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Abstract—In this paper, we introduce a new class of discrete-
time neural networks (DNNs) with Markovian jumping parame-
ters as well as mode-dependent mixed time delays (both discrete
and distributed time delays). Specifically, the parameters of the
DNNs are subject to the switching from one to another at different
times according to a Markov chain, and the mixed time delays
consist of both discrete and distributed delays that are dependent
on the Markovian jumping mode. We first deal with the stability
analysis problem of the addressed neural networks. A special in-
equality is developed to account for the mixed time delays in the
discrete-time setting, and a novel Lyapunov–Krasovskii functional
is put forward to reflect the mode-dependent time delays. Suffi-
cient conditions are established in terms of linear matrix inequal-
ities (LMIs) that guarantee the stochastic stability. We then turn
to the synchronization problem among an array of identical cou-
pled Markovian jumping neural networks with mixed mode-de-
pendent time delays. By utilizing the Lyapunov stability theory and
the Kronecker product, it is shown that the addressed synchroniza-
tion problem is solvable if several LMIs are feasible. Hence, dif-
ferent from the commonly used matrix norm theories (such as the

-matrix method), a unified LMI approach is developed to solve
the stability analysis and synchronization problems of the class of
neural networks under investigation, where the LMIs can be easily
solved by using the available Matlab LMI toolbox. Two numerical
examples are presented to illustrate the usefulness and effective-
ness of the main results obtained.

Index Terms—Discrete-time neural networks (DNNs), linear ma-
trix inequality, Markovian jumping parameters, mixed time de-
lays, stochastic stability, synchronization.
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I. INTRODUCTION

T HE last few decades have seen successful applications of
recurrent neural networks (RNNs) to a variety of areas

including pattern recognition, associative memory, and combi-
national optimization [1], [31], [32]. Among many dynamical
behaviors of the neural networks, stability and synchronization
are two of the most important ones that have received consid-
erable research attention. For instance, if a neural network is
employed to solve some optimization problems, it is highly de-
sirable for the neural network to have a unique globally stable
equilibrium, and it is not surprising that the stability analysis of
neural networks has been an ever hot research topic resulting
in enormous stability conditions reported in the literature. On
the other hand, the synchronization in coupled identical delayed
neural networks has been shown to have an important impact on
the fundamental science (e.g., the self-organization behavior in
the brain). The synchronization hypothesis for brain activities
has been confirmed by modern neurophysiological experiments
(such as olfactory bulb and cortex, visual cortex, hippocampus,
neocortex, and thalamo–cortical systems) [12], [17]. In [9], the
Lyapunov functional method and the Hermitian matrix theory
have been employed to investigate the global synchronization of
the coupled neural networks by defining a distance between any
point and the synchronization manifold. For more details con-
cerning synchronization of neural networks, see [5], [24]–[27],
[42], and the references cited therein.

Time delay exhibits as a typical characteristic of signal trans-
mission between neurons, and therefore, becomes one of the
main sources for causing instability and poor performances of
neural networks (see, e.g., [1] and [13]–[15]). Time delays can
be generally categorized as two types: discrete and distributed.
Discrete time delay seems easy to be identified in practice and,
therefore, stability analysis for RNNs with discrete delays has
been an attractive subject of research in the past few years. Var-
ious sufficient conditions, either delay-dependent or delay-inde-
pendent, have been proposed to guarantee the global asymptotic
or exponential stability for the RNNs; see, e.g., [6], [34], [38],
[39], and [41] for some recent publications. Distributed delays
are due primarily to the presence of an amount of parallel path-
ways of a variety of axon sizes and lengths, which provides a
neural network with a spatial nature. Distributed delays over a
certain duration of time have been introduced in [30] and [36]
such that the distant past has less influence compared to the re-
cent behavior of the state. Recently, the global stability analysis
problem for general RNNs with mixed time delays (also called
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discrete and distributed delays) has received an increasing re-
search attention and many relevant results have been reported
in the literature; see, e.g., [21], [38], [39], [41], and the refer-
ences therein.

