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ABSTRACT

A solution is obtained for the problem of the diffraction of
a plane wave sound source by a semi-infinite half plane. One
surface of the half plane has a soft (pressure relesse) boundary
condition, and the other surface & rigid boundary condition. Two
unusual features arise in this boundary value problem. The first
is the edge Tield singularity. Tt is found to be more singular
than that associated with either a completely rigid or a completely
soft semi~infinite half plane. The segond is that the normal
Wiener-Hopf method (which is the stendard technigue to solve half
plane problems) has to be modified to give the solution to the present
mixed boundsry value problem.

The mathematical problem which is solved is an approximate model
for a rigid noise barrier, one face of which is treated with an
absorbing lining. It is shown that the optimum attenuation in the
shadow region is obtained when the absorbing lining is on the
gide of the screenwhich makes the smallest angle to the source

or thé receiver from the edge.



Introduction

The present work arose in connection with noise abatement by
means of noise barriers. In recent years, noise reduction by barriers
has become s common measure of environmental protection in heavily
built-up areas, Kurze [I] . Traffic noise from motorways, railways,
and airports, and other outdoor noises from heavy construction machinery
or stationary installations, such as large transformers or plants, can
be shielded by & barrier which intercepts the line-of-sight from the
source to a receiver. Noise in an open plan office can also be reduced
by means of barriers. The acoustic field in the shadow region of &
barrier, when transmission through a barrier is negligible, is due to
diffréction at the edge alone,

The design of such noise barriers should meet two important
requirements, namely, that they are effective noise attenuators, and
that their construction and maintenance should be economical.  The
latter requirement is not éifficulf to appreciste when one considers
the miles of motorway which run through built-up areas. One possible
economic barrier construction is to have a rigid barrier (hence
reducing transmitted noise) of cheap material which will not, however,
be a good attenuator of edge diffracted noise, and to cover one or
both surfaces with an absorbing lining which is a good attenuator of
sound, The most economic situation would be where only one side of
the berrier is covered with the absorbing lining.

The presence of an acoustically sbsorbing lining on a surface is
usually described by an impedance relation between the pressure (p) and
the normal veloeity fluctuastion on the lining surface, Morse and Ingard

[2] .  This gives rise to a boundary condition on the absorbing

lining of the form ?_f_’ - ib\ﬁ ’P 5 Re(ﬁ) ‘>01
an



b
vwhere the sound wave has time harmonic varistion € , and

¥1=:C3vQ3 , ¢ is the velocity of sound, n the normal pointing
into the lining, and ﬁ the complex specific sdmittance of the
acoustic lining (see Rawlins [3] ). An acousticslly hard {or
perfectly reflecting) surface has a vanishing admittance i.e. ‘P) 20O
and an acoustically soft surface (pressure fluctuation vanishing on
surface) is given by | F\ e The limiting case when
the barrier surface is ideally soft is considered for simplicity, and
it is suggested, can provide an upper bound to the effects one can
expect to obtain with.an absorbing surface.

If the wavelength of the sound is much smaller than the length
scale associated with the barrier, the diffraction process is governed
only by the local conditions at the edge and the solution to the
canonical problem of diffraction by a semi-infinite half plane can be
applied.

Under the above approximations a mathematical model for an
absorbing barrier;whose two faces have acoustic lining, is given by
the canonical problem of diffraction by a semi-infinite half plene with
a soft boundary condition on both faces. This canonical problem was
solved many years ago by Sommerfeld and an elegant solution by the
Wiener-Hopf technique ig given in Noble's book [h] » One seriocus
drawback of this model is that since it is completely soft it would
have no mechanical support.

