the 

temperature change correction when the concentrations of all impurities are 

determined and also the knowledge of the concentration dependence of the fixed-point 

temperature for the different impurities is revealed. The suitable analytical techniques 

are used to detect the impurities inside the “pure” metal fixed-point ingot. For 

instance, the Glow Discharge Mass Spectrometer (GD-MS) is the most 

comprehensive and sensitive technique available for the analysis of solids, which is 

used to detect the impurities element. Therefore, the change of freezing temperature at 

the liquidus point, which is corrected for the influence of impurities as the SIE 

method, can be evaluated from the equation 3.11 as follows [Ripple et al., 2005]: 

                  ∑∑ ∂∂−=−=−=Δ
i

iii

i

i
liquiduspureSIE cTcmcTTT )/( 1111111               (3.11) 

where ic11 is the concentration of the impurity i at liquidus point and im1  is the 

first derivative, which is explained in the equation 3.7. 
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The uncertainty of the SIETΔ  estimation, which is calculated from the 

uncertainties of the chemical analysis results )( 11
icu  and the concentration 

dependences )( 1
imu , is given by the relation [Ripple et al., 2005]: 

                                    ∑ +=Δ
i

iiii
SIE mucmcuTu 2

111
2

111
2 )]([])([)(                              (3.12) 

Therefore, the SIE method is used to estimate of the uncertainty from all 

relevant impurities concentrations, whereupon the fixed-point temperatures are 

corrected for the influence of impurities. However, if the metal material is less pure 

than 99.999% then the use the SIE method may not be suitable for estimation the 

uncertainty due to “the assumptions of independent influence appropriate to the dilute 

limit may no longer apply” [Ripple et al., 2005].   

3.2.2 Overall Maximum Estimate (OME) 

The OME method can be applied for the uncertainty estimation if the 

individual impurity concentrations or their effect on the liquidus temperature are not 

determined. The expected temperature change at liquidus point is estimated by 

[Fellmuth and Hill, 2006; White et al., 2007] 

                               pureliq TT − < AcTOME /11max, =Δ                                    (3.13) 

This temperature estimation is based on equation (3.4). From equation 3.13, 

the estimation for the bound of the impurity effect yields from the overall impurity 

content and the first cryoscopic constant. The uncertainty estimation as the OME 

method is written as [Fellmuth and Hill, 2006; White et al., 2007] 

                           3/]/[3/][)( 2
11

22 AcTTu OMEOME =Δ=Δ                              (3.14) 

 However, the uncertainty of the OME method, )( OMETu Δ , is usually larger 

than other estimates. It provides a maximum estimate provided that the overall 

impurity content is estimated reliably, because impurities having high equilibrium 

distribution coefficients are very efficiently removed by zone refining. 
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3.2.3 Estimate based on Representative Comparisons (ERC) 

The Estimate based on Representative Comparisons (ERC) method is applied 

if the overall impurity content cannot be estimated reliably. It is a crude estimate, 

which can be inferred indirectly from the comparison of different fixed-point 

materials. The valuable data for the application of the ERC method result from the 

CIPM Key Comparisons in the field of thermometry, (see more details in CCT/01-02 

[Fellmuth et al., 2001]). Therefore in the absence of other information, the data for 

estimate the chemical impurities in the uncertainty budgets type B can be found from 

2 types of the uncertainty, i.e. the “normal category of uncertainty” and the PTB 

uncertainty budgets, as described in document CCT/01-02 [Fellmuth et al., 2001]. The 

normal category of uncertainty is used as an alternative, which is obtained from the 

national metrology institutes. CCT/01-02 also gives an example from the PTB 

uncertainty budgets, belong to the commonly called “best category of uncertainty” 

[Jung, 1977], i.e. they can be obtained only with considerable effort by a small 

number of leading workers in the field. The uncertainty budgets, which are composed 

the individual uncertainty contributions, for the calibration defining fixed-points of the 

ITS-90 of PTB and the normal category of uncertainty are presented in Appendix B. 

The influence of impurities is the largest contribution to the uncertainty budgets of 

temperature fixed points as shown in the uncertainty budgets (Appendix B). 
 

Table 3.2 Data for influence of impurities in the uncertainty budgets type B of 

the PTB uncertainty budgets and the “normal category of uncertainty” for the 

calibration of SPRTs at the defining fixed points of the ITS-90 [CCT/01-02]. 

(Temperature equivalents in mK) 

 

Type B uncertainty components (mK) 

Chemical impurities, isotopes 

Fixed-
Point e-H2 Ne O2 Ar Hg H2O Ga In Sn Zn Al Ag 

PTB 0.17 0.16 0.19 0.14 0.06 0.031 0.06 0.25 0.31 0.54 0.40 0.65 

Normal 
Category 0.42 0.20 0.20 0.29 0.25 0.10 0.20 0.78 0.52 0.71 1.50 3.60 
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All three methods, as mentioned above, can be used to estimate the uncertainty 

component caused by the change of the liquidus point temperature of the fixed-point 

sample due to the effect of impurities.  

From the information in the CCT/01-02 document report [Fellmuth, 2001], the 

uncertainty estimation cannot be corrected for the fixed-point temperature with respect 

to the influence of impurities from Methods 2 and 3. Only Method 1 can be used for 

that case. However, “Method 1 does not allow calculating corrections because the 

uncertainty of the analysis results is comparable with the results themselves (this 

uncertainty may be as large as a factor of three)”.  

Therefore, Method 4 has been produced for estimate the uncertainty. This 

method is combined from the first two methods. It is called “SIE/Modified OME 

Combined Method”.  
 

3.2.4 SIE/Modified OME Combined Method 
 

Both SIE and OME methods are combined to estimate uncertainty. The 

application of SIE method is used for the dominant impurities and the OME method is 

used for the rest of the impurities as demonstrated in the CCT/05-08 document 

[CCT/05-08, 2005]. If the equilibrium distribution coefficients ( ik0 ) of all relevant 

impurities are comprehended, then it will make a simpler case for estimation by use 

the modified OME method. The SIE method would be used for only the dominant 

impurities with 1.00 <
ik . The rest of impurities with 1.00 ≥

ik  are evaluated by 

applying Raoult’s law, which is approached by the OME method [Fellmuth and Hill, 

2006]. The uncertainty estimation of SIE/Modified OME Combined Method would be 

calculated by use of two equations, which combine the result from equation (3.12)-

SIE method with that from equation (3.14)-OME method.  

All four methods are produced to estimate the uncertainty component of fixed- 

point temperatures resulting from the influence of impurities. The Sum of Individual 

Estimates (SIE) method is recommended for estimating the uncertainty after 

correcting the influence of impurities. However, the chemical analysis of the fixed-

point metal needs to be determined and also the information of concentrations and 

influences of the individual impurities on its fixed-point temperature must be known.  
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If the information of individual impurities for SIE method is deficient, then the 

OME method would be an alternative estimate to consider. This method yields a 

maximum estimate if overall impurity content is dependable with the equilibrium 

distribution coefficient bigger than two can be removed by zone-refining and 

disregarded.  

The SIE/Modified OME combined method is applied to estimate the 

uncertainty when the equilibrium distribution coefficients are known. This is 

approached from the SIE method for only most impurities with 1.00 <
ik  and from the 

OME method for the influence of impurities with 1.00 ≥
ik .  

  

3.3 The influence of impurities on the metal fixed-point temperatures  
  

The nominally 99.9999% high purity metals are normally sufficiently pure to 

be used in new fixed-point cells. In 2003, National Institute of Standards and 

Technology of the United State of America (NIST) reported the minimum purity level 

(wt%) requirement of each fixed-point material used in the NIST PRT Laboratory for 

producing the fixed-point cells [Strouse, 2003]. The requirement of each fixed-point is 

listed in Table 3.3.  
 

Table 3.3 The minimum sample purity requirement of each fixed-point 

material, which are used by NIST PRT Laboratory in order to make the fixed-point 

cells as specified in the ITS-90 [Strouse, 2003]. 
 

 

 

 

 

 

However, the best available high purity for the various metal fixed points (e.g. 

99.99999% In, 99.99999% Zn, and 99.99995% Al) are produced and expected to 

make certain that the influence of impurities is not a significant factor for the 

uncertainty budget [Hill and Rudtsch, 2005].  

Although the materials of high purity are produced, the amount of impurities 

that are present in the materials is still a problem. This is because the low level 
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concentration of impurities (in terms of part per millions by weight, ppmw) can affect 

the high purity metal phase transition curve at fixed-point temperatures after various 

processes of intensive refining. This agrees with the report of Renaot, et al., [2008]. In 

this report, a new aluminium open cell was fabricated with 99.99995% purity of 

aluminium, which is the purest available aluminium sample. This sample was 

determined the chemical analysis by Glow Discharge Mass Spectrometry (GD-MS) 

technique. The GD-MS result indicated that trace impurity concentrations were still 

contained in the aluminium sample even though this sample is the best high purity of 

aluminium at present. Furthermore, increasing the purity of the material would also 

increase the cost and hence make the project unnecessarily expensive. As shown in the 

reasons above, the studies of the impurity effects have been interested with small 

amount of impurity additives into the purity metal fixed points. After correcting the 

temperature with the influence of impurities, the higher level of the confidence in the 

uncertainty budget would be produced due to the value of the uncertainty component 

is reduced by use of the SIE method. This yields the accuracy and the reliability of the 

realised fixed-point temperature.  

The data relating to the effect of all impurities existing in the fixed-point 

material would be obtained from the phase diagrams of the mixtures of materials. The 

alloy of two or more component materials is considered to be the base system in order 

to evaluate the departure of temperatures from the high purity fixed-point curves. The 

constitution of binary alloys book is one of existing information [Hansen, 1958], 

which is used to study the phase diagrams. The improved data of the phase diagrams 

are also available in “the American Society for Metals (ASM) Handbook Volume 3” 

[Baker et al., 1992], “Binary Alloy Phase Diagrams” [Massalski et al., 1990] and 

“Handbook of Ternary Alloy Phase Diagrams” [Villars et al., 1995].   

First of all, the research of a series of dilute binary alloys would be stated to 

show the example of the impurity behaviours and their effects in the based materials. 

In 1963, the base alloys of zinc (Zn) and lead (Pb) were studied with solute additions 

of silver (Ag), gold (Au), antimony (Sb), thallium (Tl), tin (Sn) and Zn [Weinberg and 

McLaren, 1963]. Considering in example case of a Zn-Tl system, Tl was chosen for 

doping due to it has a low distribution coefficient (0.01), which is good to study the 

solute distribution in the base metal alloy, and also the phase diagram information at 

the very low Tl concentrations is available [Weinberg and McLaren, 1961]. The 
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previous phase diagram information of the Zn-Tl alloys would help to predict how 

much the fixed-point temperature after adding Tl will be changed.  

This Zn-Tl alloy system was investigated after using a slow induced freeze 

technique. This was commenced with the normal slow freeze (< 1 oC below the 

equilibrium temperature was set at the furnace) until the initiate solidification (or 

nucleation) appeared, then the cold rod was inserted into the thermometer well to 

induce the thin solid mantel from inside of the ingot. From this experimental stage, it 

was discovered that the influence of induced freeze time significant affected on the 

shapes of the pure Zn curves, as illustrated in Figure 3.7. The proper selection of the 

induced time leads to obtain a flatter the freezing curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Effect of Induced time on the slow freezing curves in high purity Zn 

[Weinberg and McLaren, 1963]. 
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Figure 3.8 Photographs (a,b,c,d) and autoradiographs (e,f,g,h) of sectioned on the 

surfaces of Zn-Tl [Weinberg and McLaren, 1963]. (a),(b),(e),(f) 8 ppmw of Tl; (c), (g) 

59 ppmw of Tl; and (d),(h) 567 ppmw of Tl. 

 

The segregations of Tl, as increased the concentrations of 8 ppmw, 59 ppmw 

and 567 ppmw, respectively), within the pure Zn ingots and the morphology of the 

solidified ingots were shown via the autoradiograph techniques, as shown in Figure 

3.8. The photographs on the surface and autoradiographs of the sectioned parallel and 

perpendicular of 8 ppmw Tl in Zn ingot were shown in Figure 3.8 (a), (b), (e) and (f), 

respectively. A layer of small grains appear at the middle of the Zn ingot after slow 

inducing freezing techniques, as seen on both sectioned parallel and perpendicular 

photographs of the ingot in (a) and (b). The following grains, which are the main 

residual grains of the ingot, are rather large. Autoradiographs in (e) and (f) also 

indicate the corresponding results, which can see the small gap separating the two 

different sizes of the grains. Weinberg and McLaren [1963] explained the reason for 

this evidence is that “all the Tl has pushed into a narrow band separating the large 

grains from the small grains (i.e. the final portion of the ingot to freeze) either along 

the grain boundaries or forming a segregation substructure near the boundaries”. At 

8 ppmw Tl, the micro segregation of Tl only distributes in the centre of the ingot. It 

does not have any signs to show the micro segregation or the substructure of the 

additional nucleation in the large grains after solidification started at the outside area 

of the ingot.  
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The photograph and autoradiograph of 59 ppmw Tl are shown in Figure 3.8 (c) 

and (g) [Weinberg and McLaren, 1963]. The Tl segregation in Zn ingot exhibits the 

resembling distribution when is compared with 8 ppmw case; that is the most small 

grains layer is around the middle of the ingot at the grains boundaries. However, the 

segregation at the further area from the middle has much smaller grains when likened 

to the large grains of 8 ppmw Tl. It may be because the amount of Tl concentrations is 

increased in the ingot; therefore the Tl was pushed in more spread area. In addition, 

the large grains in the outer edge could be observed that it has no solute 

concentrations. Weinberg and McLaren [1963] also gave the complementary 

explanation that “some large grains were nucleated in the liquid at the later stage in 

the freezing process after which the solid-liquid interface could no longer be 

considered approximately cylindrical. They appear essentially free of solute and are 

surrounded by a layer of alloy that is high in solute concentration”. 

The structure of 567 ppmw of Tl in Zn-Tl alloy is shown in Figure 3.8 (d) and 

(h). A big number of small grains evenly distribute in the ingot. The most impurity 

concentrations are at the grain boundaries and just some impurities are in the grains. 

This indicates the amount of solute (impurity) concentrations is very important to the 

impurity segregation and distribution in the ingot. Also, in this case, the formation of 

the solid Zn-Tl alloy in the ingot was conducted by the nucleation and the growth of a 

large number of crystals process throughout the bulk of the liquid.   

Figure 3.9 indicates that the Tl is separated to the area close to the mantle 

which was the last portion to freeze, which is agreed with their autoradiographs. 
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Figure 3.9 Average solute distribution of Zn-Tl alloys as a function of the increased 

solute concentrations [Weinberg and McLaren, 1963]. 

 

 Moreover, Weinberg and McLaren’s article [1963] displays the effect of 

freezing rate on the solute distribution in the Zn-Tl system, as shown in Figure 3.10. 

The fast freeze of Zn-Tl reveals the extensive solute segregation throughout the ingot.  

 

 

 

 

 

 

 

 

Figure 3.10 Autoradiographs of Zn-Tl alloy, (a) very slow induced freeze (18 

hrs) 71 ppm; (b) very rapidly freeze (8 mins) 20 ppm [Weinberg and McLaren, 1963]. 
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Considering at high metal fixed-point temperature, i.e. silver (Ag), six pure Ag 

samples were deliberately doped in the adiabatic system with the various amounts of 

Pd, Fe, Au, In, An, Pb, Zn, Sb, Cu, Ni and Al, one at a time, as referred in the 

experiment of Ancsin’s work [Ancsin, 2001a]. A reason why this research was started 

is two of three nominally 99.9999% purity Ag samples of the earlier research by 

Ancsin [2001b] were noticed that their liquidus temperatures was different about 

5 mK. That was caused by the contamination of trace impurities (about 5 ppmw in 

total) in the samples. Therefore, the effect of impurities was considered and 

investigated in the high purity fixed-point samples. The impurity elements, except Al 

and Pb, were the dominant impurities of the Ag pure samples, which were detected 

using GD-MS analysis before doping [Ancsin, 2001a]. From the experimental results, 

each of these impurities caused the melting temperature curves to shift. The 

corresponding changes of liquidus temperature as increased amounts of impurities 

were introduced (with the exception of Al); the rates are as follows: Pd +0.97; Fe 

+0.13; Au +0.09; In -0.49; Sn  -0.60; Pb -0.48; Zn -1.10; Sb -0.73; Cu -0.69; and Ni -

0.74 in units of mK/ppmw. Some curve examples of the melting temperature shifts 

after doping with the various impurities in the Ag samples as a function of increased 

impurity concentrations are shown in Figure 3.11 and 3.12. Figure 3.11 illustrates the 

corresponding shifts of liquidus temperature of silver samples as increased amounts of 

various impurities. 

    

 

 

 

 

 

 

 

 

 
 

Figure 3.11 Effect of adding trace amounts of impurities to pure sample; ♦ 20 

June, 99.9999 % Ag; ∆ 26 June, 25 ppmw Zn; × 26 June, 25 ppmw Zn + 38.5 ppmw 

Sn; ○ 27 June, 25 ppmw Zn + 38.5 ppmw Sn [Ancsin, 2001b]. 
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Figure 3.12 Effect of adding trace amounts of impurities to pure sample; ♦ 6 

July, fresh 99.9999 % Ag;  6 July, 16.3 Ni; ▲7 July, 29 Ni;  ○ 7 July, 53 Ni;  8 

July, 53 Ni; ● 9 July, 53 Ni + 19.5 Pd; ∆ 10 July, 53 Ni + 32.2 Pd; □ N 10 July, 53 Ni 

+ 45.7 Pd;  11 July, 53 Ni + 45.7 Pd [Ancsin, 2001b]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 The corresponding changes of liquidus temperature of silver 

samples as increased amounts of various impurities: ♦ Pd; ■ Fe; ∆ Cu; × Sn;  Ni; ● 

Au [Ancsin, 2001b]. 

 

Consider two curves of the 53 Ni + 45.7 Pd, as measured at the different date, in 

Figure 3.12, the shifts of the curves indicate that Pd was demanding much time to be 

dissolved in the silver liquid and the curve took many hours to stabilise. It was 
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supposed by Ancsin that it possibly was because of its low solubility. In addition, 

Ancsin suggested that Al did not have any effect on the temperature Ag curve. Maybe 

it is because the liquid phase of trace Al could not dissolve in the liquid silver or it 

possibly the liquid Al, being lighter than Ag, floats on top of liquid silver. This was 

proved by GD-MS analysis that it had no detection of any amount of Al in the Ag 

sample after doping with Al several times [Ancsin, 2001a]. From above-described 

information, we can conclude that the influence of each impurity in the host material 

remains independent of each other at low concentrations. The magnitude of each 

effect on the temperature depends on both the species type and the amount of that 

particular species and the total temperature change is the sum of the individual effects, 

taking account of any sign. Moreover, the solubility of the impurity, which affects the 

segregation in the host, is also a significant factor on the accurate fixed-point 

temperature. 

     Considering at low temperature, Gallium fixed-point cells were added with 

different amounts of impurities [Bonnier et al., 2001]. 

Furthermore, the freezing curves themselves can be considered to show the 

content of impurity, as confirmed in Mendez-Lango’s article [2001]. The fixed-point 

ingots with larger curvature and lower temperature can be explained that they are 

contaminated with the impurities. Also, the freezing temperature curve near the 

liquidus point is higher means the purer and the curvature is flatter means the purer.     

Moreover, the shift of the freezing point caused by the impurities present in the 

fixed-point ingot agreed with the research of Widiatmo et al. [2004] as well. It was 

also discovered that the rate of solidification influences the shift of the measured 

metal freezing curves. This research was investigated on the Sn, Zn, Al, and Ag metal 

fixed points with the variety of the solidification rate in terms of the different furnace 

setting. This work can be explained by use the theory of impurity segregation in the 

base metal. That is, an effective distribution coefficient ( effk ) value would be near the 

equilibrium distribution coefficient ( 0k ) when the solidification rate is high 

[Widiatmo et al., 2004]. Therefore, it can be concluded that the change of the freezing 

temperature is smaller if the rate of solidification is higher.  

In a subsequent experimental research, the Zn fixed-point samples were of 

interest to study the influence of impurities on their melting point temperatures. This 

work was determined by Ancsin [2007]. The Zn samples were added with an 
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assortment of impurities, which already exist in the 99.9999% purity Zn. These 

impurities were Fe, Pb, Cd, In, Cu, Ag and Au, which the original sample was 

detected by GD-MS technique. In particular, the shift of the melting curves caused by 

these impurities would be investigated under the adiabatic condition. In this condition, 

the furnace temperature needs to set as close as possible to the sample temperature in 

order to decrease the heat exchange between sample and its surroundings. The aim of 

the adiabatic furnace is to maintain the stable temperature along the furnace, in which 

the vertical heat losses are insignificant, as described in the Ancsin and Mendez-

Lango’s research [1999]. This adiabatic furnace was specially designed, and the 

diagram of the furnace components is shown in Figure 3.14 [Ancsin, 2007]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Adiabatic furnace components designed by Ancsin [2007]. 
 

After experiment, the Fe, Pb, Cd, In, Cu, Ag and Au impurities shifted the Zn 

melting points by -0.51, -0.27, -0.33, -0.39, +0.23, +0.26 and +0.078 mK/ppmw, 

respectively. Some examples of both elevation and depression shifts of the Zn melting 

curves after doping impurities are illustrated in Figures 3.15 and 3.16 (One vertical 

division is about 1 mK) [Ancsin, 2007]. Figure 3.17 shows the summary of the shifts 

of the melting Zn temperature after doping with assortment impurities as a function of 

impurity content.  
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Figure 3.15 Melting curves of high purity Zn fixed-point and the elevation of 

these curves after doping with increasing concentration of Cu, plotted as a function of 

melting time. ▲ undoped Zn sample, □ and ∆ 20 ppmw of Cu, × and ○ 59 ppmw of 

Cu [Ancsin, 2007]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 Melting curves of high purity Zn fixed-point and the depression of 

these curves after doping with Fe, plotted as a function of melting time.  undoped 

Zn sample,  and × are melts with 35.6 ppmw Fe after freezing  at different rates, 

namely rapidly and slowly, respectively [Ancsin, 2007].  
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Figure 3.17 Elevation and depression shifts of the Zn melting curves after 

doping with increasing amounts of various impurities [Ancsin, 2007]. 

 

At Figure 3.16, two differences of the freezing rate before melting, i.e. rapidly 

and slowly frozen, were considerably determined at the same Zn sample. In general, 

the “rapidly (or quench) frozen” method is done by lifting the whole sample out of the 

furnace until about 20 oC - 30 oC below its melting point or by turning the temperature 

of the furnace down about 5 oC - 10 oC below its normal melting point to freeze it very 

quickly from the outside, then insert the cold rod for a few minutes into the 

thermometer well to freeze from the inside. The other frozen method is “slowly 

frozen”. It is carried out the slow freezing overnight by lowering the temperature of 

the furnace about 1 oC below the melting range of that sample. The result as shown in 

Figure 3.16 shows the totally different effect at the beginning of shapes of those two 

melting curves even though the material was from the same Zn doped with Fe. This 

indicates that the rate of the preceding freeze of the melting curve influences to the 

impurity distribution in the solid metal ingot, which then would also affect the shape 

of the melting curve. The influence of freezing rate on the melting curves of this work 

is in agreement with respect to the other researchers [Ancsin, 2001a; 2001b; and 

Zhang, 2008]. Ancsin [2007] suggested in the article that the solubility level of the 

impurity in base metal fixed point is significant to the scatter in the shift of run-off 

point, as shown in Figure 3.17. In actual fact, this scatter would appear if some 

remaining concentration gradients in the samples exist. The very low solubility of Fe 

in Zn would affect the deviation from linearity in its shift due to the Fe concentration 
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may be because the saturation value is approached, which is “the most extreme case” 

(no line is drawn for Fe impurity in Figure 3.17). Also, the experimental results from 

all different impurity effects showed the reproducibility of the curves if they were 

investigated by the same techniques and the same metal impurity.  

Generally, the higher solubility impurity shows the smaller scatter, which 

appears with the other impurities in Figure 3.17. The other impurities which were 

added to the Zn sample were also more homogeneous, as seen in the straight lines 

plotted through the points. 

In recent research on the fixed-point temperature [Rudtsch et al., 2008], the 

work of PTB revealed the influence of impurity behaviour at different materials on 

melting and freezing curves of the metal fixed-point temperatures. It helps to 

understand the impurity distributions in the metal ingot to receive more precise 

information on the binary phase diagrams at low level impurity contents. Various 

impurities were added to the PTB fixed-point cells. Also, this work indicates the 

importance of the thermal effects.  

As above described, they are the examples of the study of the impurity effects 

on the freezing and melting curves fixed-point cells. 

The traceable analysis of impurity contents on tin and aluminium fixed-point 

temperature is the focus of this thesis, and the previous research activities will be 

reviewed in the next section. 
 

3.4 Reasons for studying tin and aluminium fixed-point temperatures 
 

Two metallic fixed points, i.e. tin and aluminium, were selected to study the 

influence of trace impurities in their pure metal fixed points. The reason why these 

two freezing points were chosen is because this activity is a joint project of NPL 

contact thermometry, under the European Association of National Metrology 

Institutes (EURAMET) project 732. The EURAMET, formerly EUROMET, is the 

Regional Metrology Organisation (RMO) of Europe, which was founded by the 

concurrence of National Metrology Institutes (NMIs) within the European countries. 

The objective of this organisation is to study and research in metrology, which 

included traceability of measurements to the SI units, international recognition of 

national measurement standards, and enables a higher degree of consolidation and 

coordination of metrology research. Further, it is aimed that the joint efforts can 
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obtain an improved understanding of the difficulties and eventually lead to the 

possibility of attaining a better accuracy of the ITS-90 realisation in Europe.  

For EURAMET 732 project, “Toward more accurate temperature fixed points” 

is the title of this project [EURAMET Technical Committee Projects, 2008]. The main 

purpose of this project is to improve the fixed-point realisation as defined in the ITS-

90. The principal work is restricted within the temperature fixed points linked with 

Long Stem Platinum Resistance Thermometers (argon triple point to silver freezing 

point). In EUROMET 732 project, there are many research areas, in which each 

activity is distributed among the 16 participating laboratories [Renaot et al., 2008].  

For NPL (UK), the improvement in the study of the fixed-point cells of tin 

(231.928 °C) and aluminium (660.323 °C) is the main activity. Also, the application 

of MTDATA is planned to correct for impurities so as to enable a reduction in the 

uncertainty using the SIE (Sum of Individual Estimates). This would play a significant 

role in the improvement of the temperature standards and to reduce the uncertainties 

of the fixed-point temperature realisation. It would enhance the confidence in the 

uncertainty budget and lead to developments in the temperature scale in the future.  
 

3.5 The influence of impurities on the melting and freezing curves of the 

tin fixed point 
 

The eutectic alloy is used to explain the reaction or phenomenon of the 

equilibrium phase diagram of the fixed-point cell when is doped with the impurities. 

In general, this mixture system composes of two components, which is a simple 

binary system. 

The reports of influence of impurities on the melting/freezing curves of tin 

fixed-point temperature have been reviewed in many previous investigations. In 1980 

Connolly and McAllan [1980] reported the sensitivity of the temperature measurement 

of metal fixed points, which was limited by the effect of very small amounts of 

impurities. In this article the freezing point of tin temperature was studied by adding 

from low concentrations up to 56 ppmw of Fe and 36.5 ppmw of Sb. Considering the 

antimony results; it appeared that the melting and freezing tin temperatures were 

raised by an amount proportional to concentrations of Sb impurity at low 

concentrations from 0.7 up to 36.5 ppmw. It was because the peritectic system of Sn-

Sb. However, the melting curve at 36.5 ppmw of Sb showed the increased melt but it 
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had become broad near the end of the liquidus point. Furthermore, the additions of Sb 

caused a peak in the freeze curve at around 10% - 20% fraction frozen, followed by 

the temperature falling less than that of pure tin.  

In 1999, Stolen and Gronvold studied the effects of trace impurities of Sb and 

Bi on tin fixed points both theoretically and experimentally [Stolen and Gronvold, 

1999]. In this paper, the results indicated that the behaviour of the Sn-Bi system 

represented a eutectic type and the Sn-Sb system a peritectic type.  

Several more recent investigations have been accomplished on the effect of 

impurity on the melting/freezing curves of tin temperature fixed-point. There has been 

considerable experiment to study the influence of Sb impurity on the tin point 

substances by Zhang et al. [2008]. The Sb impurity is only one metal, which increases 

the tin temperature fixed point. It is because the solubility of antimony in the solid is 

more than in the liquid phase. The influence of Sb on tin was studied from 0.41 up to 

11.4 ppmw concentrations under different conditions. The results confirmed that the 

freezing/melting temperatures were elevated with increasing Sb content. Also, the 

depth of tin supercooling was decreased with increasing amounts of Sb. This 

publication showed that the prior freezing process affected the impurity distribution in 

the tin ingot, which we can see the effect on the melting curves. The peak of the 

melting curves with a second inner interface after accounting for the overheated liquid 

around the re-entrant well was due to the accumulated antimony. The size of the peak 

relies on the history of the freezing conditions.    

In the same year, the tin fixed-point measurement focused on the impurity 

dependence of Sn and the properties of the Sn-Fe eutectic [Ancsin, 2008]. The high 

purity Sn fixed-point samples were doped with small concentrations of Fe, Sb, Pb, In 

and Al, which were chosen from the impurities present in the Sn samples. The results 

showed the shift of the melting curves of the initially “pure” Sn by -0.75 mK/ppmw of 

Fe, +0.23 mK/ppmw of Sb, -0.16 mK/ppmw of Pb, -0.21 mK/ppmw of In 

and -2.3 mK/ppmw of Al. Ancsin [2008] revealed the interesting point that the 

precipitate of Fe and Al impurity metals were found in the liquid tin samples. This is 

because of the supersaturation of Fe and Al at concentrations at 1654 and 12.2 ppmw, 

respectively. Furthermore, this work presented the effect of impurities by using the 

adiabatic furnace, as shown in Figure 3.18 [Ancsin, 2007]. Some examples of melting 

curves of tin samples after doping with introduced impurities are indicated in 

Figure 3.19.  Moreover, Ancsin [2008] showed the influence of the freezing rate from 
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a partially molten state, as illustrated in Figure 3.19.  The different rate of prior 

freezing of melting curves showed the different shape at the beginning of the curves. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 Melting curves of a “pure” Sn sample and the shift of these curves 

after doping the tin with increasing concentrations of Pb. ♦ equilibrium melting curves 

of rapidly frozen high purity Sn (the liquid sample was lifted out of the furnace for 3.5 

min). The lower curves are 39.7 ppmw Pb and 119.5 ppmw Pb doped samples, 

respectively. The bottom curve is the equilibrium melting curve of the 119.5 ppmw 

sample that was slowly frozen (about 8 h) from the partially molten state [Ancsin, 

2007].  
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Figure 3.19 Melting curves of a “pure” Sn sample and the shift of these curves 

after doping the tin with 88.8 ppmw of Sb. □ high purity Sn, ▲ Sn with 88.8 ppmw of 

Sb rapidly frozen by lifting out of the furnace for 3.5 min. The other curves are those 

of samples slowly frozen (8 h to 12 h) after the following melting minutes:  2.5 

mins, ∆ 5.5 mins, ● 7.5 mins and ○ 7.75 mins [Ancsin, 2008]. 
 

3.6 The influence of impurities on the melting and freezing curves of 

aluminium fixed point 
 

The aluminium freezing point (660.323 oC) is one of a series metallic fixed 

point, adopted by the ITS-90. This fixed point plays an important role in providing 

and dissemination of high temperature standard values. The handling of the high 

purity metal used has a strong influence on the accurate temperature realisation at 

aluminium fixed point.  

Recent research studies have investigated the influence of impurities on the 

aluminium fixed point e.g. Widiatmo et al. [2003]; Widiatmo et al. [2006] and Renaot 

et al. [2008]. 

In this thesis, the work of Ancsin [2003] on the influence of impurity on 

aluminium e.g. Ti in Al has given us an inspiration for our work. In Ancsin’s work, 

Aluminium ingots (99.9999%) had been doped using 13 metal impurities in different 

concentrations (i.e. Ag, Zn, Cu, Fe, In, Quartz, Si, Ti, Mn, Cd, Sb, Ca, and Ni) under 

adiabatic conditions. It found that the run-off point of pure Al melting temperatures 

was decreased with all impurities except Ti, which increased it. The shift of run-off 

temperatures caused by those impurities is as follows (in mK/ppmw); Ag -0.12; Zn -
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0.16; Cu; -0.29; Fe -0.35; In -0.21; Quartz -0.33; Si -0.66; Ti +3.30; Mn -0.063; Cd -

0.10; Sb -0.19; and Ni -0.43 [Ancsin, 2003]. Considering Calcium at “low level” 

concentrations (138.8 ppmw), the run-off point of the melting curves had no change 

for all experimental works. In Anscin’s work [2003], he gave the reason why the run-

off was used to determine instead of the liquidus point that “an accurate determination 

of the liquidus point requires an accurate determination of the total melting time, 

whereas an accurate determination of the run-off temperature does not.”  

Later, the aluminium fixed point curves of Ancsin were studied by use of the 

application of a thermodynamic model, embodied in NPL’s MTDATA software 

[Head et al., 2008]. That work was to investigate “the initial drop in the freezing 

temperature and the temperature fall during the freezing using both equilibrium and 

“Scheil” approaches”. This work compared the theoretical curves with the previous 

published experimental data on impurity-doped aluminium, which was Ancsin’s work 

[2003]. The equilibrium simulations were in close agreements with Ancsin’s work for 

doping with Ag and Si but not the Ti impurity. The Ti doped Al simulation gave the 

wrong curvature as seen in Figure 3.20, which still remains to be explained.  

 

It is this “contradiction” curvature that suggested to us that one of the binary 

substances that we should study in this work is pure aluminium doped with titanium. 

The results of our work on this binary are described in chapter 7. 
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Figure 3.20  2.8 ppm Ti impurity in the aluminium point – MTDATA theory (line) 

compared to experimental points of Ancsin [2003]. Temperature scale range is 

933.450 to 933.490 K. Note how the experimental data shows the “contradiction” 

curvature [Head et al., 2008]. 
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Chapter 4 

Experimental Design 

 
This chapter describes in detail the experimental plans and strategies that were 

designed to improve the principles of the temperature realisation and the calibration 

techniques reported in this thesis. The freezing points of tin (231.928 °C) and 

aluminium (660.323 °C) are two of the metallic fixed-points specified for use in the 

definition of the International Temperature Scale of 1990 (ITS-90), which were 

selected for study. The effects of very low levels of impurities on the tin and 

aluminium transition temperatures would be investigated in order to check the offset 

values interpolated from the experiments using relatively high levels of impurities. 

The aim of the experimental design is to evaluate the capability and the limitations of 

the experimental procedures and to predict the likelihood that the appropriate 

experimental conditions to accomplish the objective of this research have been 

achieved. A better understanding of low-level impurities would help reduce the 

uncertainty budget of the tin fixed-point realisation, where impurities are the biggest 

contribution to the uncertainty budget. However, demands for reduced uncertainties 

persist and techniques evolve to other factors. Also, the purpose of this research is to 

include the improvements of thermal conditions and heating method, furnace design, 

and control.  

 Three stages of experimental designs studied in tin and aluminium fixed-point 

temperatures will be presented. Firstly, the issue of choice of suitable measurement 

instruments will be explored in the context of extracting meaningful information from 

the measurement process. It leads to obtaining the reproducibility of the results in both 

tin and aluminium fixed-point when the appropriate apparatus settings are constructed. 

In this work we try to reproduce such measurements using standard NPL equipment, 

which provides standard controlled condition, as used by national measurement 

institutes (NMIs) worldwide. This is important in ensuring the inter changeability of 

temperature measurements around the world. Secondly, the appropriate temperature 

realisation method, and doping/mixing techniques will be investigated and performed 

to achieve the plateaux stability and homogeneity inside the cells. The actual freezing 

and melting plateaux will be obtained at this stage. Finally, the chemical analysis, i.e. 

glow discharge mass spectrometer (GD-MS) characteristic technique, will be used to 
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determine the distribution of the impurity elements within the metal ingot, before and 

after deliberate doping. Also, both theoretical (using the NPL’s MTDATA software) 

and experimental results will be compared before doping in order to determine the 

initial drop of the high purity freezing temperature and temperature decrease during 

freezing.  
 

4.1 Tin Fixed Point  
  

For tin fixed-point experiment, two standard purity tin fixed-point cells were 

used to study the influence of trace impurities on the equilibrium tin temperature. Both 

standard tin cells were named after their donors as “Spanish tin” and “Mini Isotech 

tin”; these tin ingots were donated by Centro Espanñol De Metrología (CEM), Spain, 

and the Isothermal Technology Company, respectively. The experiment procedures of 

both tin cells are similar as explained in Figure 4.1.  
 

4.1.1 Spanish tin fixed-point  
 

 For the Spanish tin cell, it was originally of the sealed-fixed point type which 

had been opened up and re-assembled into an “open cell” by means of the addition of 

a thin quartz tube, which had been special addition made by Isothermal Technology 

Ltd (Isotech). Pictures of the ’opened sealed cell’ can be seen at Figures 5.2, 5.3, and 

5.4. The original sealed cell looks very similar except that it has no projecting silica 

tube - in fact the silica shroud is totally sealed on itself. (The cell was later converted 

to a traditional open cell similar to the diagram at Figure 5.6). Its original purity 

(based on Isotech information) was nominally 99.9999%. This tin fixed-point cell was 

purchased in 1993, but it has been out of use since 1998. The problem with the cell 

was that, at ambient temperature, the quartz envelope had broken due to a shock. 

Therefore, this tin cell was donated to our studies to measure the effect of adding 

impurities to a tin fixed point.  
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Figure 4.1 Diagram of experimental procedure for studying the effect of trace 

impurities on the tin fixed-point cells. *The impurity concentrations are presented in 

ppm unit, whereas the present work is carried out on weight basis, hence ppmw (parts 

per million by weight), i.e. μg/g unit is used.  
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Cut samples off to check 
GDMS analysis before 
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Compared the results with MTDATA 
programme 

Cut samples off to check 
GDMS analysis after 
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obtaining the comparison 
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cell after doping the tin cell 

Calibration by comparison tin cell with the 
Reference Isotech Sn184 fixed-point cell  

Tin Fixed-Point Cell Assembly 

Co doped at 5.5, 7.4 μg/g (ppmw) * 
Pb doped at 7.9, 31.4 μg/g (ppmw) * 
Sb doped at 7.8, 23.3 μg/g (ppmw) * 

Calibration by comparison tin cell after 
doping with the Reference Isotech Sn184 

fixed-point cell  
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More details will be presented in Chapter 5 of the experimental procedures of 

each step studied on the Spanish tin fixed-point, i.e. the apparatus setting, the cell re-

assembly, the size, and weight of the tin ingot, the temperature realisation, and 

characteristic, doping process and so on. A three-zone Elite furnace was used to 

maintain the uniform temperature around the Spanish tin cell. The three-zone furnace 

has the top, the middle, and the bottom heater zones. An example of the three zone 

furnace diagram is shown in Appendix C. The top and the bottom zones are the 

protection zones, isolating the influence of the ambient temperature on the 

temperature of the freezing point. The middle zone provides the temperature 

uniformity over the length of the metal ingot. Each heater zone is operated 

individually; therefore the optimum set-up for the Spanish tin cell was investigated.  

At the stage of temperature realisation, the outside nucleation followed by an 

internal induced freeze technique were used for both the Spanish and Mini Isotech tin 

cells to induce both outer and inner liquid-solid interfaces. This process produces flat 

and long freezing curves for the temperature realisation process. Details of both 

techniques will be explained in Chapter 5. In fact, the internal nucleation helps 

produces a flat shape to the initial part of the freezing curve, whereas outside 

nucleation alone, which normally occurs at the crucible walls for the high purity 

materials, shows a slow rising slope on the freeze curve due to the temperature 

gradient between the outside shell and the thermometer. For tin, which has a large 

supercooling, the nucleation can also be started on the thermowell, this is one of the 

techniques reported by Weinberg and McLaren [1963] though the different techniques 

will affect the shape of the subsequent freezing plateau. Before the impurities were 

doped in the Spanish tin cell, the glow discharge mass spectrometry (GD-MS) 

technique was used for chemical analysis in order to investigate the quantity and 

distribution (or uniformity) of the impurity elements within the “pure” tin. Also the 

impurity levels in the tin samples, after doping, would be re-measured using the GD-

MS again. Analysis results are expected to be within a factor of two of the values 

obtained, at a confidence level of 95%. This is the state-of-the-art technique for 

checking impurities in a “pure” metal fixed-point cell. The lower limit of detection is 

down to the ppb level. However, Ancsin’s research into the equilibrium melting 

curves of pure and doped silver ingots [Ancsin, 2001a] indicates that the GD-MS 

analysis results detected at National Research Council of Canada (NRC) are 

significantly better than what the stated uncertainty would introduce.  



Patchariya Petchpong                                                                                                 Experimental Design 
 

 4-5

Each element, which interacts with tin, was added into the high purity Spanish 

tin fixed-point cell. Information for selected trace impurities will be discussed in 

Section 4.1.3. Then, the experimental procedure as explained in the pre-doped Spanish 

tin cell was repeated at this stage to determine the offsets of their freezing 

temperatures and changes in the shape of the melting curve due to those impurities. 

The thermodynamic modelling in particular with MTDATA was used to calculate the 

equilibrium thermodynamic curves and to estimate the shift in the initial freezing 

temperature compared with the experimental results before doping.  
 

4.1.2 Mini Isotech Tin Fixed-Point 
   

 For the second cell, named “Mini Isotech tin”, the ingot was smaller than 

normal, being 110 mm in length, 26 mm in outer diameter, and 16 mm in inner 

diameter. The total mass of the tin sample put in this cell was approximately 240 g. 

The main experimental procedure for Mini Isotech tin is similar to Spanish tin fixed 

point. However, the three-zone Carbolite furnace was mainly used for this cell. It 

provides a uniform temperature along the length of the ingot achieved by controlling 

the temperature in the three zones. Also, the best setting for the three-zone furnace 

was determined for realisation of equilibrium phase states of pure tin substance. The 

measured value for the vertical gradient needed for the proper realisation of phase 

transition is less than 30 mK over the length of the tin ingot. More details regarding 

the cell assembly and the apparatus setting can be found in Chapter 5. 

 Platinum resistance thermometers (PRTs) were used to measure and calibrate 

the equilibrium temperature at the freezing value of the tin fixed-point. The resistance 

value of the PRT was recorded from which the temperature could be calculated. The 

experimental procedure for the Mini Isotech tin is the same as that for the Spanish tin 

cell including the GD-MS technique used for chemical analysis on Mini Isotech tin 

before and after doping. Also, the experimental melt/freeze curve(s), before doping, 

will be compared with those predicted by MTDATA, (using the GD-MS chemical 

analysis as an input and the MTDATA data base of the effects of individual impurity 

elements on the phase transition temperature). MTDATA assumes the system is in 

thermodynamic equilibrium (we approximate this by using long experimental times 

for the melt and freeze. 
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4.1.3 Types and Concentration of Impurities for Doping in Tin 

Fixed- Point Cells  
 

Trace impurities of cobalt (Co) and lead (Pb) were added to the high purity 

Spanish tin in parts per million by weight (ppmw). Hansen’s work [Hansen, 1958] 

shows that the tin temperature is depressed by 0.60 mK/ppmw and 0.133 mK/ppmw 

for cobalt and lead impurities, respectively. The binary alloy phase diagram for the 

eutectic system of Sn-Co and Sn-Pb has the equilibrium distribution coefficient ( ik0 ) 

much less than 1 for Co (very small solubility in solid tin) and less than 1 for Pb 

[Fellmuth and Hill, 2006]. Adding these two impurities to tin decreases the initial pure 

tin fixed-point. Also, we believe these two metals have never been studied 

experimentally on their effects as trace impurities on tin fixed-point temperature at 

this low level of concentration. For the doping process, a normal NPL apparatus had 

been used under standard conditions, as is the case in most national measurement 

institutes around the world. 

Amongst trace impurities in the Mini Isotech tin cell, only antimony (Sb) is 

known to increase the initial temperature of tin due to the equilibrium distribution 

coefficient ( ik0 ) being greater than 1, as defined for peritectic system Sn-Sb [Fellmuth 

and Hill, 2006]. The tin transition plateau was raised by 0.128 mK/ppmw for 

antimony impurity according to the work by Hansen [1958]. From the behaviour of 

the impurities used for doping in the two tin cells, it suggests that both the increase 

and decrease in temperature can be investigated. This is the reason why these 

impurities were selected.  