It is quite common for RNNs to have problems in catching
long-term dependencies in the input stream. This is referred
to as the information latching problem [2] that can be handled
by extracting finite-state representations (also called clusters,
patterns, or modes) from trained networks [3], [7], [8], [11].
Recently, it has been shown in [37] that the switching (or
jumping) between different RNN modes can be governed by
a Markovian chain. Hence, an RNN with such a “jumping”
character may switch from one to another according to Mar-
kovian chain, and therefore, RNNs with Markovian jumping
parameters are of great significance in modeling a class of
neural networks with finite network modes. Dynamics analysis
problem of Markovian jumping RNNs has recently stirred
initial research interests. For example, in [40], the exponential
stability problem has been first addressed for a class of delayed
recurrent neural networks with Markovian jumping parameters.
In [44], a delay-dependent approach has been developed to
deal with the stability analysis problem for Markovian jumping
stochastic Cohen–Grossberg neural networks with mixed
time delays. In [33], a noise-induced stabilization method has
been proposed for RNNs with mixed time-varying delays and
Markovian switching parameters.

It is worth pointing out that, up to now, all the aforementioned
results concerning dynamics analysis problems for delayed
RNNs with or without Markovian jumping parameters have
been applied to continuous-time models. In implementing and
applications of neural networks, however, discrete-time neural
networks play a more crucial role than their continuous-time
counterparts in today’s digital world. In order to investigate the
dynamical characteristics with respect to digital signal trans-
mission, it is usually essential to formulate the discrete-time
analog [28], [35]. In the past few years, various stability criteria
have been proposed for discrete-time neural networks (DNNs)
in the literature; see, e.g., [18], [43], and [45] for DNNs without
time delays and [10], [19], and [20] for DNNs with discrete
time delays. Note that pioneering work has been carried out
in [29] for preserving exponential stability in discrete-time
analogs of artificial neural networks with distributed delays.
In [25]–[27], Lu and Chen investigated the synchronization
problem for an array of discrete-time coupled complex networks
in a systematic way and obtained a series of elegant results by
using innovative manifold/graph approaches. Unfortunately,
so far, the stability analysis and synchronization problems
for discrete-time Markovian jumping neural networks with or
without mixed mode-dependent time delays have not been fully
investigated yet and remains challenging. The major challenges
are as follows: 1) how to represent the finitely distributed time
delays in the discrete-time domain; 2) how to deal with mode-de-
pendent distributed time delays; and 3) how to establish a unified
framework to handle both the Markovian jumping parameters
and mixed time delays. It is, therefore, the main purpose of this
paper to make the first attempt to handle the listed challenges.

In this paper, we consider the stability analysis and synchro-
nization problems for a new class of DNNs with Markovian

jumping parameters as well as mode-dependent mixed time de-
lays. Note that the mixed time delays comprise both the dis-
crete and distributed delays that are dependent on the Markovian
jumping mode. We first develop a special matrix inequality to
account for the mixed time delays in the discrete-time setting,
and then a novel Lyapunov–Krasovskii functional is proposed to
reflect the mode-dependent nature of the time delays. A linear
matrix inequality (LMI) approach is utilized to derive suffi-
cient conditions guaranteeing the stochastic stability of the con-
sidered neural networks. The synchronization problem is then
studied among an array of identical coupled Markovian jumping
neural networks with mixed mode-dependent time delays, and
it is shown that the addressed synchronization problem is solv-
able if several LMIs are feasible. Different from the commonly
used matrix norm theories (such as the -matrix method), a
unified LMI approach is developed to solve both the stability
analysis and synchronization problems of the class of neural net-
works under investigation, where the LMIs can be easily solved
by using the available Matlab LMI toolbox [4]. Two numerical
examples are presented to illustrate the usefulness and effective-
ness of the main results obtained.

Notations: Throughout this paper, and denote, re-
spectively, the -dimensional Euclidean space and the set of all

real matrices. The superscript “ ” denotes the transpose
and the notation (respectively, ) where and
are symmetric matrices, means that is positive semidefi-
nite (respectively, positive definite); is the identity matrix with
compatible dimension. refers to the Euclidean vector norm;
the notation stands for the Kronecker product of matrices

and . If is a matrix, and denote the min-
imum and the maximum eigenvalue, respectively. In symmetric
block matrices, we use an asterisk “ ” to represent a term that is
induced by symmetry and stands for a block-diagonal
matrix. and will, respectively, mean the expectation
of and the expectation of conditional on . Matrices, if their
dimensions are not explicitly stated, are assumed to be compat-
ible for algebraic operations.