Under the same approximations, a mathematical model for a rigid
barrier, one face of which is treated with an absorbing lining, is
given by the canonical problem of diffraction by s semi-infinite helf
plane, one side of whiech is rigid and the other side soft., This model
unlike the previous one does have mechanical support. A crude

approximation to this model would be a barrier of hard board with foam



pubber sheet on one face, We propose to solve this canonical mixed
~ boundary value problem.
In section one the canonical boundary value problem is formulated.
To ensure s unique solution an "edge condition" Jones [5] , is imposed.
Thie edge condition is the normal one associsted with diffraction
theory (i.e. that the sound energy is bounded in a finite region around
the edge of the semi-infinite plate). It is found by an application

S
of Meixner's methoq%FBnl [6] ,Ehat if Qb (x, y) represents the velocity

. -3 4+
potential then (ﬁ( x, e) ~ O ) ?_f’(x;,o)w O(")C h") ns xX - O .
24
This is in contrast to the case of a completely rigid or completely

.y

soft semi-infinite half plane when ¢(1‘, Q;) o O(I) 5 a“f_i?(itj O)NO(P& f“‘)

+ 24

as x 2>Q -
In section two a solubtion is obtained for the boundary value problem.

The methematical method used to solve the problem consists of expressing

the field in terms of integral representations. The integrands of the

jintegral representations are obtained explicitly by means of the

. boundary conditions and a modification of the Wiener-Hopf technigue.
The approach is heuristic in so far that certain assumptions are

made about singularities of the integrands. These assumptions

are plausible from the physics of the problem. It is shown

that the solution obtained is the (unique) solution to the problem.

Section three gives the gsymptotic solutions for the far field.
Also the known asymptotic solutions for the completely rigid and
completely soft half planes are given. From these some graphs are
plotted and comparisons made.

1. Formilation of the boundary value problem

We consider the scattering of acoustic waves from a plane wave
source by a semi-infinite soft-hard half plane. Let the half plane
be infinitely thin and occupy y = 0, x < 0 so that its edge lies along
the z~axis, see figure 1, Let the plane wave source potential be

described by

 (x,9) = eXpi- i [Rlxeos®o +ysime) +w (::]"2( oy



where k = (O /e, and ¢ is the velocity of sound. In future expressions
eIAY
the time harmonic variation £ will be suppressed, Hence

we require, from the dynamic egquations of motion, that the sound

potential function 9& (x, y) satisfy

{ 2 +\€}¢>c’x;3)=0
x> Yy
(2}

Tn order to take account of the semi-infinite soft-hard screen

we impose the boundary conditions,

b(x,0%)= O (3)

w <L O
Vi

2P(x,0™) = ©)
— (&)
29

that is the upper surface is soft and the lower surface is rigid.

The boundary condition on the extension of the screen is the continuity

of pressure and particle displacement i.e,

Px,0%) = Plx,07), (5)

x>0,

Qf(x,o“' = ?_?‘f(x) o),
2y Y

We also reguire for a causal solution that the total field minus

(6)

the incident plane wave should be radiating outgoing waves at infinity

1like & line source. This radiation condition requires that

tk
Lim { P059)=elx9) ]~ O(é.__r
P % N (D) (7)

vhere P¥ = 5e% 4 5"‘-,

Finally for a unique solution to the above outlined problem we
require an edge condition, The edge condition requires that the edge
itself does not radiste energy. This requires that the derivative of
qb (x, y) must have an integrable singularity at the origin., Applying

the method of Meixner (see, for example, Karp and Karal]:?] ) to the



present problem it is not difficult to show that

bix, I O, 3b(x,0)w O(x*4), as x> 0" o
29

We now Find a solution to the problem outlined in section one,

2, Solution ¢of the boundary vaiue problem

For analytic convenience in the ensuing calculations we shall let

R=Rer rike 3 b‘") Ri> O. 1In the final result we can let

We shall assume that a solution for ¢> {x, ¥} can be written as

P, 9) = Polx,y) +

o0+ LAY
. q _ c(VxeKIyi
+ 51“-‘-{-‘—’ { §+(J(h-+\?)) sgnly)+ ?+(JCR+V))}€, " ) dv)
ooV J(k-v) (V+keosBe)

