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Abstract

In this paper the most general class of (2x2) - matrices is determined, which
permit a Wiener-Hopf factorisation by the procedure of Rawlins and Williams {1].
According to this procedure, the factorisation problem is reduced to a matrix
Hilbert problem on a half-line, where the matrix involved in the Hilbert problem

is required to have zero diagonal elements.

Introduction

In the work of Rawlins and Williams [1] a Wiener-Hopf factorisation of the

matyix

(1)

o~

F(K) G(X)F(K)
Ale) = ( )
H(K) -GKYEEK)

was carried out. In the expression (1) F, G, and H are analytic functions
(except possibly at K = 0) of ‘the variable K = (kz-dz)%, where o is a complex
variable. and k a constant with positive real and imaginary parts. The branch
of the square root is chosen such that K = k at o = 0, with the branch cuts

C and C' 1ying along the half-lines a=-k=8§, and o =k + &, & > 0,
respectively. It was shown in [1] that provided F, G and H do not have any
zeros in the cut o-plane and G(K) ='jG("K) then the matrix (1) could be

factorised in the form

Ala) = DL ()

where U(e) and L(o) are non-singular matrices whose elements are analytic

for Im(a) > - Im(k), and Im(a) < Im(k), respectively.

The ecrux of the technique of factorisation depended on being able to assume
U(a) to be analytic everywhere except along the branch cut C through
o = <k whilst L(a) to be amalytic everywhere except along the branch cut c'

through o = k, and then to show that

0 g(a)
) , (2)

AT (@) =(
hia) 0

where g(a), h{a) are specific functions, and where the suffices # denote

values evaluated on the upper side and lower side of the branch cut

C:a=~-%k=-35, 6 >0,



Professor J. Boersma in his referee report of [1], asked the guestion as to
whether (1) is the most general matrix, with the same branch cuts, for which

the matrix product g;(a)é;l(a) takes the form (2). He conjectured that it

would not be. In this note we confirm his conjecture, and give the most

general form of the class of (2x2)-matrices which produce zeros in the diagonal
for the Hilbert problem.

We shall show that the most general form is:

azi1{a) ayy{e){Fila) + (kz-az)—st(a)}

~

s@ = ) (3
ayy (o) azy (@) {Fi(a) - (k%-a®)"*F,(a)}

A an) kot

\

) (1 Fl(&)\
agy (o) - aza(a)(kz"u2)~% 0 Fz(&)} ,

with aji{a)ay,(@)Fz{(a) # 0 in the cut plane, where aji{(a),az1(a) are analytic
functions in the cut plane, (with branch cuts € and C'), and Fi(a) and Fj{(a)
are analytic in the entire a~plane except possibly along the branch cut C'. If further

A(a)=A(-0) then Fy{(c)=E;(a), Fy(a)=E;(0) where E;(a) and E,(o) are analytic in the
entire o-plane.

Since the post multiplication of A(a) by an entire or I matrix, will not affect

A;(a)érl(a), the basic general form could be taken to be:

(&11(a) all(u)(kz*az)“%) . (3")
(@) —apr (o) (P-a?)

This matrix may be post multiplied by an arbitrary L matrix and/or pre multiplied

by an arbitrary U matrix yielding a matrix that can also be factorised.

Derivation of the general form (3)

Consider the matrix

ayy{a) a2 (a)
é(&) e ( ) »

azife) azz(ﬁ)

where a;;(a); a1a(@), az1{a),ar,(0) are supposed to be analytic functions in the

cut og-plane, and det &(u) # 0 in the cut a-plane. .
Then ‘ + - . - + - + -
1 a11dzz — a3zaz1 &i2d31 - 611812) “
....]_ R S .
A4 (A7 (o) detA (o) ( + - + - + - 4 - ’
o~ dapid822 — &Aazd823 azz2811 azi1d8312



where det A (a)— (al1azz - a12321) % 0. 1In order that (4) should have the

form (2), i,e, zeros on the dlagonal we require

+ - + - + -+ -
ajjdss = ai2d21 , and azsaz; = 221812

_ . _ - -
ignoring the trivial situation where ay;(8)Z0, and/or @21(@)-0 :
(312_)* - (33.5,)“ -0, (5)
d34 821
(322)+ - (312)" =0, (6)
a1

2o

or,

where asi(a) # 0,-and ay{a) # 0 on C .