II. PROBLEM FORMULATION

In this section, we will introduce the model of neural net-
works, give the definition of the stability related, and put for-
ward the problem to be dealt with in this paper.

Let be a Markov chain taking values in a finite
state space with probability transition ma-
trix given by

where is the transition probability from to
and .
Consider a discrete-time -neuron neural network with

modes described by the following dynamical equation:

(1a)

(1b)
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where is the neural state
vector; the constant matrices ,

describe the rate with which the each
neuron will reset its potential to the resting state in isolation
when disconnected from the networks and external inputs;

and
are, respectively, the connection

weight matrix, the delayed connection weight matrix, and the
distributively delayed connection weight matrix; denotes
the discrete time delay in mode while describes the
distributed time delay, and both of them are mode dependent.
In (1a), ,

, and
are the nonlinear activation func-

tions; and describes the initial condition.
In the sequel, let with

and . Furthermore, we denote
, and .

Remark 1: The discrete-time recurrent neural network (1a)
can be considered as a discrete analog of the continuous-time
recurrent neural network of the form

(2)

where denotes a continuous-time Markov process, and both
and , describing discrete and distributed time de-

lays, respectively, are mode dependent as well. For the contin-
uous-time case, the neural networks with distributed time delay
first appeared in [16], and has now been studied extensively.
On the other hand, the neural networks with both discrete and
distributed delays are receiving considerable research attention
[21].

Usually, a neural network model contains a constant vector
representing the external bias on the neurons [21], [22]. How-
ever, there is a standard way to shift the system equilibrium point
to the origin, and the constant vector will disappear accordingly.
Therefore, for the sake of simplicity, such an external bias is
dropped in (1a) without loss of generality.

Throughout this paper, we make the following assumptions.
Assumption 1: , , and are bounded functions

and satisfy .
Assumption 2 [21], [22]: For the activation functions ,

, and , there exist constants , , , , , and
such that

(3)

(4)

(5)

Remark 2: As pointed out in [21] and [22], the constants ,
, , , , and in Assumption 2 are allowed to be pos-

itive, negative, or zero. Hence, the resulting activation functions

could be nonmonotonic, and are more general than the usual sig-
moid functions and the recently commonly used Lipschitz con-
ditions. Such a description is very precise/tight in quantifying
the lower and upper bounds of the activation functions, hence
very helpful for using LMI-based approach to reduce the pos-
sible conservatism.

Definition 1: Neural network (1) is said to be asymptotically
stable in the mean square if, for any solution of (1), the
following holds:

Furthermore, neural network (1) is said to be exponentially
stable in the mean square if, for any solution of (1), there
exist constants and such that

In this paper, we will first deal with the stochastic stability
problem for the system (1), and then turn to the synchroniza-
tion problem between the array of identical neural networks.
By constructing new Lyapunov–Krasovskii functionals, suffi-
cient conditions for the stability and synchronization problems
are derived. These criteria are expressed in the form of LMIs,
which are easily checked by using the Matlab LMI toolbox.

III. STOCHASTIC STABILITY

This section is devoted to the stability analysis for system (1).
To start with, we introduce some lemmas to be used in deriving
our results.

Lemma 1 [21]: Let and be any -dimensional real vec-
tors and be an symmetric positive-semidefinite matrix.
Then, the following matrix inequality holds:

Lemma 2 [23]: Let be a symmetric positive-
semidefinite matrix, be a vector, and

be scalars, where is a positive integer. Then, the
following inequality holds:

(6)
Lemma 3: Suppose that is a posi-

tive-semidefinite diagonal matrix. Let
, and be a contin-

uous nonlinear function satisfying

(7)
with and being constant scalars. Then

or
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where and
.

Proof: Notice that (7) is equivalent to

or

where denotes the unit column vector having “1” element on
its th row and zeros elsewhere.