(9)
where ‘K = \‘(k%..vg) is defined to be on the cut sheet such that
Im (W),}Q for { Tm CV)I<- }QL see figure 23 and

53“ (‘:,)) = i‘ uf;-a{‘ 3:2 Oa ‘th» c‘ma‘g\jﬁc (.onue,n'bemc%( w‘nlc\r\
w il be O\-‘b\bcx"eﬂf\t Yaler vn the qnm%sbs.) e umn known, %Hanﬂria.g

é&-; C’E* Whave m,r'sumﬁv{t% oi—"ﬁka_ ~R—oTW\ \!(h-i—}f).

The expression (9) is certainly a solution of the wave equation {2).
From the radiation condition (T) the integral representation (9) will
exist provided - Re cosBs <« v < ki’, 3 The edge

condition (8) will be satisfied provided

B (TR DR, (W) ~ 1™,

(10)
as i))[wem) IM(VJB-;-kécas@oo



The plus sign subscripts denote that the (as yet unknown) functions

§+) Q+ are regular and analytic functions of Y in the domain
Tm V) > -Riwsba

(N.B. an analytic function of an

analytic functions is an analytic function!).

We shall now show that under these conditions (9) automatically
satisfies the boundary conditions (5) and (6).

Thus substituting (9)
into (5) and (6) gives

N%‘LT : iy
@.,_(J(R-M?D et xdﬁ):O)

L (\)4 ‘Qw:&ea)

(11)
x> O
b
w-l—(n"\c, — .
\‘(R%\’) P, (N1 se-w")) (’,Umotv —o.
—wtir  (V+ Reos®e) (12)

An application of Cauchy's theorem, and Jordan's Lemma to an infinite
closed semi-cirele in the upper ¥ -plane (using the growth estimates
(10)) shows that the expressions (11) and (12) are satisfied identically
becsuse the integrands are regular and analytic in the upper % ~plane,

Twmiv) > ~Rices Bo .

Substituting (9) into the remsining unsatisfied boundary conditions
(3) and (&) gives

FO4 L

{ B (e + O, (Tewd)y dy_ ~ckxcosBe

< 2
(V+IQ¢€>S 90)

A
210

- 04U J(k--'l))

{13)



PO+VY
2—-‘-—: S { @MJW)... @4—(\[@)} > e‘vl’x; e keind éikxcosg.,
7l —_— - 3 “
oy \((RMV) (V4- kee 5903

(14)
The solution of the equations {13) and (1) is given by the
solution of the following suxiliary equations

(a)

Cﬁ_;.(\] k(tucosﬁo\))_k %(Jk(\-—ws@& = 1,

Jk(1+cose) (15)

%_3_ (\ﬁa(lw Coseo.‘)) - q?*P('J k(_i-w ws@g}) -
Jk (14 cos89)

- San{O:)
(0 %)

(v)

| D, (Je) + Cur( W) -4 W
W\[m ) (17)

(&(4@)3,. E&(Jom)‘))m = A\,

(ke-v) (18)
The functions \i (v) J\/ (1)‘ are regular and analytic in
- ) -
IM(V) <RL . The equations (a) account for the source singularity
at Y=—Rtcs e which is in the lower v -plane, '},‘>-k;,wg,g9w

The sstisfaction of (15) and (16) will cancel the right-hand side of
(13) and (14). Adding and subtracting (15) and (16) gives the more

compact reguirement

%-@-(\/k(lwcos@aj): (1-sqgn(8)/a

(19)



@q. (\“Q(l‘“‘ 00&8@3‘):: \/k( H"Cosea) . ('«[v Ssm (Bh))/:?_ B

(20)
The equations(b) mean that the left-hand side of (17) and (18) are
regular analytic functions in T ( )7) < ke . These equations
constitute a system of Wiener-Hopf eguations of the matrix form
K(v) Se(w) = ()