 Our measurements uses lower concentrations (in terms of part per million) of 

dopants than those of other researchers; this will verify the interpolation used by them. 

For pure Co and Pb metal impurities doping, their total concentrations in the Spanish 

tin cell are (in ppmw): Co 5.5 and 7.4, Pb 7.9 and 31.4. As for the metal impurity Sb, 

7.8 and 23.2 ppmw were added into the Mini Isotech tin cell. For each metal impurity, 

it was added to the top, middle and bottom sections of the tin ingots. Then it was 

mixed within the tin in the manner as described in Chapter 5.  
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4.2 Aluminium Fixed Point  
 

 The freezing point of aluminium (660.323 oC) as a metal fixed-point has been 

adopted by the ITS-90. Results indicate that impurities affect the melting curves of the 

aluminium fixed point. Some impurity metals can depress the melting temperature 

while others can increase it.  

 Two originally nominally 99.9999% pure aluminium point cells, constructed 

according to the NPL design, were used in this study to realise as test cells to measure 

before and after doping and compare against a reference cell. These two cells were 

designated after the year they were fabricated in 1974 (Al 174) and 1998 (Al 298). 

Figure 4.2 shows a block diagram of the experimental procedure adopted for the 

aluminium fixed-point cell. 

 First of all, a systematic study of an assortment of impurities effect on the 

equilibrium melting curves of Al fixed point, which was already carried out by Ancsin 

[2003], was investigated to be an example idea before the studies of the quantitative 

effect of impurities on the temperature of tin fixed-point cells were carried out. 

Therefore, the experiment by realising and doping on the aluminium fixed-point 

temperature as Ancsin’s report was repeated to improve techniques and method.  

 However, the furnace system as used in Ancsin’s work was totally different 

from our technique by using a special adiabatic furnace and a specialized cells design 

as seen in Figure 1 of Ancsin’s work [Ancsin, 2001b]. In this work we try to produce 

such measurements using standard NPL equipment, under standard conditions, used in 

most national measurement institutes around the world. 
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Figure 4.2 Diagram of experimental procedure for studying the effect of trace 

impurities on the aluminium fixed-point cells. *The impurity concentrations are 

presented in ppm unit, whereas the present work is carried out on weight basis, hence 

ppmw (parts per million by weight), i.e. μg/g unit is used. 
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In the work of Ancsin [2003], high purity (99.9999%) aluminium fixed-point 

cells were doped with 13 impurities in different concentrations as guided by the 

results of chemical analysis of the samples. Three impurity metals were selected from 

the results, which clearly showed a shift in the liquidus point of Al temperature. Three 

of the impurities were copper (Cu), silicon (Si), and titanium (Ti). The reasons why 

Cu and Si impurities were chosen were that they caused a depression of the transition 

temperature of Al.  Moreover, Cu is easy to get hold of in a pure usable (wire) form 

and it is a potential subsequent impurity in a cell due to its presence in a laboratory 

environment. Both elements have also been often found in the impurity analysis of 

real “pure” aluminium samples. Therefore, Cu and Si were doped in the Al 174 cell to 

study the temperature decrease due to these trace impurity metals. From previous 

work [Head et al., 2008], the Al-Si experiment result was compared with the 

MTDATA theory. It could be seen that the equilibrium simulation was in close 

agreement with Ancsin’s experimental result [Ancsin, 2003].  

On the other hand, the Ti impurity metal causes an elevation of the Al 

transition temperature. Also, it was selected for doping in Al 298 because the 

curvature obtained from Ancsin’s experimental result was different from that 

calculated by MTDATA [Head et al., 2008], unlike the Si in Al as explained in 

section 3.4. The Ancsin experimental data show the “contradiction” curvature in the 

melt/freeze curve compared to that calculated from MTDATA as reproduced in Figure 

3.20 of this thesis. Therefore, the Ti doped Al fixed point was studied to repeat the 

experiment. However, the amount of concentrations for doping used in this work was 

smaller than those used in Ancsin’s work, which should give an improved 

understanding of the effects of low-level impurities on the Al transition temperature. It 

is in order to check the temperature offset values interpolated from the experiments 

using relatively high levels of impurities. 

 For calibration by comparison of our cells with the reference Al cell, an 

aluminium sealed fixed-point cell (Al 1205) was designated as a reference cell, which 

was related to NPL national standard Al cell, for Al 174 and Al 298 fixed-point cells. 

This aluminium fixed-point cell was designed and built by NPL.  
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4.2.1 Aluminium (Al 174) Fixed Point  
 

 A single zone Carbolite furnace was used in conjunction with a potassium heat 

pipe for maintaining a uniform temperature above or below the equilibrium 

temperature of Al 174 cell. This means that the conditions are only quasi-adiabatic, 

but this was the desired way to carry out the tests, as these are the “normal” conditions 

for the realisation of fixed-points. Details of cell assembly and the temperature 

realisation technique can be found in Chapter 5. Measurement values were recorded 

using the thermometric parameter, which for this work, is the resistance value of the 

PRT. Then, the Al 174 cell was calibrated by comparing its reading against the 

standard NPL Al (Al 1205) cell in order to see how good this Al 174 was before 

adding any impurities into the cell. Then, some samples were removed from the ingot 

for the GD-MS analysis before further doping and mixing with impurities. The type 

and amount of metal impurities for doping of Al 174 will be mentioned in 

Section 4.2.3. More details of the experiment procedure performed with the Al 174 

fixed-point cell will be discussed in Chapter 5. Then, the same procedure would be 

repeated with the doped ingot. Thermodynamic modelling with MTDATA was carried 

out to calculate the equilibrium thermodynamic curves and to estimate the shift in the 

initial freezing temperature compared with the experimental results before doping.  
 

4.2.2 Aluminium (Al 298) Fixed Point  
 

 The Al 298 cell assembly, details of which are given in Chapter 5, was heated 

inside a three-zone Hart furnace that maintained an even, but offset, temperature 

distribution for the realisation of the fixed point. The best setting of the top and 

bottom zones of the furnace was checked to ensure an even temperature over the 

length of the ingot for realisation of the equilibrium phase states of Al. This step of the 

experimental procedure of the Al 298 fixed point was similar to that of the Al 174 

except for the type of impurity doping. More details regarding the realisation and 

doping/mixing technique including the GD-MS technique and MTDATA can be 

found in Chapter 5. 
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4.2.3 Types and Concentration of Impurities for Doping in Aluminium 

Fixed- Point Cells  
 

The temperature offsets and shapes of melting and freezing plateaus of high 

purity aluminium in this work were investigated to determine how they were affected 

by the added impurities (concentrations of order ~1-20 ppmw) of copper, silicon, and 

titanium pure metals. 

In Ancsin’s paper [Ancsin, 2003], the shift in temperature was considered 

from the run-off points of the sample. The run-off point as defined by Ancsin is the 

temperature of the fixed-point metal when the trace breaks away from the melting 

curve and then rapidly starts to rise, which is occurs at different sample molten 

fractions. When melting an ingot, the melt will often occur along grain boundaries, so 

it is believe that melted material penetrates the cell more quickly than freezing 

dendrites. Consequently melts more quickly expose the thermometer to outside 

thermal influences – particularly in the second half of the melt. This causes the 

thermometer to rise in temperature, apparently signifying the end of the melt, when in 

fact a large amount of the ingot is still solid – albeit heavily penetrated with liquid 

filaments. This apparent end of the melt is sometimes referred to as the run off, while 

the true liquidus should occur only when all the metal has melted, as there may be 

different concentrations of impurities in the liquid and solid. The need for the run off 

concept is a sign that thermometerists are still not able to produce ideal thermal 

conditions. 

In Ancsin’s work, the shifts in the run-off temperatures due to the three 

impurities added to the originally 99.9999% pure Al are (mK/ppmw): Cu -0.29, Si -

0.66 and Ti +3.30.  

Moreover, in previous experiments on these binary alloy systems, using higher 

levels of impurities [Hansen, 1958], the fixed-point temperature of aluminium was 

interpolated using the knowledge that copper depressed the temperature by 

0.37 mK/ppmw and silicon, by 0.71 mK/ppmw whereas titanium elevated the 

temperature by 3.31 mK/ppmw. From the results of the Ancsin’s work, the shift of the 

run-off points was in agreement with the calculated results obtained from the 

estimated melting point shifts of Hansen’s book.  

In the present work, the normal techniques using standard NPL equipment, 

under standard conditions, i.e. the furnace and doping/mixing impurities, were 
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performed to confirm that the national measurement institutes around the world can 

use our techniques to realise the temperature shift caused by the impurities. Also, the 

amount of concentrations of each impurity doped in our Al cells was much less than 

that used in Ancsin’s work. The work by the author is to study the effects of very low 

levels of impurities on the aluminium transition temperature and to compare them 

with the temperature offset values interpolated from the experiments using relatively 

high levels of impurities. 

  After the equilibrium curves of “initial” Al 174 and Al 298 cells were 

measured, three types of impurities; namely copper, silicon and titanium were used for 

doping. Each impurity was dropped into the top, the middle, and the bottom of the 

originally pure Al samples. Having completed the measurements using one impurity, 

the sample was doped with another impurity and the resulting shift in the transition 

temperature curve was again investigated. Considering Cu and Si metals doped in 

Al 174 cell, the concentrations of the impurity metals were increased as follows (in 

ppmw); Cu 8.3 and 16.2, Si 4.7 and 9.8, respectively. For Ti metal doped in Al 298 

cell, the concentrations of Ti was increased as follows; 0.9 and 1.8 ppmw, 

respectively. Then, the mixing process was carried out in the next step, where the 

normal method and condition were applied. For more specific information about how 

to do the mixing process see Chapter 5. The temperature changes during freezing and 

melting of the aluminium after each doping were measured and compared with the 

original curves to find out how much each of the trace impurities affected the 

equilibrium temperatures of the aluminium fixed point. 
 

4.3 Elemental Analysis by Glow Discharge Mass Spectrometry  
 

 One of the most potent elemental analytical techniques is the glow discharge 

mass spectrometry (GD-MS) [Betti et al., 2003]. GD-MS is a comprehensive and 

versatile technique for use in the direct analysis and determination of traces impurities 

at the parts-per-billion level in an assortment of solid-state substances. Additionally, 

GD-MS is an analytical method able to provide the data on the chemical composition 

of a substance [King et al., 1995]. The advantages of this technique are high accuracy, 

low detection limits, and bulk/depth profile. 

King and co-workers [King et al., 2005] have given the explanation of the GD-

MS that “The technique is an extension to the earlier forms of mass spectrometry. 
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Processes inherent to the glow discharge, namely cathodic sputtering coupled with 

Penning ionization, yield an ion population from which semi-quantitative results can 

be directly obtained. Quantification in GD-MS is achieved both through standard 

elemental mass spectrometric procedures and more innovative approaches. The 

analytical performance of GD-MS compares favorably with competing elemental 

mass spectrometric methods and newer experiments use this ionization method for 

both molecular and elemental analysis. As with any analytical technique, the future of 

GD-MS lies in improvements with respect to the instrumental implementation and 

extension to new areas of application. Continued efforts to develop improved 

procedures are needed to provide greater accuracy. The sample to be analyzed forms 

the cathode in a low pressure (~ 100 Pa) gas discharge or plasma. Argon is typically 

used as the discharge gas. Argon positive ions are accelerated towards the cathode 

(sample) surface with energies from hundreds to thousands of eV resulting in erosion 

and atomization of the upper atom layers of the sample. Only the sputtered neutral 

species are capable of escaping the cathode surface and diffusing into the plasma 

where they are subsequently ionized. The atomization and ionization processes are 

thus separated in space and time, which appears to be a keystone for simplified 

calibration, quantification and the near matrix independence of this technique”.  

 For this work, the samples from each of the tin and aluminium fixed-point 

cells were analysed and the types of elemental impurities were determined at the 

Chemical Metrology, National Research Council (NRC) in Canada. It is in order to 

investigate the quantity and distribution (or uniformity) of the impurity elements 

within the “pure” tin and aluminium, before deliberate doping. Subsequently the 

impurity levels in the tin and aluminium samples, after doping, will be re-measured by 

using the GD-MS again.  
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4.4 Thermodynamic and phase equilibrium analysis by MTDATA 

 

The application of a thermodynamic model, the MTDATA software designed 

at NPL, is used to predict the phase equilibrium in the materials and also to investigate 

the initial decrease of the freezing temperature and the temperature drop during the 

freezing process as used in Head’s work [Head et al., 2008]. In Head’s work, 

MTDATA was also used to calculate the theoretical curves compared with previously 

published experimental data of Ancsin [Ancsin, 2003] on aluminium fixed-point 

doped with a variety of impurities. The results of the comparison showed good 

agreement in the magnitude of the initial depression (at freeze start) but examples of 

the wrong curvature on the subsequent freezing curve for impurities that increase the 

phase transition temperature (while getting agreement in the curvature for elements 

that depress the Al phase transition temperature). Therefore, MTDATA also is used 

for simulating to estimate the whole phase transition curves of any metal fixed points 

in order to compare with the experimental curves.      

NPL’s MTDATA [Davies et al., 2002] was developed over many years by the 

Thermodynamics and Process Modelling Group, in the Materials Centre at the 

National Physical Laboratory (NPL). The MTDATA software package is described in 

its “advertising literature” as being used to predict the complex chemistry in 

multicomponent multiphase systems, using critically assessed thermodynamic data. It 

is used by companies and universities worldwide for understanding such diverse 

applications as continuous casting of steel, lamp chemistry, pollution control, and 

pyrometallurgical extraction. It claims a very high reliability. It can be designed to 

calculate the phase or chemical equilibria with maximum ease and reliability.  

Considering the application of MTDATA for thermal metrology, MTDATA is 

normally performed to predict the phases forming at equilibrium in systems 

containing many components and many phases. It is based upon critically assessed 

thermodynamic data. It can be done for simple equilibrium calculations given the 

composition and the temperature. (Though it is also possible to set paraequilibrium (or 

quasi equilibrium) conditions in certain circumstances).  

For given the description of thermodynamic model, Head and coworkers 

[2008] also mentioned that “The equilibrium state of a chemical system at a fixed-

point temperature, pressure, and overall composition can be calculated by minimizing 

its Gibbs energy with respect to the amounts of individual species that could possibly 
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form. The most stable phase or combination of phases at chemical equilibrium can 

then be predicted for a chosen T and P as that with the lowest Gibbs energy. When 

impurities are present then additional terms representing the interactions between 

them and bulk materials must be included in the model of the Gibbs energy.”   

 This work was performed using the MTDATA model to estimate the initial 

drop in the freezing temperature on tin and aluminium fixed points before doping. 

Also, the concentrations of the GD-MS results detected from the “undoped” tin and 

aluminium cells were used to calculate the equilibrium phase curves in the MTDATA 

program before doping. Then, the equilibrium calculations would be compared with 

the experimental results before doping any impurities into the tin and aluminium 

fixed-point cells.   
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Chapter 5 

Experimental Procedures 
 

This chapter describes the experimental procedures for the study of the effect 

of trace impurities on the temperature realised by a high purity (99.9999%) tin 

(231.928 oC) and aluminium (660.323 oC) fixed-point cell. This chapter will detail the 

instruments, the chemicals, and the assembly of the fixed-point components in the tin 

and aluminium cells. In addition, the chapter describes the temperature realisation and 

measurement of the tin and aluminium fixed-point cells both before and after doping 

with platinum resistance thermometers (PRTs). The method to dope impurities into 

each fixed-point cell will be presented. All equipment in this research is provided by 

National Physical Laboratory (UK). 
 

5.1 Instruments 
 

5.1.1 Tin Fixed Point  
 

The following equipment was used for the tine fixed point experiments: 

•  Reference Isotech Tin Fixed Point Sealed Cell (Serial Number: Sn184, 

99.9999% nominal purity of tin) 

•  Isotech Tin Fixed Point Opened Cell (Serial Number: Spanish Tin, 99.9999% 

nominal purity of tin) 

•  Isotech Tin Fixed Point Mini Opened Cell (Serial Number: Mini Isotech Tin, 

99.9999% nominal purity of tin) 

•  AC Precision Resistance Bridges: Automatic Systems Laboratories (ASL) F18 

(Serial Number 1085/002/071 and 1737/003/151) 

•  Standard Resistor: H. Tinsley & Co. Ltd (Serial Number 268167, 240741 and 

222024) 

•  Three-Zone Furnace: Model Carbolite 902 (Serial Number: 20-602639) 

•  Three-Zone Furnace: Model Elite (Serial Number: 2048/10/06) 

•  Long-Stem Platinum Resistance Thermometers (PRTs): Tinsley Model 5187SA 

(Serial Number: 274728), Isothermal Technology Ltd (Serial Number: 909174, 

909069, 909347) and Aerospace delicate PRT (Serial Number: 4849) 
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•  A Tempmaster with 2 (100 ohm) PRT probes: Lab Facility Indicators (Serial 

Numbers A and B) 

•  NPL Water Triple Point Cells:  (Model 5901-1441, 5901-1442) 

•  Huber Polystat CC2 Oil Bath Controller: (Serial Number: 55903)  

•  Oil Bath: Model Kaltebad K15 (Serial Number: 53750/03)  

•   Pressure Gauge: Model Wallace & Tiernan (Serial Number: I5338) 

•   Scroll pump: Model Edwards XDS10 (Serial Number: 027216630) 

•   Helium Leak Detector: Leybold Vacuum PhoeniXL 300 

•   Variac (Variable Transformer) 

•   Sartorius Balance Model: CC3000 (up to 1 Kg) (*) 

•   Mettler AT20 (Balance Scale, Serial Number: K86486) (*), from 1 μg to 20 g. 
 

5.1.2 Aluminium Fixed Point  
 

The following equipment was used for the aluminium fixed point experiments: 

• Aluminium Fixed Point Open Cell (Serial number: 298, originally 99.9999% 

nominal purity and 174, originally 99.9999% nominal purity of aluminium, (but it is 

expected that they are presently less than the original purity percent quoted) 

• National Standard Aluminium Fixed Point Sealed Cell (Serial number: 1205, 

99.9999% high purity aluminium) 

• AC Precision Resistance Bridges: Automatic Systems Laboratories (ASL) F18 

(Serial Number 1085/002/071 and 1737/003/151)   

• Standard Resistor: Wilkins design from H. Tinsley & Co. Ltd (Serial Number 

268167, 240741 and 222024) 

• Huber Polystat CC2 Oil Bath Controller: (Serial Number: 55903)  

• Oil Bath: Model Kaeltebad K15 (Serial Number: 53750/03)  

• Single-zone furnace: Model Carbolite (Serial number: 2/96/542) 

• Three-Zone Furnace: Model Hart Scientific 9114 (Serial Number: A63118) 

• Standard Long-Stem Platinum Resistance (25 ohm) Thermometers (SPRTs): 

(Serial Number: 250329, 261198)  

• A Tempmaster with 2 (100 ohm) PRT probes: Lab Facility Indicators (Serial 

Numbers A and B) 

• Water Triple Point Cells (Serial Number: 938, 1058) 
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• Pressure Gauge: Model Wallace & Tiernan (Serial Number: I5338) 

• Scroll pump: Model Edwards XDS10 (Serial Number: 027216630) 

• Helium Leak Detector: Leybold Vacuum PhoeniXL 300  

• Variac (Variable Transformer) 

• Sartorius Balance Model: CC3000 (up to 1 Kg) (*) 

• Mettler AT20 (Balance Scale, Serial Number: K86486) (*), from 1 μg to 20 g. 
 

 (*) Mass Section, National Physical Laboratory (NPL), UK 
 

5.2 Chemical Substances  
 

The first six high purity metals (metalloid), listed below, are the impurities 

used for doping the tin and aluminium fixed-point cells. In addition, other chemical 

substances on the list were used for cleaning the components of the fixed-point cells 

and the PRTs and the last substance is the fluid used for maintaining the standard 

resistor temperature in the bath.   

 

            Chemicals                    Nominal Purity                        Supplier 

1.  Antimony (Sb)                              99.5%               Goodfellow Cambridge Limited  

2.  Cobalt (Co)                                   99.99+%           Goodfellow Cambridge Limited  

3.  Copper (Cu)                                  99.99+ %          Goodfellow Cambridge Limited 

4.  Lead (Pb)                                      99.99+%           Goodfellow Cambridge Limited    

5.  Silicon (Si)                                    99.998 %          Goodfellow Cambridge Limited 

6.  Titanium  (Ti)                               99.8 %              Goodfellow Cambridge Limited 

7.  Acetone 

8.  Absolute ethanol (C2H5OH) 

9.  Ensolv 

10. Nitric Acid (HNO3) 

11. High Purity Paraffin Oil 
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5.3 Stability of PRTs: Checking by the Triple Point of Water 
  

A platinum resistance thermometer is checked at the triple point of water, which 

is used as a baseline for the stability and the accuracy of the thermometer. The triple 

point of water, defined as 273.16 kelvin or 0.01 oC in the International Temperature 

Scale of 1990 (ITS-90), is one of the most accurately realisable temperature fixed-

points. Therefore, water triple point cells are almost always used in the calibration of 

thermometers. The triple point cell contains high-purity gas-free water maintained in 

the thermal equilibrium between the three phases of water: liquid, solid and 

vapour. For PRTs’ measurement and calibration, the water triple point cell is the most 

important fixed-point. This is because the interpolation equations used for the ITS-90 

for a PRT are expressed in terms of the resistance ratio W(T90) = R(T90)/R(0.01 oC), 

where R(T90)  is the resistance value at T90 and R(0.01 oC) is the resistance value at the 

triple point of water. The resistance of the PRT at the triple point of water needs to be 

checked frequently to identify any instability of the PRT. In general, if the resistance 

value of the PRT at the triple point of water does not change, the thermometer does 

not need recalibration. 

For this procedure, two small water triple point cells, designated as the NPL 

cells (serial numbers 934 and 1058) were used.  Figure 5.1 shows one such water 

triple point cell. Both water triple point cells were kept in a Dewar containing crushed 

ice at 0 oC for 24 hours before the ice mantles were allowed to form. The ice mantles 

were produced using solid CO2 (see the detail of preparation of a mantle in Section 

2.3.1). Measurements with the PRTs were then made about 24 hours after the ice 

mantles were formed. The stability of PRTs was determined at the water triple point in 

between the realisations (both before and after realising tin and aluminium fixed-

points). The water triple point values in this research were checked within a few hours 

after the measurements at tin and aluminium fixed-point temperatures. The results of 

stability of each PRT were shown in terms of the resistance values, which were 

obtained by combining the bridge ratio measurements and the standard resistor values. 

An Automatic Systems Laboratories (ASL) Model F18 ac resistance bridge was used 

to measure the resistance ratio values of 25 Ω platinum resistance thermometers in the 

two water triple point cells, against 100 Ω standard resistors.  

For improved accuracy in the triple point of water realisation, the cell is 

required to be kept in storage for 24 hours before it was used. This is to relieve strains 
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in the ice of the water cell and the prepared ice mantles [Furukawa et al., 1997] as the 

strain affects the obtained temperature value in the cell. With effective strain 

relaxation, the uncertainty will be typically less than 150 μK [Nicholas and White, 

2001j].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 Figure 5.1 NPL small water triple point cell. 
 

5.4 Making and Realisation the Tin Fixed Point Cells 
 

Two standard purity (nominally 99.9999%) tin fixed-point cells were used to 

study the influence of trace impurities on the equilibrium tin freezing temperature. 

Both standard tin cells were named after their donors as “Spanish tin” and “Mini 

Isotech tin”; these tin ingots were donated by Centro Espanñol De Metrología (CEM), 

Spain, and the Isothermal Technology Company, respectively. 
 

5.4.1 Making and Realisation Spanish Tin Fixed-Point Cell 
 

The methods for the assembly and temperature realisation of high purity Spanish 

tin fixed-point cell will be presented separately in two sections: Section 5.4.1.1 

describes the method for the original “undoped” opened-“sealed cell” whilst Section 
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5.4.1.2 shows the method for the high purity “undoped” ingot after re-assembly into a 

new container. 
 

5.4.1.1 Original “Undoped” Spanish Tin Opened-“Sealed Cell” 
 

The Spanish tin cell was a closed cell re-assembled into an open cell by means 

of a thin quartz tube as seen in Figure 5.2. The cell was purchased in 1993, but it was 

out of use since 1998; its purity (based on Isotech information) is 99.9999%. The tube 

and the “cell body” were respectively 30 cm and 25 cm long. The quartz envelope had 

an outer diameter of 48 mm. Since the quartz envelope of the cell was broken due to a 

shock to the cell at ambient temperature, it was sent to Isotech for repair but the 

damage was such that the cell could not be closed effectively. As can be seen in 

Figure 5.2, the quartz tube and the graphite appeared slightly “burnt” and that 

prompted the CEM’s laboratory to suspect that contamination might have happened 

during the re-assembly. Despite this, the graphite crucible was in perfect condition and 

therefore the Spanish tin ingot inside could be used for doping. To dope the ingot, it 

has to be removed from the quartz envelope and so the cell had to be modified to 

become an “opened” cell to allow access to the ingot. The afore-mentioned 

information was obtained from M. Dolores del Campo Maldonado who is the Head of 

the Temperature Division in CEM, Spain.  
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Figure 5.2 An original Spanish tin opened-“sealed cell” obtained from CEM, 

Spain. The “burnt” area of the quartz and the graphite can see on the right of the 

figure.  
 

Before the original Spanish tin opened-“sealed cell” was put into the furnace, 

the cell needed to be assembled with other components in the way that a sealed cell is. 

The components consist of the Spanish tin cell, the bricks, the metal discs (2 mm 

thickness) and an inconel block (459 mm long and 50 mm inner diameter) are seen in 

Figure 5.3. The insulator on top of the cell was made with alternate layers of the 

bricks and the metal discs, which were designed specially for this cell by the company 

Isothermal Technology (UK). The bricks and the metal discs had been baked at 

1100 oC for a day before assembling into the cell to eliminate by oxidation any 

contaminations. Then, all components would be put into the inconel block. The 

assembly was operated as both of the “sealed” and “open” cells, i.e. the bricks and the 

metal discs were put outside of the quartz tube (not directly touching the graphite 

crucible) as the sealed cell while this cell allowed the evacuation of the air and the 
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filling with high purity argon gas at a pressure of 101.3 kPa at the fixed-point 

temperature as would the normal open cell, Figure 5.4.      

This original silica envelope of the sealed cell had had a silica tube retro fitted 

to it, connecting the gas space to the outside world – rather like a NIST design of the 

open cell used for their aluminium points [Strouse, 1995]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Components of the original Spanish tin opened-“sealed cell” assembly. 

 

The original Spanish tin opened-“sealed cell” was installed in a three-zone 

Hart furnace set for maintaining an even temperature distribution around the tin cell. 

The Hart furnace is specially designed for maintaining and establishing the long 

freezing plateaus. The temperature range is from 100 oC up to 680 oC. It also has an 

inlet for injecting clean dry air, or an inert gas, to initiate the supercooling in a tin cell. 

For other methods (normal method) of initiation, the fixed-point cell might be initially 

removed by hand from the furnace to cause cooling or the temperature of the whole 

furnace needs to be reduced to remove the heat from the cell surface. Also, this 

furnace has the external cooling coils for circulation of tap water to reduce heat load 

to the laboratory.  
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Figure 5.4 Assembly of the original Spanish tin opened-“sealed cell”. 

 

The freezing and melting transition temperatures were realised using a 25 ohm 

platinum resistance thermometer (PRT), serial number 909347. The ASL Model F18 

ac Resistance Bridge was used to measure the resistance ratio values of the PRT 

against a 100 ohm Tinsley standard resistor, which was kept in the oil bath maintained 

at 20 °C. 

In the first stage of the procedure of the freezing point of tin realisation, the tin 

ingot in the cell must be kept in the liquid state (fully molten) by holding the 

temperature at 5 oC above the equilibrium temperature (231.4 oC for this furnace) of 

tin. (The “equilibrium temperature” was that calculated to cause no further melting or 

freezing of the sample when it was already part molten/frozen). 

Normally, the temperature for fast melting should be more than 5-10 oC above 

the equilibrium temperature to ensure the ingot was completely melted. The furnace 

temperature is set at half a degree below or above the equilibrium tin fixed point with 

settings for the cell to be frozen and melted, respectively. This means that the 

conditions are only quasi-adiabatic, but this was the desired way to carry out the tests, 

and these are considered the “normal” conditions for the realisation of fixed-points.  
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In fact, tin exhibits a large amount of supercooling (the process of crystal 

nucleation of a freezing pure metal at a temperature lower than its freezing point). 

Some kind of thermal shock is used to initiate the freeze.  Two methods that were 

used are described in this section, namely a) turning the temperature of the whole 

furnace down by 6 oC and b) forcing an air flow up the furnace axis and around the tin 

cell.  

In the first method, after the tin metal ingot was fully molten and held for 5 

days, the furnace temperature was decreased by 6 oC below the equilibrium 

temperature until the temperature indicated by the PRT showed the under cooling. 

Then, the PRT was taken out of the cell and a cold metal rod inserted into the quartz 

tube in the tin cell and left there for 4 minutes to induce the freeze and to form a thin 

mantle of solid tin around the thermometer well. After that, the PRT was inserted back 

into the cell and the furnace was set to the temperature of the freezing point to realise 

the freezing plateau. The furnace setting was increased to the freezing temperature 

that was a half-degree below the equilibrium temperature.  

In the second method, the temperature was decreased to the freezing point 

after the ingot was fully molten. Then, cold air was blown into the bottom of the 

furnace for 10 minutes to produce an upward airflow around the fixed-point cell until 

the supercooling started. This is the way to form the roughly uniform thickness of a 

solid shell at the outer crucible wall of tin. When tin recalescence started, the air flow 

was shut off and the furnace setting was kept at a stable freezing temperature. As is 

the case with the first method, the metal rod was inserted to initiate the inner freeze. 

For the melting procedure, the furnace temperature was increased to about 

5 °C higher than the equilibrium point. Due to the deep supercooling, the furnace was 

set at 5 °C below the equilibrium and left overnight or the cold air was let in for 10 

minutes to obtain the fully frozen state of the ingot (rapidly frozen) before melting 

started. Then, in the following morning, the furnace temperature was set at half a 

degree above the equilibrium point. Then, the melting plateaus were realised.  

The resistance values for all measurements of the freezing and melting curves 

were calculated from the resistance ratio of PRT and standard resistor values. The 

freezing and melting transitions of each initially “pure” tin cell were measured at least 

three times. 

Then, the original “undoped” Spanish tin opened-“sealed cell” was calibrated 

by comparison against the Reference Isotech Sn184 with four PRTs (i.e. 909347, 
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909174, 909069, and 4849) noting the direct measurements on the freezing curves. 

These results were recorded when the Spanish tin cell was originally an opened-

“sealed cell”. The zero-power resistance values (0 mA) were used to present the 

resistance values of the thermometers in the work. The zero-power resistance values 

were calculated from two currents, i.e. 1 mA and 2 mA and also converted from the 

zero-power resistance ratio using the resistance value of the standard resistor. The 

reason why the zero-power resistance values were used is to eliminate the effect of 

variations in PRT self-heating in the fixed point cell.  

All resistance values have been corrected by application of the hydrostatic 

pressure correction of each tin fixed-point cell. Nicholas and White [2001k]; 

Supplementary information for the ITS-90 [1997] reported that the measured 

temperature is affected by the depth of the fixed-point cell caused by the hydrostatic 

head of the metal above the PRT sensor. From the definition of fixed points in the 

ITS-90 scale, it describes “the hydrostatic head” - “the temperature dependence on the 

depth of the cell caused by the hydrostatic pressure of the metal, and the corrections 

should be applied” [Preston-Thomas, 1990]. Preston-Thomas [1990] shows the rate of 

the temperature change with the height of the freezing point of tin is 2.2 × 10 -3 Km-1. 

In theory, that rate of change explains that 1 meter below the surface of the freezing 

point of tin cell the temperature is 2.2 mK hotter. Then, this value is applied to 

calculate as in supplementary information to the ITS-90 and become the hydrostatic 

head value. For high purity Spanish tin and Reference Sn184 fixed-point cells, the 

hydrostatic head correction values after calculating are -0.265 mK and -0.428 mK, 

respectively. These two values will be used to correct for all experiments of Spanish 

tin fixed-point cell. The data of the resistance values include the hydrostatic head 

pressure corrections for the different those two cells. 

All above experiments on high purity Spanish opened-“sealed cell” were tested 

in the old building of NPL. Then, all the equipment was moved to the new laboratory 

in the new building. Therefore, the experiment would be tested again. Also, the PRT 

909347 was broken by accident, therefore these thermometer measurements would be 

replaced with PRT 4849 for measuring the temperature measurement in the further 

experiment steps. Therefore, the freezing and melting curves will be realised again 

with PRT 4849 by use the same equipment system. 
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5.4.1.2 High Purity “Undoped” Spanish Tin Fixed-Point Cell after Re-

Assembly  
 

a) Assembly of “Undoped” Spanish Tin Open Cell 
 

After completing the initial freezing and melting measurements and obtaining 

the comparison results with the reference tin cell of high purity Spanish opened-

“sealed cell”, the quartz envelope of this opened-“sealed cell” was broken 

intentionally and only the graphite ingot was taken out. For the Spanish tin cell, the 

ingot (180 mm long and 34.5 mm outer diameter) was contained in a graphite crucible 

of length 200 mm and diameter 45 mm, which was held in a new container made from 

Pyrex (borosilicate) of length 470 mm and diameter 49 mm. Cells like this, containing 

up to about 1 kg of pure metal, are used in most National Metrology Institutes (NMIs) 

around the world. The total weight of the Spanish tin metal ingot was weighed with a 

balance, kept in the NPL Mass division. The weight of ingot was also calculated from 

the drawing dimension, which was measured from the real tin cell. The mass of 

Spanish tin was estimated by two methods:  

a) Based on the dimensions of the Spanish tin ingot and the graphite re-entrance 

well, the volume of the tin and the graphite was calculated. (Using standard 

densities this was converted to mass).  

b) As well as directly calculating the mass of tin, the calculated mass of graphite 

was subtracted from actually measured mass of graphite and tin together. (It is 

not possible to remove the graphite re-entrance-well as the tin clamps onto it 

during the freezing process.)  

This procedure was checked before the high purity Spanish tin ingot was 

constructed in the new system and also was measured at the end of the experimental 

measurements. The whole Spanish tin ingot is shown in Figure 5.5.   
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Figure 5.5 High purity Spanish tin ingot and the graphite lid of the crucible. 
 
In Figure 5.5, it also shows a hole on top of the graphite lid of the crucible, 

which was a hole in Isotech design. Isotech put it in so as to make it easier to let the 

air or argon out of the cells when they pump it before refilling with argon gas.  

This ingot was put in the “typical arrangements”. This Spanish tin cell was re-

assembled in a new Pyrex tube with new thermalising components. All components 

for re-assembly are as labelled in Figure 5.6. The glassware was cleaned with a special 

cleaning glassware process as described in Section 5.6. Also, the bricks and the 

graphite discs were baked in the tube at 1100 oC. The “undoped” Spanish tin opened 

cell after re-assembly was inserted into the aluminium block (380 mm length), which 

was already standing in a three-zone Elite furnace. The aluminium block was used to 

keep the temperature along the length of the cell uniform. The cell was equipped with 

a re-entrant well of 10 mm outer diameter, for the insertion of a PRT. The bottom of 

the aluminium block was connected to the stainless tube through which external air 

could flow up the furnace axis and around the tin cell. Before the experiments, the 

whole system was tested using a Leybold Vacuum PhoeniXL 300 helium leak detector 

to verify that the system was completely leak tight (lowest detectable leak rate for 

helium < 5 x 10-12 mbar l /s). 
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Figure 5.6 Drawing of high purity “undoped” Spanish tin fixed-point opened 

cell after re-assembly.  
 

b) Temperature Realisation of “Undoped” Spanish Tin Open Cell 
 

After inserting the cell into the furnace, this Spanish tin open cell was filled 

and evacuated with the argon gas several times and then was filled with pure argon 

gas with a pressure set at about 101.3 kPa (measured by a Wallace and Tiernan 

precision pressure Gauge) at its operational temperature to assist thermal exchange 

inside the cell, to protect the graphite from oxidation and to prevent metal 

vaporization. A three zone Elite furnace was used for maintaining the temperatures at 

the tin fixed-point, but the set point temperature was offset by different amounts for 

the cell to be frozen or melted. This means that the conditions are only quasi-adiabatic 

-but this is how the tests were intended to be carried out. A Eurotherm controller was 

used to control the furnace temperature, which applied only 110V (through a 

transformer) to the heater to reduce the electrical noise. The PRT 4849 was used to 
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realise the temperature fixed point by reading the resistance ratio from the ASL ac 

Resistance Bridge against a 100 ohm Tinsley standard resistor.  

First of all, the equilibrium temperature of this cell after re-assembly needed to 

be measured in the new furnace. Then, the temperature was set at 5 oC above the 

balance point and maintained for 5 days for the ingot to fully melt and stabilise. After 

this, the temperature of the furnace was reduced to 5 oC below the anticipated freeze 

temperature. When the supercooling started, the PRT was replaced by a cold brass 

metal in the silica rod. After 4 minutes, the PRT was installed back to the cell and the 

temperature was increased to the freeze temperature. When the PRT had shown no 

change for some minutes, the plateau was achieved. The melting realisation 

procedures were explained in the previous section. All melting curves were obtained 

after rapid freeze. Three curves of each freezing and melting temperatures were 

recorded. The resistance values are obtained by combining the bridge ratio 

measurements and the standard resistor values. 

Following the freezing and melting realisations, this tin cell needed to be 

calibrated by comparison with the Reference Isotech Sn184 fixed-point cell again to 

check how much the temperature of the cell changed from the initial “pure” tin value, 

after re-assembling the cell. All resistance values have been corrected by application 

of the hydrostatic pressure correction of each tin fixed-point cell. The average 

resistance values for all PRTs in the calibration measurements by comparison method 

show the calculated values at zero-power dissipation. This is to reduce errors from 

changes in the self-heating effect. The self-heating effect is the temperature 

phenomenon as explained in Batageli’s report [Batagelj et al., 2003]. The average 

resistance values in the calibration by comparison method were checked with three 

PRTs, namely PRT 909174, 909069, and 4849. The furnace setting was set to a 

nominal value of 229.1 oC for all freezing realisation measurements. Stability 

performances of three PRTs measured at the triple point of water before and after the 

calibration by comparison method were also carried out.  
 

c)  Elemental Analysis by Glow Discharge Mass Spectrometry (GD-MS)   
 

  After completing the initial freezing and melting measurements using the high 

purity Spanish tin, four small pieces were removed from three areas of the tin ingot,  

the top, the middle and the bottom, with a small clean hacksaw. An example of cutting 
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a sample off for a GD-MS analysis of the Al ingot is shown in Figure 5.15. Three of 

the samples were sent off to the National Research Council of Canada (NRC) for the 

GD-MS analysis in order to determine the quantity and distribution (or uniformity) of 

the impurity elements within the “pure” tin before doping. The fourth sample, cut 

from the middle of the ingot, was kept at NPL; this sample would be sent to NRC 

subsequently with the doped samples for GD-MS analysis. 
 

d)  Mixing Technique 
 

After cutting the samples off from the tin ingot, the originally pure Spanish tin 

ingots were doped with two types of impurities, namely cobalt and lead, to the total 

concentrations (in ppmw) of 5.5 and 7.4 for Co, and 7.9 and 31.4 for Pb. After the 

resistance ratios of the PRTs in “pure” tin were obtained, the masses of pure cobalt 

(over 99.99%), and lead (over 99.99%) wires, employed as impurities for doping, 

were weighed with a microbalance (Mettler AT20). The uncertainty components of 

the weighing scales (Mettler AT20) are as follows: 

Negligible for the scale error  

1 μg for repeatability (normal distribution) 

2 μg for balance resolution (rectangular distribution) 

 From the above information, obtained from NPL Mass Section, the uncertainty 

of the “weighing” itself is very small when compared with the total mass of the 

impurity and the uncertainty due to the mass of the enclosed graphite reentrant well. 

In other words, the “weighing” uncertainty is negligible. 

The presence of impurities in a pure metal normally causes an offset which 

increases or decreases the temperatures depending on the nature of the impurity. In 

previous work the Sn-X binary alloy system was studied at larger fractions of impurity 

X [Hansen, 1958], and the tin temperature was interpolated to be depressed by 

0.60 mK/ppmw and 0.133 mK/ppmw for cobalt and lead impurity, respectively. It is 

discovered that the temperature change depends on the chemical composition of Sn-

Co and Sn-Pb alloys as shown in the phase diagram. From the phase diagram 

calculation, it is found that 1 ppmw of Co can reduce the temperature of pure Sn by 

0.6 mK. Therefore, Co was weighed at about 5.2 mg, which equal to 5.5 ppmw, which 

was expected to decrease the temperature of the “undoped” Spanish cell by 3 mK. 

After the Spanish Sn had been doped with Co 5.5 ppmw it was further doped with 
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1.9 ppmw (1.83 mg) more Co, expected to reduce the temperature by 1 mK more 

(Co 7.8 ppmw and decreased 4 mK in total). Then, the amount of Pb impurity 

concentrations at 7.9 ppmw (reduced 1 mK) was added into the ingot. After that, an 

additional amount of lead impurity concentration 23.5 ppmw was put in the ingot, 

resulting in the total concentration of lead impurity of 31.4 ppmw (4 mK decreasing). 

The first Co impurity metal was added to the space in the ingot vacated by the samples 

removed from the top, the middle, and the bottom; then the other impurities would be 

added to the same locations. An example of the metal wire is given in Figure 5.7. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 An example of the metal wire used as an impurity for doping in 

Spanish tin cell. 
 

After each doping, the ingot was re-inserted back into the graphite crucible and 

the Pyrex container. Then the assembled cell was put into the furnaces and set at 8 oC 

above the tin melting temperature for several days to ensure a good mixing of the 

impurities within the tin. At least three freezing and melting plateaus after each 

doping were obtained in order to ensure the repeatability of the fixed-point realisation. 

However, since the tin ingot was found to be stuck to the graphite crucible before 

adding the second lot of Co impurity; subsequent addition of the Co impurity could 

only be made through the hole at the top of the graphite lid ingot. To freeze, the 

furnace controller was set 5 oC below the freezing temperature. One hour later, the 

supercooling still had not started; thus the cell was lifted out from the furnace until the 

curve indicated the under cooling. Then, the cell was installed back to the furnace and 

two cold metals in silica rod replaced the monitoring PRT. After 4 minutes, the PRT 

was put back to the cell then the furnace was set to the actual freezing temperature. 
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After adding the Pb impurity, the freeze process was observed to start by itself without 

lifting the cell out of the furnace. 

During this time the doped cell was compared against the Reference tin cell by 

cross-transfer of the PRTs. This allowed the measurement of the temperature drop 

from the initial “pure” tin to the doped tin state. Cross comparison to the reference cell 

allows the removal of any shift due to any instability in the PRT itself, which is 

possible at this level of resolution. Stability resistance values of the PRTs also were 

measured at the triple point of water, before and after the calibration by comparison 

method. All measurements were recorded at 0 mA.  
After completing the freezing and melting measurements after doping with the 

impurities in the Spanish tin, the samples were removed from the tin ingot with a 

small-cleaned hacksaw. The previous GD-MS results of the Spanish tin fixed-point 

cell before impurity doping indicate that the tin and the impurities are well mixed after 

the tin is properly molten. The impurity levels in the three areas of the tin ingot show 

homogeneity of the impurity concentration. Therefore, only one piece of the Spanish 

Sn after doping with Co and Pb impurities was cut from the ingot for the GD-MS 

analysis. This sample together with the old sample from the ingot before doping and 

kept at NPL was analysed with the GD-MS.  The result from the old sample would be 

compared with those from the previous three samples from the ingot before doping in 

order to verify the repeatability of the GD-MS calibration.  
 