Since , it follows readily that

(8)
namely

This completes the proof of this lemma.
Lemma 4 (Schur Complement [4]): Given constant matrices
, , and where and , then

if and only if

Lemma 5: Let , ,
, and with

. If and the sum
of entries in each row of is zero, then

Proof: According to the definition of Kronecker product of
matrices, we have

Since the sum of entries in each row of is zero, then

Therefore

Notice that here we have used the condition
Lemma 6: Let be a symmetric matrix and suppose that

the sum of all elements in each row of is zero, then for any
positive integer , the sum of all elements in each row of is
zero.

Proof: It can be verified easily by simple matrix operations.

Hereafter, we denote

Now we state the main result in this section.
Theorem 1: Under Assumptions 1 and 2, the delayed neural

network (1) is asymptotically stable in the mean square if there
exist a set of matrices , two matrices and ,
and three sets of diagonal matrices , , and
such that LMI (9) shown at the bottom of the page holds, where

(10)

(11)

(9)
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(12)

(13)

Proof: For presentation convenience, we introduce some
notations in the equation at the bottom of the page.

By Lemma 4, inequality (9) is equivalent to

(14)

where

Consider the stochastic Lyapunov–Krasovskii functional
as follows:

(15)

where
(16)

(17)

(18)

(19)

(20)

Notice that and are used to
deal with the term involving the discrete delay in (1a) while

and are used to deal with the
term involving the distributed delay.

For , we conduct the following computation:

(21)

and

(22)

Authorized licensed use limited to: Brunel University. Downloaded on October 30, 2009 at 05:44 from IEEE Xplore.  Restrictions apply. 



LIU et al.: STABILITY AND SYNCHRONIZATION OF DISCRETE-TIME MARKOVIAN JUMPING NEURAL NETWORKS 1107

and

(23)

and

(24)

and

(25)

From (21)–(25), it follows that

(26)

where and are defined in (12) and (13), respectively.
Next we will make estimate on the terms in (26) to obtain the

stability of the system (1) under given conditions.
From Lemma 2, one has

(27)
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In view of Assumptions 1 and 2 and using Lemma 3, it follows
that

(28)

(29)

(30)

Substituting (27)–(30) into (26) leads to

(31)

Let . In terms of (14), it

is obvious that . Therefore, from (31), it follows readily
that

which implies

(32)
For an arbitrary positive number , it can be inferred from (32)
that

which results in

It can now be concluded that the series is con-
vergent, and therefore

This completes the proof of the theorem.

Remark 3: In Theorem 1, we have obtained the LMI-based
conditions ensuring system (1) to be asymptotically stable in the
mean square. The conditions are easy to be checked as LMIs can
be effectively solved by the algorithms such as the interior-point
method from Matlab toolbox. We like to point out that, under the
same conditions, the mean square exponential stability can also
be guaranteed following a similar method used in [22].

IV. SYNCHRONIZATION

In the previous section, we have analyzed the stability for a
single neural network. In this section, we will consider an array
of coupled identical neural networks and deal with the synchro-
nization problem of the coupled neural networks.

Consider a coupled system of identical neural networks
described by

(33)

where is the
state vector of the th neural network; if ,

is a matrix linking
the th state variable if ; and

is the coupled configuration matrix of
the network with but not all zero. As usual,
the coupling configuration matrix is symmetric
(i.e., ) and satisfies

and

(34)

All other symbols in (33) are defined as in the previous section.
Remark 4: The coupling satisfying for

is called linear coupling, which is used exten-
sively. In the case of the linear coupling, when the states of the
coupled neural networks are identical to each other, the coupled
networks are decoupled.

Let

With the matrix Kronecker product, we can rewrite the cou-
pled neural networks (33) in the following compact form:

(35)
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Remark 5: It should be pointed out that the discrete and/or
the distributed delay state coupling(s) can be considered in the
coupled system (33) or (35) without any difficulty. However, to
avoid tedious calculation and without loss of generality, we only
discuss the state coupling in (33) or (35).

Definition 2: The coupled system (35) is said to be asymptot-
ically synchronized in the mean square if the following holds:

The coupled system (35) is said to be exponentially synchro-
nized in the mean square if, for any solution of (35),
there exist scalar constants and such that

In the sequel, for notation simplicity, we denote by the
entry of the matrix .