Although Krein and Gobberg [é] established the theory of simultaneous
Wiener-Hopf equations and proved the existence of the factorisation of
the kernel matrix '&ii'vu ) they were unable to find a general
procedure to carry out the factorisation. To my knowledge the
factorisation of square matrices into the form !ﬁ (v}= 5*(9) K-e-()’j
still remeins an unsolved problem. Occasionally one can uncouple
the eguations and then the problem is reduced to solving two separate
standerd Wiener-Hopf eguations. The system {b) considered here
cannot be uncoupled. We shall obtain a solution to (2) and () by
an ad-hoc method which can be considered as a new way of looking at
the Wiener-Hopf equations.

The expressions (17) and {18) can be interpreted as meening that
on any closed contour in T )< RY in one complete circuit
the left~hand side of (17) and (18) must return to its original value,

Hence

P, (V) + b, (JTke)) P J(re9)) + NN
J(k-v) Y(k-») ’

(21)

and

&, (o) - U (ko)) _ _ (&, Filren)) = P - JTeaw))
v (k=) (k=)

(22)



where we have used the fact that the argument of J( k4+V)
on one side of the branch cut V= -k differs by T
from its value on the other side of the branch cut, see appendix A,
Tn effect the equations (21) and (22) are a statement of the
fact that across the branch cut V=-k (17) and (18)
are regular and analytic, We have, of course, assumed that
%*(Jm) 5 S.D--i- (m) nave no poles or branch peinis
(oi‘he:r- Hhan v:“k);{[m {(v)< kel , and on physigal grounds this is a plausible
assumption. By adding and subtracting (21) and (22) we see that

these equations are satisfied if

<§E—’+ (\I'( k+\>7) = ¥ (- J)‘(la-t—v)‘)
V (k-v) (23)

and,

By (M) = T (V{ken))

Tt can be shown that s solution of (23) which satisfies (19) and (20}

and also has the correct growth conditions (see (10)) as Jv| = oo

is given by (See aw:-*ahdfr:c B)

B, (J(eaw)) = Yren)= 5518 yir( -es@)({(zk) _ sgn OV (1-cosbs)) N
2 ‘“(k*i"V) %; (3’)

(2k)

D, (J(ksr)) o (Llaard 390Nk T=ce509) 2, GWITR) - Syn(ONR(-ces62)
2V(k+v) ‘

(25)



- 10 =~

where xi(};‘) = J( \’ ('2 k) 4+ J( h*VS) . The function
X, () is Gefined to be such that X, (o) =

VR ~ B, 1f %.0)= J(IzR = ko) , and
Xz (o) = (V=R - R)

then on the cut sheet we are using, for all 14 , we have the

factorisation

Vk-v)= X, ()%, (¥), (26)
see appendix A,
By way of checking we shall substitute (2L4) and (25) directly into the
left-hand side of the equation (13) and show that it equals the right-
hend side. Thus substituting (24) and (25) into the left-hand side
of the equality sign in the expression (13) and letting the result be
denoted by T ( X) we have
. P LY X
Tx) = oéj e i‘(.,(k“‘,v)l-SSm(So)Jk(i“CoSGo)‘)

(V4+keosBo) 7—‘—'—“\&44)) \/(@4-\]@)

PN B e of

N (V(kav) + Sqn (@I Vk(I-cos er)f ( Y(2k)+ J(’kw)‘j f dv
K

.-w‘aicof‘;a'a <t < Ek(_,

(27)

aere oc= L N (k)= sqn(®Nk(1-cose)

vt

The eveluation of the integral (27) will be achieved by deforming the



(kev)
Ve J(JZey + (ke v) K

{

path of integration into the lower Yy -plene. However before we can
do this we must exasmine whether or not the function in the curly
bracket is regular and analytic in this region. An inspection of the
expression in the curly brackets shows that the only possibility of
non-regularity is the branch cut at V= - R of \1(‘? +7) .
However if we consider & circuit around the point Y=~k it
will be seen that the term in the curly bracket is regular there,