5.4.2 Making and Realisation of Mini Isotech Tin Fixed-Point Cell 
 

The explanation on the assembly and the temperature realisation methods of the 

high purity Mini Isotech tin fixed-point cell will be presented in four sections: Section 

5.4.2.1 contains the assembly of “undoped” Mini Isotech tin opened cell, Section 

5.4.2.2 shows the method for the temperature realisation of “undoped” Mini Isotech 

tin opened cell, Section 5.4.2.3 presents the process for preparing the tin samples for 

elemental Analysis by GD-MS, and Section 5.4.2.4 describes the impurity mixing 

technique.   
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5.4.2.1 Assembly of “Undoped” Mini Isotech Tin Opened Cell 
 

A standard purity (nominally 99.9999%) tin fixed-point cell, obtained from the 

Isotech Technology Company, was used to study the influence of trace antimony 

impurity on the equilibrium tin temperature. Antimony is the only impurity that is 

known to elevate the liquidus temperature of tin. This tin cell was also named after its 

donors as “Mini Isotech tin”. The Mini Isotech tin ingot was smaller than normal i.e. it 

was 110 mm in length, 26 mm in outer diameter, and had an inner diameter of 16 mm. 

The hydrostatic head values were calculated from this depth of the ingot. The total 

mass of tin sample put in this cell was approximately 240 g. The total weight of the 

Mini Isotech tin metal ingot was weighed with a balance, kept in the NPL Mass 

division. The weight of ingot also was calculated from the drawing dimensions, which 

was measured from the real tin cell. The mass of Mini Isotech tin was estimated by 

two methods:  

a) Based on the dimensions of the Mini Isotech tin ingot and the graphite re-

entrance well, the volume of the tin and the graphite was calculated. Using standard 

densities the volume was converted to mass.  

b) As well as directly calculating the mass of tin, the calculated mass of 

graphite was subtracted from the actually measured mass of graphite and tin together. 

(It is not possible to remove the graphite re-entrance-well as the tin clamps onto it 

during the freezing process.) This procedure was checked before the high purity Mini 

tin ingot was constructed in the new system and also was measured at the end of the 

experimental measurements.  

The Mini Isotech tin ingot was housed inside a high purity graphite crucible 

(about 130 mm long and 32 mm outer diameter) contained within a Pyrex tube. They 

had never been used for assembly; therefore the bricks and the graphite discs were put 

in a translucent long silica tube and then were baked at 1100 oC in a three-zone Elite 

furnace, as shown in Figure 5.8, for a day. All components of Mini Isotech tin cell are 

presented in Figure 5.9. Also, the Pyrex container and the silica re-entrance well had 

to be cleaned before using as explained in Section 5.6. The assembly and the drawing 

of high purity “undoped” Mini Isotech tin fixed-point opened cell are shown in 

Figures 5.10 and 5.11 respectively.  
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Figure 5.8 System for baking the bricks and graphite discs at 1100 oC. 

 

The baking at 1100 oC was used in this work in order to eliminate any 

contamination, which can be volatile at high temperature. The completed fixed-point 

assembled cell was put in the nickel block before putting into a three-zone Carbolite 

furnace set for maintaining an even temperature distribution around the tin cell. The 

nickel block was used to maintain the vertical profile temperature for the Mini Isotech 

tin cell. Also, this block had been specially designed by drilling the bottom to attach 

the stainless steel tube underneath the block, where the external air could  flow 

through the block hole and up the furnace axis and around the tin cell. 

 

 

 

 

 

 

 

 



Patchariya Petchpong                                                                                          Experimental Procedures  

 5-21

 

 

 

 
 

 

 

 

 

 

 

 

 
 

Figure 5.9 Components of the original Mini Isotech tin “opened cell” assembly 

(left) and Mini Isotech tin ingot (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.10 Assembly of high purity “undoped” Mini Isotech tin fixed-point 

opened cell. 
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Figure 5.11 Drawing of high purity “undoped” Mini Isotech tin fixed-point 

opened cell. 
 

Before starting the freezing and melting realisations in the Mini Isotech tin 

cell, it was argon filled and evacuated several times with the vacuum system to flush 

out any dust from the cell. The gas system was connected then to the cell. Before the 

inert gas was added into the fixed-point cell, the whole system was tested using a 

Leybold Vacuum PhoeniXL 300 helium leak detector. Then, the high purity argon gas 

was filled into the cell at a pressure of 101.3 kPa at the fixed-point temperature.  
 

5.4.2.2 Temperature Realisation of “Undoped” Mini Isotech tin opened cell 
 

After installing the tin cell in the three-zone furnace, the equilibrium 

temperature of the tin metal was found by setting about 5 oC above the expected tin 

melting temperature. Then, the furnace was left at 5 oC – 10 oC above the tin melting 

temperature to ensure a good mixing within the molten tin and the temperature was 
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left in this condition for several days. The tin metal was entirely in the liquid phase at 

this stage. After that, the temperature of the Carbolite furnace was set below or above 

the equilibrium tin fixed-point with settings for the cell to be frozen or melted 

respectively. All temperature realisations of the undoped Mini Isotech tin were 

measured with an F18 ac Resistance Bridge connected to a PRT 909174.  

As previous mentioned in Spanish tin cell about the supercooling, the high 

purity tin metal has the characteristic of deep supercooling. The supercooling of tin 

can be as much as 10 °C below the freezing temperature. If the furnace was set in the 

normal method, i.e. let the temperature cool down to the nucleation point by itself, 

then it would probably not get back in time to realise the freezing plateau. The 

realisation of the Mini Isotech tin freezing plateau was performed in a manner similar 

to the Spanish tin. After the metal was fully molten, the furnace controller was set 

6 °C below the actual freeze temperature; this was anticipated to be below the bottom 

of the supercool. The under cooling of tin metal was indicated by the PRT 

measurement as the temperature curve would turn upwards at that point. However, the 

results showed that it took about 1 hour to get to the nucleation point. The freezing 

and melting procedures for this cell was similar to those applied to the Spanish tin cell 

except that no external air flow was allowed around the cell due to the furnace 

difference. The freezing and melting transitions of the initially “pure” Mini Isotech tin 

cell were measured at least three times. The resistance values included the hydrostatic 

head correction. For high purity Mini Isotech tin and Reference Sn184 fixed-point 

cells, the hydrostatic head correction values after calculating are -0.149 mK 

and -0.428 mK, respectively. 

Then, the initially “pure” Mini Isotech tin cell was calibrated by comparison 

on the freezing curves against the Reference Isotech Sn184 with three PRTs (i.e. 

909174, 909069, and 4849) at zero-power resistance values (0 mA) to avoid the self-

heating effect of the PRTs. The stability of the three PRTs was analysed again by 

realising the temperature in the triple point of water. 
 

5.4.2.3 Elemental Analysis by GD-MS of “Undoped” Mini Isotech tin cell 
 

After realising the freezing and melting curves of the “undoped” Mini Isotech 

tin cell, a total of two small pieces were cut from two areas of the tin ingot; namely 

the middle of the top part and of the bottom half on the opposite side with a small 
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clean hacksaw. One piece was then analysed to determine the quantity of the impurity 

elements within the cell using GD-MS technique. The other piece was kept at NPL. 

After completing the freezing and melting realisations in the doped tin cell, a sample 

was cut from the Mini Isotech tin. Both this doped sample and the previously undoped 

sample kept at NPL were now analysed with the GD-MS technique at NRC. 
 

5.4.2.4 Mixing Technique of “doped” Mini Isotech tin cell 
 

The originally pure Mini Isotech tin ingot was doped with antimony (Sb) 

impurity; total concentrations as follows (in ppmw): Sb 7.8 and 23.2. The Sb impurity 

metal was put on the top, the middle, and the bottom of this ingot. Sb was chosen as 

the impurity in this ingot as it is the only substance that is expected to increase the 

melting temperature of Sn. However previous work [Zhang et al., 2008] has shown 

unusual results that have not yet been fully explained and which produce melting 

curves that can not be modelled by MTDATA [see the analogous effect in Figure 9 of 

Ti in Al in Head’s publication [Head et al., 2008]. (MTDATA shows better agreement 

with impurities that decrease the temperature – see same paper by Head [Head et al, 

2008]).  

The antimony (Sb) impurity was selected to study the trace impurity effect on 

high purity Mini Isotech tin cell temperature fixed point. In previous work the Sn-X 

binary alloy system was studied at larger fractions of impurity X [Hansen, 1958], the 

tin transition plateau was raised by 0.128 mK/ppmw of antimony impurity. Our 

measurements using lower concentrations of dopants planned to test the interpolation 

of this previous data obtained using relatively high levels of impurities. 

The mass of pure antimony powder (99.5%) was weighed with a microbalance 

(Mettler AT20). Two lots of antimony powder were used as impurity to produce the 

concentrations of 7.8 and 23.2 ppmw in the ingot. Each lot was divided into three 

parts for adding to the top, the middle, and the bottom of the Mini Isotech tin ingot. 

After re-inserting the ingot into the cell, the assembled cell was put into the furnace 

set at 10 oC above the tin melting temperature for 5 days. The freezing and melting 

procedures were the same as the undoped Mini Isotech tin. Three freezing and melting 

plateaus after each doping were realised. After obtaining all curves at 7.8 ppmw 

antimony doping, the PRT 909174 was broken unexpectedly; therefore the PRT 

909069 and 280140 were used to re-measure all freezing and melting curves. From the 
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results, the PRT 280140 showed more stability than 909069. Thus, the PRT 280140 

was selected for repeated checking of all freezing and melting curves and also was 

used for the further experiment on the 23.2 ppmw doped antimony. During this time 

the freeze peak of the doped Mini Isotech tin cell was compared against the new 

sealed tin reference cell by cross-transfer of the PRTs. This allowed the measurement 

of how much the temperature of the doped cell dropped (increased) from the initial 

“pure” tin value. Cross comparison to the reference cell allows the removal of any 

shift due to any instability in the PRT itself, which is possible at this level of 

resolution. Again the water triple point values of the PRT were checked before and 

after the calibration. 
 

5.5 Making and Realisation the Aluminium Fixed-Point Cells 
 

Two nominally 99.9999% pure aluminium fixed-point cells, according to the 

NPL design, were used in this study to realise the reference standard temperature. The 

two cells were fabricated in 1974 (Al 174) and 1998 (Al 298), respectively. Before 

starting, a note of the size and weight of each cell was made. Their experiments are 

segregated into two separate experiments as investigate in each aluminium cell 

namely Al 174 and Al 298 fixed-point cells, respectively.   
 

5.5.1 Making and Realisation Aluminium (Al 174) Fixed-Point Cell 
 

The details of the cell assembly and the process of the experiment studied in 

Al 174 cell will be described as follows; Section 5.5.1.1 presents the assembly of the 

Al 174 Opened fixed-point cell, Section 5.5.1.2 discusses the temperature realisation 

of initially “undoped” Al 174 after re-assembling with the new components, Section 

5.5.1.3 mentions the process for preparing the Al samples for GD-MS analysis, and 

Section 5.5.1.4 explained the mixing technique between impurity doping and Al metal 

ingot. 
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5.5.1.1 Assembly of “Undoped” Al 174 Opened Fixed-Point Cell 
 

The old NPL Al 174 opened fixed-point cell was made in 1974. The original 

Al 174 cell before taking apart and re-assembling in the new components and the new 

translucent silica container shows in Figure 5.12. Since this cell was quite old, some 

parts of assembly had been damaged and worn out. The Al 174 ingot and the brass top 

cap from the original cell had still been used to be the components for a new opened 

fixed-point cell. First of all, the measurements of the sizes of the Al ingot, the graphite 

crucible, including the weight of aluminium metal were checked.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 original Al174 fixed-point cells before re-assembling. 

 

The weight of ingot also was calculated from the drawing dimension, which 

was measured from the real aluminium cell. The mass of Al 174 was estimated by two 

methods. Based on the dimensions of the Al 174 ingot and the graphite re-entrance 

well, the volume of the Al 174 and the graphite was calculated. (Using standard 

densities this was converted to mass). As well as directly calculating the mass of 

aluminium, the calculated mass of graphite was subtracted from actually measured 

mass of graphite and aluminium together. (It is not possible to remove the graphite re-

entrance-well as the tin clamps onto it during the freezing process.) This procedure 

was carried out before the high purity Al 174 ingot was constructed in the new system 

and also was measured at the end of the experiments.  
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The Al 174 opened cell consists of a translucent silica cylinder used as a 

container of the cell with the brass top cap, a sand-blasted silica thermometer well for 

inserting the standard platinum resistance thermometer (SPRT), graphite felt discs and 

graphite discs as a thermal insulator. The components and the assembled cell are 

shown in Figure 5.13. Before the new translucent container and the silica thermometer 

well were used, they were cleaned with dilute nitric acid and acetone as explained the 

glassware cleaning process in Section 5.6. Moreover, the graphite felt discs and the 

graphite discs were baked in the vacuum system at 1100 oC for 2 days before using. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Assembly of high purity “undoped” Al 174 fixed-point opened cell. 

 

The aluminium base material of Al 174 ingot was put inside the graphite 

crucible originally made according to an old NPL design. The ingot is 185 mm long 

and 29 mm outer diameter. The diagram of the Al 174 fixed-point cell is shown in 

Figure 5.14. The graphite crucible is 29.5 mm in inner diameter, is 47 mm in outer 

diameter and is 250 mm in length. This crucible is contained within the translucent 

silica (460 mm long, 54 mm outer and 49 mm inner diameters) with a brass top cap. 

The diagram of “undoped” Al 174 fixed-point opened cell assembly is presented in 
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Figure 5.14. On the brass top cap, there is a cooling water tube, which was connected 

to a cooling water system at 18 oC. It was typically used for removing the heat and 

cooling the temperature down, which it was to ensure that the O-ring was not 

destroyed by the furnace heat at the Al temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Diagram of high purity “undoped” Al 174 fixed-point opened cell 

assembly. 
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5.5.1.2 Temperature Realisation of “Undoped” Al 174 Opened Fixed-Point  
 

The assembled cell was inserted in a single zone Carbolite furnace. The Al cell 

was connected to a gas control system including a vacuum pump (Edwards XDS10 

scroll pump) and a Wallace & Tiernan precision pressure gauge. Before the 

experiments, the whole system was tested using a Leybold Vacuum PhoeniXL 300 

helium leak detector to confirm a seal adequate for prohibiting any contamination 

from the surrounding. Afterwards, the cell, made as “Open” cell, was filled with argon 

gas and the pressure in the cell was set at about 101.3 kPa at the fixed-point transition 

to assist thermal exchange inside the cell, to protect the graphite from oxidation and to 

prevent metal vaporization and other contamination gases into the cell assembly.  

The single zone Carbolite furnace was used in conjunction with a potassium 

heat pipe for maintaining a uniform temperature above or below the phase transition 

temperature of the Al 174 cell. The function of the potassium heat pipe is to provide 

the base metal in the ingot with an isothermal environment. A Thyristor controller was 

used to control the furnace temperature, which applied only 120 volts (through a 

transformer) to reduce the electrical noise. As the phase transition is powered by an 

offset in the furnace temperature, it means that the conditions are only quasi-adiabatic, 

but this was the desired way to carry out the tests, as these are the “normal” conditions 

for the realisation of fixed-points.  

Before the temperature realisation started, the setting point of the balance 

temperature was investigated. The furnace controller was set to 6 °C higher than the 

actual equilibrium temperature to ensure the Al metal within the ingot was fully 

molten for 5 days. A PRT 250329, which was connected with an ac F18 Bridge, was 

used to record the resistance ratio from the freezing and melting temperatures. The 

PRT was annealed using the strength annealing, i.e. PRT was left at 670 °C for 3 hours 

then let it cooled down to 450 °C and remove it to room temperature, before realising 

the Al temperature. Normally, the Al metal is characterised by a relatively short 

supercool. The supercooling can be expected to be less than 0.5 °C. To freeze, the 

suggested setting is 5 °C below the freeze temperature; this is, assuredly, below the 

bottom of the supercooling quickly. It took about 25 minutes to get the under cooling 

point. The nucleation occurred at this point and the freeze was started from the bottom 

of the cell inwards. Then, the PRT was removed and replaced by two ceramics in 

silica rods (1 minute each). After 2 minutes remove the rod and replace the PRT. This 
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procedure made a radial freeze from the outside to the inside walls of the Al cell 

toward the centre. Then, the cell was maintained at an operating temperature, i.e. -

 0.5 oC with respect to the equilibrium temperature, which was the setting for the cell 

to be frozen. Finally, the freezing plateaus of the “undoped” Al 174 cell were achieved 

at least three times. 

Following the freezing process, the furnace controller was increased to 5 oC 

above the equilibrium temperature. The metal in the cell was entirely in the liquid 

phase. After that, the melting curves were realised after a rapid freeze was obtained. 

The temperature was set at + 0.5 oC of the equilibrium temperature, which was the 

setting for the cell to be melted. The resistance ratios of the PRT measurements were 

recorded using an Automatic Systems Laboratories Model F18 ac resistance bridge, to 

monitor the changing or equilibrium temperature of the fixed-point cell. The stability 

of the PRTs was then determined by comparison with the NPL standard Al 1205 cell. 

The PRT number 250329 was used to demonstrate the fixed-point realisation. 

Before adding the impurities in Al 174 cell, the peak of freezing curve of this 

initial Al 174 cell had been compared against with the “NPL national standard” 

(Al 1205) with two PRTs (serial number 250329 and 261198). The reason why the 

freeze peak had been selected to use was all freezing curves of the initial Al 174 had 

dropped and were not flat enough to do the comparison between the cells throughout 

the full length of the freeze. This comparison indicated how good the Al 174 was and 

how much temperature dropped from the high purity National standard Al cell. All 

results are corrected for the hydrostatic head pressure of both Al cells. For high purity 

Al 174 and NPL standard Al, the hydrostatic head correction values after calculating 

are about -0.198 mK and -0.185 mK, respectively. 
 

5.5.1.3 Elemental Analysis by GD-MS of Al 174 Opened Fixed-Point Cell 
 

Thereafter four small samples of the Al 174 ingot were cut from the top, middle, 

and bottom by the cleaned small hacksaw. Three pieces were sent for chemical 

analysis to determine the distribution of the impurity elements within the “pure” 

aluminium, before deliberate doping, by using GD-MS at the NRC. An example of 

cutting a sample off is shown in Figure 5.15. One piece was kept in NPL for a year 

later, which was detected at the same time as the doped sample. Subsequently the 
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impurity levels in the aluminium sample after doping will be measured again by 

GD-MS. 

 

 

   

 

 

 

 

 

 

 

 

 

 
 

Figure 5.15 Cutting a sample off for a GD-MS analysis of “undoped” Al 174 

ingot. 
 

5.5.1.4 Mixing Technique of Al 174 Opened Fixed-Point Cell 
 

After the equilibrium curves of “initial” Al 174 cell were completely measured, 

two types of impurities; namely copper and silicon were selected for doping. For the 

Al 174 fixed-point, high purity copper (99.99+%) and silicon (99.998%) were used to 

perform the study.  After the equilibrium curves of “initial” Al 174 cell were 

completely measured, two types of impurities; namely copper wire and silicon powder 

were selected for doping. Each impurity was dropped on the top, the middle, and the 

bottom of the originally pure Al 174 sample in increasing concentrations as follows 

(in ppmw); Cu 8.3 and 16.2, Si 4.7 and 9.8.  In prior experiments on these binary alloy 

systems, using higher levels of impurities [Hansen, 1958], the fixed-point temperature 

of aluminium was interpolated to be depressed by 0.37 mK/ppmw of copper and 

0.71 mK/ppmw of silicon impurity. The temperature values of pure Al 174 were 

decreased by the increased amount of the Cu, which were expected to decrease by 

3 and 6 mK, respectively. Then, the increased amounts of silicon impurity cause the 
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aluminium temperature to decease with respect to the Al-Cu by 3 and 6 mK, 

respectively.  

The masses of pure copper (99.99+%), and silicon (99.998%), employed as 

impurities for doping, were weighed by a microbalance (Mettler AT20).  

The uncertainty components of this weighing scale (Mettler AT20) are as 

follows; 

Negligible for the scale error  

1 μg for repeatability (normal distribution) 

2 μg for balance resolution (rectangular distribution) 

 From the above information, obtained from NPL Mass section, the uncertainty 

of the “weighing” itself is very small when compared with total mass of the impurity 

and the uncertainty due to the mass of the enclosed graphite reentrant well. Therefore, 

the “weighing” uncertainty is negligible in this research. 

The whole sample after each doping was held at 5 oC - 8 oC above the 

aluminium melting temperature for several days to ensure a good mixture of 

aluminium and their trace impurities.  The temperature changes during freezing and 

melting of the aluminium after each doping were measured and compared with the 

original curves to find out how much each of the trace impurities affected the 

equilibrium temperatures of the aluminium fixed point.  

After any impurities were doped in the aluminium ingot, the balance point was 

checked to find what the proper melting and freezing temperature setting would be. 

(The “balance point” is the furnace setting that should neither freeze nor melt a sample 

i.e. the setting that would, ideally, hold the ingot at the fixed-point temperature). The 

freezing/melting processes and the temperature realisations after doping were similar 

to the previous details in undoped Al 174 temperature realisation.  

The shifts and shapes of freezing and melting curves during freezing and 

melting of the aluminium after doping were measured and compared with the original 

curves by use of the freeze peak to find out how much the trace impurities affected the 

temperatures of the Al 174 fixed points. As thermometers drift, a comparison between 

the doped and NPL standard aluminium cells was carried out to investigate how much 

the trace impurities affected the temperatures of the initially “undoped” Al 174 fixed-

point cell. This is to ensure the reliable measurement of the small temperature shift 

due to the trace impurities, and not from the PRTs’ instability. The offsets of the 

melting curves need to be corrected following “re-calibration” of the PRTs by 
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comparison of the peak of the freezing curves against the NPL reference Al 1205 cell. 

The water triple point was realised to check the stability of the PRTs after doing the 

comparisons.  
 

5.5.2 Making and Realisation Aluminium (Al 298) Fixed-Point Cell 
   

 The aluminium 298 fixed-point ingot was named as the serial number, which 

appeared on the graphite crucible as shown in Figure 5.16. This cell was made in 

1998, according to the NPL design.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 Aluminium 298 fixed-point ingot. 

 

All processes of this experiment studied in the Al 298 cell will be mentioned in 

details as follows; Section 5.5.2.1 explains the Al 298 opened fixed-point cell 

assembly, Section 5.5.2.2 shows the process of the temperature realisation of initially 

“undoped” Al 298, Section 5.5.2.3 presents the process for preparing the Al samples 

for GD-MS analysis, and Section 5.5.2.4 discuss the mixing technique for adding the 

impurities into the Al metal ingot. 
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5.5.2.1 Assembly of “Undoped” Al 298 Opened Fixed-Point Cell 
 

All components of the assembled Al 298 fixed-point cell never been used 

excepting the ingot and graphite crucible. The components are presented in 

Figure 5.17. Because all glassware never had been used; therefore they needed to be 

cleaned as explained in Section 5.6 (cleaning glassware process). For the graphite felt 

and graphite discs, they were baked at 1100 oC for two days.  The graphite crucible 

and all components were assembled to be an opened fixed-point cell as shown in 

Figure 5.18. Also, the diagram of Al 298 opened cell is presents in Figure 5.19. The 

measurements of the sizes of the Al ingot, the graphite crucible, including the weight 

of Al298 metal were checked. The total mass of the aluminium (Al 298) fixed-point 

metal ingot was weighed by a balance, which is in the NPL Mass division. 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Components of aluminium (298) fixed-point cell: namely the 

graphite crucible, the aluminium 298 ingot (not shown), the graphite felt discs 

(99.99% purity), the graphite discs, the translucent silica tube. The silica re-entrance 

well (the bottom) was assembled with the layers of the graphite felt and the graphite 

discs. 
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Figure 5.18 “undoped” Al 298 fixed-point opened cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Diagram of the aluminium 298 opened fixed-point cell assembly. 
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5.5.2.2 Temperature Realisation of “Undoped” Al 298 Opened Fixed-Point 

Cell 
 

A three-zone Hart furnace was used for maintaining a uniform temperature 

above or below the expected equilibrium of the aluminium fixed-point. This furnace is 

specially designed for thermal uniformity. The furnace core has a thermal block, 

which is a heated aluminium-bronze block. This block is attached with the electrical 

heaters, which the main heater is wound over the whole length of the block. However, 

additional end zones are wound on the top and bottom, which are there only to control 

the heat required to equalise the end temperatures to that of the centre zone. Thus, this 

block is suspended in the cabinet and insulated to minimise heat loss. After 

completing the assembly of Al 298 cell, the assembled cell was inserted to the Hart 

furnace. Then, the cell was connected via a copper tube to the system, which was 

connected by reinforced plastic tube to the vacuum pump and a Wallace & Tiernan 

precision pressure gauge. Before the experiments, the whole system is tested using a 

Leybold Vacuum PhoeniXL 300 helium leak detector. Then, the cell was evacuated 

with the external argon for several times to flush some dust or contaminations out 

from the cell. Argon is an inert gas, which was used to back fill and to provide 

approximately 101.32 kPa in the cell at the aluminium temperature.    

The resistance ratios of the PRT 261198 measurements are recorded from an 

ASL F18 resistance bridge, in order to record the melting/freezing plateaus of the 

fixed-point cell. The fixed-point cell was maintained at the operating temperature, 

either – 0.5 oC or + 0.5 oC of the equilibrium temperature, which were the settings for 

the cell to be frozen and molten respectively. The freeze and the melt processes were 

the same as prior mentioned in Al174 fixed-point cell.  

The initial freezing temperature of the “high purity” aluminium cell was calibrated 

several times against a NPL national standard Al 1205 cell by comparison of the 

thermometers readings (PRT 250329 and 261198) in the two cells. All results are 

corrected for the hydrostatic head pressure from Al 298 and NPL standard cells. For 

high purity Al 298 fixed-point cell, the hydrostatic head correction value after 

calculating is about -0.195 mK. 
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      5.5.2.3 Elemental Analysis by GD-MS of Al 298 Opened Fixed-Point Cell 
 

 After obtaining all temperature realisations from the initial “undoped” Al 298 

cell, four small pieces of the Al 298 ingot were cut from the top, middle, and bottom. 

As the same as Al 174 method, three pieces were analysed by GD-MS technique to 

check the distribution of the impurity elements within the ingot, before doping. The 

Al 298 ingot was shown in Figure 5.20. The other one was checked the same time as 

the doped sample. Moreover, the impurity levels in the aluminium samples after 

doping were measured again by GD-MS to see the level change of titanium impurity 

concentration after adding some titanium impurity into the ingot. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Aluminium 298 fixed-point ingot. 

 

      5.5.2.4 Mixing Technique of Al 298 Opened Fixed-Point Cell 
 

After completing the initial measurements of the “undoped” Al 298 cell, the 

titanium impurity was used for doping. The high purity titanium wire (99.8%) was 

weighed and cut to be three pieces. They were placed on the top, the middle and the 

bottom of the originally pure aluminium Al 298 sample increasing the concentrations 

as follows (in ppmw); Ti: 0.9 and 1.8 in Al 298 cell. Titanium metal was chosen as the 

impurity in this aluminium ingot because it can affect that is expected to increase the 

melting and freezing temperatures of aluminium. From the phase diagram calculation, 

the fixed-point temperature of aluminium was interpolated to be elevated by 

3.31 mK/ppmw of titanium impurity. The titanium metal wire (99.8%) was weighed 



SED, Brunel University                                                                          RES Systems Engineering (PhD) 
 

 5-38

by a microbalance (Mettler AT20), which the uncertainty was discussed in the Section 

5.5.1.4.  

After doping in each lot of titanium, the Al 298 ingot was re-inserted back to 

the graphite crucible and the translucent container. Then the assembled cell was put 

into the Hart furnace, which was set at 6 oC – 8 oC above the actual equilibrium 

temperature for 5 days to ensure a good mixing of the impurities within the cell. 

Before the melting and the freezing curves of Al 298 after doping titanium display, the 

instability of the PRT 261198 would be checked by calibration in the NPL standard 

Al 1205 cell. The freeze peak of this cell was regularly cross-compared to the NPL 

standard Al 1205 cell by measuring thermometers resistances. This is to ensure the 

reliable measurement of the small temperature shift due to the trace impurities, and 

not from the PRTs’ instability. The shifts and shapes of freezing and melting curves 

were investigated.  

 Following the fully molten process, the freezing and the melting curves of 

Al 298 were realised by use the same procedure as before doping in Al 298. When all 

results were completely obtained, the samples were cut off from the Al ingot to check 

the impurity levels after doping by use the GD-MS technique.  
 

5.6 Cleaning Glassware Process 
 

All glassware used as components of tin and aluminium fixed point open cells 

was cleaned before assembling. The glassware was made from Laboratory glassware 

provided by LGC Limited. “LGC is the UK’s designated National Measurement 

Institute for chemical and biochemical analysis and is also the host organisation for 

the UK’s Government Chemist function” [LGC limited, 2009].          

The glassware used in this work consists of a set of clear Pyrex tube 

containers, a set of translucent silica tubes and a set of silica re-entance well tubes, 

which were used in the assembly of the tin and aluminium opened cells. Before the 

cleaning process started, the clean areas needed to be prepared and kept clean. The 

cleaning process of the glassware is as follows; 

1. For the initial clean process, the glassware was cleaned with tap water both 

inside and outside at least three times. 

2. Then, the acetone solvent, which is miscible with water, was used to rinse 

and remove any water from the surface of the glassware. Acetone is a common 
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solvent for rinsing laboratory glassware. The rinsing with acetone was usually 

performed 3 times. 

3. The glassware was left until its surface was dry. Then, the glassware was 

cleaned by the Ensolv solvent. It was used to remove oil, grease, or wax 

contaminations on the glassware’s surface. This solvent is very effective for higher 

cleaning performance and also is non-hazardous to the environment and health. This 

process was repeated three times   

4. Then, the cleaning was followed by the acetone. It was to dissolve Ensolv 

out from the surface.  

5. The glassware was rinsed with distilled water and was dried by acetone. 

6. Following the completed cleaning with the Ensolv solvent, the dilute nitric 

acid was prepared for 10% dilute by adding nitric acid to water. Pour dilute nitric acid 

into a glass container. Then, the glassware was divided into 2 groups, namely the first 

group was a set of all containers and the other group was a set of re-entrance well 

tubes, respectively. For the first group, all containers were directly added the dilute 

nitric acid and then the rubber bungs were used to be a lid. The containers were 

shaken to clean the surface inside the containers.  For the second group, each tube was 

put into the larger glass tube as a cleaning holder for small item to soak and shake 

with dilute nitric acid for 10 minutes. For extra clean surfaces, they were soaked for 

24 hours. This process was done in a sink with either running water or a large tank of 

water available, which it was repeated at least three times. After that, it the used dilute 

nitric acid was clean and it can be used again, then it was stored in an appropriately 

labeled container. 

7. Remove the dilute nitric acid and rinse thoroughly with distilled water until 

the glass was cleaned. 

8. Finally, the glassware was rinsed with acetone to remove all traces of 

water.  

9. Then, the glassware was turned upside down and was left until they were 

dried. 

Following the completed cleaning process, all glass containers and re-entrance 

well tubes were ready to use for assembling the tin and aluminium fixed-point cells. 
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Chapter 6     

Results and Discussions of Tin Fixed Point  

 This chapter describes the experimental results of the study of the quantitative 

affect of low level impurities on the phase transition temperature of high purity tin 

(231.928 °C) metal fixed-point cells, specified for use in the International 

Temperature Scale of 1990 (ITS-90). The accurate realisation of the tin fixed-point 

temperature, which plays an important role in the provision and dissemination of 

standard temperature values, strongly depends on the purity level of the tin material 

used. The trace impurities (of order ~1-30 parts per million by weight (ppmw)) of 

cobalt, lead, and antimony metals were selected for addition to the originally “pure” 

tin ingots; total concentrations as follows (in parts per million by weight (ppmw)): 

Co 5.5 and 7.4, Pb 7.9 and 31.4, Sb 7.8 and 23.2. The effect of these three impurities 

on Sn temperature had been studied at larger fractions by Hansen [1958], as had been 

described in Section 5.4.1.2. Our measurements using lower concentrations of dopants 

planned to test the interpolation of this previous data obtained using relatively high 

levels of impurities, which would help reduce the uncertainty budget of the tin fixed-

point realisation, where impurities are the biggest contribution to the uncertainty 

budget.  

The changes to the offsets of the initial freezing temperature, after deliberate 

doping with the impurity elements will be discussed in this chapter. Also, the shapes 

of melting plateaus of the “pure” tin will be compared with MTDATA program to 

check what shapes of the pure plateaus are. Also, the results of the concentration and 

distribution (or uniformity) of the impurity elements within the “pure” tin and 

aluminium ingots, which were detected by the Glow Discharge Mass Spectrometry 

(GD-MS) analysis, will be given. The experimental results of tin fixed point are 

divided into two parts, i.e. Spanish tin and Mini Isotech tin as used to study the 

influence of trace impurities on the equilibrium tin temperature.  
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6.1 High Purity Spanish Tin Fixed-Point  
 

The experimental results of high purity Spanish tin fixed-point cell will be 

summarised and formed in terms of the “Family tree” as presented in Figure 6.1. But 

note that the measurements were done consecutively (not in parallel). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# FP/MP = Freezing and Melting curves conducted in this stage. 

GD-MS = Glow discharge mass spectrometry analysis performed in this stage. 

* ppmw = Parts per million by weight 

 

Figure 6.1 “Family Tree” showing the figure number of the freezing/ melting 

curves and the analysis technique of Spanish tin fixed point obtained for a particular 

combination of conditions. 

6.1 Spanish Tin Fixed Point 

6.1.1  
Original open-“sealed” cell  

6.1.2 
 Open cell after re-assembly 

FP/MP# Fig. 6.2, 6.3 (PRT 909347)                    
FP     Fig. 6.4 (2 different methods of supercooling) 
FP     Fig. 6.5 (external air flow) 
FP/MP  Fig. 6.6, 6.7 (PRT 4849)       

MP Fig. 6.8, 6.9 (plotted against time and % Melted) 
FP  Fig. 6.10, 6.11(2 different furnace settings) 
GD-MS#  Table 6.6 

6.1.3  
Co 

6.1.4 
 Pb   

(a) 
5.5 ppmw* 

(b) 
7.4 ppmw 

(a) 
7.9 ppmw 

(b) 
31.4 ppmw 

FP/MP# Fig. 6.13, 6.14  
FP/MP Fig. 6.15, 6.16
 
FP/MP Fig. 6.17, 6.18
(Total doping curves)

FP/MP Fig. 6.19, 6.20 
FP/MP Fig. 6.21, 6.22.6.23

GD-MS Table 6.16 
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6.1.1 Temperature Realisation of Original Open-“Sealed” Spanish Tin  
 

The freezing and melting transitions of initially 99.9999% nominal “pure” 

Spanish tin cell were shown in Figures 6.2 and 6.3. The PRT resistance values on the 

Y axis for all figures in this chapter including the figure in Mini Isotech tin of the 

freezing and melting curves were calculated from the resistance ratio of PRT and 

standard resistor values and these values were not included the correction of the 

hydrostatic head, while the resistance values of PRT calibration by comparison 

measured at the peak of the freeze include the correction of the hydrostatic head of the 

cell.  

 

 
 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 A freezing curve of a high purity original Spanish tin open “sealed-

cell” in terms of the resistance value of the PRT 909347 (at 230.83 oC nominal 

temperature) plotted as a function of time.  
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Figure 6.3 A melting curve of a high purity Original undoped “Spanish” tin 

fixed-point after being rapidly frozen, in terms of the resistance value of the PRT 

909347 (at  231.83 oC nominal temperature) plotted as a function of time.  

 

Figures 6.2 and 6.3 show examples of freezing and melting curves of original 

“undoped” Spanish tin cell plotted as the relationship between the PRT resistance 

values and a function of time. The melting curve was obtained after rapid freezing. 

The impurity segregation of the prior freezing process occur in either slowly or 

rapidly frozen metals affects the shape of the subsequent melting curve as had been 

discussed in Section 3.1. Ideally, the melting curve should be flat but it is difficult or 

impossible to obtain 100% pure metal, therefore, the curve would slightly incline. The 

rapid frozen (quenching) would stop any dispersion of impurities from their original 

positions in the metal fixed point. The temperature of the melting curve slowly 

increases until the liquidus point (100% liquid) occurred. It is the phase transition 

change from the solid to liquid. The results illustrate that the curve has a small slope 

(a few mK) due to the impurity distributed within the cell.  
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Figure 6.4 Freezing curves of original “undoped” Spanish Sn plotted as a 

function of time. The supercooling needed to induce tin recallescence was provided by 

two different methods, i.e. turning the temperature of the whole furnace down 6 oC or 

by using an external forced air flow up the furnace axis and around the tin cell.  
 

 

 

 

 

 

 

 

 

 

  
 

Figure 6.5 Three freezing curves of high purity original “Spanish tin” plotted 

as a function of time. The furnace set point for all three measurements is set at the 

same temperature. All freezing curves use the external air flow inside the furnace 

around the tin cell to initiate the recalescence.  
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Figure 6.4 indicates that the peak of the resistance values of the freezing curve 

obtained from the external air flow of the Hart furnace initiation method is a bit higher 

(~0.2 mK) from the normal initiation method as explained in Section 5.4.1.1. The 

period of the freezing time is different due to variations in the amount frozen at 

recallescence and difference of the furnace setting (the temperatures quoted are only 

nominal values as indicated on the furnace controller. 

The results, as plotted in Figure 6.5, show the reproducibility of three freezing 

curves of original “undoped” Spanish tin. These freezing curves indicate the different 

period of time even though the three-zone Hart furnace is set in the same temperature. 

However, the peaks of all curves are exactly the same resistance values. Considering 

the solidus of these curves in Figure 6.5, it found that the temperature drop from the 

peak along the curve is about 1 mK. These three freezing curves also provide the 

reproducibility of better than 1 mK. 
 

Table 6.1 Resistance values measured at the freezing point of high purity 

“undoped” Spanish Sn fixed-point cell. These values were calculated from the 

resistance ratio of PRT and standard resistor values. Also, the resistance values 

include the correction of the hydrostatic head of this cell. The temperature setting of 

the furnace was maintained at 230.75 oC (nominal). The resistance values are 

measured at the peak of the freeze. 

In Table 6.1, i represent the order of the resistance measurements of the PRTs at the 
freezing point of Spanish tin.  

 

Resistance values at 
freezing point  of tin Date Platinum Resistance Thermometers (PRTs) 

(Serial Number) 

RT (i) /Ω - 909069 274728 909347 

RT (1)  04/06/07 48.249953 48.895843 50.562408 

RT (2) 05/06/07 48.249968 48.896149 50.562412 

RT (3) 06/07/07 48.249858 48.896375 50.562386 

Standard deviation 
(2s) - 0.12  mΩ 0.53 mΩ 0.03  mΩ 

Mean of the RT (Ω) - 48.249926
00012.0±   

48.896122 
00053.0±  

50.562402 
00003.0±  
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In Table 6.1, it shows the resistance values at the freezing temperature are 

similar in each measured PRT. The standard deviation (2s) for all measurements was 

0.55 mΩ which is equivalent to 5.9 mK approximately The standard deviation value is 

not good, which is higher than ideal. It is because only the old PRTs can be used in 

this research, as only these PRTs were available. Hence, the use of several 

thermometers would help to obtain the most stable and/or to take the average of the 

resistance values. The biggest change is from the PRT 274728, which has a wide 

range of results. A PRT serial number 909347 proved to be more stable than other two 

thermometers during the thermal cycling. Its standard deviation is equivalent to ± 0.03 

mΩ. This is the primary result to show the most stable of these PRTs is the PRT 

909347. 

Nevertheless, the stability of three PRTs needs to be tested again by realising 

the temperature in the triple point of water. According to Physikalisch-Technische 

Bundesanstalt (PTB) - the German national metrology measurement institute -the peak 

of the freeze is the most reproducible part of the freezing curve, from which good 

results can be obtained. The reason is that the maximum temperature does not strongly 

depend on the homogeneity and stability of the furnace temperature [Rudtsch et al., 

2008]. Furthermore, the graphite crucible and an inert gas environment, which are the 

part of the components for the metal fixed-point cell assembly, must be the high purity 

grade. This is to prevent the contamination from the surrounding impurities affecting 

the temperature values.  

 

 

 

 

 

 

 

 

 

 

 

 

 



SED, Brunel University                                                                          RES Systems Engineering (PhD) 

 6-8

Table 6.2 Measurement of the stability of four PRTs measured from the 

resistance values at the triple point of water. These values were checked before using 

the PRTs in the comparison measurements at the freezing curves of tin fixed point 

between high purity “Undoped” Spanish and Reference Isotech Sn 184 fixed-point  

cells. 

In Table 6.2, i represent the order of the resistance measurements of the PRTs at the 
triple point of water; # 10.8 (mK/mΩ) is the appropriate conversion factor of sensitivity of 
R(T90) from 10-6 μΩ to mK [Rusby, 2008].  

 

The resistance values measured at the triple of water cell as listed in Table 6.2 

can give an indication of the thermometer stability. The water triple point values in 

this research were checked within a few hours after the measurements at tin fixed-

point temperature. The standard deviation (2s) for all measurements of all 

thermometers was 0.31 mΩ which is equivalent to 3.3 mK approximately. In practice, 

the shift differences of the thermometers during the thermal cycling result from the 

influences of increased strain in the wire during the temperature change or a slightly 

different wire composition.  

Table 6.2 lists the resistance value and standard deviation of the resistance 

changes obtained at the triple point of water for the four PRTs. The first two PRTs as 

Resistance values at 
triple point of 

water  (Ω) 
Date Platinum Resistance Thermometers (PRTs) 

(Serial Number) 

Cycle number and 
differences - 909069 909174 909347 4849 

RTPW (1)  18/05/07 25.493319 25.501499 - - 

RTPW (2) 19/05/07 25.493318 25.501508 26.715184 25.443919 

8.10*11 RT Δ=Δ # - -0.011 mK +0.097 mK - - 

RTPW(3) 06/06/07 25.493482 - 26.715175 - 

8.10*22 RT Δ=Δ # - +1.77 mK - -0.097 mK - 

RTPW(4) 21/06/07 25.493447 25.501236 26.715225 25.443956 

8.10*33 RT Δ=Δ # - -0.38 mK -2.94 mK +0.54 mK +0.40 mK 

Mean of the TΔ  - +0.46 mK -2.84 mK +0.22 mK +0.40 mK 

Standard deviation 
(2s) - 0.172 mΩ 0.310  mΩ 0.053 mΩ 0.052  mΩ 
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presented in Table 6.2, i.e. 909069 and 909174, show the lower stability behaviour 

with the standard deviation 2s within 0.35 mΩ. Other two PRTs, i.e. 909347 and 

4849, display good stability with a standard deviation of less than 0.06 mΩ during the 

thermal cycles. This proves that PRT 909347 and PRT 4849 are the better 

thermometers to use for realising the tin temperature fixed point.  
 

(a) Tin Fixed-Point Calibration by Comparison between High Purity 

Spanish and Reference Isotech Sn 184 cells 
 

In the first stage, the original “undoped” Spanish tin fixed-point cell was 

calibrated by comparison against the Reference Isotech Sn 184, by noting direct 

measurements on the freezing curves, listed in Table 6.3.  

Table 6.3 Summary of the average resistance values in the comparison 

measurements of the freezing curves of tin fixed point between original high purity 

“Spanish” and “Reference Isotech Sn 184” cells with four PRTs. These results were 

recorded when the Spanish tin cell was originally an opened-“sealed cell”.  

#10.8 (mK/mΩ) is the appropriate conversion factor of sensitivity of R(T90) from 10-6 μΩ to mK 

[Rusby, 2008]. 