Adding and subtracting (5) and (6) gives

+ e
(812 + 822) - (312 + 322) = 0, o EC (7)
aza azi ai11 éz1
+ ——
(aaz _ azz) + (312 - 322) = 0 . o € C (8)
a3 apy :

a1 da23

i ! . .
Using the fact that {(ka_az)%}i = ii[k-+a]2(k—~a)2_we can rewrite (8) in the form

[(kzuaz) 312 -~ &22):[+ - [(kzﬁmz)i‘(il?_ - EE_?;)}“
ayy as; a3 a1

Now provided a;;(¢) and a;i;{c) are non-zero in the cut plane and satisfy the

)

0, a€C (9)

conditions

a3z azz
—_— OHkLﬁ%u], as a~>++*k, 0<u<it,
gy, 854 -

B

ai2 azz -
L 2L - 0 (kZ-0®)Y %] , asa >+t k ;0<v< 1,
a1 an1 ’ -

then the most general solution of (7) and (9) which has no pole singularity at
o = tk and no other singularities in the cut plane exfept a branch cut along

C'" is given by (Muskhelishivili [2]) .



212, 822 2F 4 (o) (10)
2313 831 :

and

-4

a a
22222 o 0F (o) (K2-a?)

4y, a9

(11

respectively, where F(a) and Fg(a) are analytic in the entire plane except:

possibly aleong the branch cut C'. Adding and subtracting (10) and (11) gives

ary (@) {Fi(o) + Fz(u)(kzwaz)_i} .

azz (o)

a22(@) = azs(@){F1(@) - Fala)(k2-a2) 2} |

If &(u) = &(—u) then Fi(a) and Fg(ﬁ) are analytic in the entire complex plane,

as the following analysis will show.

If A(e) = A(-a) then aij(a) = aij(—u), i,j = 1,2, and in an exactly analogous
way one obtains similar equations to (7) and (9) on carrying out evaluations on

the branch cut C':

ayy azayt aiz dgo\"
(__, SR S _“u) =0 , a€cCc', (7")
ai1 a2 \ai1x a2 _

2 2 % 412 - g2z ¥ 2 2-£—alz - 322\ " ' 1
[}k - ) (E;I g;?}} - [}k -5, ") (E;I- g;qjl = 0, a€clC’, (9"

where now * corresponds to the lower and upper side of C’, respectively.

Adding (7) to (7') and (9) to (9") gives

212  dz2\% ayz | @22\7 ,
(i P e T o
azy asiy i1 az1 .

2_.2 i a1z 622}+ [ 2_.2 4 d12 322\]“ 1 n
(k*—a) <EII EZI) - 1(k*~a*) (EI;.' E;I =0, 0€CUC, g™

Thus the most general solution of (7") and (9") which has no pole singularity at

o = +k and no other singularities in the cut a-plane is given by:

i}

a11(a){E1(a) + Ez(u)(kz“az)“i} ,

221 () () = Ep(e) (k2-a?) H}

alz(u)

i

asz{a)

where Ei(a) and Ep(a) are analytic in the -entire o-plane.

0, and Eg(a) = KG(X),

[

If in particular we let ajj{o) = F(K), ax;(a) = H(K), E;(a)
(the condition G(K) = -G(-K) ensures that KG(K) is an entire function) we obtain

the special form considered in [1] .



Following the procedure outlined in Rawlins and Williams [1] a particular
factorisation of the matrix (3), which will be useful in applications, is

given by Aa) = E(O)(Q)[kfo)(a)]ﬁl where

i
4

} } i

[W1(a)]1" W2 (a)]
I RO LTSI LT RS L

) @ @1 (e 3
U (e) = o

[Wi(e)]

Wila) and Wa{o) ére solutions of the standard Hilbert problems on the half-

line C:
[eniy (@)1 - [2nWa ()1 = fnlg(a)h(a)] ,
[ (ko) Fomi ()17 - [ (eta) taniy (@)1 = ifk+alonlga) /h(a)]
where
g(a) = (a1p(adalifo) - ali(w)arz(a))/det & (o) = alile)/aza(a) ,
h(a) = (a21(a)azz2(a) = azs(adazi(e))/det A _(a) = azi(a)/az1()

The set of solutions for Wy(a),W;(a) is further restricted by the requirement that
the factor matrix k(o)(u) is non~singular at a = -k and its elements should be
analytic in the region Im(a) < Im(k). It is interesting to note that the
functions Fi(a), Fz(0) have dropped out completely. This means that for all
matrices of the form (3) the factorisation problem reduces to the same Hilbert

Problem! The explanation for this follows from the sentence above the

expression (3').



The author is indebted to Professor J. Boersma of the Technical University,
Eindhoven, and W. E. Williams of Surrey University, Guildford, for making

suggestions for improvements and amendments to the original manuscript.
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