Thus if we start at a point VY=~ R 48 ‘th‘i- ®  small and

fixed, the expression in the curly bracket is

— sqn(0WR(=c0569Y) | ([Tiero)s san @) k(- ces9) i (7)

In traversing the circle i v+ kl=§ from Y=-RLS§ Q,L

o ov=-k +3eS P Teny
changes t0 - m and J(k__,)) is

unchanged. Thus the expression in the curly bracket becomes

[(mm_ Sﬂm(@o)Jé(leOS?Gj) -+
(TN (Jzk) — (k)

T~ san (69 Rl =cas8IN(Tzh) ~ d{ken))

}o—”

1}4

- % V27

which on using the identity (26) gives



- ([Tka) = sgr@NR(i-wses))
‘J (k"l"v) x: (V)

K

(M) snONcsdd )
, 2

Thus we have 2‘ } = f } o
Q}‘ 19’-+2-rr

Hence as far as the function in the curly brackets is concerned no
branch cut exists in Tmb) <, The contour of integration
can now be distorted into the lower half.plane and an application of
Jordan's Lemma and Cauchy's residue theorem (the pole V= ~kcos Be
is captured), gives (for each case of P> 0O and Do <O
considered separately)

tkhxecasBo

TGN = -~ €

b

which agrees with the right-band side of the eguation (13). The
satisfaction of the equation (14) follows on exactly the same lines.

Thus the solution to the boundary value problem is given by



?fo/‘j)‘: qbo("::‘j)

YT ((Vaes Kiyi)

N O(J e { ‘r“w_\(k—‘y’)( {(mk+v\-1’%‘3“(9“)‘&(“'”38&)n3jn£3)E

-0 A (v—FkLoﬁGﬁ) Xi (9)

+ (V<-h+1?)+33”@@)#(%&03%3)%,— (ﬂ)’)' dv
— )

0.9

- kicos8e < < k¢

(28)

Tt is worth comparing this result with the incident field diffracted

by a soft screen,( 9’%( x;‘;’)) 5 where (é'(’f—)‘j) vanishes
on both sides of the screen) and a hard screen ( ?Sh(x‘, Yy,

where a(ﬁh(x)‘ﬂ) vanishes on both sides of the sCTEEen ).

2
These are given in Noble [h as

#95(91:_,&{)) = ‘ié’o(x:‘é)
o+

+ Jk(l+ws8u)‘J e,‘:(v’t"'"'ﬂ’ﬂ') N
k) (V+keosOs)

_.,dw-;.e'ft

2T 2

(29}



#‘(xl‘ﬂ) = %(Tv&f}

n \ DT s K i)
_ k ~ ~ L Yog 4 Y
(I - cos Bo) Sqn(sp) ra d\v)
2l ~ V(R#v) (Vkeos®)
o OB Y

- k{40590< < k{ .
"porfecl
sbgorbing sorfate s gwen by alding the banl awd soff smgexmgs&mﬁ‘ \zngm%? :z?w
he same weidint  wave cnd alLUiJfMj by le., see Butlr 2], Thus the solulion to
t‘if\n. ?i’b%\r"’\ o/&. ‘aﬂam WIS, of\,'\.g‘i-ruct'wv\ \)3 o s-e;m(,»&wgm;\*a, F-ea,vw_, which
\‘,5 ")QV%&c!‘Qﬂ mbSGV"\DQv\j owvni on € buf"ﬂeaoa, o d dsic\, own H otter
s 3L\,~€v\ b:ﬂ Luoneer guvgr?oslbf&v\ (VIS

¢;q (e,9) = { Cﬁ(:{, 9) + 9’);.,(9"-, ‘..”J)}/:?. .