PRTs 
serial 

number 
Date 

RT 
Original 

Spanish Sn 
(0 mA) 

RT 
Reference Sn 

184 
(0 mA)  

Equivalent 
Temperature 

difference between 
Original Spanish Sn 

and Sn184 cells 
[ TRT Δ=Δ *8.10 ]# 

[Rusby, 2008] 
909069 I 20/06/07 48.249885 48.250048 -1.76 mK 

909069 II 21/06/07 48.249879 48.250058 -1.93 mK 

909174 I 20/06/07 48.265319 48.265458 -1.50 mK 

909174 II 21/06/07 48.265300 48.265448 -1.60 mK 

909347 I 20/06/07 50.562431 50.562568 -1.48 mK 

909347 II 21/06/07 50.562407 50.562563 -1.69 mK 

4849 I 20/06/07 48.152663 48.152808 -1.57 mK 

4849 II 21/06/07 48.152626 48.152808 -1.97 mK 

Overall 
Mean  - - - 1.69 mK 

∴ Standard deviation (2s)  =  ± 0.24 mK 

∴ Mean of Temperature difference Original Spanish - Reference Sn184 tin fixed-point cells 
=  - 1.69 ± 0.24 mK 
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Table 6.3 indicates that the average temperature difference between the 

original “undoped” Spanish tin and Reference Sn184 fixed-point cells is                       

- 1.69 ± 0.24 mK. That means the temperature of the original “undoped” Spanish tin is 

lower than the Reference Sn184 by around 1.69 mK. That also means the Spanish tin 

ingot contained some pre-existing contamination affecting its freezing and melting 

temperatures (this was expected, and part of the reason why it could be used for 

doping, which effectively destroys the value of the cell). The standard deviation (2s) 

for all measurements is 0.24 mK. Table 6.3 also shows the important thing is that the 

Reference Sn 184 cell has good repeatability for good thermometers, which is better 

than water triple points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Freezing curves of a high purity original Spanish tin open “sealed-cell” 

in terms of the resistance value of the PRT 4849 used instead of the PRT 909347 at 

230.75 oC (nominal temperature) plotted as a function of time. 
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Figure 6.7 Melting curves of a high purity original Spanish tin open “sealed-cell” 

in terms of the resistance value of the PRT 4849 used instead of the PRT 909347 at 

233.25 oC (nominal temperature; +2 oC from the equilibrium temperature) plotted as a 

function of time.  

Figure 6.6 and 6.7 show the freezing and melting curves, which were recorded 

by PRT 4849 used to replace the broken PRT 909347 using the same equipment 

system. Once the results of the calibration and realisation were completely recorded, 

the high purity Spanish tin open “sealed-cell” was broken apart and then was re-

assembled into the new component system and container. It would be made to be an 

“Open” cell. The results will be revealed in the next section. 
 

6.1.2 Temperature Realisation of “Undoped” Opened Spanish Tin after 

Re-Assembly  
 

The melting curves, as shown in Figure 6.8, are taken from the high purity 

undoped “Spanish” tin fixed-point curves after re-assembly and plotted as a function 

of time. In Figure 6.9, these melting curves are plotted as a function of percentage 

melted in preparation for future comparison of these shapes with the output of the 

MTDATA program. The reproducibility of these melting curves is of order of 1 mK. 

Also, the high purity Spanish tin freezing curves, before doping, are shown in Figure 

6.10.  
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Figure 6.8 Three melting curves of a high purity undoped “Spanish” tin fixed-

point after re-assembly plotted as a function of time. The furnace setting point for all 

three measurements is set at the same temperature (nominally half a degree above the 

melting point). 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

Figure 6.9 Three melting curves of high purity “undoped” Spanish tin. The 

curves have been normalised to an approximate percentage melted.  
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Figure 6.10 A freezing curve of the high purity “undoped” Spanish tin plotted 

as a function of time. The furnace setting is set at 229.3 oC (nominally half a degree 

below the equilibrium point). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 High purity “undoped” Spanish tin freezing curves plotted as a 

function of time. The furnace control point for these curves is set at the same 

temperature at 228.3 oC (nominal value). 
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All the melting and freezing curves of the undoped Spanish tin confirm the 

reproducibility of the measurements of this tin fixed-point cell. In Figure 6.10, the 

period of the freezing curve from the liquidus until solidus points is approximately 

4000 minutes or 70 hours when the furnace setting is set at -0.5 oC below the 

equilibrium point. It is too long a curve for normal realisations. The setting point of 

the furnace can be set at 1 oC below the equilibrium point, i.e. 228.3 oC (nominal), 

which is enough temperature difference to get the long curve in this experiment, as 

seen in Figure 6.11. The temperature change of the curve between the approximate 

liquidus and solidus points is about 2 mK as showed in Figure 6.11. For the standard 

tin fixed-point cell, the temperature change of the flat curve should be within 0.5 mK. 

This confirms that this Spanish tin has been contaminated with some impurities. The 

temperature curves are smooth and no sharp structural changes take place in these 

melting curves during melting and the following freeze. 
 

Table 6.4 Stability performances of three PRTs (PRT serial number 909069, 

909174, and 4849) measured at the triple point of water before and after the 

calibration by comparison between “undoped” Spanish tin and Reference Isotech Sn 

184 fixed-point cells.  
 

 In Table 6.4, i represent the order of the resistance measurements of the PRTs at the 
triple point of water. # 10.8 (mK/mΩ) is the appropriate conversion factor of sensitivity of 
R(T90) from 10-6 μΩ to mK [Rusby, 2008]. 

Resistance values 
at triple point of 

water/Ω 
   Date Platinum Resistance Thermometers (PRTs) 

(Serial Number) 

Cycle number and 
differences  

- 909069 909174 4849 

RTPW (1)A  21/06/07 25.493447 25.501236 25.443956 

RTPW (2)B 22/10/07 25.493368 25.501197 25.443907 

8.10*11 RT Δ=Δ # - -0.85 mK -0.42 mK -0.53 mK 

RTPW (3) 23/10/07 25.493280 25.501383 25.443961 

8.10*22 RT Δ=Δ # - -0.95 mK +2.01 mK +0.58 mK 

RTPW (4) 24/10/07 25.493416 25.501218 25.443949 

8.10*33 RT Δ=Δ # - +1.47 mK -1.78 mK -0.13 mK 

Mean of the TΔ  - -0.11 mK -0.06 mK -0.03 mK 

Standard deviation 
(2s) - 0.145 mΩ 0.169 mΩ 0.005 mΩ 
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 The stability of three PRTs was monitored by means of the triple point of 

water cells, as illustrated in Table 6.4. The standard deviation (2s) for all 

measurements was 0.17 mΩ, which is equivalent to 1.8 mK approximately. However, 

PRT 4849 shows the best stability of the resistance values at the triple point of water 

(the standard deviation is 0.005 mΩ which is about 0.05 mK). This confirms that PRT 

4849 is good for measuring at this tin cell.  
 

Table 6.5 Summary of the average resistance values in the calibration by 

comparison method between a new undoped “Open cell” Spanish Sn and the 

Reference Isotech Sn184 fixed-point cells with three PRTs on 23rd and 24th October 

2007, respectively. The furnace setting was set to a nominal value of 229.1 oC for all 

freezing realization measurements. 

# 10.8 (mK/mΩ) is the appropriate conversion factor of sensitivity of R(T90) from 10-6 μΩ to 
mK [Rusby, 2008]. 
 

Table 6.5 summarises the calibration by comparison and takes the average 

values from the resistance ratio in the “undoped” Spanish tin cell; it indicates that the 

PRTs 
serial number Date 

RT 
“undoped” 
Spanish Sn 

(0 mA) 

RT 
Reference  

Sn 184 
(0 mA)  

Equivalent 
Temperature 

difference between 
“undoped” Spanish 
Sn and Sn184 cells 
[ TRT Δ=Δ *8.10 ]# 

[Rusby, 2008] 

909069 I 23/10/07 48.249687 48.250004 - 3.42 mK 

909069 II 24/10/07 48.249701 48.250022 - 3.47 mK 

909174 I 23/10/07 48.265258 48.265554 - 3.20 mK 

909174 II 24/10/07 48.265258 48.265558 - 3.24 mK 

909174 III 23/10/07 48.265265 48.265561 - 3.20 mK 

909174 IV 24/10/07 48.265265 48.265562 - 3.21 mK 

4849 I 23/10/07 48.152602 48.152897 - 3.19 mK 

4849 II 24/10/07 48.152602 48.152901 - 3.23 mK 

Overall Mean - - - -  3.27 mK 

∴ Standard deviation (2s)  = ± 0.22 mK 

∴ Mean of Temperature difference  “undoped” Spanish Sn – Reference Sn 184 fixed-point cells 

=  - 3.27 mK 
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temperature difference between the “undoped” Spanish tin cell and Reference Isotech 

Sn 184 cell is 3.27 ± 0.22 mK. That means the temperature of the “undoped” Spanish 

tin cell is lower than the Reference Sn184 cell by around 3.27 mK. The standard 

deviation can be calculated as 0.22 mK, which is equivalent 2.4 mK.  

After comparison with the reference tin cell, the initial freezing temperature of 

the Spanish cell was found to be 3.27 mK lower than the Reference Isotech Sn 184 

cell. That means the Spanish tin ingot contained some pre-existing contamination 

affecting its freezing and melting temperatures (this was expected, and part of the 

reason why it could be used for doping, which effectively destroys the value of the 

cell). Moreover, transferring and assembling the Spanish tin cell from the old to the 

new components and container were also the one factor to increase its contamination 

by more than it would be expected. We understand that the influence of each of the 

impurities in the host material remains independent of each other at low 

concentrations. The magnitude of each effect on the temperature depends on both the 

species type and the amount of that particular species and the total temperature change 

is the sum of the individual effects, taking account of any sign. The impurities in the 

original Sn sample can be detected by using the Glow Discharge Mass Spectrometry 

(GD-MS), which will be discussed in the next part.   
 

6.1.2.1 Impurity Analysis of Spanish Tin Fixed-Point before Doping 
 

Glow Discharge Mass Spectrometry (GDMS) Characteristics 

 
Table 6.6 lists the impurity elements detected in three areas of the tin metal 

ingot. The uncertainty of this GD-MS analysis is considered to be accurate within 

a factor of two of the values obtained, at a confidence level of 95% though there is 

anecdotal evidence that the results are more accurate than quoted. GD-MS is the 

best technique (most sensitive) available at present to determine the amount of the 

impurities. 
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Table 6.6 GD-MS analysis results of the initial impurity concentration of the 

“undoped” Spanish tin fixed point before doping [NRC report number: 30337R1 

(checked on 14/12/07)]. These elements were detected in term of mass fraction (in 

parts per billion by weight, ppbw). The uncertainty is quoted as a “factor of 2” i.e. 

50% to 200% of the reported value, though this is probably a conservative 

overestimate. 

 

The pre-existing impurities would contribute to the initial 3.27 mK offset with 

respect to the reference cell. From the GD-MS results we see that the impurity levels 

are the same throughout the cell, which shows the homogeneity of the impurity 
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concentration (within the uncertainty quoted). This indicates that the tin is sufficiently 

well mixed after properly melting the sample. In future only one sample will need to 

be cut out for analysis after doping. (Cutting out of samples is a risky procedure).  

C, N, and O show as large amounts of impurity, when compared with other 

background impurities, even though GDMS is not expected to be so accurate with 

these elements.  
 

6.1.2.2 MTDATA Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 Melting curves of pure Spanish fixed point obtained from 

MTDATA calculation analysis. The red line shows the curve calculated using the 

GD-MS result (impurity effect on the curve), the blue and the green lines show the 

calculated bounds (based on the quoted uncertainty of the GD-MS analysis i.e. 

factor of 2 which translates to –50% and +100% of reported value)   
  

Considering the red line (Spanish mean) obtained from MTDATA as shown in 

Figure 6.12, the depression of the Spanish Sn melting temperature at 100% is about 

0.8 mK (i.e. 0% of freezing). This is not in agreement with the experimental results, 

i.e. the initial temperature (0% “frozen”) obtained from experiment results, compared 
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to the Isotech reference Sn cell, is depressed by 3.27 mK. This difference is beyond 

the uncertainties. However at 100% to 50% melted [as defined on MTDATA curve], 

the temperature depression is approximately 0.4 mK. This does match with the 

experimental results, which is a 0.5 mK drop, as based on 100% to 50% melted and 

0% to 50% frozen on melting and freezing curves, respectively. In light of the 

aluminium data (see chapter 7) there is some evidence that there may be more 

impurity effect present than is calculated by MTDATA based on the GD-MS analysis 

– this MIGHT be due to some undetected impurity.     

Also, the comparison of the pre-doped Sn cells (and Al cells) with MTDATA 

seems to show much more rounding in the experimental melt data (though the 

experimental data is repeatable, but then the same “fast freeze” technique was always 

used i.e. reduce the furnace by 5 degrees, giving a freeze duration of about one hour). 

It might be that in large cells, as used in this work as compared to Ancsin’s small cells 

[Ancsin, 2008], that the thermal inertia of the cell/furnace means that “fast freeze” 

rates are not as fast as one might expect, and that to get a freeze that will truly quench 

the impurities in place it would have to be “Very” fast – such as by pulling the ingot 

into air (see comment below, regarding the recent work of Qiu [Qiu et al., 2008] in the 

section on the 23.2 ppmw Sb doped Mini Isotech tin). We note that Head [Head et al., 

2008] showed good agreement between the doping experiments of Ancsin and 

MTDATA. However Ancsin was using very small samples that could be easily and 

very quickly pulled into air to cause “Ultra fast” freezing. (Ancsin also had higher 

levels of impurity and a special adiabatic container). 

It may be that to properly compare our “fast frozen” melt data will need a 

more sophisticated model than just MTDATA that will allow for temporal affects and 

impurity redistributions. Work on such models has been started by Hunt [2008] and 

Malik [2009] but their application to the data here is beyond the present work. 

(However it could be considered as useful “Further work”). 
  

6.1.3 Influence of Cobalt on High Purity Spanish Tin Fixed Point 
 

6.1.3.1 High Purity Spanish Tin doped 5.5 ppmw of Cobalt 
 

The offsets and shapes of the melting and freezing curves doped with 

5.5 ppmw of Co in tin sample are shown in Figure 6.13 and 6.14.  
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Figure 6.13 Three melting curves of Spanish Sn fixed point after doping with 

5.5 ppmw cobalt impurity. The curves have been normalised to an approximate 

percentage melted of Sn fixed-point sample. These melting curves are realised at 

different nominal temperature furnace settings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14 An example of freezing curve of Spanish Sn fixed point doped 

with 5.5 ppmw cobalt impurity. This curve is recorded at nominal furnace setting of     

229.1 oC.  
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Melting curves are dependent on the thermal history of the sample. This is a 

result of changes in impurity segregation during the former freezing process. If 

ingot/impurities are left molten for a long time we assume they will become uniformly 

distributed. However, if the freezing process takes a long period, there will be time for 

segregation to occur: this does not happen, as noticeably, if the sample is frozen 

quickly. Therefore, all melting curves in this work were measured following a rapid 

freeze (approximately 1 hr). More melting curves, plotted as a function of time, will 

be presented in Appendix B. Three melting curves of Spanish Sn fixed point after 

doping with 5.5 ppmw cobalt impurity confirm, as shown in Figure 6.13, the 

reproducibility of the temperature measurements in these fixed-point cells. However, 

the slope of the freezing curves after cobalt doping, as seen in Figure 6.14, decline 

dramatically when they are compared with undoped ones.   

 

After comparison with Reference Isotech Sn184, the initial freezing 

temperature of the Spanish cell after doping 5.5 ppmw was found to be 

7.07 ± 0.81 mK reduced from the Reference Isotech Sn184 cell, as displayed in 

Table 6.7. Therefore, the temperature difference between “doped Co 5.5 ppmw” and 

“undoped” Spanish Sn was decreased by 3.80 ± 0.84 mK. That means the Co impurity 

results in a reduction in the freezing and melting temperatures of the Spanish tin ingot. 

The equilibrium curves of the Spanish tin after doping with Co 5.5 ppmw fixed-point 

and the temperature difference after calibration by comparison decreased roughly in 

line with expectations derived from interpolation of previous experiments as 

increasing amounts of impurities was introduced; the measured rates is as follows: 

Co - 0.69 mK/ppmw. 
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Table 6.7 Summary of the average resistance values in the calibration 

measurements by comparison method between the Spanish Sn doped with 

Co 5.5 ppmw and the Reference Isotech Sn 184 fixed-point cells with three PRTs. The 

nominal furnace setting was maintained at 229.1 oC. These resistance values are 

compared by using the peak of the freeze values as explained in section 6.1.1. 
 

# 10.8 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) [Rusby, 
2008]. 

 

 

 

 

 

PRTs 
serial 

number 
Date 

RT 
Spanish Sn 

doped  
 “Co 5.5 ppmw” 

(0 mA) 

RT 
Reference  

Sn 184 
(0 mA)  

Equivalent 
Temperature difference 

between Spanish Sn 
doped Co 5.5 ppmw and 

Sn184 cells 
[ TRT Δ=Δ *8.10 ]# 

[Rusby, 2008] 

909174 I 22/01/08 48.264841 48.265538 - 7.53 mK 

909174 II 23/01/08 48.264919 48.265554 - 6.86 mK 

4849 I 22/01/08 48.152193 48.152911 - 7.75 mK 

4849 II 23/01/08 48.152279 48.152927 -  7.00 mK 

4849 III 23/01/08 48.152292 48.152937 - 6.97 mK 

4849 IV 24/01/08 48.152276 48.152898 - 6.72 mK 

909069 I 23/01/08 48.249332 48.249995 - 7.16 mK 

909069 II 24/01/08 48.249403 48.250008 -  6.53 mK 

Overall 
Mean - - - - 7.07 mK 

∴ Standard deviation (2s)-Temperature difference between Co 5.5 ppmw doped 
Spanish Sn and Reference Sn   

 ± 0.81 mK 

∴ Temperature difference between Co 5.5 ppmw “doped” and “undoped” Spanish Sn 
(-7.07) - (-3.27) = - 3.80 mK 

∴  Standard deviation (2s) Difference -Temperature difference between “Co 5.5 ppmw 
doped” and “undoped” Spanish Sn (by quadrature addition) 

± 0.84 mK 
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Table 6.8 Stability Resistance results from three PRTs (PRT serial number 

909069, 909174, and 4849) measured at the triple point of water before and after the 

calibration by comparison between Spanish tin doped Co 5.5 ppmw and Reference 

Isotech Sn184 fixed-point cells. 

In Table 6.8, i represents the order of the resistance measurements of the PRTs at the 
triple point of water; B means the measurements were taken before comparison calibration 
between Spanish Sn and Reference Sn184; A refers to the measurements were taken after 
comparison calibration between Spanish Sn and Reference Sn184. # 10.8 (mK/mΩ) is the 
appropriate conversion factor for the sensitivity of R(T90) [Rusby, 2008].  

 

The standard deviation (2s) for all measurements from three PRTs was 

0.10 mΩ, which is equivalent to 1.08 mK approximately. However, PRT 4849 still 

shows the best stability of the resistance values at the triple point of water. However, 

the water stability is not all good as mentioned above. The resistance values at the 

Reference Sn184 are much better than the water stability and this is a better argument 

that these data from the Reference Sn 184 cell can be used in this research. The better 

repeatability of Reference Sn184 values are presented from the results of both the tin 

and water resistance values the as shown in Table 6.15 and accompanying text. 
 

 

 

 

Resistance values at 
triple point of 

water/Ω 

    Date 
 

Platinum Resistance Thermometers (PRTs) 
(Serial Number) 

Cycle number and 
differences  

- 4849 909174 909069 

RTPW (1)A  22/01/08 25.443974 25.501230 25.493358 

RTPW  (2)B 22/01/08 25.443978 25.501241 - 

8.10*11 RT Δ=Δ # - +0.043 mK +0.12  mK - 

RTPW (3) 23/01/08 25.443985 25.501256 25.493440 

8.10*22 RT Δ=Δ # - +0.076 mK +0.16 mK +0.89 mK 

RTPW (4) 24/01/08 25.443971 - 25.493433 

8.10*33 RT Δ=Δ # - -0.15 mK - -0.076 mK 

Mean of the TΔ  - -0.01 mK +0.14 mK +0.41 mK 
Standard deviation 

(2s) - 0.012 mΩ 0.026 mΩ 0.091 mΩ 



SED, Brunel University                                                                          RES Systems Engineering (PhD) 

 6-24

6.1.3.2   High Purity Spanish Tin doped 7.4 ppmw of Cobalt 
    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 The equilibrium melting curves of the Spanish Sn sample 

containing an amount of Co 7.4 ppmw concentration plotted as the percentage of 

fraction melted. These curves were realised at different temperature furnace settings. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16 The equilibrium freezing curves of the Spanish Sn sample 

containing an amount of Co 7.4 ppmw concentrations plotted as a fraction of time. 

These curves were realised at different settings of the furnace temperature. 
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Figure 6.15 shows typical examples of melting curves obtained after a rapid 

rate of freezing. The first melting curve, which is clearly separate from the other three, 

indicates that the Spanish Sn and cobalt impurity was not well mixed. However, the 

remaining three melting curves confirm the reproducibility of the temperature 

measurements in this doped fixed-point cell. The results from Figure 6.16 display the 

different period of time of the freezing curves doped with the same amount of Co 7.4 

ppmw due to the different furnace temperature settings. The first freezing curve 

confirms that the mixture of Spanish Sn and cobalt impurity is not well mixed as seen 

in the previous Figure on the melting curve. Furthermore, the remaining two freezing 

curves shows similar temperature values, which were recorded on the freezing point in 

these fixed-point cells. 
 

Table 6.9 Summary of the average resistance values in the calibration by 

comparison method between the Spanish Sn doped with Co 7.4 ppmw and the 

Reference (Sn184) tin fixed-point cells with two PRTs. The furnace setting of was 

maintained at a nominal 228.6 oC for all freezing realisation measurements. 

# 10.8 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) [Rusby, 
2008]. 
 

PRTs 
serial 

number 
Date 

RT 
Spanish Sn 

doped  
 “Co 7.4 ppmw”

(0 mA) 

RT 
Reference  

Sn 184 
(0 mA)  

Equivalent 
Temperature difference 

between Spanish Sn 
doped Co 7.4 ppmw and 

Sn184 cells 
[ TRT Δ=Δ *8.10 ]# 

[Rusby, 2008] 
4849 I 26/03/08 48.152087 48.152915 - 8.94 mK 

4849 II 01/04/08 48.152090 48.152928 - 9.05 mK 

274728 I 26/03/08 49.037796 49.038618 - 8.88 mK 

274728 II 01/04/08 49.037780 49.038606 - 8.92 mK 

Overall 
Mean 

- - - -  8.95 mK 

∴ Standard deviation (2s)-Temperature difference between Co 7.4 ppmw doped 
Spanish Sn and Reference Sn   

 ± 0.15 mK 
∴ Temperature difference between “Co 7.4 ppmw doped” and “undoped” Spanish Sn  

(-8.95) – (-3.27) = - 5.68 mK 
∴  Standard deviation (2s) Difference -Temperature difference between “Co 7.4 ppmw 

doped” and “undoped” Spanish Sn (by quadrature addition) 
 ± 0.27 mK 
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The standard deviation (2s) for all measurements of the equivalent temperature 

difference between Spanish Sn doped Co 7.4 ppmw and Reference Sn184 cells is 0.15 

mK. The freezing temperature of the Spanish cell after Co doping 7.4 ppmw was 

found to be 8.95 ± 0.15 mK reduced from the Reference Isotech Sn184 cell. That 

means the adding Co 7.4 ppmw impurity decreases the temperature of the freezing and 

melting of undoped Spanish tin ingot by 5.68 ± 0.27 mK. The equilibrium curves of 

the Spanish tin after doping with Co 7.4 ppmw fixed-point and the temperature 

difference after calibration by comparison decreased as increasing amounts of 

impurities was introduced; the measured rates is as follows:                 Co -

 0.77 mK/ppmw.  
 

Table 6.10 Stability Resistance results from two PRTs measured at the triple 

point of water before and after the calibration by comparison between Spanish tin 

doped Co 7.4 ppmw and Reference Isotech tin (Sn184) fixed-point cells. 
 

In Table 6.10, i represent the order of the resistance measurements of the PRTs at the 
triple point of water. # 10.8 (mK/mΩ) is the appropriate conversion factor for the sensitivity 
of R(T90) [Rusby, 2008]. 

 

Table 6.10 presents the stability of the PRTs calibrated at the triple point of 

water during the comparison between Spanish tin doped Co 7.4 ppmw and Reference 

Isotech Sn184 fixed-point. This shows that there are no large shifts in the PRTs during 

the measurement cycle. The standard deviation (2s) for all measurements was 0.06 

mΩ which is equivalent to -0.65 mK approximately.  

Resistance values at 
triple point of 

water/Ω 

    Date 
 

Platinum Resistance Thermometers (PRTs) 
(Serial Number) 

Cycle number and 
differences  

- 4849 274728 

RTPW (1)  19/03/08 25.443976   25.909939 

RTPW  (2) 26/03/08 25.443977 25.909898 

8.10*11 RT Δ=Δ  - +0.011 mK -0.44 mK 

RTPW (3) 01/04/08 25.443980 25.909880 

8.10*22 RT Δ=Δ # - +0.032 mK -0.19  mK 

Mean of the TΔ  - +0.022 mK -0.32 mK 
Standard deviation 

(2s) - 0.004  mΩ 0.06  mΩ 
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Figure 6.17 Three melting curves of high purity “Spanish” tin and the shift of 

these curves after doping the tin with increasing concentration of cobalt impurities. 

The curves have been normalised to an approximate percentage melted 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.18 Example of high purity tin freezing curves and the shift of these 

curves after doping the Spanish tin with increasing concentrations of cobalt 

impurities, plotted as a function of time. The period of time for all curves is different 

due to differences in the furnace setting.   
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The offsets and shapes of the melting and freezing curves for the undoped and 

Co doped samples of tin are shown in Figure 6.17 and 6.18. The results confirm that 

cobalt depresses the phase transition temperature as expected. The peak of the 

freezing curves after doping had dropped by 3.7 mK and 5.4 mK (compared to initial 

undoped Spanish tin cell analysis) for concentrations of 5.5 ppmw and 7.4 ppmw of 

cobalt, respectively. Moreover, the set of three melting curves of undoped and Co 

doped Spanish tin confirm the reproducibility of the temperature measurements of this 

fixed-point cell. Total Co impurities in the Sn sample can be checked by the amount of 

concentrations by using the GD-MS, after finishing the last experiment of Pb doping.  
  

6.1.4  Influence of Lead Impurity on High Purity Spanish Tin Fixed Point 
 

6.1.4.1  Spanish Tin doped 7.9 ppmw of Lead 

 

 

 

 

 

 

 

 

 

   

 

 

 
 

 

Figure 6.19 Three melting curves of high purity “Spanish” tin after doping the 

tin with 7.9 ppmw of lead impurity. The curves have been normalised to an 

approximate percentage melted. 
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Figure 6.20 The equilibrium freezing curves of the Spanish Sn sample 

containing an amount of lead at 7.4 ppmw concentration plotted as a function of time. 

These curves were realised at different settings of the furnace temperature. 

 

Figure 6.19 and 6.20 shows the significant impurity dependence of the tin 

melting point affected by a low concentration of lead (as compared to the “Sn-Co” in 

Figure 6.17 and 6.18). This first set of Spanish doping with 7.9 ppmw of lead is 

slightly separated from the other two melting curves. This may be explained that the 

tin after adding lead impurity is not well mixed, while the rest of two melting curves 

show the highly reproducibility of the temperature measurements of this fixed-point 

cell. 
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Table 6.11 Summary of the average resistance values in the calibration 

measurements by comparison method between the Spanish Sn-Co alloy systems 

doped with Pb 7.9 ppmw and the Reference (Sn184) tin fixed-point cells with three 

PRTs. The furnace setting of was maintained 229.1 oC for all freezing realisation 

measurements. The hydrostatic head corrections values are included in all resistance 

values. 

# 10.8 (mK/mΩ) is the appropriate conversion factor of sensitivity of R(T90) [Rusby, 2008]. 

 
After comparison with the Reference Isotech Sn184 cell, the freezing 

temperature of the Spanish Sn-Co cell doped Pb 7.9 ppmw as listed in Table 6.11 was 

found to be 10.64 ± 0.86 mK lower than the Reference Isotech Sn184 cell. Therefore, 

the temperature difference between “Pb 7.9 ppmw doped” and Spanish Sn-Co was 

PRTs 
Serial 

number 
Date 

RT 
Spanish Sn-Co 

Doped  
 “Pb 7.9 ppmw” 

(0 mA) 

RT 
Reference  

Sn 184 
(0 mA)  

Equivalent 
Temperature 

difference between 
Spanish Sn-Co and 

Sn184 cells 
[ TRT Δ=Δ *8.10 ]# 

[Rusby, 2008] 

4849 I 03/05/08 48.151952 48.152918 - 10.43 mK 

4849 II 03/05/08 48.151913 48.152916 - 10.83 mK 

4849 III 04/05/08 48.151985 48.152930 - 10.21 mK 

274728 I 03/05/08 49.037664 49.038668 - 10.84 mK 

274728 II 03/05/08 49.037619 49.038667 - 11.32 mK 

909069 I 04/05/08 48.249069 48.250016 - 10.23 mK 

Overall 
Mean - - - -  10.64 mK 

∴ Standard deviation (2s)-Temperature difference between Pb 7.9 ppmw doped 
Spanish Sn and Reference Sn   

± 0.86 mK 

∴ Temperature difference between “Pb 7.9 ppmw doped” and “Sn-Co” Spanish Sn 

(-10.64) – (-8.95) = - 1.69 mK 

∴  Standard deviation (2s) Difference -Temperature difference between “Pb 7.9 ppmw 
doped” and “Sn-Co” Spanish Sn (by quadrature addition) 

= ± 0.87 mK 
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decreased by 1.69 ± 0.87 mK. That means the Pb impurity results in a reduction in the 

freezing and melting temperatures of the Spanish tin ingot. 

The equilibrium curves of the Spanish tin after doping with Pb 7.9 ppmw 

fixed-point and the temperature difference after calibration by comparison decreased 

roughly in line with expectations derived from interpolation of previous experiments 

as increasing amounts of impurities was introduced; the measured rates is as follows: 

Pb - 0.21 mK/ppmw. Figure 6.19 shows the significant impurity dependence of the tin 

melting point affected by a low concentration of Pb 7.9 ppmw. Total Pb impurities in 

the based Sn-Co sample can be checked the amount of concentrations by using the 

GD-MS, after finishing the last experiment of Pb doping.   

 

Table 6.12 Stability Resistance results from three PRTs measured at triple 

point of water before and after the calibration by comparison between Spanish Sn-Co 

doped Pb 7.9 ppmw and Reference Isotech tin (Sn184) fixed-point cells. All 

measurements were recorded at 0 mA. 
 

In Table 6.12, i represents the order of the resistance measurements of the PRTs 

at the triple point of water. # 10.8 (mK/mΩ) is the appropriate conversion factor of 

sensitivity of R(T90) [Rusby, 2008]. 

 

 

 

Resistance values at 
triple point of 

water/Ω 

    Date 
 

Platinum Resistance Thermometers (PRTs) 
(Serial Number) 

Cycle number and 
differences  

- 4849 274728 909069 

RTPW (1)  02/05/08 25.444003 25.909952 25.493323 

RTPW  (2) 03/05/08 25.444014 25.909959 - 

8.10*11 RT Δ=Δ # - +0.12 mK +0.076 mK - 

RTPW (3) 04/05/08 25.444004 - 25.493394 

8.10*22 RT Δ=Δ # - -0.11 mK - +0.77 mK 

Mean of the TΔ  -  +0.005 mK +0.076 mK +0.77 mK 

Standard deviation 
(2s) - 0.012 mΩ 0.01 mΩ 0.1  mΩ 
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Table 6.12 presents the perform stability of the PRTs calibration at the triple 

point of water cells comparison between Spanish tin doped Pb 7.9 ppmw and 

Reference Isotech Sn184 fixed-point. This explains that the PRT number 4849 and 

274728 have the small change with the measured cycling in the Spanish tin fixed-

point temperature, while the values of PRT 909069 has a big change. The standard 

deviation (2s) for all measurements was within 0.1 mΩ which is equivalent to 1 mK 

approximately.  
 

6.1.4.2  Spanish Tin doped 31.4 ppmw of Lead 
 

A set of melting curves of Spanish Sn after doping with lead at 31.4 ppmw is 

presented in Figure 6.21. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.21 Melting curves of Spanish Sn sample containing an amount of lead 

concentrations at 31.4 ppmw plotted as a function of time. These curves were 

measured after different rates of prior freezing. The furnace was set at a different 

nominal furnace setting temperature for each melting curve.  
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Figure 6.22 Melting curves of Spanish Sn sample doped with an amount of 

lead at concentration of 31.4 ppmw plotted as a fraction of sample melted. These 

curves were measured after different rate of prior freezing. The furnace setting of each 

melting curve was set at a different nominal temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.23 The equilibrium freezing curves of the Spanish Sn sample 

containing an amount of lead concentrations at 31.4 ppmw plotted as a function of 

time. These curves were realised at different settings of the temperature furnace. 
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Figure 6.22 shows the similar shape of Spanish Sn after doping lead for all 

measured melting curves. The prior frozen rate of the melting curves shows an 

insignificant influence to the shape of their curves as shown on the 2nd (red) and 3rd 

(green) curves.  

In Figure 6.23, the first freezing curve presents a higher resistance value than 

the other two curves. This is mentioned that the base sample and impurity are not well 

mixed in the fixed-point ingot as agreed with the melting curves, in which the shape 

of the first melting curve is slightly separated from the other two. The other two 

freezing curves indicate the reproducibility of the resistance values. Because the 

temperature offset is different, therefore, the period of time is also different. 

The peak of the freezing curves has been used to calibrate the PRTs by 

comparison method between the Spanish Sn-Co alloy system doped with 31.4 ppmw 

Pb and the Reference (Sn184) tin fixed-point cells with three PRTs. From Table 6.13, 

it indicates that the freezing temperature of the Spanish Sn-Co cell doped 

Pb 31.4 ppmw was found to be 15.47 ± 0.66 mK lower than the Reference Isotech 

Sn184 cell. Therefore, the temperature difference between “Pb 31.4 ppmw doped” and 

Spanish Sn-Co was decreased by 6.51 ± 0.68 mK. 
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Table 6.13 Summary of the average resistance values in the calibration 

measurements by comparison method between the Spanish Sn-Co alloy system doped 

with 31.4 ppmw Pb and the Reference (Sn184) tin fixed-point cells with three PRTs. 

The furnace setting was maintained at 229.1 oC for all freezing realisation 

measurements.  

   # 10.8 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) 
[Rusby, 2008]. 

 

The equilibrium curves of the Spanish tin after doping with Pb 31.4 ppmw 

fixed-point and the temperature difference after calibration by comparison decreased 

as increasing amounts of impurities was introduced; the measured rates is as follows: 

Pb - 0.21 mK/ppmw.  
 

 

 

PRTs 
serial 

number 
Date 

RT 
Spanish Sn-Co 

doped  
 “Pb 31.4 
ppmw” 
(0 mA) 

RT 
Reference  

Sn 184 
(0 mA)  

Equivalent 
Temperature 

difference between 
Spanish Sn-Co and 

Sn184 cells 
[ TRT Δ=Δ *8.10 ]# 

[Rusby, 2008] 

4849 I 06/06/08 48.151483 48.152940 - 15.73 mK 

4849 II 10/06/08 48.151522 48.152936 - 15.27 mK 

4849 III 11/06/08 48.151530 48.152933 - 15.15 mK 

274728 I 06/06/08 49.037173 49.038652 - 15.97 mK 

274728 II 11/06/08 49.037202 49.038634 - 15.47 mK 

280140 I 10/06/08 47.511229 47.512635 - 15.18 mK 

Overall 
Mean - - - -  15.46 mK 

∴ Standard deviation (2s)-Temperature difference between Pb 31.4 ppmw doped 
Spanish Sn and Reference Sn   

± 0.66 mK 
∴ Temperature difference between “doped Pb 31.4 ppmw” and “Sn-Co” Spanish Sn  

(-15.46) – (-8.95) =  - 6.51 mK 
∴  Standard deviation (2s) Difference -Temperature difference between “Pb 

31.4 ppmw doped” and “Sn-Co” Spanish Sn (by quadrature addition) 
± 0.68 mK  
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Table 6.14 Stability Resistance results from three PRTs measured at triple 

point of water before and after the calibration by comparison between Spanish Sn-Co 

doped Pb 31.4 ppmw and Reference Isotech tin (Sn184) fixed-point cells. All 

measurements were recorded at 0 mA. 
 

In Table 6.14, i represent the order of the resistance measurements of the PRTs at 
the triple point of water. # 10.8 (mK/mΩ) is the appropriate conversion factor for the 
sensitivity of R(T90) [Rusby, 2008]. 
 

The standard deviation (2s) for all measurements agreed to within 0.02 mΩ 

which is equivalent to 0.22 mK approximately. These measurements were checked 

within a few hours after the measurements at the tin temperature. However, the water 

stability for all PRTs does not show the repeatability for good thermometers when 

compared with the resistance values of the measurements at the Reference Sn184 cell. 

It shows a better repeatability than water triple point values as presented in Table 6.15 

and accompanying text.  
    
 

 

 

 

 

 

Resistance values at 
triple point of 

water/Ω 

    Date 
 

Platinum Resistance Thermometers (PRTs) 
(Serial Number) 

Cycle number and 
differences  

- 4849 274728 280140 

RTPW (1)  06/06/08 25.444028 25.909966 25.103496 

RTPW (2) 10/06/08 25.444019 - 25.103486 

8.10*11 RT Δ=Δ # - -0.097 mK - -0.11 mK 

RTPW (3) 11/06/08 25.444019 25.909953 - 

8.10*22 RT Δ=Δ # - 0 mK -0.14 mK - 

Mean of the TΔ  -  -0.097 mK -0.14 mK -0.11 mK 

Standard deviation 
(2s) - 0.01  mΩ 0.018  mΩ 0.014  mΩ 
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Figure 6.24 Example of melting curves of “Spanish Tin” after doping with 

low-level concentrations of lead. The curves are compared with the previous curves of 

Spanish tin doped with cobalt. The temperatures are nominal settings of the furnace. 

The results obtained after doping with cobalt and lead support the previous 

data that the temperatures of the fixed point were affected at these low impurity levels. 

Moreover, their curves, before and after doping, confirm the reproducibility of the 

temperature measurements in these fixed-point cells. Figure 6.24 and 6.25 show the 

shift of the melting and freezing curves after doping the tin with increasing 

concentrations of cobalt and lead impurities From this work, the temperature change 

of the freezing and melting curves of the tin fixed point were affected by amounts as 

follows: Co -0.69 mK/ppmw (obtained at Co 5.5 ppmw), Co -0.77 mK/ppmw 

(obtained at Co 7.4 ppmw) and Pb -0.21 mK/ppmw (obtained at Pb 7.9 ppmw),      

Pb - 0.21 mK/ppmw (obtained at Pb 31.4 ppmw). Therefore, The equilibrium curves 

of the tin fixed-point decreased roughly in line with expectations derived from 

interpolation of previous experiments as increasing amounts of impurities were 

introduced; the average measured rates are as follows: Co -0.73 and Pb -0.21 in units 

of mK/ppmw. This expectation is compared with Hansen’s book [Hansen, 1958], 
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which was interpolated to be depressed by 0.60 mK/ppmw and 0.133 mK/ppmw for 

cobalt and lead impurity, respectively. 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 6.25 Example of high purity tin freezing curves and the shift of these 

curves after doping the tin with increasing concentrations of cobalt and lead 

impurities, plotted as a function of time. The end of the curve tin doped with 

7.4 ppmw cobalt continues off the graph due to the small furnace temperature offset. 
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Table 6.15 The stability of the PRT 4849, which was checked at the freezing 

point of the Reference Sn184 cell at 0 mA and in a water point.  

 

Date 
Resistance Values 

(RT, Ω) 
Resistance values at triple 

point of water/Ω 

20/06/07 48.152808 25.443956 

21/06/07 48.152808 25.443956 

23/10/07 48.152897 25.443961 

24/10/07 48.152901 25.443949 

22/01/08 48.152911 25.443974 

23/01/08 48.152932 25.443985 

24/01/08 48.152898 25.443971 

26/03/08 48.152915 25.443977 

01/04/08 48.152928 25.443980 

03/05/08 48.152917 25.444014 

06/06/08 48.152940 25.444028 

10/06/08 48.152936 25.444019 

11/06/08 48.152933 25.444019 

Standard deviation (2s) 0.09 mΩ 0.06 mΩ 

 

Table 6.15 shows all measurements of PRT 4849 at the freezing point of the 

Reference Sn 184 cell and at the triple point of water after checking in the Reference 

Sn cell. If one takes into account that the affect of any change in the water point is 

amplified by a factor of W at the tin point temperature then the resistance values in 

Reference Sn 184 cell shows much better repeatability of than the PRT values in the 

water triple point. (The water values also have a greater range than the Sn values).  
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6.1.5 Impurity Analysis of Spanish Tin Fixed-Point after Doping with 

Co and Pb Contents 
 

Glow Discharge Mass Spectrometry (GD-MS) Characteristics after 

Doping Impurities 
 

The previous GD-MS results of the Spanish tin fixed-point cell before 

impurity doping indicate that the tin metal and the impurities are well mixed after the 

tin is properly molten. The impurity levels in three areas of the tin ingot show the 

homogeneity of the impurity concentration. Therefore, only one piece of the Spanish 

Sn after doping with Co and Pb impurities was cut from the ingot to detect the 

impurity concentrations by the GD-MS technique. Also, one piece of ingot before 

doping, which was cut almost a year ago and kept in NPL, was checked the GD-MS at 

the same time as the after doping piece. The GD-MS result of these two pieces, 

compared with the previous results, which were measured before doping, is shown in 

Table 6.16.   
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 Table 6.16 GD-MS analysis results of the impurity concentrations of the 

“Spanish” tin before and after doping [NRC report number: 30337R1 (checked on 

14/12/07) & 30817 (checked on 22/08/08)]. These elements were detected in term of 

mass fraction (in parts per billion by weight, ppbw). The uncertainty is quoted as a 

“factor of 2”, though this is probably a conservative overestimate 
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Table 6.16 presents the GD-MS analysis results of the impurity concentrations 

of the “Spanish” tin before and after doping. The uncertainty of this GD-MS analysis 

is considered to be accurate within a factor of two of the values obtained, at a 

confidence level of 95% though there is anecdotal evidence that the results are more 

accurate than quoted. Considering the Co impurity concentrations, it was found that 

the amount of Co had not changed even though the cobalt was deliberately introduced 

into the Spanish tin sample. Subsequently we discovered that for GD-MS analysis, 

the Co signal is an “interfering signal” on the predominant Sn peak and therefore not 

resolvable. Therefore, it results in a GD-MS (VG-9000) detector that cannot measure 

the amount of Co.  

Considering Pb, it shows that the increased amount of Pb after adding total 

31.4 ppmw (31400 ppbw). The total amount of Pb from GD-MS presents 

23000 ppbw, which is less than the real amount added.  

Considering Indium (In) impurity in Table 6.15, it shows a large and variable 

amount. Anecdotally, we have been told that In is a common impurity in tin “pure” 

sample. 

Considering Table 6.16 as a whole: the GD-MS measurements show a variable 

amount of Se, Br, Sb and Au. However, we note that these background values show 

better agreement in the measurements made at the same time; even though the 

samples were cut from the ingot at different times of its life (pre and post doping). 

Conversely samples cut from the ingot at the same time (pre-doped), but GD-MS 

measured a year apart, show a bigger difference in their results.  

Consequently, the time of measurement of the sample is one important factor 

for the GD-MS results. That is the different samples, i.e. Spanish Sn before and after 

doping, measured at the same time give more similar amounts of background 

impurities than the “same sample” at different times (Except for the doping 

impurities).    
 

6.1.6 Photographs of Spanish Tin Cell 
 
 The photographs of Spanish tin fixed-point ingot before and after doping with 

any impurities will be shown in Section 6.2.4. As the colour of the ingot’s surface of 

the Mini tin ingot shows interesting changes, then the photographs of Spanish tin will 

be considered in the same section as Mini Isotech tin.   
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6.1.7  Mass of Spanish Tin Fixed-Point Ingot  
  

The measured mass method for Spanish ingot had been described in Section 

5.4.1.2.(a). The uncertainty on this balance scale (a large scale) can be corrected by 

adding 1.09 mg to the value of the weight. The uncertainty components are as follows; 

0.05 mg for the scale error (rectangular distribution) 

0.06 mg for repeatability (normal distribution) 

 0.1 mg for balance resolution (rectangular distribution) 

 From the above information, obtained from NPL Mass section, the uncertainty 

of the weighing itself is very small when compared with the total mass of Spanish tin 

ingot (~1 Kg). Thus, the uncertainty is negligible compared to that of the included 

graphite re-entrant well, where the two methods for accounting for the graphite in 

Table 6.17 differ by 0.6g. The measured mass of Spanish tin metal after cutting some 

samples off for the undoped GD-MS testing was used in calculation of the doping 

concentrations (in ppmw). 
  

Table 6.17 Mass of Spanish tin fixed-point ingot as calculated based on a 

mass measurement (of the tin and central graphite) before doping the impurities.  
 