Theorem 2: Under Assumptions 1 and 2, the coupled system
(35) is asymptotically synchronized in the mean square if there
exist a set of matrices , two matrices and ,
and three sets of diagonal matrices , ,
and such that the following LMIs hold:

(36)

where is defined in (37) at the bottom of the page, and
, and are defined as in Theorem 1.

Proof: For presentation convenience, we denote
,

, ,
, , and

.
Consider the stochastic Lyapunov–Krasovskii functional

as follows:

(38)

where

(39)

(40)

(41)

(42)

(43)

with

For , we perform the following computation:

(37)
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(44)

Notice that

(45)

(46)

(47)

(48)

(49)

Substituting (45)–(49) into (44) leads to

(50)

Similar to the proof in previous section, we have

(51)

(52)

(53)

(54)

Authorized licensed use limited to: Brunel University. Downloaded on October 30, 2009 at 05:44 from IEEE Xplore.  Restrictions apply. 



LIU et al.: STABILITY AND SYNCHRONIZATION OF DISCRETE-TIME MARKOVIAN JUMPING NEURAL NETWORKS 1111

Therefore, it follows that

(55)

Using Lemmas 5 and 6, we derive from (55) that

(56)

For the same reason as in Theorem 1, we have

(57)

(58)

(59)

and

(60)

Therefore, from (56) as well as (57)–(60), it follows that
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(61)

where is defined in the equation at the bottom of the
page.

Let .
Then, it is obvious that , and .
From (61), it follows that

which further implies that

(62)

Similarly to the proof of Theorem 1, we can derive that
, namely,

. The proof of
this theorem is complete.

Remark 6: In Theorem 2, LMI-based conditions have been
obtained that ensure the coupled system (1) of identical
neural networks to be asymptotically synchronized in the mean
square, and the criterion is expressed in terms of the solution to
a set of LMIs that can be effectively solved by LMI toolbox. We
mention here that the mean square exponential synchronization
can also be guaranteed under the same conditions using the
method developed in [22]. The reason we consider the asymp-
totic synchronization is to avoid unnecessarily complicated
mathematical derivations.

V. NUMERICAL EXAMPLES

In this section, two examples are presented to demonstrate the
effectiveness of our main results.

Example 1: Consider a three-neuron neural network (1) with
the following parameters:

Take the activation functions as follows:

It is easy to see that and
. With the above parameters,

by using Matlab LMI toolbox, we solve the LMIs (9) and obtain
the feasible solution as follows:
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Fig. 1. Evolution of state.

From Theorem 1, it follows that the delayed mode-dependent
Markovian neural network (1) with the given parameters is glob-
ally asymptotically stable in mean square. The numerical simu-
lation further verifies this result (see Fig. 1).

Example 2: Now, consider the coupled neural network (35) of
multiple identical mode-dependent Markovian neural networks.
For simplicity, we take and . Other parameters are
given as follows:

In addition, the activation functions are given as follows:

It is easy to check that

With the above parameters, by using Matlab LMI toolbox, we
can find the feasible solutions to the LMIs (36) as follows:
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Fig. 2. Evolution of synchronization error.

Then, it follows from Theorem 2 that the coupled Markovian
neural network (35) with the given parameters is synchronized
in the mean square. The numerical simulation shows that the
synchronization error approaches zero. In Fig. 2,

, , and
.

VI. CONCLUSION

In this paper, we have introduced a new class of DNNs with
Markovian jumping parameters as well as mode-dependent
mixed time delays. We have first dealt with the stability analysis
problem of the addressed neural networks. A special inequality
has been developed to account for the mixed time delays in
the discrete-time setting, and a novel Lyapunov–Krasovskii
functional has been put forward to reflect the mode-dependent
time delays. Sufficient conditions have been established in
terms of LMIs that guarantee the stochastic stability. We have
then turned to the synchronization problem among an array
of identical coupled Markovian jumping neural networks with
mixed mode-dependent time delays. By utilizing the Lyapunov
stability theory and the Kronecker product, it has been shown
that the addressed synchronization problem is solvable if

several LMIs are feasible. A unified LMI approach has been
developed to solve the stability analysis and synchronization
problems of the class of neural networks under investigation,
where the LMIs can be easily solved by using the available
Matlab LMI toolbox. Two numerical examples have been
presented to illustrate the usefulness and effectiveness of the
main results obtained.
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