{30)

3 Asymptotic expressions for the far field

Without going through the detailed analysis the asymptotic far
field expressions for ﬁﬁ("cj‘:j) ) ¢>$(9c} 9) 3 and ¢>h (x,4)

as | 3 are given below., The technique for

obtaining these results can be found in Jones' book [S] o Thus if

x =1 cos @ yﬂrsinQJ -—\TT“<8‘<7T,

I = 6@&1‘(,03(9,90) , g = é‘tk"'&osc9+ Sa))

(z) Q:..lzzJ'WeL[;EJ L‘) and Q = Jm(g“jg(cosg-b C,cs@a)

then the: s = Sin® ’

soft~hard far field for - P < T is given by
¢(G8)= L +D, ©< P T-8o

= I -+ th(_ea)R,+:b+) -0k O < ,

- T +D_ p,-7< O <O,

H

-, 7L §< BT | (31)



- 15 =

where

¢ (R =TT/t : .o
= - & . 21a\F( al) . J(JZ - Sﬁi’l(@_o)\/(i*(ﬁosec)) {
2

\J(EETT‘QTJ) (1;955E9'+'C£355€9;)
(\I('*‘0595+‘~?=5“(9°)J(!~cosegjw(\,?+ m)

+ \!(l"%ﬁ@j (J(i+c.059)~ ’533“(66‘)\’(1“&2059@5) } ‘
b

J(J'? +J( |'+~C<>f>9)\)‘

'é(&a(“ﬂ'

soft far field for
9&*Tr< 9< TE - 80 5

hire)= IT+Ds |

= D‘S ) T @490_7‘7—)

T—-—g'o( 8<TT' 2
(32)

where

(k=TT ‘ a)
ke (e B N(7ess8) . 2 10 FClal).

Di=-¢
J(z7wkr) (tos®+casBs)
hard. fayr field for

O< 8’(‘77"“9—0)
T+R+ Dy T-0u< & < T
- Imtbb‘ g.-Tr< &< O ,

= e ]:)H



¢ (Rr—w /i)

Dy, = € ] J(i-ws@)‘\/(i—%osaa)‘w alal F(lal)
N (2erkr) (os® + cosBe) "

The expressions (31) to (33) are used to give polar diagrams
of the scattered far fields for | c;b(';@)l 3 l d)s (G@)i S and,
| Cf)h(r)g)l wvhen hy = 107, For lSﬁ(’:Q)I
the engle-of incidence ig tzken asg j: 90° which corresponds to the
illumination of the soft and hard face respectively; for , QbS( N 8)'
and l (Fh(@3f9)l we need only consider an angle of incidence
of 900 because of the symmetry of the problems. Thege plots are given
in graphs (1) to (&), A graph showing the attenuation (for eaew of
the abovéﬂ,sxtuatkows ) in the shadow region of the sereen is also
given in graph (5),\Gr‘aph$ (&) a@[?) g we Fe altnualion tn Yre shadow
[ iy o
rﬁgkon O'S' o Pa,r%ec\‘?:j abﬁor\)lmﬂuhar& screen for 9::'—“—'—“330,30»“3 90‘1,“:135J
‘%Q‘ 20 Qoﬁwiﬁbﬂ} .

k.,  Graphical regults

The most important graphical results from the point of noise
reduction in the shadow region is graph ( S)t'o('l‘)'From these graphs it can
o Qbsor'\?f"\s
be seen that a semi-infinite half plane which has a. soft,boundary condition
on one side and a rigid boundary condition on the other gives better
attenuation in the shadow region than s wholly rigid screen. What is
very interesting is the fact that the greatest attenuation of sound in

. of absorbua
the shadow region is obtained when the softpsurface of the screen is on
For 1012100, and on W "ARluminald side of the Screen for 101<{0.1.
the shadow side of the screen), ~ From graphs {1} and (2} it can also be
seen that the back scattered sound on the illiminated side of the screen

is smallest when the soft surface is illuminated,

Se Conclusions

From the graphical results we can see that for the maximum



...17....

attenuation in the shadow region of the barrier, the absorbing lining
should be placed on the surface which makes the smallest angle from the
barrier to the source or receiver. Thus in fig‘é. if | e((_ﬁ then the
absorbent material should be placed on the source side of the barrier.
1f of > ﬁ then it should be placed on the receiver side. When otxﬁ
the lining can be placed on either side. This latter case is a
consequence of reciprocity.