Component(s) of Spanish Tin Cell Mass (g) 

Calculated Mass of Spanish tin metal 

(Originally) 
961.99 g 

Measured Mass {Spanish tin metal and graphite re-entrance well} 

(Originally) less the calculated mass of graphite 
961.32 g 

Measured Mass of Spanish tin metal 

(Samples cut off) less the calculated mass of graphite 
954.58 g 
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6.2 High Purity “Mini Isotech” Tin Fixed Point 
 

6.2.1 Temperature Realisation of “Undoped” Mini Isotech Tin  
 

The experimental results of high purity Spanish tin fixed-point cell will be 

summarised and formed in terms of the “Family Tree” as presented in Figure 6.26.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# MP/FP = Melting and Freezing curves conducted in this stage. 

GD-MS = Glow discharge mass spectrometry analysis performed in this stage. 

* ppmw = Parts per million by weight 

 

Figure 6.26 “Family Tree” showing the figure number of the freezing/ melting 

curves and the analysis technique of Mini Isotech tin obtained for a particular 

combination of conditions. 

 

6.2 Mini Isotech Tin  

6.2.1 
“undoped” Mini Isotech Tin 

MP/FP# Fig. 6.27, 6.28 (909174) 
GD-MS Table 6.24 

6.2.2 
Sb

(a) 
7.8 ppmw* 

(b) 
23.2 ppmw 

MP/FP Fig. 6.29, 6.30 (PRT 909174) 
MP       Fig. 6.31 (compared undoped-doped) 
MP/FP Fig. 6.32, 6.33 (PRT 909069) 
MP/FP Fig. 6.34, 6.35 (PRT 280140) 

MP/FP Fig. 6.36, 6.37 (PRT 280140) 
MP       Fig. 6.38 (compared doped 7.8 and 23.2) 
GD-MS Table 6.24 
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The melting transitions after rapid freezing of initially 99.9999% nominal high 

purity “Mini Isotech” tin cell presented in Figure 6.27. The PRT resistance values on 

the Y axis for all figures of the freezing and melting curves of Mini Isotech tin cell 

were calculated from the resistance ratio of PRT and standard resistor values but these 

values did not include the correction of the hydrostatic head, while the resistance 

values of PRT calibration by comparison measured at the peak of the freeze do 

include the correction of the hydrostatic head of the cell. 
   
Figure 6.27 and 6.28 show the reproducibility of the resistance values 

measured at the melting and freezing temperatures of this tin cell. Also, the figures 

confirm that the time period of the transition is related to the furnace setting. In 

Figure 6.28, red and green lines show transitions where the furnace was set at 

231.6 oC and indicate a similar time to the solidus point (100% solid) on the curves. 

All melting temperature realisations were obtained after rapid freezing, which is the 

best method to get a good shape of the melting curves. The rate of the freeze 

preceding the melting curve influences the impurity distribution in the solid metal 

ingot, which that would also affect the shape of the melting curve. This is confirmed 

by Ancsin’s [Ancsin, 2007] and Zhang’s publications [Zhang et al., 2008].   
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Figure 6.27 A set of melting curves obtained on high purity “Mini Isotech”. 

The furnace setting for all realisations is set at the same temperature.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.28 Three freezing curves of “undoped” Mini Isotech Sn fixed-point 

cell plotted as a function of time.  
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Table 6.18 Summary of the average resistance values in the calibration measurements 

by comparison method between the High purity “Mini Isotech” and the Reference 

(Sn184) tin fixed-point cells with three PRTs. The furnace setting was 231.7 oC for all 

freezing realisation measurements.  

   # 10.8 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) [Rusby, 
2008]. 
 

The standard deviation (2s) for all measurements as listed in Table 6.18 is 

about 1.02 mK. After comparison with the reference tin cell, the initial freezing 

temperature of the Mini Isotech tin cell was found to be 0.95 ± 1.02 mK lower than 

the reference tin cell. That means the Mini Isotech tin ingot contained some pre-

existing contamination affecting its freezing and melting temperatures. 

 

PRTs 
serial 

number 
Date 

RT 
High purity 

“Mini Isotech”
(0 mA) 

RT 
Reference  

Sn 184 
(0 mA)  

Equivalent 
Temperature 

difference between 
High purity 

“Mini Isotech” and 
Sn184 cells 

[ TRT Δ=Δ *8.10 ]#

[Rusby, 2008] 

909174 I 05/11/07 48.265479 48.265533 - 0.58 mK 

909174 II 06/11/07 48.265483 48.265545 - 0.67 mK 

909174 III 06/11/07 48.265475 48.265555 - 0.86 mK 

909174 IV 07/11/07 48.265480 48.265530 - 0.54 mK 

909069 I 05/11/07 48.249878 48.250034 - 1.68 mK 

909069 II 06/11/07 48.249885 48.250051 - 1.79 mK 

4849 I 06/11/07 48.152814 48.152902 - 0.95 mK 

4849 II 07/11/07 48.152826 48.152873 - 0.51 mK 

Overall 
Mean - - - - 0.95 mK 

∴ Standard deviation (2s)-Temperature difference between High purity Mini 
Isotech Sn and Reference Sn   

± 1.02 mK 

∴ Temperature difference between “Mini Isotech” Sn and Reference Sn184 

= - 0.95 mK 



SED, Brunel University                                                                          RES Systems Engineering (PhD) 

 6-48

We presume that the influence of each impurity in the host material remains 

independent of each other at low concentrations. The magnitude of each effect on the 

temperature depends on both the species type and the amount of that particular species 

and the total temperature change is the sum of the individual effects, taking account of 

any sign. The kinds of impurities, which contaminated this cell before deliberate 

doping would be analysed with the GD-MS technique. The GD-MS result before 

doping presents in Table 6.24, which is the same Table as GD-MS after doping.    
 

Table 6.19 Resistance values from three PRTs measured at the triple point of 

water before and after the calibration by comparison between “undoped” Mini Isotech 

tin and Reference Isotech tin (Sn184) fixed-point cells.  

 

In Table 6.19, i represent the order of the resistance measurements of the PRTs at the 
triple point of water. # 10.8 (mK/mΩ) is the appropriate conversion factor for the sensitivity 
of R(T90) [Rusby, 2008]. 

 

The standard deviation (2s) for all measurements was 0.056 mΩ which is 

equivalent to 0.60 mK approximately. This shows that these PRTs have no gross 

instabilities during the measurement cycle in this tin fixed-point temperature. From 

Table 6.19, the PRT 4849 shows the smallest amount of the standard deviation, i.e. 

Resistance values at 
triple point of 

water/Ω 

    Date 
 

Platinum Resistance Thermometers (PRTs) 
(Serial Number) 

Cycle number and 
differences  

- 4849 909174 909069 

RTPW (1)  03/11/07 25.443992 25.501256 25.493409 

RTPW (2) 05/11/07 - 25.501258 25.493461 

8.10*11 RT Δ=Δ # - - +0.022 mK +0.56 mK 

RTPW (3) 06/11/07 25.443983 25.501276 25.493451 

8.10*22 RT Δ=Δ # - -0.097 mK +0.19 mK -0.11 mK 

RTPW (4) 07/11/07 25.443981 25.501258 - 

8.10*33 RT Δ=Δ # - -0.022 mK -0.19 mK - 

Mean of the TΔ  - -0.06 mK +0.022 mK +0.23 mK 

Standard deviation 
(2s) - 0.012  mΩ 0.019  mΩ 0.056  mΩ 
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0.012 mΩ (0.13 mK), to check the resistance values at the triple point of water. 

However, this PRT was not available to use because it was used to calibrate in 

Spanish tin cell. Therefore, the next PRT, which shows the small change of the 

standard deviation (0.019 mΩ) and the TΔ  is the PRT 909174. This is the reason why 

the PRT 909174 was used to calibrate in Mini Isotech tin cell. 
 

6.2.2  Influence of Antimony on High Purity Mini Isotech Tin Fixed-Point 

 

The originally pure Mini Isotech tin ingot was doped with antimony (Sb) 

impurity; total concentrations as follows (in ppmw): Sb 7.8 and 23.2, respectively.   
 

6.2.2.1 Mini Isotech Tin doped with 7.8 ppmw of Antimony 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.29 PRT resistance value at the melting temperature for “Mini Tin” 

after doping with 7.8 ppmw of antimony as a function of the approximate tin 

percentage melted. All curves were melted at different temperature settings. The light 

blue and purple lines refer to the recorded curves at 232.7 oC; the orange colour 

represents the measured curve at 232.6 oC; and the green line is the melting curve 

produced at 232.9 oC. The PRT number 909174 was used to measure the fixed-point 

temperature. (All quoted temperatures are nominal settings of the controller). 
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In Figure 6.29, the offset of the “Mini Isotech tin” fixed point, after doping 

with low levels of antimony, is presented. The melting temperature of the 7.8 ppmw 

antimony doped tin is higher than for the “pure” Mini tin. It indicates that at low 

levels, antimony elevates the melting and freezing temperatures although the 

temperature change is less than expected as compared with Figure 6.27 and 6.28.   

However for the antimony doping very unusual melting traces have been 

produced – with a pronounced bump/ increase in the temperature for several hours at 

the start of the melt, before settling back (antimony is expected to increase the 

temperature of the whole plateau). PTB has also reported “bumps”, but of a much 

shorter duration [Zhang et al., 2008]. It may be the result of non-uniform distribution 

of the antimony, but how that would produce this curve shape, and why it is roughly 

reproducible remains unexplained. It may be that the antimony is being concentrated 

in the solid phase during the preceding freeze, so that it tends to be near the well and 

the outside wall of the ingot. This is particularly possible, as a preceding fast 

melt/freeze cycle had not been performed before all these meltings. (Other results 

presented later (see Fig 6.32) seem to support this suggestion as larger peaks were 

seen after slower freezes). The freeze shapes themselves are not especially affected by 

the length of the freeze. A set of freezing curves take different lengths of time 

depending on the furnace offset temperature are shown in Figure 6.30. 

In Figure 6.31, the offset of the “Mini Isotech tin” fixed point, after doping 

with low levels of antimony, is presented. All melting curves were obtained after the 

rapid freeze. The melting temperature of the 7.8 ppmw antimony doped tin is higher 

than for the “pure” Mini tin. It indicates that at low levels, antimony elevates the 

melting and freezing temperatures although the temperature change is less than 

expected as compared from the Figure of Mini Isotech tin before and after Sb doping.  
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Figure 6.30 Three freezing curves of Mini Isotech Sn fixed-point cell after adding 7.8 

ppmw of antimony plotted as a function of time. The furnace setting was set at 

different temperatures. The PRT number 909174 was used to calibrate the fixed-point 

temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.31 Changes in the PRT resistance value changing for “Mini Tin” after 

doping with antimony at 7.8 ppmw as a function of the approximate tin percentage 

melted. The PRT number 909174 was used to calibrate the fixed-point temperature. 
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Table 6.20 Summary of the average resistance values from the comparison 

measurements between Mini Isotech after doping with antimony at 7.8 ppmw and the 

reference (Sn184) tin fixed-point cells with three. As measurement is made on the 

same ASL F18 Bridge and standard resistor for each PRT then, the resistance values 

can be compared for each PRT. The furnace is set at 231.6 oC. 

# 10.8 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) [Rusby, 
2008]. 
 

After comparison with the reference tin cell, the peak of the freezing curves 

after doping with Sb at 7.8 ppmw had increased 0.66 ± 1.10 mK as presented in Table 

6.20. It indicates that at low levels, antimony elevates the melting and freezing 

PRTs 
serial 

number 
Date 

RT 
 “Mini 

Isotech” 
Doped Sb 7.8 

ppmw 
(0 mA) 

RT 
Reference  

Sn 184 
(0 mA)  

Equivalent Temperature 
difference between   

“Mini Isotech” Doped 
Sb 7.8 ppmw 

and Sn184 cells 
[ TRT Δ=Δ *8.10 ]# 

[Rusby, 2008] 

909174 I 27/02/08 48.265553 48.265584 - 0.33 mK 

909174 II 04/03/08 48.265578 48.265600 - 0.24 mK 

909174 III 04/03/08 48.265584 48.265605 - 0.23 mK 

909174 IV 12/03/08 48.265611 48.265629 - 0.19 mK 

4849 I 04/03/08 48.152922 48.152917 + 0.054 mK 

4849 II 12/03/08 48.152901 48.152927 - 0.28 mK 

280140 09/05/08 47.512594 47.512653 - 0.64 mK 

274728 09/05/08 49.038633 49.038672 - 0.42 mK 

Overall 
Mean - - - - 0.28 mK 

∴ Standard deviation (2s)-Temperature difference between Sb 7.8 ppmw doped Mini 
Isotech Sn and Reference Sn   

± 0.40 mK 

∴ Temperature difference between “Sb 7.8 ppmw doped” and “undoped” Mini 
Isotech tin cell 

(-0.28) - (-0.94) = + 0.66 mK 

∴  Standard deviation (2s) Difference -Temperature difference between “Sb 7.8 ppmw 
doped” and “undoped” Mini Isotech Sn (by quadrature addition) 

± 1.10 mK 
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temperatures although the temperature change is less than expected. The equilibrium 

curves of the tin fixed-point increased as increasing amounts of impurities were 

introduced; the measured rate is: Sb +0.08 in units of mK/ppmw. 

After obtaining all results from the realisations of the Mini Isotech tin after 

adding with the first lot of antimony at 7.8 ppmw, the PRT 909174 was broken by 

accident. Therefore, the measurement would be done again with the new PRTs, i.e. 

the PRT 909069 and 280140. The PRT 909069 was the first PRT used to measure the 

melting and freezing curves as shown in Figure 6.32 and 6.33.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.32 PRT 909069 resistance value at the melting temperature for “Mini 

Isotech Tin” after doping with 7.8 ppmw of antimony as a function of the approximate 

tin percentage melted. (All temperatures are nominal settings of the controller; as 

thermometer 909069 seemed to be “noisy” it wasn’t used in subsequent dopings). 
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Figure 6.33 PRT 909069 resistance values at the freezing temperature for 

“Mini Isotech Tin” after adding 7.8 ppmw of antimony as a function of time.  

 

Three melting curves after doping with antimony 7.8 ppmw, which were 

measured by PRT 909069, show a peak at the start of the first curve (blue line) as 

presented in Figure 6.32. This curve was measured on 31st of March 2008. The big 

effect appears after a slow freeze, which was truncated at 100 hours duration. The 

peak of this melting curve is around 5 mK high, which is the highest one for all 

obtained melting curves. Considering the second melting curve, this curve was 

recorded after 20 hours freezing curve and the height of the peak is 2 mK 

approximately. The starting peak of the bottom curve, which was measured after a 

30 hour freezing curve, is about 1 mK. Normally melting curves are only measured 

after an intervening “fast” freeze; however these unusual results followed after only a 

slow freeze.  Figure 6.32 also shows the shift of three melting curves, the shift might 

be due to the thermometer but this is unlikely to account for all the change as 

thermometer stability is supported from the results of the reproducibility of the 

resistance values of PRT 909069, when checked at the water triple point. However, 

this PRT was only used for calibrating in Mini Isotech cell after doping with 

7.8 ppmw of antimony. A set of the freezing curves as presented in Figure 6.33 

(obtained either side of the 2nd melt) showing the change in the freeze value of this tin 
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cell, but the change is less that that of the melts, suggesting their change is more than 

due to thermometer instability. Then, PRT 280140 was selected to use in the further 

experiment because this PRT is less noisy than 909069. Because the Mini Isotech tin 

would have additional antimony added (+15.4 ppmw) in the next step (to see the 

antimony impurity effect on the tin metal fixed-point temperature) the previous step 

needs to be repeated to find out how much the temperatures change from the prior step 

to the next step with the PRT 280140.  
 

Table 6.21 Resistance values from three PRTs measured at triple point of 

water after the calibration by comparison between Mini Isotech tin doped with 

7.8 ppmw Sb and Reference Isotech tin (Sn184) fixed-point cells. Also, the stability of 

PRT 280140, which was used instead of PRT 909174, has been shown.  

 

In Table 6.21, i represent the order of the resistance measurements of the PRTs at the 
triple point of water. # 10.8 (mK/mΩ) is the appropriate conversion factor for the sensitivity 
of R(T90) [Rusby, 2008].   

 

 

 

Resistance values at 
triple point of 

water/Ω 

    Date 
 

Platinum Resistance Thermometers (PRTs) 
(Serial Number) 

Cycle number and 
differences  

- 4849 909174 280140 

RTPW (1)A  27/02/08 - 25.501279 - 

RTPW  (2) 04/03/08 25.443980 25.501293 - 

8.10*11 RT Δ=Δ # - - +0.15 mK - 

RTPW (3) 12/03/08 25.444021 25.501330 - 

8.10*22 RT Δ=Δ # - +0.44 mK +0.40 mK - 

RTPW (4) 09/05/08 - - 25.103437 

RTPW (5) 02/06/08 - - 25.103451 

8.10*33 RT Δ=Δ # - - - +0.15 mK 

RTPW (6) 20/06/08 - - 25.103457 

8.10*44 RT Δ=Δ # - - - +0.065 mK 

Mean of the TΔ  - +0.44 mK +0.28 mK +0.11 mK 
Standard deviation 

(2s) - 0.058  mΩ  0.052  mΩ  0.02  mΩ   
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Table 6.21 shows that these PRTs have no gross instabilities during the 

measurement cycle in this tin fixed-point temperature. The standard deviation (2s) for 

all measurements was 0.06 mΩ which is equivalent to 0.65 mK approximately. For 

the PRT 280140, it shows the stability of the PRT calibration with the standard 

deviation 0.02 mΩ which is equivalent to 0.22 mK. The melting and freezing curves 

of the Mini Isotech tin after adding with the antimony at 7.8 ppmw were repeatedly 

checked by the PRT 280140 instead of PRT 909174. Those curves are presented in 

Figure 6.34 and 6.35.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.34 A set of three melting curves from the high purity Mini Isotech tin 

doped with antimony at 7.8 ppmw fixed-point cell. These curves are measured from 

PRT 280140.  
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Figure 6.35 A set of two freezing curves from the high purity Mini Isotech tin 

doped antimony 7.8 ppmw fixed-point cell. These curves are measured from PRT 

280140. 
 

In Figure 6.34, the first curve has no bump at the start of the melting curve, 

while the next two melting curves show a bump. The 1st and 3rd melts were after fast 

freezes and the 2nd melt was after slow freeze. (Based on later results may be the 3rd 

melt “remembered” the slow freeze before the 2nd melt). Figure 6.35 shows the 

reproducibility of the resistance values measured at the freezing temperatures after 

doping with 7.8 ppmw Sb in this Mini Isotech tin cell. Melts seem to show that they 

are very dependent on the thermal history. 
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6.2.2.2 Mini Isotech Tin doped with 23.2 ppmw of Antimony 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6.36  A set of three melting curves from the high purity Mini Isotech tin doped 

with 23.2 ppmw antimony fixed-point cell. These curves are measured with PRT 

280140.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.37 A set of three freezing curves from the high purity Mini Isotech tin doped 

antimony 23.2 ppmw fixed-point cell. The furnace setting was set in different 

temperature. The PRT number 280140 was used to measure the fixed-point freeze. 
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In Figure 6.36, the liquidus melting temperatures are at the same level (or 

lower) as the first melting curves of Mini Isotech tin after doping with only 7.8 ppmw 

Sb. Figure 6.37 shows the reproducibility of the resistance values measured at the 

freezing temperatures after doping 23.2 ppmw Sb into this tin cell. The peaks of three 

freezing curves are a little bit increased compared to the freezing curve after doping 

with Sb at 7.8 ppmw. In passing we again note that the period of time on the curves 

shows the effect of difference furnace settings. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.38 PRT resistance value changes for “Mini Tin” after doping with 

antimony at 23.2 ppmw compared to the 7.8 ppmw doping as a function of the 

approximate tin percentage melted. The PRT number 280140 was used to measure the 

fixed-point resistance. 
 

Figure 6.38 illustrates the impurity dependence of the tin melting point 

affected by a low concentration of antimony. Considering the Mini Isotech tin after 

doping with Sb 23.2 ppmw, the melting curves (Green, Purple, and Pink lines) show 

the reproducibility of the resistance values. The results we have obtained are not as 

expected and we are unable to give a convincing explanation. The fact of the 
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(as evidenced by the bump in the 7.8 ppmw Sb). Redistribution has been shown (more 

convincingly) in the work of Zhang at PTB [Zhang et al., 2008]. Perhaps at 

23.2 ppmw Sb the distribution is more even (avoiding the peak) but then one might 

expect the 23.2 ppmw liquidus to come higher). As the curves from Sb 23.2 ppmw are 

lower than Sb 7.8 ppmw it might suggest that some antimony has been “lost”. 

It appears that the 23.2 ppmw antimony is not manifesting itself. A possible 

explanation of this happening is that the antimony might have been moved to the top 

area in the ingot when it was frozen and it could not be moved down to get the well 

mixed when it was fully molten. This is just feasible if other impurities might 

MECHANICALLY obstruct or “pin” the antimony at the molten temperature, and the 

over melt temperature prior to the freeze was not high enough. (Subsequent to the 

experimental work we found that we could still see where the samples had been cut 

out of the aluminium ingot even though it had been left molten at 5 degrees above the 

mp for several days. 

 

The peaks of the freezing curves were used for the comparison measurements 

between the Mini Isotech Sn (after doping with antimony at 23.2 ppmw) and the 

reference (Sn184) tin fixed-point cells with three PRTs, as presented in Table 6.22.  

The resistance values after doping with Sb at 23.2 ppmw had increased 

0.78 ± 1.08 mK. The standard deviation for all measurements is 0.35 mK. The 

equilibrium curves of the tin fixed-point increased as increasing amounts of impurities 

were introduced; the measured rates are as follows: Sb +0.03 mK/ppmw (This rate 

was obtained from the calculation based on the 23.2 ppmw measurements). The 

standard book value for the affect of Sb on the tin transition plateau is that it is raised 

by 0.128 mK/ppmw of antimony impurity [Hansen, 1958].  
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Table 6.22 Summary of the average resistance values from the comparison 

measurements between Mini Isotech after doping with antimony at 23.2 ppmw and the 

reference (Sn184) tin fixed-point cells with three PRTs on 30th June, 2nd July, 4th July 

and 14th July 2008, respectively. As measurements are made on the same ASL F18 

Bridge and standard resistor for each PRT then, the resistance values can be compared 

for each PRT. 

# 10.8 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) [Rusby, 
2008]. 

 
 

PRTs 
serial 

number 
Date 

RT 
“Mini 

Isotech” Sn 
doped 23.2 
ppmw Sb 

(0 mA) 

RT 
Reference  

Sn 184 
(0 mA)  

Equivalent 
Temperature 

difference between 
doped Mini Isotech Sn  

and Sn184 cells 
[ TRT Δ=Δ *8.10 ]# 

[Rusby, 2008] 

280140 I 30/06/08 47.512615 47.512659 - 0.48 mK 

280140 II 02/07/08 47.512614 47.512652 - 0.41 mK 

280140 III 02/07/08 47.512629 47.512646 - 0.18 mK 

280140 IV 04/07/08 47.512603 47.512636 - 0.36 mK 

280140 V 14/07/08 47.512614 47.512643 - 0.31 mK 

274728 I 02/07/08 49.038611 49.038609 + 0.02 mK 

274728 II 04/07/08 49.038643 49.038647 - 0.04 mK 

4849 I 30/06/08 48.152942 48.152941 + 0.01 mK 

4849 II 02/07/08 48.152961 48.152934 + 0.29 mK 

Overall 
Mean - - - - 0.16 mK 

∴ Standard deviation (2s)-Temperature difference between Sb 23.2 ppmw doped 
Mini Isotech Sn and Reference Sn   

± 0.35 mK 

∴ Mean of Temperature difference “Sb 23.2 ppmw Doped” and “Undoped”  
Mini Isotech tin  

(-0.16) – (-0.94) = + 0.78 mK 

∴  Standard deviation (2s) Difference -Temperature difference between  “Sb 23.2 
ppmw doped” and “undoped” Mini Isotech Sn  (by quadrature addition) 

± 1.08 mK 
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Table 6.23 Resistance values from three PRTs measured at triple point of 

water before and after the calibration by comparison between Mini Isotech tin doped 

antimony at 23.2 ppmw and Reference Isotech tin (Sn184) fixed-point cells.  

 
In Table 6.23, i represent the order of the resistance measurements of the PRTs at the 

triple point of water. # 10.8 (mK/mΩ) is the appropriate conversion factor for the sensitivity 
of R(T90) [Rusby, 2008]. 

 
The results obtained after doping with antimony at low impurity levels can be 

summarised that the melting and freezing curves, before and after doping, confirm the 

reproducibility of the temperature measurements in this tin fixed-point cell. The 

freezing temperatures of the Mini Isotech tin after adding antimony 7.8 and 

23.2 ppmw are higher than for the “pure” ones. It indicates that at low levels, 

antimony elevates the melting and freezing temperatures although the temperature 

change is less than expected. At 7.8 ppmw antimony in tin the freezing maximum 

temperature increased by 0.60 mK, while at 23.2 ppmw the curves had increased by 

0.77 mK compared with the reference high purity tin cell. 
The measured rate of increased temperature after adding amounts of Sb was 

calculated from the previous results. It found that the measured rate at Sb 7.8 ppmw is 

Sb +0.08 in units of mK/ppmw and the measured rate at 23.2 ppmw is Sb +0.03 in 

units of mK/ppmw. Therefore, the equilibrium curves of the freezing tin fixed-point 

Resistance values at 
triple point of 

water/Ω 

    Date 
 

Platinum Resistance Thermometers (PRTs) 
(Serial Number) 

Cycle number and 
differences  

- 4849 280140 274728 

RTPW (1) 30/06/08 25.443943 25.103420 - 

RTPW  (2) 02/07/08 25.443962 25.103434 25.909855 

8.10*11 RT Δ=Δ # - +0.21 mK +0.15 mK - 

RTPW (3) 04/07/08 - 25.103433 25.909898 

8.10*22 RT Δ=Δ # - - -0.011 mK +0.46 mK 

RTPW (4) 14/07/08 - 25.103393 - 

8.10*33 RT Δ=Δ # - - -0.43 mK - 

Mean of the TΔ  - +0.21 mK -0.29 mK +0.46 mK 

Standard deviation 
(2s) - 0.02  mΩ   0.035 mΩ 0.06  mΩ 
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temperature as increasing amounts of impurities of Sb were introduced; the average of 

the measured rate is: Sb +0.06 in units of mK/ppmw. Total Sb impurities in the based 

Mini Isotech tin sample can be checked the amount of concentrations by using the 

GD-MS.  

Looking at both the 7.8 and 23.3 ppmw curves and at the beginning of the 

curve (bump for 7.8 ppmw) and near the curves liquidus then one can calculate 

several different values for the impurity sensitivity, varying between 0.03 mk/ppmw 

and 0.33 mK/ppmw. (The Hansen book value is 0.128 mK/ppmw). We might expect 

that the 7.8 ppmw peak value would overestimate the sensitivity (0.33 mK/ppmw), as 

the peak suggests that the level of antimony has been increased by some form of 

impurity consolidation. (We might then expect that the liquidus of the 7.8 ppmw 

would give a much lower sensitivity, but in fact it does not go below the book value.)  

However when thinking of the 23.2 ppmw results we note that the GD-MS 

results detect a much lower level of Sb (3.8 ppmw) than the 23.2 ppmw that had been 

added. If we assume that a large portion of the antimony had been “taken out of play” 

after the second stage of doping, and that the GD-MS was actually measuring the 

remaining active antimony then we can work “backwards”. Looking at the increased 

temperature at the start and end of the “23.2 ppmw” curve but using a concentration of 

3.8 ppmw then we calculate sensitivities of 0.18 and 0.29 mK/ppmw. It is interesting 

to observe that this range is closer to the book value of 0.128 mK/ppmw. This is an 

intriguing suggestion that might lend us to have more trust in GD-MS results, but 

unfortunately at this time we can only leave it as an interesting speculation, for some 

future work. 

The freezes show that Sb increases the temperature of the Sn phase transition, 

but not by the expected amount. The melts further suggest that the Sb distribution is 

strongly dependent of the prior freeze and it may be that our “fast freeze” is not fast 

enough. During Qiu’s recent work [Qiu et al., 2008] when studying the affect of 

impurities in zinc, it has been shown that to reduce the rounding at the start of the melt 

(which we subsequently assume to be due to uneven distribution of impurities) then a 

VERY “fast freeze” has to be carried out before the melt. They pulled the ingot into 

the air to get their (very) fast freeze.  
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6.2.3 Impurity Analysis of High Purity Mini Isotech Tin before and after 

Doping with Antimony (Sb) Impurity 
 

GDMS Characteristics of High Purity Mini Isotech Tin before and after 

Doping with Sb  
 

Table 6.24 lists the impurity elements detected in the Mini Isotech tin metal 

ingot. It indicates the increased amount of Sb after adding total 23.2 ppmw (23200 

ppbw). However, the total amount of Sb from GD-MS is just 3800 ppbw, which is 

less than the real added amount as expected at 23200 ppbw. This may be the reason 

why the elevation of the melting and freezing temperatures change after doping with 

antimony less than expected. It might be because of the limitations of Sb solubility in 

this tin metal. 

Moreover, two samples were cut from the Mini Isotech tin before deliberate 

doping; one was tested soon after while the other was tested a ~year later at the same 

time as the doped sample, i.e. two similar samples were tested by GD-MS at different 

times, i.e. the first undoped sample was checked a year ago, while the other undoped 

sample was detected as the same time as the doping sample. From the GD-MS results 

we see the amount of “background” Sb in this tin cell (i.e. prior to doping) shows 

different amounts, namely the amount at the first measurement is 360 ppbw, while the 

second one is <260 ppbw. Similar larger variations in nominally the same background 

impurities can be seen between the measurements e.g. B, Se, S, Br, Au to name some; 

but note some such as C, N, O so not show a large variation even though GD-MS is 

not expected to be so accurate with these elements. These results can show some 

evidence of the uncertainty of the GD-MS technique.  

Considering Indium (In) impurity in Table 6.22, it shows the large amount and 

variable as also appeared in Spanish tin ingot in Table 6.15 (Indium is know by 

materials experts to be a common impurity in Sn – private communication [Quested, 

2008]. Also, we can see the different amount of In when the two samples before 

doping were checked the GD-MS at the different time. The second measurement, 

which was checked at the same time as after doping, has the amount nearly the sample 

after doping.  

For Sulphur (S) impurity, we can see the big different amount of this impurity 

in this cell. 
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Table 6.24 GD-MS analysis results of the impurity concentrations of the 

“Mini” Isotech tin before and after doping [NRC report number: 30337R1 (checked 

on 14/12/07) & 30817 (checked on 22/08/08)]. These elements were detected in term 

of mass fraction (in parts per billion by weight, ppbw). The uncertainty is quoted as a 

“factor of 2”, though this is probably a conservative overestimate. 
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Li 
Be 
B 
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N 
O 
F 

Na 
Mg 
Al 
Si 
P 
S 
Cl 
K 
Ca 
Sc 
Ti 
V 
Cr 
Mn 
Fe 
Co 
Ni 
Cu 
Zn 
Ga 
Ge 
As 
Se 

<0.3 
<0.1 
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<2 

<10 
<7 
<1 
6 
7 

<0.2 
<0.4 

<1000 
<0.3 
<0.2 
<0.2 
<0.3 
<0.2 
<0.9 

- 
<2 

<70 
<770 

Matrix 
<280 
<11 
<20 
<3 
<1 

<0.8 
<0.9 
<0.6 

- 
<0.4 
<2 

<200 
<6 
<1 
6 
4 

<0.4 
<1 

<750 
<0.1 
<0.1 

<0.08 
<0.2 

<0.08 
<0.5 

- 
<0.9 
<40 

<670 
Matrix 
3800 
<35 
<12 
<45 
<30 
<2 

<25 
<0.3 

- 
<0.2 
<0.9 
<80 
<3 

<0.6 
11 
10 

<0.8 
<2 
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6.2.4 Photograph of Mini Isotech Tin Cell 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.39 Photographs of Mini Isotech tin fixed-point ingot (a) shows 

the original pure tin ingot before doping; and (b) shows the colour change of the 

surface on the ingot after doping with antimony impurity and having undergone 

several (very) long melts and freezes. “Fresh” tin can just be seen where the 

GDMS sample has been cut out on top of (b). 

 
The colour on the surface of Mini Isotech tin ingot before doping, as shown in 

Figure 6.39(a), is totally different from the surface of the ingot after doping with 

antimony and undergoing several (very) long melts and freezes (Figure 6.39(b)). The 

surface before doping has a dark grey colour, which is a not unusual colour for an old 

tin metal ingot, while the yellow-brown is the colour on the surface after doping 

experiments. Looking at the GDMS results of the Mini Sn ingot (and comparing with 

the Spanish Sn) it is noted that there is a relatively large amount of sulphur in the 

impurity list and therefore it is wondered if sulphur has been redistributed to the 

surface. Other possible (but less plausible possibilities) could be related to Si or Cs 

elements (larger amount of these elements were detected from the GD-MS analysis 

after doping) that might be formed with the oxygen and become SiO-glassy solid 

(blown black) or Cs2O (yellow-orange). It can be assumed that some impurities might 

be reacted with oxygen gas, which (with large variations in amounts) is detected in the 

(a) 

(b) 
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GD-MS results. Initially the sulphur hypothesis seems more plausible. This hypothesis 

needs to be confirmed and proved by scraping the surface off to check the chemical 

analysis, which is left as an interesting speculation, for the future work.   

 
 

 

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 6.40 Photographs of Spanish tin fixed-point ingot (a) shows the 

original whole ingot before doping; (b) shows the top part of the ingot after doping 

with cobalt and lead impurities (we can see the space on the right hand side, which 

appeared after cutting the sample off for GD-MS analysis); and (c) shows a fully 

re-fill the sample hole (in the blue circle line) after re-melting and re-freezing the 

ingot in several times. 

 

(a) 

(b) (c) 
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 Considering the surface colour of Spanish tin ingot, this has the dark grey 

outside of the ingot before doping (someone has wondered if there was some organic 

contamination based on the colour and its mottled distribution), while after doping etc 

it has a less greyer surface than the undoped Spanish tin. It might be some tin oxide, 

which has a whitening effect. However, the surface structure suggests a good mixing 

in the ingot because it has no holes or crevices on the surface. Also, the sample hole 

after cutting the samples out was fully refilled, as shown in Figure 6.40(c); this trace 

still appears even after re-melting and re-freezing several times. Scraping off the 

surface layer makes it harder, but not impossible, to see this trace, suggesting that 

whatever is on the surface is not mobile (otherwise it would cover over the trace) and 

that the “surface contaminant” hasn’t been introduced after the post cut re-melting.  
 

6.2.5 Mass of Mini Isotech Tin Fixed-Point ingot  
 

Table 6.25 Mass of Mini Isotech tin fixed-point ingot as calculated based on a 

mass measurement (of Mini Isotech tin and central graphite well) before and after 

doping the impurities.  
 

Component(s) of Mini Tin Cell Mass (g) 

Calculated Mass of Mini tin metal 

(Originally) 
262.28 g 

Measured Mass {Mini tin metal and graphite re-entrance well} 

(Originally) less the calculated mass of graphite 
243.05 g 

Measured Mass of Mini tin metal 

(Samples cut off) less the calculated mass of graphite 
240.76 g 

 

 The difference in the amount of tin, estimated from the two methods is just 

under 10%. Therefore the uncertainty in the mass of added impurities is negligible 

(see mass balance uncertainties in Spanish tin section). However the uncertainties in 

the measurement of the affect of Sb doping in Sn appear to be dominated by the 

question of whether the antimony is being “removed from play”, either due to the 

freeze process or some other process that is pinning the impurity away from the 

thermometric (and GD-MS) measurement area. The measured mass of Mini Isotech 

tin metal after cutting some samples off for the undoped GD-MS testing was used in 

calculation of the doping concentrations (in ppmw).  
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Chapter 7 

Results and Discussions of Aluminium Fixed-Point 

 Two originally nominally 99.9999% pure aluminium point cells constructed 

according to the NPL design were used in this study to realise as the test cells to 

measure before and after doping and compare against a reference cell. These two cells 

were designated after the year they were fabricated in 1974 (Al 174) and 1998 

(Al 298). The offsets and shapes of melting and freezing plateaus of high purity 

aluminium are investigated as a function of the impurities (concentrations of order ~1-

16 ppmw) of copper, silicon, and titanium pure metals. In prior experiments on these 

binary alloy systems, using higher levels of impurities [Hansen, 1958], the fixed-point 

temperature of Aluminium was interpolated to be depressed by 0.37 mK/ppmw of 

copper and 0.71 mK/ppmw of silicon impurity. Conversely the aluminium transition 

temperature is interpolated to be increased by 3.31 mK/ppmw of titanium impurity. 
 

 The following impurities were added to the “pure” aluminium samples in 

increasing concentrations as follows (in ppmw); Cu 8.3 and 16.2, Si 4.7 and 9.8, to 

Al174 and Ti 0.9 and 1.8 to Al298, respectively. 
 

7.1 High Purity Aluminium (Al 174) Fixed Point 
 

The order and location of the experimental results of high purity Al 174 fixed-

point cell are summarised below in terms of a “Family tree” as presented in Figure 

7.1. But note that the measurements were done consecutively (not in parallel). 
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# FP/MP = Freezing and Melting curves conducted in this stage. 

+ GD-MS = Glow discharge mass spectrometry analysis performed in this stage. 

* ppmw = Parts per million by weight (nominal doping amounts)  

 

 

Figure 7.1 “Family Tree” summarising the experiments giving the section 

numbers, figure numbers of the freezing/ melting curves, the nominal doping 

amounts, and the table number of results from the chemical analysis technique for 

Al 174 fixed point obtained for a particular combination of conditions. 
 

 

 

 

 

7.1.2  
Cu 

7.1.3 
Si   

(a) 
8.3 ppmw* 

(b) 
16.2 ppmw* 

(a) 
4.7 ppmw* 

(b) 
9.8 ppmw* 

MP/FP# Fig. 7.5, 7.6  
MP/FP# Fig. 7.7, 7.8
(Total doping curves)

MP/FP#Fig. 7.9, 7.10 
MP/FP#  Fig. 7.11, 7.12 

GD-MS+ Table 7.14 

7.1 Al 174 Fixed Point 

7.1.1 
“undoped” Al 174 

FP/MP#   Fig. 7.2, 7.3  
GD-MS+  Table 7.5 
MTDATA  Fig. 7.4 
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7.1.1 Temperature Realisation of “Undoped” Aluminium (Al 174) 
 

Considering the high purity “Al 174” aluminium fixed point results: a set of 

three freezing curves of “Al 174” aluminium fixed-point cell, before the doping 

process, is shown in Figure 7.2. There is a region in the Figure 7.2 where the 

temperature is almost stable (within about 2 mK), and that is called the “plateau”. All 

freezing measurements were determined at the same setting of the furnace 

temperature. (All furnace values quoted in this chapter are nominal settings of the 

controller(s)). Examples of Al 174 melting curves, before doping, are also shown in 

Figure 7.3.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

Figure 7.2 Three freezing curves of high purity Undoped “Al 174” aluminium 

fixed-point plotted as a function of time. The furnace set point for all three 

measurements is maintained at the same temperature (nominally half a degree below 

the melting point).  
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Figure 7.3 Melting curves of high purity Undoped “Al 174” aluminium fixed-

point plotted as a function of aluminium percentage melted. The curves have been 

normalised to an approximate percentage melted (the best means for this 

normalisation is still a topic for discussion in the community) [Lowe et al., 2007].  

 

Our method of determination of 0% and 100% was slightly arbitrary. For 0%, 

we chose a resistance that was same distance below the actual plateau “start”, i.e. 

almost vertical and for 100% some way above the plateau, where the temperature was 

obviously rising above the plateau. This means that 0% and 100% may not be fully 

correct; but any offset will be common to all the curves being measured by the same 

thermometer on the same cell and the same furnace system.  

All the melting and freezing curves of high purity Al 174 aluminium confirm 

the general reproducibility of the temperature realisations over a short time scale, and 

intercomparison with a reference fixed-point cell, ensures longer-term measurement 

accuracy. However, we can see some shift of the resistance values of the PRT at the 

freezing and melting curves. The average of these freezing temperatures shifts, as 

shown in Table 7.1, is about 1.5 mK. Thermometers are not normally as stable at the 

aluminium temperature as at tin temperatures, hence we expect that there may be 

more noticeable shifts in thermometer values over shorter time scales in the aluminum 

experiments.     
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Since the impurity segregation tends to induce a decrease of the equilibrium 

fixed-point temperature during the freezing process itself (irrespective of whether the 

impurities raise or depress the overall (average) freeze value), then the best estimate of 

the “liquidus point” of the fixed-point is the maximum point of the freezing curve. 

Therefore, the comparison for measuring the PRTs’ differences between the Al 174 or 

Al 298 and the NPL national standard aluminium cells in this work was realised by 

use of the peak of the freezing point(s).  

It can be difficult to find PRTs that are stable for extended periods of time at 

the aluminium fixed-point. Further the best PRTs are kept for use with the national 

standard calibration service. Consequently, the PRTs that were available were not 

optimal for this job. To overcome possible drift we investigated the use of water triple 

points and reference back to a standard aluminium cell. (Results soon showed that 

calculating W values from water triple points did not provide any advantage- similar 

to what we found with tin.)  
 

Table 7.1 Resistance values measured at the freezing point of the “Undoped” 

Al 174 aluminium fixed-point cell. These values were calculated from the resistance 

ratio of PRT and standard resistor values. Also, the resistance values include the 

correction of the hydrostatic head of this cell. The temperature setting of the furnace 

was maintained at 663.9 oC. The resistance values are measured at the peak of the 

freeze. 

 

Because the resistance values of the impure (or doped) aluminium point 

changed too quickly (especially at the peak), the values are not stable enough for the 

Resistance values at 
freezing point of Al 174 Date 

Platinum Resistance Thermometer 
(PRT) 

(Serial Number) 

RT (i) /Ω - 250329 
(1 mA) 

RT (1)  23/08/07 84.093280 

RT (2) 24/08/07 84.093269 

RT (3) 29/08/07 84.093158 

Standard deviation (2s) - 0.135 mΩ 
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measured cycling currents at 1 mA and 2  mA. For that reason, the resistance values 

were measured the freeze peak at 1 mA instead of 0 mA. In Table 7.1, the peak of 

each freezing temperature was measured to show the resistance values of a 

PRT 250329 at Al 174 fixed point cell. The standard deviation (2s) of the samples, 

which was used to show the stability, for all three measurements was 0.135 mΩ, 

which is equivalent to 1.46 mK approximately. We can see the peak drop in 

Figure 7.2. The stability of this PRT needs to be evaluated again by measuring in the 

triple point of water. All resistance values checked in the triple point of water have 

been corrected by application of the hydrostatic pressure correction of each 

aluminium fixed-point cell as shown in Table 7.2.  

 

Table 7.2 Measurement of the stability of the PRT 250329 measured from the 

resistance values at the triple point of water. These values were checked before using 

the PRT in the comparison measurements at the freezing curves of aluminium fixed 

point between high purity “undoped” Al 174 and Al 298 cells.  
 

 

 

 

 

 

 

 

 

 
 

 

The stability of this PRT was monitored by means of the triple point of water 

cells, as illustrated in Table 7.2. The resistance values are obtained by combining the 

bridge ratio measurements and the standard resistor values. The standard deviation 

(2s) for all measurements was 0.068 mΩ, which is equivalent to 0.85 mK 

approximately.  
 

Resistance values at 
triple point of 

water/Ω 
   Date Platinum Resistance 

Thermometer (PRT) 

Cycle number and 
differences  

- 250329 
(0 mA) 

RTPW (1) 27/08/07 24.915017 

RTPW (2) 05/10/07 24.915078 

RTPW (3) 13/10/07 24.915096 

RTPW (4) 14/10/07 24.915074 

Standard deviation 
(2s) - 0.068 mΩ 
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(a) Aluminium Fixed-Point - Calibration by Comparison for the PRTs 

between High Purity Al 174 and High Purity Al 298 Cells   
 

Before adding the impurities in Al 174 fixed-point cell, the peak of the 

freezing curve of this aluminium cell had needed to be compared against with the 

“reference cell” (Al 1205), which is related to NPL national standard. However, this 

Al cell was in a different room to Al 174 and the Al 174 cell itself had been put in a 

single zone heat pipe Carbolite furnace, which was very hard to move to the same 

room as the Al 1205 cell. Therefore, the Al 174 needed to be compared with the 

Al 298 instead of the “Al 1205” cell because the furnace of the Al 298 cell stands was 

on a trolley, making it is easier to move Al 298 to the Al 1205 reference cell. In the 

first stage, the Al 174 aluminium fixed-point cell was calibrated by comparison with 

the Al 298 fixed-point cell using the recording of the peak on the freezing curves of 

each cell, listed in Table 7.3. The Al 298 cell had been already compared against the 

peak freeze of “Al 1205 reference cell” aluminium fixed-point cell as shown in Table 

7.17.  

Both Al 174 and Al 298 fixed-point cells were used in this study because they 

have already been contaminated with the impurities, which had affected their freezing 

curves. Their freezing curves had dropped and were not flat enough to do the 

calibration by comparison between the cells throughout the full length of the freeze; 

therefore the freeze peak was selected to compare the initial freezing temperatures. A 

freeze peak was measured separately in each Al cell.   

 Because segregation has not progressed at the initial freeze front, it tends to 

make the first layer of frozen Al more representative/reproducible than the rest and 

because freezes are normally performed after sufficient time for the melt to become 

homogenised, then it is believed that it gives a better representation of the fixed point 

temperature. Thus, the best estimate of the liquidus point in a freeze is the early 

maximum point of the freezing curve. Also, according to Physikalisch-Technische 

Bundesanstalt (PTB) - the German national metrology measurement institute - the 

peak of the freeze is the most reproducible part of the freezing curve (because it is 

least affected by the furnace thermal conditions), from which good results can be 

obtained. The reason is that the maximum temperature does not strongly depend on 

the homogeneity and stability of the furnace temperature [Rudtsch et al., 2008]. 

Therefore, the temperature comparisons between the Al 174 or Al 298 and the NPL 
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national standard aluminium cell in this work were realised by using the peak of the 

freezing point curve. 
 

Table 7.3 Summary of the average resistance values (RAl) in the comparison 

measurements at the peak of the freezing curves of the aluminium fixed points 

between Al 174 and Al 298 cells with two PRTs (serial number 250329 and 261198). 

The stability performance of the two PRTs, as measured at the triple point of water 

after the calibration, is also shown in this Table. 

+12.5 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) at Al 
fixed-point temperature [Rusby, 2008]. 

 

Before the PRTs were calibrated by comparison, the PRTs had been annealed 

at 670.0 oC for 2 hrs. Table 7.3 summarises the comparison between Al 174 and 

Al 298; it lists the resistance values at the peak of the aluminium freezing curves, the 

subsequent triple point of water values and the mean difference between Al cells. The 

temperature difference, which was measured from the resistance values, between the 

original “undoped” Al 174 and Al 298 fixed-point cells shows that the temperature of 

Al 174 is higher than Al 298 by 1.31 mK. The values in Table 7.3 were also used to 

calculate the W values as shown in Table 7.4. The results indicate that the temperature 

difference between the original “undoped” Al 174 and Al 298 cells is +1.31 mK. This 

gives the same value as obtained from the resistance values. The standard deviation 

PRTs 
serial 

number 
Date 

RAl 
Al 174, (Ω) 

(1 mA) 

RAl 
Al 298, (Ω) 

(1 mA)  

Temperature 
difference 

between Al 174 
and Al 298 cells 

]*5.12[ AlRT Δ=Δ
+ 

RTWP 
(Ω) 

(1 mA) 

250329 I 01/10/07 84.093166 84.092913 +3.16 mK 24.915337 

250329 II 03/10/07 84.093222 84.093121 +1.26 mK - 

250329 III 03/10/07 84.093272 84.093116 +1.95 mK 24.915328 

261198 I 02/10/07 84.996034 84.996000 +0.43 mK - 

261198 II 02/10/07 84.996012 84.996033 -0.26 mK 25.183047 

Overall 
Mean - - - +1.31 mK  - 

∴ Standard deviation (2s)  = ± 2.66 mK 

∴ Temperature difference between “undoped” Al 174 and “undoped” Al 298 fixed-point  

Al 174-Al 298 = + 1.31 mK 
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(2s) for all measurements is ± 2.66 mK. From Table 7.18, it shows the temperature 

difference, from the comparison of the resistance values, between the peak of the 

original “undoped” Al 298 and the reference cell (Al 1205), which is 11.30 mK 

approximately. Therefore, it can be calculated that the value of the peak freezing point 

of Al 174 is 9.99 mK lower than the NPL standard Al cell. 
 

Table 7.4 Summary of resistance ratios W(Al) values in the calibration by 

comparison method between Al 174 and Al 298 cells for two PRTs. [W(Al) = 

R(Al)/R(TPW)] 

 

The results above imply that Al 174 ingot (prior to doping) probably contained 

some initial impurities affecting its freezing and melting temperatures (this is as 

expected as it is an old cell retired due to some previous contamination). Also, the 

shape of the curves is no longer flat when compared with the NPL standard Al cell. 

For an ideal pure aluminium fixed point, a purer metal usually shows a flatter plateau 

on the freezing and melting curves.  

 Because measurements of the PRTs at the water triple point did not shift in 

proportion, the W values obtained from the experiment also moved. (W is the ratio of 

the thermometer resistance at the fixed point to the resistance at the water triple point). 

PRTs 
Serial 

number 
Date 

WAl 174 
(Ω) 

(1 mA) 

WAl 298 
(Ω) 

(1 mA)  

Temperature 
difference 

between Al 174 
and Al 298 cells 

WT Δ=Δ *312  
[Rusby, 2008] 

250329 I 01/10/07 3.37515667 3.37514653 +3.16 mK 

250329 II 03/10/07 3.37516008 3.37515603 +1.26 mK 

250329 III 03/10/07 3.37516211 3.37515583 +1.96 mK 

261198 I 02/10/07 3.37512903 3.37512770 +0.41 mK 

261198 II 02/10/07 3.37512818 3.37512901 -0.26 mK 

Overall Mean - - - +1.31 mK 

∴ Standard deviation (2s)  = ± 2.67 mK 

∴ Temperature difference between “undoped” Al 174 and “undoped” Al 298 fixed-point  

Al 174 - Al 298 = + 1.31  mK 
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It was found that the resistance values were more reproducible than W values. (Hence 

this is a reason why the resistance values were selected to show on all Figures). The 

offsets of the melting curves need to be corrected following “re-calibration” of the 

PRTs by comparison of the peak of the freezing curves against the NPL reference Al 

cell. Also, the results of the temperature difference as shown in Table 7.3 and 7.4 

confirm the same value between Al 174 and Al 298 fixed-point cells. Therefore, all 

calibrations by comparison on the peak of freezing temperatures would use the 

resistance values to find out how much the trace impurities affected the temperatures 

of the aluminium fixed-points.  

As the test cell(s) contained some existing impurities it was necessary to carry 

out an elemental analysis of this aluminium fixed-point cell(s) using the GD-MS 

technique, before doping the aluminium cell(s) with any impurity elements in the next 

step of the procedure.  
 

7.1.1.1 Impurity Analysis of Aluminium (Al 174) Fixed-Point before 

Doping 
 

Glow Discharge Mass Spectrometry (GD-MS) Characteristics 
 

An example result of the impurity determination for the “high purity” aluminium 

(Al 174) fixed point by GD-MS analysis is reported in Table 7.5. This shows the 

impurity content measured in three areas of the aluminium ingot. This GD-MS 

analysis is considered to be accurate within a factor of two of the values obtained, at a 

confidence level of 95%. From the results we see that the impurity levels are the same 

throughout the cell (within the uncertainty quoted). This shows that the aluminium is 

sufficiently well mixed and that only one sample will need to be cut out for analysis 

after doping. (Cutting out of samples is a risky procedure).  
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Table 7.5 An example of the GD-MS analysis results of the initial “high purity” 
(6N) aluminium fixed point Al 174 (NRC report number: 30337R1). The aluminium 
samples were cut from the three areas of the ingot, which are the top, the middle, and 
the bottom. These elements were detected in term of mass fraction (in parts per 
million by weight, ppmw). The uncertainty is quoted as a “factor of 2”, though this is 
probably a conservative overestimate. 
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<0.001 



SED, Brunel University                                                                           RES Systems Engineering (PhD) 
 

 7-12

7.1.1.2  MTDATA Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 Melting curves of pure Al 174 fixed point obtained from 

MTDATA calculation analysis. The red line shows the curve calculated using the GD-

MS result (impurity effect on the curve), the blue and the green lines show the 

calculated bounds (based on the quoted uncertainty of the GD-MS analysis i.e. factor 

of 2 which translates to –50% and +100% of reported value)   

 

The melting of the initial undoped Al 174 curve compared to MTDATA 

experiments show much more rounding, which does not agree very well with 

MTDATA analysis. MTDATA also appears to grossly underestimate the melting 

point depression. If the MTDATA calculations are correctly done then it would imply 

that the GD-MS is unable to pick up a significant impurity component. We were 

informed – private communication [Head, 2009] - that a “back of the envelope” 

calculation assuming Raoult’s law applied suggested that the total impurities would 

give a depression of around 20mK, while the depression (excluding the C, N and O) 

would be between 0.5 to 1 mK. This suggests that the MTDATA calculation have no 

gross errors. If there were some other impurity component we might speculate on this 

and one might wonder if some organic compound was having some effect. As an old 

open cell it would have been vacuum pumped using oil based pumps and there is 
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noticeable C, Si and O presence, but there is no way to distinguish its source in the 

above GD-MS analysis. This remains a speculation. Calculation of the MTDATA 

results was dependent on the availability of the appropriate specialist and constraints 

on the resources of MTDATA meant that they were not able to pursue this during the 

period of this work. We are aware of two new fixed point cells, manufactured at NPL, 

in the past; using “old” graphite that produced cells with low values, of order 1 mK. 

(NPL now uses post machined purified graphite, manufactured in Germany [Head, 

2009]).   
 

7.1.2 Influence of Copper on High Purity Al 174 Fixed Point 
 

7.1.2.1 High Purity Al 174 doped with 8.3 ppmw of Copper 
 

Considering the instability of the PRT 250329, this PRT was calibrated to 

check its resistance values in the reference Al cell as shown in Table 7.6.    
 

Table 7.6 Stability of the PRT 250329, as checked at the peak of the reference 

Al cell (Al 1205) at 1 mA.  
 

Checking Time Date Resistance Values 

(RT, Ω) 

Average RT Values 

(Ω) 

18/09/07 84.093960 Measurement in 
Al 1205 before 

Al 174 was 
doped 

20/09/07 84.093870 
84.093915 

Checked when Al 
1205 Compared 

with Al 174  
doped Cu 8.3 

ppmw 

18/01/08 84.093791 84.093791 

The shift of PRT 250329 during the calibration =   0.125 m Ω 
 

In Table 7.6, the shift of PRT 250329 during the thermal cycling checked 

against the reference Al cell decreases by 0.125 mΩ. It is equivalent to 1.56 mK 

approximately. Therefore, this number would be used to correct on the resistance 

values of freezing and melting curves of Al 174 fixed point after doping with Cu 

8.3 ppmw.  
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Figure 7.5 Melting curves of “Al 174” high purity aluminium fixed-point and 

the shift of these curves after doping the aluminium with a concentration of copper at 

8.3 ppmw, plotted as a function of aluminium percentage melted. The curves have 

been normalised to an approximate percentage melted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 Freezing curves of “Al 174” high purity aluminium fixed-point and 

the shift of these curves after doping the aluminium with a concentration of copper at 

8.3 ppmw, plotted as a function of time.  
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The melting curves, before and after doping, compared with 8.3 ppmw copper 

concentration curves are shown in Figure 7.5. All freezing curves are presented in 

Figure 7.6. All doped curves were corrected with the values obtained from Table 7.6.  

The curves, before and after doping, indicate the limitations of the 

reproducibility of the temperature conditions in this fixed-point cell. The length of the 

freeze does not correlate with the nominal setting of the furnace, which suggests that 

the furnace control is also moving with time. Figure 7.5 shows the shift of the melting 

curves after doping the Al with a concentration of 8.3 ppmw copper impurity while 

the freeze peaks from the set of freezing curves after doping do not change as 

presented in Figure 7.6. While the y-axis of the graphs in this chapter are plotted in 

terms of thermometer resistance, a temperature scale arrow (of 6 mK or 2.5 mK) 

dimension are placed within each graph. The scale arrow sign was calculated using the 

number (12.5 mK/mΩ for Al), which is the appropriate sensitivity factor of R(T90) for 

converting uncertainties to the temperature equivalents in mK. These come from those 

used sensitivity factors, in determining mK equivalents of uncertainties in an 

uncertainty budget [Rusby, 2008]. 

The peak freeze is from Al 174 (after doping) and reference Al cells were used 

to compare the temperature changes as shown in Table 7.7. However, the peak can be 

compared separately; it does not need to be compared directly between two cells at the 

same time. Therefore, the measurements as shown in Table 7.7 were investigated on 

different days. (Although it is more ideal to cross compare the peaks at the same time 

– to minimize any changes in the thermometer, it was not always practical to get both 

freeze peaks occurring at a similar time on the same day). 
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 Table 7.7 Summary of the average resistance values (RAl) in the comparison 

measurements at the peak freezing curves of aluminium fixed point between Al 174 

and reference (Al 1205) cells with two PRTs (serial number 250329 and 261198).  

+12.5 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) at Al 
fixed-point temperature [Rusby, 2008]. 
 

Table 7.7 shows the temperature difference between Al 174 doped Cu 

8.3 ppmw and NPL standard obtained from the calibration of the freeze peaks. It 

indicates that the Al 174 cell after doping at 8.3 ppmw is lower than the NPL standard 

cell by 8.7 mK. From the previous section the “undoped” Al 174, the temperature 

difference is 9.99 mK lower than the reference cell. Hence, if anything, the freeze 

value appears to have slightly increased on doping. The mean of temperature 

difference Cu 8.3 ppmw doped and undoped of Al 174 is +1.3 ± 5.52 mK. From 

comparison measurement of the freeze peaks, at 8.3 ppmw of copper, the initial 

freezing point value did not change from the original aluminium temperature as 

PRTs 
serial number Date 

RT 
Al 174 doped  
Cu 8.3 ppmw 

(1 mA) 

RT 
reference  

Al 1205 
(1 mA)  

Equivalent 
Temperature 

difference between 
Al 174 doped Cu 8.3 
ppmw and Al 1205 

cells 
[ TRT Δ=Δ *5.12 ]+ 

[Rusby, 2008] 

250329  18/01/08 - 84.093791 - 

250329 21/01/08 84.093215 - - 7.20 mK 

250329 24/01/08 84.093195 - - 7.45 mK 

261198  18/01/08 - 84.996800 - 

261198 28/01/08 84.995883 - - 11.46 mK 

Overall Mean - - - -  8.7 mK 

∴ Standard deviation (2s)  = ± 4.78 mK 

∴ Mean of Temperature difference  Cu 8.3 ppmw  doped  Al 174 – NPL standard fixed-point 

=  - 8.7 mK 

∴ Mean of Temperature difference  Cu 8.3 ppmw doped  Al 174  – “undoped”  Al 174 
=  - 8.7 - (-9.99) = +1.3 mK 

∴ Standard deviation (2s) of Difference: Temperature difference between “ Cu 8.3 ppmw doped” 

and “undoped”  Al 174 (by quadrature addition) 

± 5.52 mK 
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expected (which was slightly surprising – perhaps some unexpected segregation of the 

impurity had occurred). From Hansen’s work [1958], the temperature difference of 

aluminium is interpolated as expected to decrease by about 3 mK when doped at 

8.3 ppmw. However, as shown in Figure 7.5, the offsets at the estimated liquidus point 

of the melting curves were slightly decreased (subsequent melting/freezing may have 

provided sufficient dispersion of the impurity as that it produced an effect). 
   

7.1.2.2 High Purity Al 174 doped 16.2 ppmw of Copper 
 

Considering the instability of the PRT 250329, this PRT was calibrated to 

check the values in the reference Al cell again as shown in Table 7.8.    
 

Table 7.8 Stability of the PRT 250329, as checked at the peak of the reference 

Al cell (Al 1205) at 1 mA. 
 

Checking Time Date Resistance Values 

(RT, Ω) 

Average RT Values 

(Ω) 

Checked when Al 
1205 Compared 

with Al 174  
doped Cu 
8.3 ppmw 

18/01/08 84.093791 84.093791 

26/02/08 84.093696 

06/03/08 84.093700 

Checked when Al 
1205 Compared 

with Al 174 
doped Cu 

16.2 ppmw 07/03/08 84.093750 

84.093715 

The shift of PRT 250329 during the calibration =   0.075 m Ω 

 

In Table 7.8, the shift of PRT 250329 during the thermal cycling checked at the 

reference Al cell decreases by 0.075 mΩ. It is equivalent to 0.94 mK approximately. 

Therefore, this number would be used to correct the resistance values of freezing and 

melting curves of Al 174 fixed point after doping with Cu 16.2 ppmw. A set of melting 

curves of Al 174 after doping with copper at 16.2 ppmw is presented in Figure 7.7. All 

freezing curves are presented in Figure 7.8.   
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Figure 7.7 Melting curves of “Al 174” high purity aluminium fixed-point and 

the shift of these curves after doping the aluminium with increasing concentrations of 

copper, plotted as a function of aluminium percentage melted. The curves have been 

normalised to an approximate percentage melted. 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 7.8 Freezing curves of high purity Al 174 fixed-point and the shift of 

these curves after doping the aluminium with increasing concentrations of copper, 

plotted as a function of time.  
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 Figure 7.7 illustrates the reproducibility of the melting curves of Al 174 high 

purity aluminium fixed-point and the shift of these curves after doping the aluminium 

with increasing concentrations of copper. The curves of Al 174 after doping with 

copper 16.2 ppmw show the decrease of the liquidus point. All freezing curves as 

shown in Figure 7.8 present the effect of copper impurity on the freeze peak. The peak 

of the freezing curves after further doping had dropped, so the value of the decrease 

could be obtained from the comparison of the peak with the National standard Al cell 

as shown in Table 7.9. 

From the peak comparison between undoped and doped Al 174 with the 

copper 8.3 ppmw as presented in Table 7.9, the temperature did not change as 

expected. For the Al 174 with the copper at 16.2 ppmw concentration, depression of 

the freezing temperature was observed to be 1.7 ± 3.52 mK (expected decrease was 

~6 mK from the undoped Al 174). While the mean of temperature difference between 

Cu 16.2 ppmw and Cu 8.3 ppmw doped Al 174 is 2.99 mK. However if we assume 

that the initial dopant was inactivated in some way then from our latter experimental 

results the temperature change of the freezing and melting curves of the aluminium 

fixed point was affected by the amount of copper at -0.38 mK/ppmw. Then the 2nd 

doping results are in reasonable agreement with the work of Hansen [1958] and 

Ancsin [2003] where the fixed-point temperature of aluminium were interpolated to 

be depressed by 0.37 and 0.29 mK/ppmw of copper, respectively. The results of this 

work confirm the influence of very low-level copper impurity on the freezing/melting 

curves of the aluminium fixed point.  



SED, Brunel University                                                                           RES Systems Engineering (PhD) 
 

 7-20

Table 7.9 Summary of the average resistance values (RAl) in the comparison 

measurements at the peak of the freezing curves of the aluminium fixed points 

between Al 174 after doping with copper at 16.2 ppmw and reference (Al 1205) cells 

with two PRTs (serial number 250329 and 261198). All results are corrected for the 

hydrostatic head pressure in both Al cells. 

+12.5 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) at Al 
fixed-point temperature [Rusby, 2008]. 
 

 

PRTs 
serial 

number 
Date 

RT 
Al 174 doped  

Cu 16.2 ppmw 
(1 mA) 

RT 
reference  

Al 1205 
(1 mA)  

Equivalent 
Temperature 

difference between Al 
174 doped Cu 16.2 
ppmw and Al 1205 

cells 
[ TRT Δ=Δ *5.12 ]+ 

[Rusby, 2008] 

250329  21/02/08 84.092725 - -12.13 mK 

250329 22/02/08 84.092851 - - 10.56 mK 

250329 26/02/08 - 84.093696 - 

250329 06/03/08 84.092850 84.093700 - 10.63 mK 

250329 07/03/08 84.092865 84.093750 - 11.06 mK 

261198 06/03/08 84.995277 84.996283 - 12.58 mK 

261198 07/03/08 84.995236 84.996290 - 13.18 mK 

Overall 
Mean - - - -  11.69 mK 

∴ Standard deviation (2s)  = ± 2.19 mK 

∴ Mean of Temperature difference Cu 16.2 ppmw doped  Al 174  – NPL standard  
=  - 11.69 mK 

∴ Mean of Temperature difference between Cu 16.2 ppmw  doped – Cu 8.3 ppmw 
doped 

= (-11.69) - (-8.7) = - 2.99 mK 
∴ Mean of Temperature difference between Cu 16.2 ppmw  doped - undoped Al 174 

= (-11.69) - (-9.99) = - 1.7 mK     
∴  Standard deviation (2s) Difference: Temperature difference between “  Cu 16.2 

ppmw doped” and “undoped”  Al 174 (by quadrature addition) 
± 3.23 mK  
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7.1.3 Influence of Silicon on High Purity Al 174 Fixed Point 
 

7.1.3.1 High Purity Al 174 Doped with 4.7 ppmw of Silicon 
 

Before the melting and the freezing curves of Al 174 after doping with silicon 

are measured, the instability of PRT 250329 was checked by calibration in the 

reference Al cell as shown in Table 7.10.    
 

Table 7.10 Stability of PRT 250329, which was checked at the freeze peak of 

the reference Al cell (Al 1205) at 1 mA. 
 

Checking Time Date Resistance Values 

(RT, Ω) 

Average RT Values 

(Ω) 

26/02/08 84.093696 

06/03/08 84.093700 

Checked when Al 
1205 Compared 

with Al 174  
doped Cu 16.2 

ppmw 07/03/08 84.093750 

84.093715 

25/03/08 84.093746 Checked when Al 
1205 Compared 

with Al 174 
doped  

Si 4.7 ppmw 
01/04/08 84.093693 

84.093720 

The shift of PRT 250329 during the calibration =   0.005 m Ω 
  

The shift of PRT 250329 during the thermal cycling checked at the reference 

Al cell decreases by 0.005 mΩ as seen in Table 7.10. It is equivalent to 0.063 mK 

approximately. Therefore, this number would be used to correct the resistance values 

of freezing and melting curves of Al 174 fixed point after doping with silicon 

4.7 ppmw. The melting curves of “Al 174” high purity aluminium fixed-point and the 

shift of these curves after doping the aluminium with 4.7 ppmw concentration of 

silicon is presented in Figure 7.9. All freezing curves are presented in Figure 7.10.     
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Figure 7.9 Melting curves of Al-Cu binary fixed-point and the shift of these 

curves after doping with silicon, plotted as a function of aluminium percentage 

melted. The curves have been normalised to an approximate percentage melted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10 Freezing curves of Al-Cu binary fixed-point and the shift of these 

curves after doping with silicon, plotted as a function of time. 
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Figure 7.9 shows typical examples of melting curves obtained after a rapid rate 

of freezing. The set of melting curves confirm the reproducibility of the temperature 

measurements in this doped fixed-point cell. The results confirm that silicon depresses 

the phase transition temperature as expected. The results from Figure 7.10 display the 

different period of time of the freezing curves doped with Cu 16.2 ppmw and Si 

4.7 ppmw due to the different furnace temperature settings. The length of the freeze 

does not appear to be strongly correlated to the furnace setting, suggesting that the 

furnace control thermometer experiences some drift with time and/or there is a 

variation in the latent heat lost in the undercool (but the latter would not be expected 

to cause the amount of variations seen). The undercool of all freezing curves in 

Figure 7.10 have been checked and they had the same amount, which means the latent 

heat lost in undercool does not effect the length of the curve. The length of the freeze 

is affected from variations in the furnace itself. The peak of the freezing curves after 

doping had dropped. 
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Table 7.11 Summary of the average resistance values (RAl) in the comparison 

measurements at the peak of freezing curves of aluminium fixed point between Al 174 

after doping with silicon at 4.7 ppmw and reference Al 1205 cells with two PRTs 

(serial number 250329 and 261198).  
 

 

* and # represent the exceptional resistance values of PRT 250329 measured in the Al 174 doped Si 
4.7 ppmw and NPL standard Al 1205, respectively, e.g. cf. Table 7.9, and so were not used. +12.5 
(mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) at Al fixed-point temperature 
[Rusby, 2008]. 

PRTs 
serial 

number 
Date 

RT 
Al 174 doped  
Si 4.7 ppmw 

(1 mA) 

RT 
reference  

Al 1205 
(1 mA)  

Equivalent 
Temperature 

difference between Al 
174 doped Si 4.7 

ppmw and Al 1205 
cells 

[ TRT Δ=Δ *5.12 ]+ 

[Rusby, 2008] 

250329 14/03/08* 84.091989 - - 

250329 15/03/08 84.092794 - - 

250329 17/03/08# - 84.093315 - 

250329 20/03/08 84.092455 - - 

Average - 84.092625 - - 14.00 mK 

250329 25/03/08 - 84.093745 - 

250329 31/03/08 84.092779 - - 

250329 01/04/08 - 84.093693 - 

Average - - 84.093719 - 

250329 07/04/08 84.092856 - - 

Average - 84.092818 - -11.30 mK 

261198 04/04/08 84.994878 - -13.69 mK 

261198 05/04/08 - 84.995973 - 
Overall 
Mean - - - - 13.00 mK 

∴ Standard deviation (2s)  = ± 2.96 mK 

∴ Mean of Temperature difference  Al 174 doped Si 4.7 ppmw – NPL standard fixed-point 
=  -  13.00 mK 

∴ Mean of Temperature difference between Al doped Si 4.7 ppmw - Al 174 doped Cu 16.2 
ppmw 

= (-13.00) - (-11.69) = - 1.31 mK 
∴  Standard deviation (2s) Difference: Temperature difference between Al doped  Si 4.7 

ppmw - Al doped Cu 16.2 ppmw (by quadrature addition) 
± 3.68 mK 
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For the Al 174 with the Si at 4.7 ppmw concentration, depression of the 

freezing temperature was observed to be 13.0 mK relative to the reference Al cell. 

That means the adding Si 4.7 ppmw impurity decreases the temperature of the 

freezing and melting of Al ingot by 1.31 ± 3.68 mK (expected decrease was ~3 mK). 

The measured rate of the Al 174 after doping with silicon 4.7 ppmw in this work is 

Si -0.23 mK/ppmw, which is lower than the value as expected in Hansen’s work 

[1958], which was 0.71 mK/ppmw. This may be because the instability of the PRT on 

cycling, which can see from the standard deviation (2s) of the measurements.  
 

7.1.3.2 High Purity Al 174 doped 9.8 ppmw of Silicon 
 

Table 7.12 Stability of the PRT 250329, which was checked at the peak of the 

reference Al cell (Al 1205) at 1 mA. 
 

 

 The shift of PRT 250329 during the thermal cycling checked against the 

reference Al cell decreases by 0.386 mΩ as seen in Table 7.12. It is equivalent to 

4.83 mK approximately. Therefore, this number would be used to correct the 

resistance values of freezing and melting curves of Al 174 fixed point after doping 

with silicon 9.8 ppmw. The melting curves of “Al 174” high purity aluminium fixed-

point and the shift of these curves after doping the aluminium with increasing 

concentrations of silicon at 4.7 and 9.8 ppmw is presented in Figure 7.11. All freezing 

curves of Al-Cu binary fixed-point and the shift of these curves after doping with 

increasing concentrations of silicon are presented in Figure 7.12.     

 

Checking Time Date Resistance Values 
(RT, Ω) 

Average RT Values 
(Ω) 

25/03/08 84.093745 
Checked when Al 
1205 Compared 

with Al 174  
doped Si 
4.7 ppmw 

01/04/08 84.093693 
84.093719 

15/05/08 84.093497
27/05/08 84.093474

31/05/08 84.093208

20/06/08 84.093266

Checked when Al 
1205 Compared 

with Al 174 
doped  

Si 9.8 ppmw 

09/07/08 84.093219

84.093333 

The shift of PRT 250329 during the calibration =   0.386 m Ω 
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Figure 7.11 Melting curves of “Al-Cu” aluminium fixed point (after further 

doping with increased amounts of Si) plotted as a function of aluminium percentage 

melted. The curves have been normalised to an approximate percentage melted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 7.12 Freezing curves of Al-Cu binary fixed-point and the shift of these 

curves after doping with increasing concentrations of silicon, plotted as a function of 

time.  
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Figure 7.11 shows the melting curves obtained after a rapid rate of freezing. 

The set of melting curves confirm the reproducibility of the temperature 

measurements in this doped fixed-point cell. Figure 7.11 and 7.12 show the shift of 

the melting and freezing curves after doping the tin with increasing concentrations of 

silicon impurities excepting the melting curves after doping 9.8 ppmw of silicon, 

which there were not changed or shifted from the previous doping. The peak of the 

freezing curves after doping also had dropped. There appear to be repeatable bumps in 

the three freeze curves of the more heavily Si doped sample (the furnace setting were 

not altered during the freezes). We do not have an explanation for this, but wonder if 

some segregation was/had occurring/ed. 

 

For this Al-Si system, the sample with silicon at 4.7 ppmw shows a decrease 

for the whole of the melting curve. From the freeze peak as shown in Table 7.13, it is 

about 1.31 ± 3.68 mK lower than the previous aluminium doped with the copper 

impurity. The results of the first silicon doping (4.7 ppmw) did not agree with 

interpolation from the previous data [Hansen, 1958] at the freeze peak, and the 

outcome of Al 174 doped with the silicon at 9.8 ppmw did not give the results as 

expected again at the freeze peak. The temperature at the freeze peak of the Al 174 

after doping with Si 9.8 ppmw shows 14.72 ± 2.31 mK decrease from NPL standard 

Al, which is just 3.03 ± 3.18 mK different from the Al-Cu system (expected decrease 

was ~6 mK). The measured rate of the Al 174 after doping with silicon 9.8 ppmw in 

this work is Si -0.31 mK/ppmw. However, the offsets and shapes of the melting 

curves showed the depression of the temperature for the whole curve. However, the 

amount of copper and silicon concentrations in Al 174 ingot can be detected by GD-

MS analysis, which is presented in the next section. Therefore, it can be summarised 

that the temperature change of the freezing and melting curves of the Al fixed point 

were affected by amounts as follows: Cu (no change) mK/ppmw (obtained at 

Cu 8.3 ppmw), Cu -0.38 mK/ppmw (obtained at Cu 16.2 ppmw) and Si -

0.23 mK/ppmw (obtained at Si 4.7 ppmw), Si – 0.31 mK/ppmw (obtained at Si 

9.8 ppmw). The average measured rates in this work are as follows: Cu -0.38 and Si -

0.27 in units of mK/ppmw. This expectation is compared with Hansen’s book 

[Hansen, 1958], which was interpolated to be depressed by 0.37 mK/ppmw and 

0.71 mK/ppmw for Cu and Si impurity, respectively.  
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Table 7.13 Summary of the average resistance values (RAl) in the comparison 

measurements at the aluminium freezing curve peaks between Al 174 after doping 

with 9.8 ppmw silicon at and reference Al 1205 cells with two PRTs (serial number 

250329 and 261198). All results are corrected for the hydrostatic head in both Al cells. 

+12.5 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) at Al 
fixed-point temperature [Rusby, 2008]. 
 

PRTs 
serial 

number 
Date 

RT 
Al 174 doped 
Si 9.8 ppmw 

(1 mA) 

RT 
reference  

Al 1205 
(1 mA)  

Equivalent 
Temperature 

difference between Al 
174 doped Si 9.8 

ppmw and Al 1205 
cells 

[ TRT Δ=Δ *5.12 ]+ 

[Rusby, 2008] 

250329  15/05/08 - 84.093497 - 

250329 19/05/08 84.092355 - - 14.28 mK 

250329 25/05/08 84.092160 - - 16.72 mK 

250329 27/05/08 - 84.093474 - 

250329 28/05/08 84.092231 - - 15.54 mK 

250329 06/06/08 84.092307 - - 14.59 mK 

250329 20/06/08 84.092175 84.093266 - 13.64 mK 

250329 09/07/08 - 84.093219 - 

250329 10/07/08 84.092151 - - 13.35 mK 

261198 09/07/08 - 84.995621 - 

261198 10/07/08 84.994425 - - 14.95 mK 

Overall 
Mean - - - - 14.72 mK 

∴ Standard deviation (2s)  = ± 2.31 mK 

∴ Mean of Temperature difference  Al 174 doped Si 9.8 ppmw – NPL standard fixed-point 

=  - 14.72 mK   
∴ Mean of Temperature difference between Al doped Si 9.8 ppmw - Al 174 doped Cu 16.2 

ppmw 
= (-14.72) - (-11.69) =  - 3.03 mK 

∴  Standard deviation (2s) Difference -Temperature difference between  Al doped Si 9.8 
ppmw - Al 174 doped Cu 16.2 ppmw 

(by quadrature addition) 
± 3.18 mK 
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7.1.4  Impurity Analysis of High Purity Aluminium (Al 174) Fixed-Point 

after Doping with Cu and Si Contents 
 

Glow Discharge Mass Spectrometry (GD-MS) Characteristics after Doping 

Impurities 
 

The previous GD-MS results of the Al 174 fixed-point cell before impurity 

doping indicate that the Al 174 metal and the impurities are well mixed after the 

aluminium is properly molten for a reasonable time. The impurity levels in three areas 

of the Al 174 ingot show the homogeneity of the impurity concentration. Therefore, 

after doping only one piece of the Al 174 was cut from the ingot to detect the impurity 

concentrations by the GD-MS technique. Also, one piece of ingot before doping, 

which was cut almost a year before and kept in NPL, was measured by GD-MS. 

Measurement of the two pieces at the same time enabled a check on the absolute 

values of the GD-MS analysis, i.e. it is for testing the repeatability of the GD-MS 

technique. However, when the doped sample was analysed the surface pre-cleaning 

process using an acid, (believed 50% hydrofluoric or hydrofluoric/nitric acid mixture) 

damaged a large part of the sample, making the subsequent analysis suspect. Also the 

sample appeared to have a larger than usual number of voids or pits allowing the acid 

to penetrate inside the sample. NRC reported that the GD-MS measurements did not 

stabilize as normal, so making the results rather suspect; some elements seemed 

unexpectedly high e.g. oxygen and tin. 

Therefore, a doped sample needed to be cut out and measured again by GD-MS 

at a different time to the results obtained from the fourth undoped sample. Three sets 

of the GD-MS results, for the background impurities detected from both undoped and 

doped samples is shown in Table 7.14.  
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Table 7.14 GD-MS analysis results of the impurity concentrations of the Al 174 before and after 
doping [NRC report number: Al30337R1 (checked on 14/12/07, before doping), Al30817 (checked on 
22/08/08), before and after doping and Al31121 (checked on 24/03/09), after doping]. These elements 
were detected in term of mass fraction (in parts per billion by weight, ppmw).  
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m
en

t 

ppmw 
Li 

Be 

B 

C 

N 

O 

F 

Na 

Mg 

Al 

Si 

P 

S 

Cl 

K 

Ca 

Sc 

Ti 

V 

Cr 

Mn 

Fe 

Co 

Ni 

Cu 

Zn 

Ga 

Ge 

As 

Se 

<0.003 

<0.001 

<0.007 

6 

0.77 

7.7 

<0.01 

<0.002 

<0.003 

Matrix 

0.2 

<0.002 

<0.003 

0.004 

<0.02 

<0.03 

0.05 

0.087 

0.08 

0.02 

0.05 

0.2 

<0.0008 

0.016 

0.1 

0.1 

<0.006 

<0.01 

<0.0005 

<0.083 

<0.002 

<0.0006 

0.004 

74 

2.6 

15 

<0.025 

0.012 

0.005 

Matrix 

0.38 

0.004 

0.23 

<0.004 

<0.03 

<0.015 

0.047 

0.16 

0.049 

0.022 

0.038 

0.73 

<0.0004 

0.015 

0.16 

0.094 

<0.005 

<0.01 

<0.003 

<0.05 

0.8 

<0.001 

0.04 

55 

4.4 

1000 

<0.01 

0.2 

0.1 

Matrix 

1-2 

0.005 

0.04 

0.06 
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0.5 

0.06 

0.09 

0.05 

0.04 

0.1 
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<0.007 
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0.4 

0.049 

Matrix 

1.8 

<0.002 

0.068 

0.13 

0.046 

0.53 
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0.073 

0.055 

0.029 

0.067 

6.1* 

<0.002 

0.22 

5.5 

0.65* 

0.005 

0.025 

0.003 

0.06 

Br 

Rb 

Sr 

Y 

Zr 

Nb 

Mo 

Pd 

Ag 

Cd 

In 

Sn 

Sb 

Te 

I 

Cs 

Ba 

La 

Ce 

Hf 

Ta 

W 

Pt 

Au 

Hg 

Tl 

Pb 

Bi 

Th 

U 

<0.02 

<0.001 

<0.001 

<0.001 

0.007 

<0.001 

<0.003 

- 

<0.008 
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- 
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<0.0005 
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<0.0005 

<0.0005 

<0.002 

- 

<0.001 

<0.006 

<0.95 

<0.015 
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<0.002 

<0.002 

<0.0005 

<0.0006 

<0.02 

<0.002 

<0.003 

<0.001 

<0.006 

<0.0009 

<0.003 

- 

<0.009 

<0.1 

<0.1 

30 

<0.007 

<0.01 

<0.004 

<0.001 

<0.002 

<0.001 

<0.001 

<0.005 

- 

<0.003 

<0.02 

<1 

<0.04 

<0.009 

0.04 

<0.004 

<0.001 

<0.001 

<0.015 

<0.003 

<0.0006 

<0.0005 

<0.002 

<0.0005 

<0.002 

- 

0.024* 

<0.035 

0.017 

3.1* 

0.009 

<0.007 

<0.003 

<0.0009 

<0.001 

<0.0008 

<0.0007 

<0.002 

- 

<0.002 

<0.01 

<1.4 

<0.03 

<0.007 

0.36* 

<0.003 

<0.001 

<0.001 
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 Table 7.14 lists the impurity elements detected in the Al 174 metal ingot. The 

uncertainty of this GD-MS analysis is considered to be accurate within a factor of two 

of the values obtained, at a confidence level of 95% though there is anecdotal 

evidence that the results are usually more accurate than quoted. However our results 

may not be bearing that out when doping at low concentrations. Four samples were 

cut from the Al 174 before deliberate doping; three samples from three areas were 

tested soon after while the other one was tested a ~year later, i.e. four similar samples 

were tested by GD-MS at different times, i.e. the first three undoped sample were 

checked a year ago, while the other undoped sample was detected later. After doping, 

one sample also removed from the ingot to check the impurity concentrations.   

Unfortunately as just mentioned, the pre-cleaning process damaged the sample 

making the Aug 08 analysis suspect. It appeared that the ingot had not been frozen 

fast enough and/or the sample was cut too high up the ingot. Consequently there were 

grain or volume boundaries going into the sample and the acid therefore etched from 

the inside as well as the outside. Subsequent study of the ingot showed that there was 

finer “grain” nearer the bottom of the cell – where the pressure due to the metal 

weight seemed to have kept the metal together but higher up the aluminium seemed 

more “rough”. The ingot was left molten for over a day and then physically lifted into 

the air to produce ultra fast cooling. New samples were cut out and sent for GD-MS 

analysis.  

 Looking at the results that have been obtained and comparing the signals for 

the “background impurities” of Al 174 before doping i.e. not those deliberately added, 

the larger variations in nominally the same background impurities can be seen 

between the measurements at different times e.g. Na, S, Ti, Fe, Cu, Ag and Au even 

though the samples were cut from the ingot at same time of its life (though most of 

these differences are within the factor of 2 uncertainty). Again, the impurity 

concentrations of the background impurities after doping show a bigger difference 

from the undoped results e.g. Li, B, Na, Mg, Ca, Fe, Ni, Zn, Ag, Cd, In and Sn. S 

appears to have gone down after doping. Considering Copper (Cu) impurity in 

Table 7.14, it shows the different amounts before doping were checked the GD-MS at 

the different time, i.e. 0.1 and 0.16 ppmw (but within the x2 uncertainty range). It also 

happens with Sulphur (S) impurity, we can see the big different amounts when were 

checked in different time in this Al 174 cell, i.e. <0.003 and 0.23 ppmw, respectively 

(beyond a factor 2). The results indicate that the amounts of “background” impurities 
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in the undoped samples are different as the checked time of GD-MS. These results can 

show some evidence of the uncertainty of the GD-MS technique. It is possible that 

some of this variation is due to contamination of the sample by material other than the 

deliberate dopants. As most of the results from the “suspect” analysis are similar to 

the final analysis, it may be that it was actually representative. The suspect and final 

analysis together support some additional contamination, though it is difficult to think 

where e.g. lithium might have come from. For the iron then there are ageing 

components on the old top cap that might be a source of iron. We note an increased 

value for Sn and Pb and therefore wonder if some cross contamination could have 

occurred at the time of sampling – though the results go in opposite directions with 

time, and they are not in proportion. Some changes can be attributed to resolution of 

conflicting peaks on the spectrometer e.g. NRC mention that the Au peak is obscured 

by the TaO peak (Ta being a component of the machine and not measurable) [NRC 

GD-MS services, 2009].  

  Looking at the impurity concentrations in Table 7.14 after doping of the Cu 

and Si metals in the Al 174 ingot, it shows that the increased amount of Cu and Si 

after adding a total of 16.2 ppmw (16200 ppbw) and 9.8 ppmw (9800 ppbw), 

respectively. The actual amount of Cu and Si detected by GD-MS was 5500 ppbw and 

1800 ppbw respectively, which are less than the real amount added. From the phase 

diagram calculation [Hansen, 1958], the fixed-point temperature of aluminium was 

interpolated to be depressed by 0.37 and 0.71 mK/ppmw of Cu and Si impurity, 

respectively. Therefore, the decreasing of the freezing and the melting temperatures of 

Al 174 ingot from the experiment as calculated from the amount of Cu impurity in 

Table 7.14 would be 1.99 mK, which is reasonable agreed with the experimental 

results after doping Cu 16.2 ppmw compared the undoped Al 174. Considering the 

amount of Si impurity in GD-MS results, the temperature would be decreased by 

1.07 mK.  
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7.1.5 Photograph of Al 174 Fixed-Point Cell 
 

After all experiments have been done on the Al 174 ingot it was noticed that 

changes in the ingot’s structure could be seen in the pictures taken at different times of 

the experiments (i.e. before doping, after doping with Cu 8.3 ppmw  and after doping 

with  Si impurities) - as shown in Figure 7.13, Figure 7.14, and Figure 7.15, 

respectively.    

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 7.13 Original pure Al 174 ingot before doping with Cu and Si impurities. 
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(a) (b) 

(c) 

(d) 

 
 

   
 

 

 

 

 

 

 

 

 

      
 

 

 

 

 

 

 

 

 

 

 

   
  

 

 

 

 

 

Figure 7.14 Al 174 ingot after doping with Cu 8.3 ppmw, where the melt and 

freeze had been realised at least three times each: (a) shows the shiny surface formed 

by re-filling of the hole made by cutting the GD-MS sample off the bottom of the 

ingot (b) shows crevices near the top of the ingot, (c) shows a fissure around the 

circumference near the top of the ingot and (d) shows the overview of the Al 174 ingot 

(including the shiny area of two infills where the sample was cut out and the rougher 

top section.)  
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Figure 7.15 Al 174 ingot after doping with Cu and Si impurities, which had 

been re-melted. The ingot was left molten for over a day at high temperature (666 oC 

in the Hart Furnace) and then physically lifted into the air to produce ultra fast 

cooling. (a) shows the Al did not fully re-fill the sample hole on a first remelting and 

(b) shows the overview of the Al ingot showing the grey surface in contrast with the 

fresh Al (filling the other sample hole) after 2nd remelting and ultra fast freeze. 