Some experimental work has been carried out by Fleischer [103
when an absorbing lining is on the‘illuminated side of the barrier.
He recorded an increase in attenuation of the order O to 8 dbs in the
illuminated region and O to 5 dbs in the shadow region of the screen.
The graph (5) gives much higher levels of attenuation than the experimental
results. However this is to be expected because no practical surface is
completely soft. The graphs (6) and (7) give much more realistic levels
of attenuation. The experimental results are consistent with the
theoretical upper bounds predicted in graphs (6) and (7) for a perfectly

absorbing surface.



Appendix A
We shall prove that on the cut sheet for which % = \4(&?1))2’)

equals k vhen Y =0 , and %,cc) = J(\/(zh) + J?‘E’)‘)
XZ(O)SJ(J(ZM)“J@)‘ then the expression (26) is valid for all V.

Proof

e Ky ()= Vlkev) and K_(») = J{kov)

then from the way we have defined K on this cut sheet we also have

Kel(o) = k" K_(o)= k™

?

'f( . _ 7 " .
+(o+i0) = | Ky (o) , K_(o+i0)= FUKR ()] as o 4o

Ke(oxi¥)= e (i0]e™ ™ % (oria) = x_ct v T 0 > o

‘k - . :..i,n - - 5
+(oxio) -(-“‘/4-( f?")’) 7<-(*¢"’:t(,o)= [’K.(-o‘“)l,' XS U >

(a1)
From the way we have defined %; (v) and X, ()
at V=0 one can obtain by analytic continuvation the

following resulis

%,(0) = (R +@) Z.00) = (VK] (i)

%,{Wié@)m ’%;(o-), R

Xa(otio) =T alo)]; as o-smm

Zi(orir)=1%,(+v)e ‘"u’% X (0t ix)= | Xo(ziv)| " 378

5 wo Ty o

+ ur'/

X, (-o+i0)=] vc,c-o-)le-"""’ﬁ HoCotio)= [%,tNE™ ws oo

(a2)



From (A1) and (A2) it can be seen that Ko ()= /‘Z,(?’)%q,(ﬁ) .
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Appendix B
The solution of the equations (23) is eguivalent to the solution of the

solution of the equation

$. Y= 2 (=) (1)
\f(lh__ ‘3/‘2“’)‘ 2

where Y= \I(f’s-H)) 3 the square root quantities being defined as in

appendix A. We now show how the solubtions (24) and (25) are obtained in

an ad-hoc manner from the equation {(1B).
We may write (1B) in the form

VIR +Y) & (9) = P, -¥) , (2B)
Wizw - %)

thence by inspection a particular solution of the eguation (1B) is given

%§+(X): 1 —— gﬂfﬁ): J(JQQ“P?Y

TR+

We now look for a general solution which will take account of the edge

(3B)

conditions {see (10))and the incident wave pole effect (see (19) and (20)).

Such a solution is given by the expressions

B0 = £CO) b= -0 ER) (i2)

o,
VEZR+Y)
where
¥
fﬁ(ﬁf)—~ f;%ﬁ A.Y (58)
: n= - 50
We know from the edge conditions that Ap= 0 for ng -2, and also since there

are only two equations to satisfy for the incident wave pole effect AHE 0

nwy 1. Thus the general solution is assumed to take the form

E (o) - (A = Aoa’)m) (= (A YNGR

The two unknown coefficents A;1 and AO are obtained from the equations

(19} and {20).
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