 The original Al ingot as shown in Figure 7.13 shows the original surface 

structure, obtained before realising any melting and freezing curves, was not mixed 

well on the surface and possible near the very top (see the hole around the top of the 

ingot). We have no information as to what the prior history of the ingot was. Figure 

7.14 and 7.15 show the mixing and molten processes may not be effective at the top 

and/or surface of the Al 174 ingot because it still had the crevices and the Al did not 

fully re-fill the sample hole after cutting the samples out. However, it should be noted 

that the original three GD-MS samples suggested that the impurity distribution below 

the surface was similar from three sites along the ingot length. It may be that the 

(a) 

(b) 
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effects at the top of the ingot are because the furnace temperature was not set to high 

enough to reduce the viscosity of the molten aluminium within the ingot. Also, the 

surface colour of the ingot after doping with Cu and Si impurities has a grey outside, 

which is greyer than the undoped Al ingot. It is wondered if this could be either the Si 

dopant that might be rejected from the Al or it is a layer of Al2O3. If rejected Si then 

that might explain why the temperature was not decreased as expected. However this 

hypothesis needs to be confirmed and proved by scraping the surface off to check the 

chemical analysis as part of any future work. It is also possible that these effects are 

related to the surface. Perhaps the surface contamination stays still while the 

aluminium flows behind it. Where the surface contamination is removed due to a 

sample cut off, the Al fills the gap but without contamination on the surface. If a crust 

formed during deformed cooling, making the crevice seen, it may be that possible 

some surface effect doesn’t allow the aluminium “out” to subsequently fill the crevice. 

It appears that the gaps fill faster lower down the cell, presumably due to the pressure 

head of the aluminium itself. It was possible to scrape off the surface greyness in the 

bottom half of the cell to reveal a more aluminium like colour below.     
 

7.1.6 Mass of Aluminium (Al 174) Fixed-Point Ingot 
 

Table 7.15 Mass of Al 174 fixed-point ingot as calculated based on a mass 

measurement (of the aluminium and central graphite) before doping the impurities.  
 

Component(s) of Al 174 Cell Mass (g) 

Calculated Mass of Al 174 metal 

(Originally) 
236.67 

Measured Mass {Al 174 metal and graphite re-entrance well} 
(Originally) less the calculated mass of graphite 

216.80 

Measured Mass of Al 174 metal 

(Samples cut off) less the calculated mass of graphite 
211.84 

 

The uncertainty on this balance scale (a large scale) can be corrected by adding 

1.09 mg to the value of the weight. The uncertainty components are as follows; 

0.05 mg for the scale error (rectangular distribution) 

0.06 mg for repeatability (normal distribution) 
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 0.1 mg for balance resolution (rectangular distribution) 

 From the above information, obtained from NPL Mass section, the uncertainty 

of the weighing itself is very small when compared with the total mass of Al 174 ingot 

(~200 g). Thus, the uncertainty is negligible compared to that of the included graphite 

re-entrant well, where the two methods for accounting for the graphite in Table 7.15 

differ by 20 g, i.e. ~10%. The measured mass of Al 174 metal after cutting some 

samples off for the undoped GD-MS testing was used in calculation of the doping 

concentrations (in ppmw).  
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7.2 High Purity Aluminium (Al 298) Fixed Point 
 

The experimental process of high purity Al 298 fixed-point cell is summarised 

in terms of a “Family tree” as presented in Figure 7.16. But note that the 

measurements were done consecutively (not in parallel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# FP/MP = Freezing and Melting curves conducted in this stage. 

+ GD-MS = Glow discharge mass spectrometry analysis performed in this stage. 

* ppmw = Parts per million by weight (nominal doping amounts) 

 

Figure 7.16 “Family Tree” showing the section number, figure numbers of the 

freezing/ melting curves and the table number of the results from the chemical 

analysis technique of Al 298 fixed point obtained for a particular combination of 

conditions. The arrows show the order of experiments.  
 

7.2 Al 298 Fixed Point  

7.2.1 
“undoped” Al 298 

MP/FP# Fig. 7.17, 7.18 (PRT 261198)
GD-MS+ Table 7.18 
MTDATA Fig 7.19 

7.2.2 
Ti

(a) 
0.9 ppmw* 

(b) 
1.8 ppmw* 

MP/FP# Fig. 7.20, 7.21 
 

MP/FP# Fig. 7.22, 7.23  
GD-MS+ Table 7.23 
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7.2.1 Temperature Realisation of “Undoped” Aluminium (Al 298)  
 

   A long-stem platinum resistance thermometer (PRT serial number 261198) was 

selected for measurements in this aluminium (Al 298) fixed-point cell. To check the 

repeatability of the fixed-point curve, melting, and freezing curves of this aluminium 

cell have been recorded three times.  

Examples of Al 298 melting curves, before doping, are shown in Figure 7.17.  

A set of three freezing curves of the “Al 298” aluminium fixed-point cell, before the 

doping process, is shown in Figure 7.18. All freezing measurements were determined 

at the same furnace setting. The resistance values on the y-axis for all figures do not 

include the hydrostatic head value of this Al 298 cell.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.17 Melting curves of high purity undoped “Al 298” aluminium fixed-

point plotted as a function of aluminium percentage melted. The curves have been 

normalised to an approximate percentage melted. The furnace was set at the same 

temperature of 660.5 oC for all measurements. PRT 261198 was used to measure in 

this cell. The blue line is the green line shifted by 1.1 x 12.5 “mK”, to match with the 

pink and orange lines, which corrects a shift in the PRT that occurred during the time 

gap in the measurements by the PRT (Aug to Oct 07). 
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Four melting curves indicate the instability of PRT 261198. All melting curves 

obtained after a rapid freeze are shown in Figure 7.17. The second and the third lines 

confirm the reproducibility of the temperature measurements in this fixed-point cell. 

This is because they were measured at times close to each other. The green line of the 

melting curve was measured just before adding the titanium impurity into the Al 298 

ingot for checking the stability of this PRT. It shows that the PRT had moved down 

from the previous point.  From the melting curves, the shift of the curve is around 

1.1 mΩ, which is equivalent 13.8 mK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18 Three freezing curves of high purity undoped “Al 298” aluminium 

fixed-point plotted as a function of time. The furnace set point for all three 

measurements is set at the same temperature (nominally half a degree below the 

freezing point).   
 

Figure 7.18 shows the shift of the freezing curves on the undoped Al 298 fixed 

point due to the instability of the PRT 261198. They were measured on 21st, 22nd and 

24th of August 2007, respectively. We can see the shifts of these freeze peaks due to 

the instability of the PRT. 
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The Hart furnace was always set at 659.5 oC, which gave the freezing curves a 

period of about 12 hours. When the Hart furnace was changed to 659.2 oC, the length 

of the freezing curve reduced to 8 hours. This shows more reproducibility than the 

Carbolite furnace. (The former uses a PRT rather than a thermocouple for its control 

sensor).  
 

Table 7.16 Resistance values measured at the freezing point of high purity 

“undoped” Al 298 aluminium fixed-point cell. These values were calculated from the 

resistance ratio of PRT 261198 and the standard resistor values. Also, the resistance 

values include the correction of the hydrostatic head of this cell. The temperature 

setting of the furnace was maintained at 659.5 oC. The resistance values are measured 

at the peak of the freeze. 

  i represent the order of the resistance measurements of the PRTs at the freezing point of 

Al 298. 

The first three resistance values were taken from the peak of each freezing 

curve from Figure 7.18. These values in Table 7.16 have been corrected with the 

hydrostatic head of this aluminium cell. The standard deviation (2s) for all 

measurements was 1.38 mΩ. The results show that the freeze peak of the curves 

decreased a total around 19 mK. Such a big change is due to the shift of this PRT over 

the period of time. The resistance values at the freezing point of Al 298, listed as the 

6th and 7th result in Table 7.16, were obtained from the freeze peak of the comparisons 

with Al 174 cell (as presented in Table 7.18 and 7. 3, respectively) and these have 

Resistance values at 
freezing point of 

Al(298) 
Date 

Platinum Resistance Thermometer 
(PRT) 

(Serial Number) 

RT (i) /Ω - 261198 
(1 mA) 

RT (1)  21/08/07 84.997663  

RT (2) 22/08/07 84.997455  

RT (3) 25/08/07 84.997288 

RT (4) 29/08/07 84.997215 

RT (5) 31/08/07 84.997200 

RT (6) 19/09/07 84.995954 

RT (7) 02/10/07 84.996017 

Standard deviation (2s) - ± 1.38 mΩ 
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sharply dropped from the previous values. Therefore, each initial freezing curve 

shown in Figure 7.18 would be corrected with the shift value, before it  would be used 

to compare with Ti doped Al in the next section.    
  

Table 7.17 Measurement of the Stability of the PRT 261198 measured from 

the resistance values at the triple point of water. These values were checked before 

using the PRT in the comparison measurements at the freezing curves of aluminium 

fixed point between high purity “undoped” Al 298 and reference Al 1205 cells.  

 

 

 

 

 

 

 

 

 
 

Table 7.18 Summary of the average resistance values (RAl) in the comparison 

measurements at the peak freezing curves of aluminium fixed point between Al 298 

and reference Al 1205 cells with two PRTs (serial number 250329 and 261198).  

+12.5 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) at Al fixed-
point temperature [Rusby, 2008]. 
 

Resistance values at 
triple point of water/Ω    Date Platinum Resistance 

Thermometer (PRT) 

Cycle number and 
differences  

- 261198 
(0 mA) 

RTPW (1) 27/08/07 25.183233 

RTPW (2) 29/08/07 25.183173 

RTPW (3) 31/08/07 25.183124 

Standard deviation (2s) -  ± 0.1 mΩ 

PRTs 
serial 

number 
Date 

RAl 298 
(Ω) 

(1 mA) 

RAl 1205 
(Ω) 

(1 mA)  

Temperature 
difference 

between Al 298 
and Al  1205 

cells 
[ RT Δ=Δ *5.12 ]+ 

[Rusby,2008] 

RTPW 
 (Ω) 

(1 mA) 

250329 I 18/09/07 84.093220 84.093960 -9.25 mK 24.915368

250329 II 20/09/07 84.092953 84.093870 - 11.46 mK 24.915332

261198 I 19/09/07 84.995954 84.997009 - 13.18 mK 25.183060

Overall 
Mean - - - - 11.30 mK - 

∴ Standard deviation (2s)  = ± 3.94 mK 
∴ Temperature difference between  Al 298  and reference Al 1205 cells 

- 11.30 mK 
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 Table 7.18 indicates the average resistance values at the aluminium freezing 

curve peaks for comparison between Al 298 and reference Al 1205 cells. It shows the 

resistance values of the freezing point of Al and the triple point of water after 

calibration. The temperature difference illustrates that the temperature at Al 298 is 

less than reference Al 1205 by 11.30 ± 3.94 mK. All results in Table 7.18 are 

corrected for the hydrostatic head pressure in both Al cells. For high purity Al 298 

and reference Al 1205 fixed-point cells, the hydrostatic head correction values are 

calculated at about -0.195 mK and -0.184 mK, respectively. 

The shape of the Al 298 curve (prior to doping) is not flat and decreases 

noticeably during the freeze, when compared with the reference Al cell. Moreover, the 

freeze peak of the Al 298, compared with the resistance values of the reference Al cell 

plateau, are much lower; therefore this Al ingot contained some initial impurities 

affecting its freezing and melting temperatures.  

For ideal pure aluminium fixed point, a purer metal usually shows a flatter 

plateau on the freezing and melting curves. The presence of initial impurities can be 

shown from the GD-MS analysis to find the quantity and distribution (or uniformity) 

of the impurity elements within the “undoped” Al 298 cell, before deliberate doping. 
 

7.2.1.1 Impurity Analysis of High Purity Aluminium (Al 298) Fixed Point 

before Doping  
 

Glow Discharge Mass Spectrometry (GD-MS) Characteristics 
 

The results of the impurity determination for the “high purity” aluminium 

(Al 298) fixed point by GD-MS analysis is reported in Table 7.19. This shows the 

impurity content measured in three areas of the aluminium ingot. From the results we 

see that the impurity levels are the same throughout the cell (within the uncertainty 

quoted). This shows that the aluminium is sufficiently well mixed and that only one 

sample will need to be cut out for analysis after doping. (Cutting out of samples is a 

risky procedure).   
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Table 7.19 An example of the GD-MS analysis results of the initial “high purity” 

(6N) aluminium fixed point (Al 298) (NRC report number: Al30337R1), detected on 

14/12/07. The elements were detected in term of mass fraction (in parts per million by 

weight, ppmw). The uncertainty is quoted as a “factor of 2”, though this is probably a 

conservative overestimate. 
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7.2.1.2 MTDATA Analysis  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.19 Melting curves of pure Al 298 fixed point obtained from 

MTDATA calculation analysis. The red line shows the curve calculated using the GD-

MS result (impurity effect on the curve), the blue and the green lines show the 

calculated bounds (based on the quoted uncertainty of the GD-MS analysis i.e. factor 

of 2 which translates to –50% and +100% of reported value)   

 

The melting of the initial undoped Al 298 curve compared to MTDATA 

experiments show much more rounding, which are not agreement very well with 

MTDATA analysis. Further the decrease in liquidus temperature seems very small 

compared to that measured when comparing with the reference cell. See comment 

above at section 7.1.1.2. 
 

MTDATA of reference Al 1205 cell 
 

NPL reports that the aluminium “shot” used in the manufacture of Al 1205 

came from a batch used for another NPL cell and another made at Isotech. The shot 

had been sent by Isotech to NRC for GD-MS analysis, a copy of which was kindly 

supplied to NPL. This analysis was used to perform an MTDATA calculation. 

However initial calculations suggested a much larger temperature depression than was 

experimentally found. It has been postulated that the (relatively) large amount of 
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nitrogen found in the shot sample did not actually remain in the actual ingot – or that 

it was not chemically active – and consequently the MTDATA calculation gives 

abnormally high depressions for the pure cell. The MTDATA staff confirmed that 

there had been no accidental switching of data, and that a visual inspection of the GD-

MS results would suggest that the shot was worse than the Al 174 and Al 298 

samples, though in fact the ingot made from that shot related well to other standard 

ingots.    
 

7.2.2 Influence of Titanium on High Purity Aluminium (298) Fixed Point 
 

7.2.2.1 Al 298 doped with 0.9 ppmw of Titanium 
 

Before the melting and the freezing curves of Al 298 after doping titanium 

were displayed, the instability of the PRT 261198 was checked by measurement in the 

reference Al 1205 cell as shown in Table 7.20.   
 

Table 7.20 Stability of the PRT 261198, which was checked in the peak of the 

reference Al cell (Al 1205) at 1 mA. 
 

Checking Time Date Resistance Values 

(RT, Ω) 

Average RT Values 

(Ω) 

18/09/07 84.997009 Checked when Al 
1205 Compared with 

undoped  
Al 298 

18/01/08 84.996800 
84.996905 

12/02/08 84.996536 Checked when Al 
1205 Compared with 
Al 298 doped Ti 0.9 

ppmw 27/02/08 84.996396 
84.996466 

The shift of PRT 261198 during the calibration =  - 0.44 m Ω 

 

In Table 7.20, the shift of PRT 261198 during the thermal cycling checked 

against the reference Al cell decreased by 0.44 mΩ. It is equivalent to 5.5 mK 

approximately. Therefore, the resistance values would be added with this numerical 

shift for the freezing and melting curves of Al 298 fixed point after doping with 

titanium 0.9 ppmw.  

A set of melting curves of Al 298 after doping with titanium at 0.9 ppmw is 

presented in Figure 7.20. All freezing curves are presented in Figure 7.21.   
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Figure 7.20 PRT resistance value at the melting temperature for “Al 298” after 

doping with 0.9 ppmw of titanium as a function of the approximate percentage melted. 

All curves were melted at different temperature settings. (All temperatures are 

nominal settings of the controller). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.21 Three freezing curves of high purity undoped “Al 298” aluminium 

fixed-point the shift of these curves after doping with increasing concentrations of 

titanium, plotted as a function of time. The furnace setting point for all three 

measurements is set at the same temperature (nominally half a degree below the 

freezing point).  
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In Figure 7.20, the resistance values of melting temperature were increased 

after adding with Ti 0.9 ppmw. Figure 7.21 shows the Ti effect on aluminium fixed-

point temperature. The temperatures at the freeze peak of Al 298 after adding 

0.9 ppmw of Ti were elevated. The increased amount would be confirmed by the 

comparison with the reference Al cell, which will be discussed in Table 7.21. (The 

values of the undoped freezing curves in Figure 7.2 have been reduced (shifted down) 

to take account of the PRT shift.) The correction was obtained by measuring the shift 

shown by the thermometer in the undoped melting curves (see Figure 7.17) and the 

shift shown from the measurements in the reference cell. (The initial undoped freezing 

curves are presented in Figure 7.18.)  
 

For this Al-Ti system, the sample with titanium at 0.9 ppmw presents an 

increase of the freeze peak. It is about 4.63 ± 5.45 mK higher than the undoped 

aluminium Al 298. The temperature change of the freezing and melting curves of the 

aluminium fixed-point obtained from this experiment was affected by the amount of 

titanium (+5.14 mK/ppmw). The results of this work confirmed the influence of very 

low-level impurities on the freezing/melting curves of the aluminium (Al 298) fixed 

point.  
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Table 7.21 Summary of the average resistance values (RAl) in the comparison 

measurements at the peak freezing curves of aluminium fixed point between Al 298 

after doping silicon at 0.9 ppmw and reference (Al 1205) cells with two PRTs (serial 

number 250329 and 261198).  

*shows an exceptional number result, which cannot be used to compare with other numbers. 
The colour presents the matching values used to calculate the temperature difference between 
Al 298 doped Ti 0.9 ppmw and Al 1205 cells. +12.5 (mK/mΩ) is the appropriate conversion 
factor for the sensitivity of R(T90) at Al fixed-point temperature [Rusby, 2008]. 

PRTs 
serial number Date 

RT 
Al 298 doped 
Ti 0.9 ppmw 

(1 mA) 

RT 
NPL standard 

Al 1205 
(1 mA)  

Equivalent 
Temperature 

difference between Al 
298 doped Ti 0.9 

ppmw and Al 1205 
cells 

[ TRT Δ=Δ *5.12 ]+ 
[Rusby, 2008] 

261198 18/01/08* - (84.996830) - 

261198 07/02/08 84.996190 - - 4.33 mK 

261198 11/02/08 84.996135 - - 5.01 mK 

261198 12/02/08 - 84.996536 - 

261198 25/02/08 84.995818 - - 

261198 27/02/08 - 84.996391 - 

Average - - 84.996464 - 8.07 mK 

261198 28/02/08 84.995743 - - 

261198 06/03/08 - 84.996285 - 

Average - - 84.996338 - 7.44 mK 

250329 18/01/08 - 84.093791 - 

250329 05/02/08 84.093111 - -8.50 mK 

Overall Mean -   - 6.67 mK 

∴ Standard deviation (2s)  = ±  3.76 mK 
∴ Mean of Temperature difference Al 298 doped Ti 0.9 ppmw – NPL standard fixed-point 

=  -  6.67 mK  
∴ Mean of Temperature difference between Al 298 doped Ti 0.9 ppmw - undoped Al 298  

= (-6.67) - (-11.30) = + 4.63 mK 
∴  Standard deviation (2s) Difference: Temperature difference  between Al 298 doped Ti 

0.9 ppmw - undoped Al 298 (by quadrature addition) 
± 5.45 mK 
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7.2.2.2 Al 298 doped with 1.8 ppmw of Titanium 
 

Considering the instability of the PRT 261198, this PRT was calibrated to 

check its resistance values in the reference Al cell as shown in Table 7.22.    
 

Table 7.22 Stability of the PRT 261198, which was checked in the peak of the 

reference Al cell (Al 1205) at 1 mA. 
 

Checking Time Date Resistance Values 

(RT, Ω) 

Average RT Values 

(Ω) 

12/02/08 84.996536 

27/02/08 84.996396 
Checked when Al 
1205 Compared 

with Al 298 
doped Ti 0.9 ppmw 06/03/08 84.996283 

84.996405 

07/03/08 84.996290 

20/03/08 84.996000 

25/03/08 84.996048 

Checked when Al 
1205 Compared 

with Al 298 
doped Ti 1.8 ppmw 

01/04/08 84.995980 

84.9960795 

The shift of PRT 261198 during the calibration =  - 0.33 m Ω 

 

 In Table 7.22, the shift of PRT 261198 during the thermal cycling checked 

against the reference Al cell decreased by 0.33 mΩ. It is equivalent to 4.13 mK 

approximately. A set of melting curves of Al 298 after doping with titanium at 

1.8 ppmw is presented in Figure 7.22. All freezing curves are presented in Figure 

7.23.   
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Figure 7.22 PRT resistance value at the melting temperature for “Al 298” after 

doping with increasing titanium impurity as a function of the approximate aluminium 

percentage melted. All curves were melted at different temperature settings. (All 

temperatures are nominal settings of the controller).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.23 Three freezing curves of high purity undoped “Al 298” aluminium 

fixed-point showing the shift of these curves after doping with increasing 

concentrations of titanium, plotted as a function of time. The furnace set point for all 

three measurements is set at the same temperature (nominally half a degree below the 

freezing point).  
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The melting and freezing curves as shown in Figure 7.22 and 7.23 indicate that 

the temperatures were increased by adding the Ti 0.9 ppmw while the unchanged 

temperatures occurred after doping 1.8 ppmw of Ti are unexpected. However, the 

instability of the PRT on cycling appears on the curves. The offsets of the melting 

curves need to be corrected following “re-calibration” of the PRTs by comparison of 

the peak of the freezing curves against the reference Al cell. Therefore, it is 

summarised that the titanium impurity increases the Al 298 temperature by 

+5.14 mK/ppmw (based on the 1st measurement). 

 

From the freeze peak comparison as shown in Table 7.22, it found that the 

temperature difference between Al 298 doped Ti 1.8 ppmw and “undoped” Al 298 

measured at the freeze peak is 4.68 ± 4.30 mK. The additional concentration of Ti 

added at 1.8 ppmw had no effect on the melting and the freezing Al 298 temperatures 

when compared with the freeze peak value at Ti 0.9 ppmw, which is 4.63 ± 5.45 mK 

higher than the undoped as shown in Table 7.21.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Patchariya Petchpong                                                 Results and Discussions of Aluminium Fixed-Point  
 

 7-53

Table 7.23 Summary of the average resistance values (RAl) in the comparison 

measurements at the peak freezing curves of aluminium fixed point between Al 298 

after doping with titanium at 1.8 ppmw and National standard (Al 1205) cells with 

two PRTs (serial number 250329 and 261198). All results are corrected for the 

hydrostatic head pressure from both Al cells. 

+12.5 (mK/mΩ) is the appropriate conversion factor for the sensitivity of R(T90) at Al 
fixed-point temperature [Rusby, 2008]. 
 

 

PRTs 
serial number Date 

RT 
Al 298 doped 
Ti 1.8 ppmw 

(1 mA) 

RT 
NPL standard 

Al 1205 
(1 mA)  

Equivalent 
Temperature 

difference between Al 
298 doped Ti 1.8 

ppmw and Al 1205 
cells 

[ TRT Δ=Δ *5.12 ]+ 

[Rusby, 2008] 

261198 06/03/08 - 84.996285 - 

261198 11/03/08 84.995786 - - 6.24 mK 

261198 19/03/08 84.995479 - - 6.51 mK 

261198 20/03/08 - 84.996000 - 

261198 25/03/08 84.995425 84.996048 - 7.79 mK 

261198 31/03/08 84.995541 - - 5.49 mK 

261198 01/04/08 - 84.995980 - 

250329 04/03/08 84.093176 - -7.05 mK 

250329 05/03/08 - 84.093740 - 

Overall Mean - - - - 6.62 mK 

∴ Standard deviation (2s)  = ± 1.73 mK 

∴ Mean of Temperature difference  Al 298 doped Ti 1.8 ppmw – NPL standard fixed-point 

=  -  6.62 mK  

∴ Mean of Temperature difference between  Al 298 doped Ti 1.8 ppmw -  “undoped” Al 298 

= (-6.62) - (-11.30) = + 4.68 mK 

∴  Standard deviation (2s) Difference -Temperature difference  between Al 298 doped Ti 

1.8 ppmw - undoped Al 298 (by quadrature addition) 
± 4.30 mK 
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7.2.3 Impurity Analysis of High Purity Aluminium (298) after Doping with 

Titanium 
 

Glow Discharge Mass Spectrometry (GD-MS) Characteristics after Doping 

with Titanium 
 

Table 7.24 lists the impurity elements detected in the Al 298 metal ingot. The 

uncertainty of this GD-MS analysis is considered to be accurate within a factor of two 

of the values obtained, at a confidence level of 95% though there is anecdotal 

evidence that the results are more accurate than quoted.  

Considering the GD-MS measurement in the Al 298 ingot, which is the same 

method as the Al 174 ingot, four samples were also cut from the Al 298 before 

deliberate doping; three samples from three areas were tested soon after while the 

other one was tested a ~year later at the same time as the doped sample. Four similar 

samples were tested by GD-MS at different times, i.e. the first three undoped sample 

were checked a year ago, while the other undoped sample was detected as the same 

time as the doping sample.  

C, N and O show large amounts when compared with other background 

impurities even though GDMS, which is not expected to be so accurate with these 

elements. Also, the date of measurement of the GD-MS technique indicates that it 

affects the detected amounts of the impurities in this metal ingot, e.g. Na, Zr, and Ag. 

These results can show some evidence of the uncertainty of the GD-MS technique. 

Considering Titanium (Ti) impurity in Table 7.24, the amounts of Ti 

concentration of Al 298 ingot before doping when were checked at different times 

shows the slightly changed amount of Ti from 0.2 to 0.26 ppmw. After Al 298 adding 

with Ti 1.8 ppmw, the amount of Ti shows 1.6 ppmw. That means the increased total 

amount of Ti impurity is about 1.4 ppmw from the “pure” Al 298.  
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Table 7.24 GD-MS analysis results of the impurity concentrations of the Al 298 
before and after doping [NRC report number: Al30337R1 (checked on 14/12/07) & 
Al30817 (checked on 22/08/08)]. These elements were detected in term of mass 
fraction (in parts per million by weight, ppmw). The uncertainty is quoted as a “factor 
of 2”, though this is probably a conservative overestimate. 
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Al 

Si 

P 

S 

Cl 

K 

Ca 

Sc 

Ti 

V 

Cr 

Mn 

Fe 

Co 

Ni 

Cu 

Zn 

Ga 

Ge 

As 

Se 
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30 
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From the phase diagram calculation [Hansen, 1958], the fixed-point 

temperature of aluminium was interpolated to be elevated by 3.31 mK/ppmw of 

titanium impurity. Therefore, at Ti 1.4 ppmw in Al 298 ingot would be increased the 

freezing and the melting temperatures to 4.63 mK. This is the same amount obtained 

from the experiment of comparison. There appears to be less Ti in the sample than 

what we put in, based or both the temperature shift and the GD-MS. Perhaps some of 

the Ti has not been absorbed into the sample, and perhaps the GD-MS correctly 

measures what is really in the sample – or are the results of the total shift and the GD-

MS value an agreement by chance?. 
 
7.2.4 Photograph of Al 298 Fixed-Point Cell 
 
 The picture of Al 298 ingot before doping has already shown across in chapter 

5 in Figure 5.20. The surface colour looks shiny, it is similar to that of Al 174 see 

Figure 7.13 (though Al 174 may look “rougher”). Unfortunately, we do not have the 

picture of Al 298 ingot after doping with titanium impurity as it is still being used in 

the laboratory at the time of writing.   
 

7.2.5 Additional Data on Titanium in Aluminium 
 

Following completion of the main body of work, the aluminium cell doped 

with titanium was used in a separate study on the degree of electrical noise picked up 

by an ASL resistance measurement bridge measuring a PRT in a real ingot/furnace 

environment where the electrical power was derived from different sources e.g. mains 

or different “ups” (uninterruptible power supplies – i.e. battery powered). 

During these measurements (which were for noise detection only) it was 

noticed that an interesting shape could be seen on some of the freeze traces. As these 

measurements were for noise detection the aluminium was being slowly melted and 

slowly re-frozen without the usual intervening fast freeze and melt and often without a 

prolonged period at several degrees above the melting point (“over-melt”). It is 

therefore possible that some segregation was occurring that concentrated the effect of 

titanium on the cell trace. We are indebted to Dr Radka Veltcheva of the NPL 

Temperature Section for making her interesting results available to us. The comments 

on these remain our responsibility. 
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From the results of Veltcheva’s work it would seem that the Ti in Al freezes 

show evidence of a “concave up” shape at the start of the freezing plateau following 

recallescence. This supports (at least the first part) of the theoretical curve calculated 

by MTDATA for Ti impurity in Aluminium [Head et al., 2008] but not seen in 

previous experiments made using adiabatic melting [Ancsin, 2003].  

As an example of this recent measurement: Figure 7.24 shows the initial part 

of a 24 hour plateau trace that has evidence of a “concave up” shape, similarly to that 

calculated by MTDATA; see Figure 3.19. (Plateau traces on other occasions showed 

similar effects). 

Figure 7.25 shows a longer trace with a concave up section but this was 

followed by a bump, which has not been predicted. It may be a sign of further 

impurity segregation. (Again there are measurements on other days that show a 

similar effect).The small oscillation at the end is probably due to the furnace 

oscillation. As the temperature drops further to that of the furnace the usual 30 mK 

oscillation in the control of this type of furnace would become visible, but this would 

be at a much lower temperature in order to provide the necessary offset to produce the 

freeze itself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 7.24  Example Freezing curve showing the initial concavity in the 

plateau, which lasted over  24 h. 
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 Figure 7.25 Example of a concavity at the start of a plateau followed by a “bump” 

and then a more normal freezing curve (See text re. little oscillations at end of trace).  

 

Whether these results really do represent experimental evidence of what 

MTDATA calculated is of course debatable, but they do offer a tantalising piece of 

evidence. However it should be noted that abnormal conditions were necessary to 

show this. A closer look at the original curves shown in Chapter 7 of this thesis, and 

also those of the reference cell can show some repeatable concavity when the plateaus 

are extended to tens of hours, closer to the thermodynamic limit. (Ti is not the only 

positive impurity that can be detected in the reference cell – but these impurities are, 

of course, in low concentration). 

(As an older furnace was used for these noise measurements (rather than the 

Hart furnace) therefore it is possible that weaker temperature control might cause 

some unwanted effects on the trace. However once the freeze was finished, prolonged 

temperature oscillations of amplitude 30 mK were seen – which is normal for this 

furnace. Further some of the more unusual plateau shapes have repeated on different 

days where the plateaux have lasted up to 60 h – the latter suggesting that the furnace 

is stable within its control oscillation, and therefore the effects are most likely to be 

real and due to the distribution of material within the ingot). 
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It is interesting to note that prolonged melts and freezes (without the 

intervening “over-melt” and fast freeze) have had interesting effects on both the 

positive impurities i.e. Sb in Sn and Ti in Al. However the manifestation has been 

quite different. For Sb in Sn the effects were seen in melts following long freezes; 

however for Ti in Al the effects seen (as long as they are real) are in FREEZES after 

multiple melt/freezes. (Nothing “unusual” was seen in Sn-Sb freezes or Al-Ti melts 

though the latter were very broad).  
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7.2.6 Mass of Aluminium (Al 298) Fixed-Point Ingot 
 

The weight of the ingot was also calculated from the physical dimensions, 

which were measured from the real aluminium cell. The mass of Al 298 was estimated 

by two methods. Based on the dimensions of the Al 298 ingot and the graphite re-

entrance well, the volume of the tin and the graphite was calculated. (Using standard 

densities this was converted to mass). As well as directly calculating the mass of 

aluminium, the calculated mass of graphite was subtracted from actually measured 

mass of graphite and aluminium together. (It is not possible to remove the graphite re-

entrance-well as the tin clamps onto it during the freezing process.) This procedure 

was checked before the high purity Al 298 ingot was constructed in the new system 

and also was measured at the end of the experimental measurements.  
 

Table 7.25 Mass of Al 298 fixed-point ingot as calculated based on a mass 

measurement (of the aluminium and central graphite) before doping the impurities.  

 

Component(s) of Al 298 Cell Mass (g) 

Calculated Mass of Al 298 metal 

(Originally) 
232.00 

Measured Mass {Al 298 metal and graphite re-entrance well} 
(Originally) less the calculated mass of graphite 

231.70 

Measured Mass of Al 298 metal 

(Samples cut off) less the calculated mass of graphite 
229.39 

 

 The measured mass of metal after cutting off the  samples for the undoped 

GD-MS testing was used in calculation of the doping concentrations (in ppmw).  
 

 

 

 

 



Patchariya Petchpong                                                                                                               Conclusions 
 

 8-1

Chapter 8 

Conclusions and Future Work 
 

8.1 The Quantitative Effect of Low Level Impurities on Tin and 

Aluminium Temperatures 
 

A summary of the influence of low level impurities on tin and aluminium 

fixed-point temperatures is shown in Table 8.1.  
 

Table 8.1 The influence of low level impurities on tin and aluminium fixed points. 

The calculated deflections of impurity effect are based on Hansen’s book [1958]. 

 

 The results as presented in Table 8.1 show the calculated GD-MS deflection is 

in better agreement with the measured deflection for Sn-Sb; Al-Cu and Al-Ti. Also, 

the measured results suggest that the impurity one puts in does not always get into the 

active metal as seen the significantly different amount between the total amount put in 

and the GD-MS measurement for Sn-Sb; Al-Cu; and Al-Si. From the GD-MS results, 

it confirms that Co cannot be detected from this technique. For the Sn with negative 

addition (Co and Pb), there is better agreement between the calculated deflection and 

experimental deflection than the calculated GD-MS deflection. From the experimental 

results, they confirm that the standard non-adiabatic temperature measurements as 

used in the most laboratories can be used to determine temperature offsets and the 

shapes of the curves. 

Fixed 
point 
doped 
with 

impurities 

Total 
amount 
put in 

(ppmw) 

Calculated 
deflection 

(mK) 

GD-MS 
measurement 

(ppmw) 

Calculated 
GD-MS  

deflection  
(mK) 

Experimental  
deflection  

(mK) 

Calculated 
impurity 

from 
experimental 

deflection  
(ppmw) 

Sn-Co 7.4 -4.44 - - -5.68 9.46 

Sn-Pb 31.4 -4.18 23 -3.06 -6.51 48.95 

Sn-Sb 23.2 +2.97 3.16 +0.45 +0.78 6.10 

Al-Cu 16.2 -5.99 5.24 -1.99 -1.70 4.60 

Al-Si 9.8 -6.96 1.51 -1.07 -3.03 4.27 

Al-Ti 1.8 +5.96 1.37 +4.53 +4.68 1.41 
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The repeatability of the freeze peak of tin and aluminium freezing curves is 

presented in Figure 8.1 and 8.2, respectively (the error bars are considered at a 

confidence level of 95%). The results of this work are compared with the results from 

Hansen [1958].    
 

8.1.1 Tin Fixed-Point Temperature 
 

Excepting Sb, the equilibrium curves of the tin fixed-point decreased roughly 

in line with expectations derived from interpolation of previous experiments as 

increasing amounts of impurities were introduced; the average measured rates are as 

follows: Co -0.73 ± 0.09; Pb -0.21 ± 0.01; and Sb +0.06 ± 0.03 in units of mK/ppmw.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Temperature changes of freezing curves after doping tin with 

increasing concentrations of cobalt, lead, and antimony impurities.  
 

8.1.2 Aluminium Fixed-Point Temperature 
 

The temperature change of the freezing and melting curves of the aluminium 

fixed-point was affected by the amount of copper (-0.38 ± 0.10 mK/ppmw), silicon                

(-0.27 ± 0.16 mK/ppmw), and titanium (+5.14 ± 2.97 mK/ppmw) doping.  
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Figure 8.2 Temperature changes of freezing curves after doping aluminium with 

increasing concentrations of copper, silicon, and titanium impurities.  
 

 8.1.3 MTDATA Calculation based on Pre-doped GD-MS Result 
  

In fact there are big differences between our pre-dope cell depression and that 

calculated by MTDATA based on GD-MS. Al is more depressed than what was 

calculated. This possibly suggests another contaminant not being picked up by GD-

MS and/or not calculated for in MTDATA. The actual measured results must be 

accurate before comparing to MTDATA. More accurate thermometers need to be used 

to realise the temperature to get the better fit.   

While the initial offset discrepancy for tin was much less, both tin and 

aluminium showed much more rounding than MTDATA would predict. Apart from 

additional impurity this might be due to the some segregation if the “fast” freezes 

were not fast enough. 

After allowing for the uncertainties we have no evidence to change standard 

values for depression/elevation of temperature due to impurities. Interpolation from 

values obtained from larger doping quantities appears satisfactory (but noting our 

“mK level” uncertainties).  
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8.2 Summary of Contributions  
 

 The contributions of knowledge in this thesis are shown in the following list: 

It has been shown practical to: 

• Re-use normal fixed point ingots for controlled doping and to re-assemble 

the ingot many times and to use non-adiabatic furnace systems.  

• Get dopants into the main mass of the ingot  

• Take the ingot out and cut off samples without noticeable additional 

contamination (and GD-MS can see contamination if it did occur). 

• Take repeat GD-MS analysis to give a trusted result for its uncertainty at 

low levels and dependence on “time of analysis”. 

• Get repeatable melts/freezes to overlay (melts shapes overlay to 1st order 

even though different times of melting). 

• Extend melts and freezes to tens of hours (up to 70h) 

• Have a means to compare (measure offset) of doped samples using 3 

plateau peaks compared as against one plateau compare by 3 thermometers. 

 

The experiments have: 

• Compared GD-MS at low level doping with measured masses, which 

suggests GD-MS may be the best determinant, so far, of impurity concentration. 

• Shown that impurities do mix throughout the cell after prolonged melting 

periods as seen in the GD-MS samples taken from three parts of an ingot. 

• Confirmed the freeze as the most useful phase transition for calibration (as 

expected). 

• Discovered thermal evidence in melts of impurity segregation during 

(slow) freezes. 

• Presented a lot of data for others to use for comparison with more 

sophisticated chemical/thermal models of phase transitions. 

• Shown calculating W value does not always help when using 

thermometers to compare between cells (W still ok for longer term thermometer 

calibration). 

• It appears even “fast” freezes maintain a memory (i.e. cause segregation) 

for the next melt 
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8.3 Recommendation for Future Research 

Experimental work in this thesis has been carried out and the results show the 

reproducibility of the melting and freezing temperatures after doping with impurities. 

However, there are still some related questions that should be investigated for the 

future. 
 

8.3.1 Uncertainty Budgets 

The reducing the uncertainty budget of the realisation of the tin and aluminium 

temperatures through the correction for impurities effect is still in investigation. The 

work suggests that GD-MS and MTDATA type models provide useful additional 

information to improve an impurity correction. However it also shows that other 

factors e.g. undetected impurity and impurity distribution (segregation) will start, 

which cause a contribution to the budget. This work is a step in the process of 

understanding the effect of impurities, a better understanding of which will further 

improve the impurity correction and reduce the term in the uncertainty budget.  
 

8.3.2 Thermometers 

This work has shown the limitation of our PRTs. Although we had expected 

PRT drift and included reference back to reference cells in the initial plan, the 

uncertainty change to the ongoing changes remained significant, particularly for 

Aluminium.  

We had assumed the GD-MS uncertainty of a factor of two would be the 

dominant effect but the uncertainty of the thermometer drift, for the initial dopant 

quantities remained significant. The limited number of comparisons between cells has 

meant that proper statistics on the uncertainty of the difference has not been possible, 

though assuming the uncertainty in the mean is less than that of the sample (as quoted 

throughout this work) 
 

8.3.3 GD-MS Technique 

 Because of the cobalt problem, which cannot be detected from GD-MS 

technique; therefore for future work it would be useful to get NRC to make a table of 

all the impurity combinations that mask each other in ITS-90 fixed point materials. 

Alternate analysis techniques – even of inferior resolution – may give bounds on 

impurities masked in the GD-MS technique and the best alternates should be 

investigated for the specific masking combinations. 
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8.3.4 Surface Chemical Analysis 

Other types of the impurities in the metal fixed-point ingot can be also 

investigated by use the surface analysis. This is to reveal what the process is that is 

making the change to the surface colour of the ingot. This could lead to better 

handling of ingots and one wonders if one could segregate impurities on the surface 

whether one could “purify” old ingots. (Though in practice it would probably be 

cheaper to make a new one). 
 

8.3.5 Impurity Modelling 

A numerical model [Hunt, 2008] used by Professor John Hunt (Department of 

Materials, University of Oxford) is one type of impurity model, which has been used 

to estimate the affect of residual impurities in the low level contents on the actual 

measured equilibrium temperature curves. This model goes beyond the “simple” 

thermodynamic equilibrium model of MTDATA and incorporates the thermal 

conditions and history. This type of model is expected to use in an investigation of the 

future prospects for providing the predicted curve to fit and compare to our 

experimental curves in the future. While calibration will continue to use the freeze 

after prolonged melting as the main source of a “fixed point” in temperature, 

developing models that can explain both the melt and freeze under segregated 

conditions will give the model greater respectability when calculating the very 

important initial depression of the freeze. 
 

8.4 Final Word   

Correction of ingots temperature by impurity analysis remains a valid aim 

either rather than, or alongside, attempts to obtain more pure metal. This work has 

shown that the affect of small impurities can be detected, but much work remains to 

be done if some impurities are apparently not detectable by GD-MS alone. Further 

progress on modelling the interaction of both thermal and chemical interactions 

including their time history will greatly improve the reliability of this method and give 

more confidence in the application of the method of Sum of Individual Estimates as a 

means to correct ingot temperatures and thereby reduce the uncertainty in the 

temperature scale. 
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Abstract
The argon and helium pressure in two types of temperature fixed-point cell
enclosure has been measured for over two weeks. It was found that there
was no significant change in the argon pressure over this time, in contrast to
the report of Ancsin (2003 Metrologia 40 232–4). Helium was found to
diffuse out of the cell as expected. We conclude that argon is a suitable
‘back-fill’ gas for fixed-point cells.

1. Introduction

The freezing point of aluminium at one standard atmosphere
(at 660.323 ◦C) is one of the fixed-points specified for use in
the definition of the International Temperature Scale of 1990
(ITS-90) [2].

The optimal realization of the fixed-point to obtain
a precise calibration relies on many factors including the
materials of the cell components. The high-purity metal is
contained in a pure graphite crucible and this is held in a
gas-tight container made from quartz (silica). An inert gas
filling is an important part of a fixed-point cell to assist thermal
exchange inside the cell, to protect the graphite from oxidation
and to prevent metal vaporization. To obtain the specified
condition, the pressure must be adjusted or corrected to one
standard atmosphere, 101.325 kPa. In the ‘Supplementary
Information for the ITS-90’ [3], it is suggested that argon
should be used as the internal pure gas in high temperature
fixed-point cells.

Recently, however, Ancsin [1] has observed the diffusion
of Ar gas out of a quartz housing at high temperature. In
his experiments, five different gases (air, He, Ar, CO2, N2)

were used to back-fill the Al cell. Each of them showed a
drop in pressure over time from the initial value of 1 atm,
except nitrogen. Ancsin wondered if the gases, including
argon, were being absorbed by graphite or aluminium. After
further experiment, he concluded that the greater part of the

pressure decreases were due to the permeability of the walls
of the quartz tubes at high temperatures, and the best choice
among the five gases tested, for use in sealed quartz cells, is
nitrogen.

However, although nitrogen is basically non-reactive, it
may form nitrides in fixed-point cells at high temperatures.
Also data, such as used in thermodynamic calculation
programs, show that freezing curves can be depressed due to
the solution of nitrogen as an impurity [4]. Consequently,
nitrogen should be avoided and it is therefore important
to check whether the reported problem with argon is
repeatable.

This study investigates the effects of argon and helium
being used for back-filling an Al fixed-point cell. Our results
show that the argon filling gas did not significantly change its
pressure, when used in both a translucent silica tube containing
a graphite crucible and in an empty quartz enclosing tube.
On the other hand, with helium the pressure did drop, as
expected.

2. Experimental apparatus

An NPL design of an open Al cell was used for this
experiment. The Al sample was contained in a graphite
crucible of length 250 mm, which was put into a translucent
silica tube of length 530 mm. A single zone Carbolite
furnace was used in conjunction with a potassium heat

0026-1394/07/060073+03$30.00 © 2007 BIPM and IOP Publishing Ltd Printed in the UK L73
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Figure 1. Graph of pressure over an Al fixed-point cell and in a separate empty quartz tube as a function of time in days.

pipe for maintaining a uniform temperature above or below
660 ◦C. A thyristor controller was used to control the furnace
temperature, which applied only 120 V (through a transformer)
to reduce the electrical noise. The resistance ratios of the
platinum resistance thermometer (PRT) measurement were
recorded from an ASL F18 resistance bridge, confirming the
temperature stability of the fixed-point cell.

A gas handling system was used to set the pressure in
the cell to approximately 101.3 kPa. The cell was connected
via a copper tube to the system, which was connected by
reinforced plastic tube to the vacuum pump (Edwards XDS10
scroll pump) and a Wallace and Tiernan precision pressure
gauge. Before the experiments, the whole system was
tested using a Leybold Vacuum PhoeniXL 300 helium leak
detector.

Argon and helium were the gases used to back-fill the cell
in two separate experiments as both gases were conveniently
available in the laboratory and both can provide an inert
atmosphere for the Al fixed-point cell.

The fixed-point cell was maintained at the operating
temperature, either −0.5 ◦C or +0.5 ◦C of the equilibrium
temperature, which were the settings for the cell to be frozen
and molten, respectively, for almost two weeks and the internal
pressure was monitored during this time. The results are shown
in figure 1.

Starting on day 2, in a separate experiment the
permeability of argon through the wall of a clear close-ended
quartz tube was investigated. Thus, a quartz tube, without an
Al cell, was inserted into a three-zone Hart Scientific furnace
and was connected to a duplicate gas handling system. This
system was also leak tested. Then, the empty cell was back-
filled with gas, sealed up and left to observe if any decrease
in pressure occurred at the Al fixed-point temperature. The
initial pressure was set at about 99.6 kPa, which was slightly
below 101.325 kPa, to ensure that if there was any air leak
then it would increase the tube pressure. These results are also
shown in figure 1. When air was let into the empty cell at the
end of the experiment, then the pressure increased to 1 atm.
(In fact, the silica broke on cooling between 660 ◦C and room
temperature.)

3. Results

As observed in figure 1, the pressure of argon gas was virtually
unchanged during the time at high temperature. After 12 days,
the pressure was about 100.3 kPa, only 1 kPa lower, or reduced
approximately 1% from the initial pressure. For practical
thermometric purposes, this is negligible. It may be due to
some argon diffusing out or being absorbed by the graphite or
Al, but it might also be a limitation of the pressure measurement
system. In any case, the amount of pressure reduction is much
less than that reported by Ancsin (approximately 25 kPa over
10 days) [1].

These results indicate that argon gas did not significantly
diffuse out of the translucent tube or become absorbed into the
aluminium or graphite.

For helium, figure 1 shows that the pressure kept
decreasing with time. At the end of the measurement period,
the pressure was about 75.6 kPa, i.e. it had dropped by about
25% below its initial value over 12 days, while Ancsin’s report
showed an 80% reduction within 4 days. That the pressure of
the helium should drop is not a surprise, as it is well known [5]
that a quartz tube is permeable to helium. The result confirms
the ability of our system to detect a pressure drop and that there
is no long-term leak from the outside.

The results for the empty quartz tube filled with argon gas,
also shown in figure 1, indicate that the pressure had dropped
by about 0.87 kPa, which is 1% reduced, over the period. This
is similar to the result for the translucent silica cell and indicates
that argon does not diffuse significantly through clear quartz
at this temperature.

From these results, we surmise that Ancsin may have
been using an unusually permeable quartz tube. We wonder if
the nitrogen appeared not to diffuse due to back diffusion of
nitrogen from the surrounding air. However, we are not able
to confirm this hypothesis.

4. Conclusions

The changes in pressure in our experiments suggest that argon
is not absorbed or lost within the Al cell, in contradiction
to the results of Ancsin. Our results showed at most a very
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small permeation of argon, though the small pressure decrease
may have been due to other effects such as limitations of the
measurement system. This applies for both the translucent
silica and the quartz tubes at the Al fixed-point temperature.
Therefore, we conclude that argon is a suitable gas to use to
back-fill the Al fixed-point cell.
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1. Introduction 

The freezing point of aluminium (660.323 °C) is one of 
the metallic fixed-points specified for use in the defini-
tion of the International Temperature Scale of 1990 
(ITS-90) [1]. Standard platinum resistance thermome-
ters (SPRTs) are used for disseminating the precise ref-
erence temperatures provided by the fixed-points to 
define an agreed temperature scale accurate to around 
1 mK (2s). The temperature offsets and shapes of melt-
ing and freezing plateaus of high purity aluminium are 
investigated as a function of the deliberately added im-
purities (concentrations of order ~1-20 ppmw) of cop-
per, silicon, and titanium pure metals. In prior experi-
ments on these binary alloy systems, using higher levels 
of impurities [2], the fixed-point temperature of alumin-
ium was interpolated to be depressed by 
0.37 mK/ppmw of copper and 0.71 mK/ppmw of sili-

con impurity. Conversely the aluminium transition tem-
perature is increased by 3.31 mK/ppmw of titanium 
impurity. Therefore, we experimentally investigated the 
effects of very low levels of impurities on the alumin-
ium transition temperature in order to check the tem-
perature offset values interpolated from the experiments 
using relatively high levels of impurities. The realisa-
tion of the aluminium temperature fixed-point has an 
uncertainty budget of many parts or “components”. An 
improved understanding of the effects of low-level im-
purities would allow one to reduce the magnitude of the 
“impurity” component, which is a significant part of the 
budget. 

Measurement of impurity effects has already been 
done using a special adiabatic furnace and a specialised 
cells design [3]. In this paper we try to produce such 
measurements using standard NPL equipment, under 
standard conditions, used in most national measurement 
institutes around the world.  
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2. Experimental procedure 

Two nominally 99.9999% pure aluminium fixed-
point cells, according to the NPL design, were used in 
this study to realise the reference standard temperature. 
The two cells were designated after the year they were 
fabricated in 1974 (Al 174) and 1998 (Al 298). Each 
cell assembly was connected to a gas control system 
including a vacuum pump (Edwards XDS10 scroll 
pump) and a Wallace & Tiernan precision pressure 
gauge. Before the experiments, the whole system was 
tested using a Leybold Vacuum PhoeniXL 300 helium 
leak detector to confirm a seal adequate for prohibiting 
any contamination from the surrounding. Afterwards, 
the two aluminium cells, made as “Open” cells, were 
filled with argon gas and the pressure in the cell was set 
at about 101.3 kPa at the fixed-point transition to assist 
thermal exchange inside the cell, to protect the graphite 
from oxidation and to prevent metal vaporization. 

A single zone Carbolite furnace was used in con-
junction with a potassium heat pipe for maintaining a 
uniform temperature above or below the phase transi-
tion temperature of the Al 174 cell. The Al 298 cell as-
sembly was heated inside a three-zone Hart furnace. As 
the phase transition is powered by an offset in the fur-
nace temperature, it means that the conditions are only 
quasi-adiabatic, but this was the desired way to carry 
out the tests, as these are the “normal” conditions for 
the realisation of fixed-points. 

The resistance ratios of the measuring platinum re-
sistance thermometer (PRT) were recorded on an 
Automatic Systems Laboratories Model ASL F18 ac 
resistance bridge.  

The furnaces were maintained at an operating 
temperature, either –0.5 oC or + 0.5 oC of the transition 
temperature, which were the settings for the cell to be 
frozen and melted respectively. The freezing and melt-
ing curves of the two initially “pure” aluminium cells 
were measured at least three times. The stability of 
PRTs was determined at the water triple point in be-
tween the realisations. Thereafter small samples of the 
aluminium ingots were cut from the top, middle, and 
bottom. These pieces were sent for chemical analysis to 
determine the distribution of the impurity elements 
within the “pure” aluminium, before deliberate doping, 
by using glow discharge mass spectrometry (GD-MS) 
at the National Research Council of Canada (NRC). 
Subsequently the impurity levels in the aluminium 

samples after doping will be measured again by GD-
MS. The initial freezing temperature of these “high pu-
rity” aluminium cells were calibrated several times 
against a standard aluminium cell by comparison of the 
thermometers readings in the two cells.  

After the initial measurements of the two alumin-
ium cells, three impurities; namely copper, silicon and 
titanium were used for doping. Each impurity was 
placed on the top, the middle and the bottom of the 
originally pure aluminium samples increasing the con-
centrations as follows (in ppmw); Cu: ~8.3 and ~16.2, 
Si: ~4.7 and ~9.8 in Al 174, with Ti: ~0.9 and ~1.8 in Al 
298. After doping, each ingot was held at 5 oC above 
the aluminium melting temperature for several days to 
ensure a good mixing of the trace impurities within the 
aluminium. The temperature changes during freezing 
and melting of the aluminium after doping were meas-
ured and compared with the original curves to find out 
how much the trace impurities affected the temperatures 
of the aluminium fixed-points. As thermometers drift, a 
comparison between the doped and reference alumin-
ium cells was carried out to investigate how much the 
trace impurities affected the temperatures of the initially 
pure aluminium fixed-point cells. 
  
 

3. Results and Discussions 

A set of three freezing curves of the “Al 174” alu-
minium fixed-point cell, before the doping process, is 
shown in Figure 1. All freezing measurements are de-
termined at the furnace same setting. Examples of 
Al 174 melting curves, before doping, are shown in 
Figure 2.  

The melting and freezing curves of high purity 
Al 174 aluminium confirm the reproducibility of the 
temperature measurements over a short time scale, and 
intercomparison with the reference fixed-point cell, 
ensures longer-term measurement accuracy.  
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Figure 1 Three freezing curves of high purity Undoped “Al 

174” aluminium fixed-point plotted as a function of time. The 

furnace setting point for all three measurements is set at the same 

temperature (nominally half a degree above the melting point). 

 
  

 
 

 

 

 

 

 
 
 
 
 
 

 

 

 

 

Figure 2 Melting curves of high purity Undoped “Al 174” 

aluminium fixed-point plotted as a function of aluminium per-

centage melted. The curves have been normalised to an approxi-

mate percentage melted (the best means for this normalisation is 

still under study). 

 
 
 

 
Because segregation at the initial freeze front tends 

to make the first layer of frozen Al purer than the rest, it 
gives a better representation of the fixed point tempera-
ture. Thus, the best estimate of the liquidus point in a 
freeze is the maximum point of the freezing curve. Also, 
according to Physikalisch-Technische Bundesanstalt 
(PTB) - the German national metrology measurement 
institute - the peak of the freeze is the most reproduci-
ble part of the freezing curve, from which good results 
can be obtained. The reason is that the maximum tem-
perature does not strongly depend on the homogeneity 
and stability of the furnace temperature [4]. Therefore, 
the temperature comparison between the Al 174 or 
Al 298 and the NPL national standard aluminium cell in 
this work was realised by using the peak of the freezing 
point curve. 

Prior to doping, the initial freezing temperature of 
cell Al 174 was found to be 9 mK lower than the refer-
ence cell. That means the Al 174 ingot probably con-
tained some initial impurities affecting its freezing and 
melting temperatures (this is as expected as it is an old 
cell retired due to some previous contamination). Also, 
the shape of the curves is no longer flat when compared 
with the reference cell. For an ideal pure aluminium 
fixed point, a purer metal usually shows a flatter plateau 
on the freezing and melting curves.  

As these were existing impurities, it was necessary 
to carry out an elemental analysis of this aluminium 
fixed-point cell using the GD-MS technique, before 
doping the aluminium cell with any impurity elements 
in the next step of the procedure.  

An example result of the impurity determination 
for the “high purity” aluminium (Al 174) fixed point by 
GD-MS analysis is reported in Table 1. This shows the 
impurity content measured in three areas of the alumin-
ium ingot. This GD-MS analysis is considered to be 
accurate within a factor of two of the values obtained, 
at a confidence level of 95%. From the results we see 
that the impurity levels are the same throughout the cell 
(within the uncertainty quoted). This shows that the 
aluminium is sufficiently well mixed and that only one 
sample will need to be cut out for analysis after doping. 
(Cutting out of samples is a risky procedure).  
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Table 1. An example of the GD-MS analysis results of the 

initial “high purity” (6N) aluminium fixed point (Al 174) (NRC 

report number: 30337R1). The aluminium samples were cut from 

the three areas of the ingot, which are the top, the middle, and the 

bottom. These elements were detected in term of mass fraction 

(in parts per million by weight, ppmw). The uncertainty is quoted 

as a “factor of 2”, though this is probably a conservative overes-

timate. 

 

The Al 174 was initially doped with copper impu-
rity; the shifts and shapes of the freezing and melting 
curves were investigated as the copper concentration 
was increased. This cell was regularly cross-compared, 
using platinum resistance thermometers, to the refer-
ence aluminium cell at the freeze peak. This ensures the 
reliable measurement of the small temperature shift due 
to the trace impurities, and not from any instability in 

the PRTs. A comparison of the melting curves, before 
and after doping with increasing copper concentration, 
is shown in Figure 3.  

From comparison of the freeze peaks, at 8.3 ppmw 
of copper, the initial freezing point value did not change 
from the original aluminium temperature (which was 
slightly surprising – perhaps some unexpected segrega-
tion of the impurity had occurred). However, as shown 
in Figure 3, the offsets at the estimated liquidus point of 
the melting curves were decreased (subsequent melting 
/freezing may have provided sufficient dispersion of 
the impurity as that it produced an effect). For the 
Al 174 with the copper at 16.2 ppmw concentration, 
depressing of the freezing temperature was observed to 
be 2.9 mK (expected decrease was ~3 mK). The latter 
results are in reasonable agreement with the previous 
data [2]. 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Melting curves of “Al 174” high purity alumin-

ium fixed-point and the shift of these curves after doping the 

aluminium with increasing concentrations of copper, plotted as a 

function of aluminium percentage melted. The curves have been 

normalised to an approximate percentage melted (the best means 

for this normalisation is still under study). 

 

To
p 

M
id

dl
e 

B
ot

to
m

 

To
p 

M
id

dl
e 

B
ot

to
m

 

E
le

m
en

t 

ppmw 

E
le

m
en

t 

ppmw 
Li 

Be 

B 

C 

N 

O 

F 

Na 

Mg 

Al 

Si 

P 

S 

Cl 

K 

Ca 

Sc 

Ti 

V 

Cr 

Mn 

Fe 

Co 

Ni 

Cu 

Zn 

Ga 

Ge 

As 

Se 

<0.004 

<0.001 

0.01 

6 

1 

12 

<0.02 

<0.002 

<0.003 

Matrix 

0.2 

<0.003 

<0.003 

0.006 

<0.02 

<0.03 

0.05 

0.09 

0.08 

0.02 

0.04 

0.2 

<0.001 

0.01 

0.1 

0.1 

<0.007 

<0.01 

<0.007 

<0.1 

<0.003 

<0.001 

0.007 

6 

1 

8 

<0.01 

<0.001 

<0.003 

Matrix 

0.1 

<0.002 

<0.003 

0.004 

<0.02 

<0.03 

0.05 

0.1 

0.09 

0.02 

0.05 

0.2 

<0.0006 

0.007 

0.1 

0.09 

<0.005 

<0.01 

<0.003 

<0.1 

<0.003 

<0.001 

0.003 

5 

0.3 

3 

<0.01 

<0.002 

<0.002 

Matrix 

0.2 

<0.002 

<0.003 

0.003 

<0.02 

<0.03 

0.05 

0.07 

0.07 

0.03 

0.05 

0.3 

<0.0007 

0.03 

0.1 

0.1 

<0.006 

,0.01 

<0.004 

<0.05 

Br 

Rb 

Sr 

Y 

Zr 

Nb 

Mo 

Pd 

Ag 

Cd 

In 

Sn 

Sb 

Te 

I 

Cs 

Ba 

La 

Ce 

Hf 

Ta 

W 

Pt 

Au 

Hg 

Tl 

Pb 

Bi 

Th 

U 

<0.02 

<0.001 

<0.001 

<0.001 

0.005 

<0.001 

<0.003 

- 

<0.009 

<0.02 

<0.005 

<0.03 

<0.009 

<0.009 

<0.004 

<0.001 

<0.007 

<0.001 

<0.001 

<0.003 

- 

<0.004 

<0.01 

<0.2 

<0.04 

<0.01 

<0.004 

<0.005 

<0.001 

<0.001 

<0.02 

<0.001 

<0.001 

<0.001 

0.006 

<0.001 

<0.003 

- 

<0.007 

<0.01 

<0.01 

<0.02 

<0.006 

<0.007 

<0.003 

<0.001 

<0.001 

<0.0007 

<0.0007 

<0.002 

- 

<0.003 

<0.01 

<0.2 

<0.03 

<0.008 

<0.003 

<0.004 

<0.001 

<0.001 

<0.02 

<0.002 

<0.001 

<0.001 

0.009 

<0.001 

<0.003 

- 

<0.008 

<0.02 

<0.003 

<0.03 

<0.007 

<0.008 

<0.003 

<0.001 

<0.001 

<0.001 

<0.0009 

<0.003 

- 

<0.003 

<0.01 

<0.2 

<0.03 

<0.008 

<0.004 

<0.004 

<0.001 

<0.001 

% Al Melted 

0 10 20 30 40 50 60 70 80 90 100 

5 mK 

PR
T 

R
es

is
ta

nc
e/
Ω

 

84.090 

84.091 

84.092 

84.093 

84.094 

84.095 

84.096 

Pure Al 174 

Cu 16.2 ppmw 

Cu 8.3 ppmw 



Vol 29, No 4A             “Effect of Impurities on the Melting Curves of the Aluminium Fixed Point”                          5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Melting curves of “Al 174” aluminium fixed-

point (after further doping with increased amounts of Si) plotted 

as a function of aluminium percentage melted. The curves have 

been normalised to an approximate percentage melted (the best 

means for this normalisation is still under study). 

 
The results obtained for doping the Al 174 cell 

with silicon impurity are presented in Figure 4. For this 
Al-Si system, the sample with silicon at 4.7 ppmw 
shows a decrease for the whole of the melting curve. 
From the freeze peak, it is about 3.2 mK lower than the 
previous aluminium doped with the copper impurity. 
Although the results of the first silicon doping 
(4.7 ppmw) agreed with the previous data [2] at the 
freeze peak, the outcome of Al 174 doped with the sili-
con at 9.8 ppmw did not give the results as expected at 
the freeze peak. However, the offsets and shapes of the 
melting curves showed the depression of the tempera-
ture for the whole curve. It seems freezes may not al-
ways show up impurities. (Although that complicates 
these experiments it does at least confirm the choice of 
freezes for use in ITS-90). 

A similar experimental procedure was followed for 
the other Al 298 cell, but using titanium as an impurity. 
This is expected to elevate the transition temperature. 
The melting and freezing curves, before and after dop-
ing Al 298 with the impurity, are presented in Figure 5.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 5 Melting curves of “Al 298” aluminium fixed-

point (after doping with increasing Ti content) plotted as a func-

tion of aluminium percentage melted. The offsets of the curves 

have not been corrected for thermometer shifts – so only the 

shape is relevant. Separate corrections have been applied to cal-

culate the offsets – see text. 

The shapes of the melting curve are repeatable, 
suggesting the thermometer and ingot are stable during 
the phase transition. However, between transitions the 
resistance values of the PRT, as shown in Figure 5, have 
dropped. We attribute this to PRT instabilities on cy-
cling to high temperatures. Because measurements of 
the PRTs at the water triple point did not shift in pro-
portion, the W values obtained from the experiment 
also moved. (W is the ratio of the thermometer resis-
tance at the fixed point to the resistance at the water 
triple point). It was found that the resistance values 
were more reproducible than W values. (Hence the rea-
son why resistance values were selected to show on all 
figures) The offsets of the melting curves need to be 
corrected following “re-calibration” of the PRTs by 
comparison of the peak of the freezing curves against 
the NPL reference Al cell. All freezing values increased 
following the introduction of the impurities, as expected. 
Considering the sample doped with 0.9 ppmw titanium, 
the freeze peak was elevated by about 3.3 mK from 
initial curve. The next freeze peak at 1.9 ppmw titanium 
increased to a total of 5.2 mK. Therefore, it is summa-
rised that the titanium impurity increases the Al 298 
temperature by 3.2 mK/ppmw.       
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4. Conclusion 

The results of this work confirmed the influence of 
very low-level impurities on the freezing/melting 
curves of the aluminium fixed point. The temperature 
change of the freezing and melting curves of the alu-
minium fixed-point was affected by the amount of cop-
per (-0.43 mK/ppmw), silicon (-0.85 mK/ppmw), and 
titanium (+3.2 mK/ppmw) doping. From the experi-
ment, the melting/freezing curves of the aluminium 
fixed point decreased and increased in temperature in 
line with expectation as increasing amounts of trace 
impurity dopants were introduced. (The results are 
within 20% or better of the extrapolated values). This 
experiment shows that standard non-adiabatic tempera-
ture measurements can be used to determine tempera-
ture offsets. Standard procedures appear to mix pre-
existing impurities uniformly. However, stability of 
thermometers remains a problem at this temperature 
and as comparison of the peak of the doped fixed point 
is only possible with one thermometer over a short time, 
then correcting for this is very time consuming. 
 

5. Future Work 

In the future, the aluminium sample will be re-
analysed by GD-MS after doping to measure the de-
tected concentration of the impurity elements. This 
analysis will be compared with the GD-MS results be-
fore doping, to confirm the increased impurity concen-
tration in the aluminium cells. Thereafter, the GD-MS 
results will be used to calculate the theoretical tempera-
ture offset predicted by a special thermodynamic impu-
rity model, i.e. the “MTDATA” program [5] developed 
by the materials-science department of NPL. From the 
MTDATA analysis, the theoretical and actual measured 

melting curve shapes, of the aluminium fixed point, 
before and after doping will be compared. 
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1. Introduction 

The freezing point of high purity tin (231.928 oC) 
is one of a series of fixed-points in the International 
Temperature Scale of 1990 (ITS-90) [1]. The accurate 
realisation of the tin fixed-point temperature, which 
plays an important role in the provision and dissemi-
nation of standard temperature values, strongly de-
pends on the purity level of the tin material used. In 
this work, high purity (99.9999%) tin fixed-point cells 
were doped with a variety of impurities in order to 
study the offsets of their freezing temperatures and 
changes in the melting shape caused by those impuri-
ties. The trace impurities (of order ~1-20 parts per 
million by weight (ppmw)) of cobalt, lead, and anti-
mony metals were selected for addition to the high 
purity tin samples. In previous work the Sn-X binary 
alloy system was studied at larger fractions of impu-
rity X [2], and the tin temperature was interpolated to 
be depressed by 0.60 mK/ppmw and 0.133 mK/ppmw 

for cobalt and lead impurity, respectively. Conversely, 
the tin transition plateau was raised by 
0.128 mK/ppmw of antimony impurity. Antimony is 
the only impurity that is known to elevate the liquidus 
temperature of tin. Our measurements using lower 
concentrations of dopants planned to test the interpo-
lation of this previous data obtained using relatively 
high levels of impurities. A better understanding of 
low-level impurities would help reduce the uncer-
tainty budget of the tin fixed-point realisation, where 
impurities are the biggest contribution to the uncer-
tainty budget.  

Several measurements of the effects of impurities 
on the tin fixed-point have already been done [3-7]. 
However, this more recent work (but using other 
dopants) has been done using special adiabatic fur-
naces and specially designed cells [6]. In this paper 
we produce such measurements using standard NPL 
equipment, under standard conditions, as used in most 
national measurement institutes around the world.  
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2. Experimental Details 

In this study, two standard purity (nominally 
99.9999%) tin fixed-point cells were used to study the 
influence of trace impurities on the equilibrium tin 
temperature. Both standard tin cells were named after 
their donors as “Spanish tin” and “Mini Isotech tin”; 
these tin ingots were donated by Centro Espanñol De 
Metrología (CEM), Spain, and the Isothermal Tech-
nology Company, respectively. For the Spanish tin 
cell, the ingot was contained in a graphite crucible of 
length 200 mm and diameter 45 mm, which was held 
in a new container made from silica of length 470 mm 
and diameter 49 mm. Cells like this, containing up to 
about 1 kg of pure metal, are used in most National 
Metrology Institutes (NMIs) around the world. For the 
second cell, named “Mini Isotech tin”, the ingot was 
smaller than normal i.e. it is 110 mm in length, 26 mm 
in outer diameter, and had an inner diameter of 16 mm. 
The total mass of tin sample put in this cell was ap-
proximately 240 g. The Mini Isotech tin ingot was 
housed inside a high purity graphite crucible con-
tained within a quartz tube. These two “open” tin 
fixed-point cells were filled with high purity argon 
gas at a pressure of 101.3 kPa at the fixed-point tem-
perature.      

Thereafter the two tin cells were installed in 
three-zone furnaces set for maintaining an even tem-
perature distribution around the tin cell. The furnace 
temperature is set below or above the equilibrium tin 
fixed-point with settings for the cell to be frozen and 
melted, respectively. This means that the conditions 
are only quasi-adiabatic, but this was the desired way 
to carry out the tests, as these are the “normal” condi-
tions for the realisation of fixed-points. The freezing 
and melting transitions of each initially “pure” tin cell 
were measured at least three times. 

An Automatic Systems Laboratories (ASL) 
Model F18 ac resistance bridge was used to measure 
the resistance ratio values of 25 Ω platinum resistance 
thermometers in the two tin fixed-point cells, against 
100 Ω standard resistors.  

After completing the initial freezing and melting 
measurements using the high purity tin, a total of 
three small pieces were removed from three areas of 
the tin ingot; namely the top, the middle and the bot-

tom, with a small cleaned hacksaw. These pieces were 
then analysed using glow discharge mass spectrome-
try (GD-MS) at the National Research Council of 
Canada (NRC) in order to investigate the quantity and 
distribution (or uniformity) of the impurity elements 
within the “pure” tin, before deliberate doping. Sub-
sequently the impurity levels in the tin samples, after 
doping, will be re-measured by using GD-MS again. 

After the resistance ratio of the PRT in pure tin 
was obtained, masses of pure cobalt (99.99+%), lead 
(99.99+%), and antimony (99.5%), employed as im-
purities for doping, were weighed by a microbalance 
(Mettler AT20). The originally pure tin ingots were 
doped with three types of impurities; namely cobalt 
and lead in the Spanish cell and antimony in the Mini 
cell; total concentrations as follows (in ppmw): Co 
~5.5 and ~7.4, Pb ~7.9 and ~31.4, Sb ~7.8 and ~23.2. 
Each type of the impurity metals was put on the top, 
the middle, and the bottom of the ingots. 

After each doping, the ingots were re-inserted 
back into the graphite crucibles and the silica contain-
ers. Then the assembled cells were put into the fur-
naces and set at 8 oC above the tin melting tempera-
ture for several days to ensure a good mixing of the 
impurities within the tin. Three freezing and melting 
plateaus after each doping were realised. During this 
time the doped cells were compared against a new 
sealed tin reference cell by cross-transfer of the PRTs. 
This allowed the measurement of how much the tem-
perature of the doped cells dropped (increased) from 
the initial “pure” tin value. Cross comparison to a ref-
erence cell allows the removal of any shift due to any 
instability in the PRT itself, which is possible at this 
level of resolution. 
 
3. Results and Discussions 

A set of three melting curves from the high pu-
rity Spanish tin fixed-point cell, before the doping 
process, is shown in Fig.1. The melting curves take 
different lengths of time depending on the furnace 
offset temperature. (Examples of high purity tin freez-
ing curves, before doping, are shown in Fig. 3).  
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Fig. 1 Three melting curves of a high purity undoped 

“Spanish” tin fixed-point plotted as a function of time. The 

furnace setting point for all three measurements is set at the 

same temperature (nominally half a degree above the melting 

point). 

 

All the melting and freezing curves of the un-
doped Spanish tin confirm the reproducibility of the 
measurements of this tin fixed-point cell.  

After comparison with the reference tin cell, the 
initial freezing temperature of the Spanish cell was 
found to be 3 mK lower than the reference tin cell. 
That means the Spanish tin ingot contained some pre-
existing contamination affecting its freezing and melt-
ing temperatures (this was expected, and part of the 
reason why it could be used for doping, which effec-
tively destroys the value of the cell). We understand 
that the influence of each impurity in the host material 
remains independent of each other at low concentra-
tions. The magnitude of each effect on the tempera-
ture depends on both the species type and the amount 
of that particular species and the total temperature 
change is the sum of the individual effects, taking ac-
count of any sign. 

Elemental analysis of the Spanish tin fixed-point 
cell, using the GD-MS technique, was carried out be-
fore deliberate doping the tin cell with any impurity 
elements.  
 
 
 

 
Tab. 1 GD-MS analysis results of the initial impurity 

concentration of the “Spanish” tin fixed point (NRC report 

number: 30337R1). Tin samples were cut from three areas of 

the ingot, which are the top, the middle, and the bottom. These 

elements were detected in term of mass fraction (in parts per 

billion by weight, ppbw). The uncertainty is quoted as a “factor 

of 2”, though this is probably a conservative overestimate. 
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 Tab. 1 lists the impurity elements detected in 
three areas of the tin metal ingot. The uncertainty of 
this GD-MS analysis is considered to be accurate 
within a factor of two of the values obtained, at a con-
fidence level of 95% though there is anecdotal evi-
dence that the results are more accurate than quoted. 
GD-MS is the best technique (most sensitive) avail-
able at present to determine the amount of the impuri-
ties. The pre-existing impurities would contribute to 
the initial 3 mK offset with respect to the reference 
cell. From the GD-MS results we see that the impurity 
levels are the same throughout the cell, which shows 
the homogeneity of the impurity concentration (within 
the uncertainty quoted). This indicates that the tin is 
sufficiently well mixed after properly melting of the 
sample. In future only one sample will need to be cut 
out for analysis after doping. (Cutting out of samples 
is a risky procedure).  
 The offsets and shapes of the melting and freez-
ing curves for the undoped and doped samples of tin 
are shown in Fig. 2 and 3. Melting curves are depend-
ent on the thermal history of the sample. This is a re-
sult of changes in impurity segregation during the 
former freezing process. If impurities are left molten 
for a long time we assume they will become uni-
formly distributed. However, if the freezing process 
takes a long period, there will be time for segregation 
to occur: this does not happen if the sample is frozen 
quickly. Therefore, all melting curves in this work 
were measured following a fast freeze. (approximately 
1 hr). 

The results as illustrated in Fig. 2 and 3 confirm 
that cobalt depresses the phase transition temperature 
as expected. The peak of the freezing curves after 
doping had dropped by ~3.7 mK and ~5.4 mK (based 
on our initial analysis) for concentrations of 5.5 ppmw 
and 7.4 ppmw of cobalt, respectively. According to 
Physikalisch-Technische Bundesanstalt (PTB) - the 
German national metrology measurement institute -
the peak of the freeze is the most reproducible part of 
the freezing curve, from which good results can be 
obtained. The reason is that the maximum temperature 
does not strongly depend on the homogeneity and sta-
bility of the furnace temperature [8]. 
  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Three melting curves of high purity “Spanish” tin 

and the shift of these curves after doping the tin with increasing 

concentration of cobalt impurities. The curves have been nor-

malised to an approximate percentage melted (the best means 

for this normalisation is still under study).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Example of high purity tin freezing curves and the 

shift of these curves after doping the tin with increasing concen-

trations of cobalt and lead impurities, plotted as a function of time. 

The end of the curve tin doped with 7.4 ppmw cobalt continues 

off the graph due to the small furnace temperature offset. 
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Fig. 4 shows the significant impurity dependence 
of the tin melting point affected by a low concentra-
tion of lead. (At 7.9 ppmw lead in tin the freezing 
maximum temperature decreased by ~ 1.4 mK, while 
at 31.4 ppmw the curves had dropped by ~ 4.7 mK 
compared with the reference high purity tin cell).   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Melting curves of “Spanish Tin” after doping with 

low level concentrations of lead. The curves are compared with 

the previous curves of Spanish tin doped with cobalt. The tem-

peratures are nominal settings of the furnace. 

 
The results obtained after doping with cobalt and 

lead support the previous data that the temperatures of 
the fixed point were affected at these low impurity 
levels. Moreover, their curves, before and after doping, 
confirm the reproducibility of the temperature meas-
urements in these fixed-point cells.   

In Fig. 5, the offset of the “Mini tin” fixed point, 
after doping with low levels of antimony, is presented. 
The melting temperature of the 7.8 ppmw antimony 
doped tin is higher than for the “pure” Mini tin. It in-
dicates that at low levels, antimony elevates the melt-
ing and freezing temperatures although the tempera-
ture change is less than expected. After comparison 
with the reference tin cell, the peak of the freezing 
curves after doping had increased ~ 0.5 mK. However 
for the antimony doping very unusual melting traces 
have been produced – with a pronounced bump/ in-
crease in the temperature for several hours at the start 
of the melt, before settling back (antimony is expected 

to increase the temperature of the whole plateau). PTB 
has also reported “bumps”, but of a much shorter du-
ration [5]. It may be the result of non-uniform distri-
bution of the antimony, but how that would produce 
this curve shape, and why it is roughly reproducible 
remains unexplained. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 PRT resistance value changing for “Mini Tin” after 

doping with antimony as a function of the approximate tin per-

centage melted.    

 
4. Conclusions 

Excepting Sb, the equilibrium curves of the tin 
fixed-point decreased roughly in line with expecta-
tions derived from interpolation of previous experi-
ments as increasing amounts of impurities were intro-
duced; the measured rates are as follows: Co -0.71; Pb 
-0.18; and Sb +0.06 in units of mK/ppmw. These are 
within 30% of the extrapolated values.  

This experiment shows that standard non-
adiabatic temperature measurements can be used to 
determine temperature offsets. Standard procedures 
appear to mix pre-existing impurities uniformly with 
the possible exception of antimony. 
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5. Future Work 

In the future, the tin sample will be re-analysed 
by GD-MS after doping to detect the measured con-
centration of the impurity elements. This analysis will 
be compared with the GD-MS results before doping, 
to confirm the increasing cobalt, lead and antimony 
contents in the tin cells. Furthermore, the GD-MS re-
sults will be used to confirm or not the calculated im-
purity level based on mass measurements. Assuming 
this we will calculate the theoretical temperature off-
set, and melting shape predicted by a special thermo-
dynamic impurity model, i.e. the “MTDATA” pro-
gram [9] developed by the materials-science depart-
ment of NPL. The theoretical and actual measured 
melting curve shapes, of the tin fixed point, before 
and after doping will be compared. 
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Abstract: The effect of trace cobalt impurity on the realisation of a high purity (99.9999%) tin fixed-point is presented. 

The aim is to improve the measurement of the temperature shift caused by low level impurity dopants, to test the 

interpolation of previous binary alloy systems [1] obtained using relatively high levels of impurities. The experiments and 

results, described below, revealed the shift of the melting and freezing curves of an initially “pure” tin cell by 

-0.71 mK/ppmw of cobalt, and confirmed the reproducibility of the temperature measurements in this fixed-point cell. 
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1. INTRODUCTION 
 

The International Temperature Scale of 1990 

(ITS-90) defines a precise calibration procedure [2] 

using standard platinum resistance thermometers 

(SPRTs), measured at the reference temperature of 

metallic fixed-points, to define an agreed temperature 

scale accurate to better than 1 mK. The influence of 

chemical impurities on the fixed-point is one of most 

important contributions to the uncertainty budgets of the 

fixed-point measurements. If the impurities and their 

effects on the pure fixed-point metals were identified, 

the total impurity correction to the temperature of the 

metal fixed-point would be more precise and reliable.  

In this work, the freezing point temperature of high 

purity tin (at 231.928 
o
C), one of a series of metallic 

fixed-points of the ITS-90, is investigated in order to 

study the offsets of the melting/freezing temperature of 

tin due to low levels of cobalt impurity content. In prior 

experiments on binary alloy systems [1], the fixed-point 

temperature of tin at very low impurity level is 

interpolated to be decreased by 0.60 mK/ppmw of 

cobalt.  

Therefore, the aim of this work is to test the 

interpolation of previous data; all of which were 

obtained from relatively high impurity concentrations. 

Moreover, an improved understanding of low level 

impurities would allow one to reduce the uncertainty 

budget component, which is attributed to the influence 

of chemical impurities for the realisation of the tin 

temperature fixed-point. Several previous researchers 

have studied the effect of impurities on the equilibrium 

plateaus of the tin fixed-point temperature [3-6]. 

Furthermore, this type of work (but using other dopants) 

has already been done using special adiabatic furnaces 

[6]. In this paper we try to reproduce such 

measurements using standard NPL equipment, which 

provides a standard controlled condition, as used by 

national measurement institutes (NMIs) worldwide. 

This is important in ensuring the inter-changeability of 

temperature measurements around the world.  

 

2. EXPERIMENTAL PROCEDURE 

 
An original nominally 99.9999% pure tin fixed-point 

ingot was used to realise the reference standard 

temperature. Cells like this, containing up to about 1 kg 

of pure metal, are used in most NMIs around the world. 

This “open cell” was filled with argon gas with the 

pressure set at 101.3 kPa. A three-zone furnace was used 

for maintaining the temperatures at the equilibrium tin 

fixed-point, but the set point temperature was offset by 

different amounts for the ingot to be frozen or melted. 

This means that the conditions are only quasi-adiabatic, 

but this was the desired way to carry out the tests, as 

these are the “normal” conditions for the realisation of 

fixed-points. A 25 Ω platinum resistance thermometer 

(PRT) and a 100 Ω standard resistor were used to realise 

the measurements by reading their resistance ratio using 

an Automatic Systems Laboratories Model F18 ac 

resistance bridge. Each original freezing and melting 

temperature curve was repeated a couple of times. The 

initial freezing temperature of this “high purity” tin cell 

was calibrated several times against a “never doped” 

reference tin cell by direct comparison of the 

thermometers readings in two cells.  

After completion of the initial freezing and melting 

measurements, but just before doping small samples of 

tin were cut from the top, the middle, and the bottom of 

the ingot. These pieces were sent for chemical analysis 

to detect the distribution of any background impurity 

elements by using glow discharge mass spectrometry 

(GD-MS) at the National Research Council of Canada 

(NRC). This is the “state-of-the-art” technique to 

measure any impurities in the “pure” metal fixed-point 

cell. The lower limit of detection is down to the ppb 

level. 

After the equilibrium resistance ratio of the PRT in 

pure tin was obtained, the masses of cobalt (99.99+% 

pure) employed as impurities for doping were weighed 
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using a microbalance (Mettler AT20). The originally 

pure tin sample was doped with cobalt at the top, the 

middle, and the bottom by increasing the concentrations 

of cobalt (in ppmw) from ~5.5 to ~7.3. The whole 

sample was held at 8 
o
C above the tin melting 

temperature for several days to ensure a good mixture of 

tin and cobalt. Three freezing and melting plateaus at 

each doping were realised. Finally, the calibration by 

comparison between the doped tin and reference tin 

cells was carried out to investigate how much the 

fixed-point temperature dropped from the initial pure tin 

value. 

 
3. DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 Three melting curves of a high purity tin 

fixed-point plotted as a function of time. The furnace 

setting point for all three measurements is set at the 

same temperature (nominally half a degree above the 

melting point). 

 

A set of three melting curves of the high purity tin 

fixed-point cell, before the doping process, is shown in 

Figure 1. The melting curves take different lengths of 

time depending on the furnace offset temperature. 

(Examples of high purity tin freezing curves, before 

doping, are shown in Figure 3). All the melting and 

freezing curves of high purity tin confirm the 

reproducibility of the temperature measurements of this 

tin fixed-point cell. After calibration by comparison 

between two tin cells, namely this tin cell and a “never 

doped” reference tin cell, the initial freezing 

temperature of this cell was found to be 3 mK lower 

than the reference tin cell. 

This result indicates that this tin cell already contains 

some impurities affecting its freezing temperature. We 

understand that the influence of each impurity in the 

host material remains independent of each other at low 

concentrations. The magnitude of each temperature 

effect depends on both the species type and the amount 

of that particular species and the total temperature 

change is the sum of the individual effects, taking 

account of any sign. 

Therefore, it is necessary to carry out the elemental 

analysis of this tin fixed-point cell using the GD-MS 

technique, before doping the tin cell with any impurity 

elements in the next step of the procedure.  

 

Table 1 The results of the GD-MS analysis of the 

initial “high purity” tin fixed point (NRC report number: 

30337R1). The tin samples were cut from the three 

areas of the ingot, which are the top, the middle, and the 

bottom. These elements were detected in term of mass 

fraction (in parts per billion by weight, ppbw). The 

uncertainty is quoted as a “factor of 2”, though this is 

probably a conservative overestimate. 
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The results of the impurity determination for the 

“high purity” tin by GD-MS analysis are reported in 

Table 1. This shows the impurity content measured in 

three areas of the tin ingot. This GD-MS analysis is 

considered to be accurate within a factor of two of the 

values obtained, at a confidence level of 95%. From the 

results we see that the impurity levels are the same 

throughout the cell (within the uncertainty quoted). This 

shows that the tin is sufficiently well mixed and that 

only one sample will need to be cut out for analysis 

after doping. (Cutting out of samples is a risky 

procedure).  

Moreover, the indium impurity in the undoped “high 

P
R

T
 R

es
is

ta
n

ce
/ ΩΩ ΩΩ

 

48.1520

48.1522

48.1524

48.1526

48.1528

48.1530

0 200 400 600 800 1000 1200 1400

1st Melt

2nd Melt

3rd Melt

2 mK

Time (h) 

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 1, 2009 at 08:57 from IEEE Xplore.  Restrictions apply.



- 3157 -

purity” tin ingot, as seen on Table 1, is the biggest 

component. In previous data [1], the tin 

melting/freezing temperature was shifted by 

–0.29 mK/ppmw of indium impurity content. It is 

therefore suggested that the shift of the initial freezing 

temperature of tin, compared with the reference tin cell, 

is partly caused by the amount of indium impurity. The 

other impurities found in the tin ingot (See Table 1) also 

contribute to the tin fixed-point temperature decrease 

(we have still to compare this with theoretical 

calculations using the “MTDATA” program [7].) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  Melting curves of high purity tin and the 

shift of these curves after doping the tin with increasing 

concentration of the cobalt impurities. The curves have 

been normalised to an approximate percentage melted 

(the best means for this normalisation is still under 

study). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Example of high purity tin freezing curves 

and the shift of these curves after doping the tin with 

increasing concentrations of cobalt impurity, plotted as a 

function of time. The end of the curve tin doped with  

7.4 ppmw cobalt continues off the graph due to the 

small furnace temperature offset. 

The results as shown in Figure 2 and 3 confirm that 

cobalt depresses the phase transition temperature as 

expected. The peak of the freezing curves after doping 

had dropped by ~3.7 mK and ~5.4 mK (based on our 

initial analysis) for concentrations of 5.5 ppmw and   

7.4 ppmw of cobalt, respectively.  The equilibrium 

curves of the tin fixed point decreased in line with 

expectations derived from the interpolation of previous 

experiments [2]. As increasing amounts of impurities 

were introduced, the tin was shifted on average by      

-0.71 mK/ppmw of cobalt. The results obtained can be 

confused by shifts of the thermometer itself – to 

overcome this the PRT has to be checked in the 

reference cell. However this check is only practical 

periodically, so the timing of intervening thermometer 

shifts can affect the final analysis.  

 

 

3. CONCLUSION 
 

The temperature change of the freezing and melting 

curves of a tin fixed-point was affected by the amount 

of cobalt doping (-0.71 mK/ppmw). From the 

experiment, the melting/freezing curves of a tin fixed 

point decreased temperature in line with expectation as 

increasing amounts of cobalt were introduced. This 

experiment shows that standard non-adiabatic 

temperature measurements can be used to determine 

temperature offsets. Standard procedures appear to mix 

pre-existing impurities uniformly. 

 

4. FUTURE WORK 

 
In the future, the tin sample will be re-analysed by 

GD-MS after doping to detect the measured 

concentration of the impurity elements. This analysis 

will be compared with the GD-MS results before doping, 

to confirm the increasing cobalt content in the tin cell. 

Furthermore, the GD-MS results will be used to 

calculate the theoretical temperature offset predicted by 

a special thermodynamic impurity model, i.e. the 

“MTDATA” program [7] developed by the 

materials-science department of NPL. From the 

MTDATA analysis, the theoretical and actual measured 

melting curve shapes, of the tin fixed point, before and 

after doping will be compared. 
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The following data are taken from the document CCT/01-02 [Fellmuth et al., 2001].





B-2 

Table B-1 PTB Uncertainty budgets, corresponding to the ISO guidelines, for the calibration of SPRTs at the defining fixed points 

(Temperature equivalents in mK, k: coverage factor, 6N: 99.9999% etc.) 

 

 

 



B-3 

Table B-2 Uncertainty budgets of the “normal category”, corresponding to the ISO guidelines, for the calibration of SPRTs at the 

defining fixed points. The italic font style indicates that the values are different from those in Table B-1. 

(Temperature equivalents in mK, k: coverage factor, 6N: 99.9999% etc.) 
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9114 Heater Block Assembly (Three zone Hart Furnace) 

[Hart Scientific Inc., 2006] 
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