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ABSTRACT:  

Decision making in modern supply chains can be extremely daunting due to their 

complex nature.  Discrete-event simulation is a technique that can support decision 

making by providing what-if analysis and evaluation of quantitative data.  However, 

modelling supply chain systems can result in massively large and complicated models 

that can take a very long time to run even with today’s powerful desktop computers.  

Distributed simulation has been suggested as a possible solution to this problem, by 

enabling the use of multiple computers to run models.  To investigate this claim, this 

paper presents experiences in implementing a simulation model with a “conventional” 

approach and with a distributed approach.  This study takes place in a healthcare 
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setting, the supply chain of blood from donor to recipient.  The study compares 

conventional and distributed model execution times of a supply chain model 

simulated in the simulation package Simul8.  The results show that the execution time 

of the conventional approach increases almost linearly with the size of the system and 

also the simulation run period.  However, the distributed approach to this problem 

follows a more linear distribution of the execution time in terms of system size and 

run time and appears to offer a practical alternative.  On the basis of this, the paper 

concludes that distributed simulation can be successfully applied in certain situations. 

 

Keywords: Distributed Simulation, Supply Chain Systems, Healthcare Operations, 

Simulation software, Simul8. 

 

Running title: Comparing conventional and distributed simulation 

 

INTRODUCTION  

At its simplest, a supply chain is the entire process by which a product is 

manufactured and sold, starting “upstream” with the procurement of raw materials 

and moving downstream through manufacture, assembly, distribution, sale and 

support (Stevens, 1989). However, supply chains are in reality much more complex 

(Surana et al., 2005).  For example, there are backwards flows of information that 

influence the behaviour of the chain and also supply and demand are often variable. 

Moreover, it is now recognised that the supply chain functions much better if viewed 

as a whole, rather than by a “silo” approach where each component in the chain acts 

independently of its neighbours (Cooper and Ellgram, 1993). Modern supply chain 

management approaches favour a global, holistic view in which the individual 

echelons share information and trust each other, rather than simply trying to optimise 

their own local processes (Chapman and Corso, 2005). Most of these multi-echelon 

and complex supply chains, including that of blood, can benefit from Operational 

Research techniques. Among the quantitative methods, simulation is undoubtedly one 

of the most powerful techniques to apply, as a decision support system, within a 

stochastic supply chain environment (Terzi and Cavalieri 2004) Discrete-event 

simulation is a commonly used modelling technique (Robinson, 2005; Law and 
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Kelton, 2000; Pidd, 1998) which has been used to analyse supply chains (Banks et al., 

2002). It is a tool which can provide multi-decisional support in the context of “what-

if” analysis and evaluation of quantitative benefits.  

 

Practitioners in this area typically use visual interactive modelling environments or 

Commercial Off-The-Shelf (COTS) Simulation Packages, such as AnyLogic™, 

Arena™, Simul8™ and Witness™, that exploit developments in visual interactive 

modelling to facilitate, for example, model building and experimentation (Swain, 

2003).  The size of a supply chain can be potentially quite large and can consist of 

many complex elements. The simulation of a supply chain can therefore demand the 

creation of large models that, it is argued, are beyond the capability of a single 

computer to simulate (Taylor, et al., 2002; Lendermann, et al. 2001; Gan, et al. 2000).  

This claim is also one of the main drivers for distributed simulation, a technique 

where models are implemented over many computers in a parallel or distributed 

fashion with the goals of reducing the execution time of a single simulation run, 

sharing the memory needs of a simulation across several computers and the linking of 

simulations sited in different locations (Fujimoto, 1999; 2003).   

 

Katsaliaki and Brailsford (2006) describe experiences with the use of simulation to 

investigate the supply chain of blood from the National Blood Service (NBS) Centre 

to hospitals. The purpose of the experiments is to achieve improved inventory control, 

ordering and distribution policies, which will bring less wastage, less shortage and 

provide better quality service. This is was done by reconfiguring the processes and 

parameters of the system.  A problem identified in this work is that as the system 

being modelled grows in size and complexity, the time taken to perform one 

simulation run increases to a point that makes the use of simulation infeasible.  

Distributed simulation, as presented in literature, appears to offer a solution to this 

problem by sharing the processing of the supply chain model over several computers. 

Note that this is far more complex than just executing individual replications or 

experiments on different computers.  As will be seen in our paper, when a model is 

split into “submodels” that run on different computers, the simulation of these 

submodels must be coordinated so that every event in the simulation is executed in 

correct order.  This is a non trivial problem and it is the aim of an international 

standards group to develop a generalised solution.  To investigate this claim, this 
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paper therefore presents experiences in implementing a “conventional” simulation in a 

distributed setting.  The paper first introduces the supply chain of blood and the 

conventional simulation approach that was taken.  The distributed approach is then 

described.  The paper then compares the two approaches on the basis of simulation 

run times for increasingly larger models.  Results are presented and it is shown, at 

least in this case, that run times for the conventional approach appear to increase 

almost linearly with the size of the system and also the simulation run period.  

However, in the distributed approach, run times follow a more linear distribution of 

the execution time in terms of size and run time.  After a brief discussion, the paper 

concludes that this technique can be successfully applied in certain situations to the 

simulation of large and complex supply chains and further research is needed to 

investigate the generality of this technique.  We hope that the contribution of this 

paper will add to the growing body of literature aimed at developing a generalised 

solution to distributed simulation in this area. 

BACKGROUND TO THE SUPPLY CHAIN OF BLOOD  

The initial study was carried out in collaboration with the National Blood Service 

(NBS). The NBS consists of 15 Process, Testing and Issuing (PTI) Centres which 

together serve 316 hospitals across England and North Wales. Each PTI Centre thus 

serves around 20 hospitals. We worked in particular with the Southampton PTI 

Centre. 

 

The NBS collects whole blood by voluntary donation, mainly from local venues such 

as church halls or places of employment. The blood is transported back to the nearest 

PTI Centre where it is tested for ABO and Rhesus grouping and infectious diseases 

such as HIV. A unit (450ml) of whole blood is then processed into around 115 

different products, of which the main three are red blood cells (RBC), platelets and 

plasma. RBC have usually a shelf life of 35 days and platelets of 5 days, but plasma 

can be frozen and stored for up to a year. In this study we include only RBC and 

platelets, and these are two of the basic entity types in our model. RBC and platelets 

together comprise 85% of issues and are the chief source of wastage and shortages.  
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Blood products are stored in the PTI Centre’s blood bank until they are requested by 

the hospitals served by that Centre. There are mainly three types of delivery: the 

routine scheduled delivery, which is made on a daily basis on a multi-stop mode 

serving many hospitals at once and is free of charge; emergency delivery, prioritized 

for immediate dispatch; ad-hoc delivery, additional to routine deliveries and made to 

an individual hospital if it places an order. There is also a nationally coordinated 

scheme for transferring excess stock  

 

The ordering system is highly complex. Local practice varies and all hospitals have 

slightly different ordering policies. Hospitals determine their own optimal stock levels 

according to their estimates of demand. An order is placed with the local PTI Centre 

when inventory falls below a predetermined order point, or when rare products not 

held in stock are requested for particular patients. Different types of order can be 

placed, each with different associated costs.  

 

Individual doctors are responsible for the quantity of blood products ordered for each 

patient in the hospital.  In theory, doctors order blood according to the Maximum 

Surgical Blood Ordering Schedule (MSBOS) (BCSH, 1996) which specifies how 

much blood is required for a given operation.  The MSBOS is conservative, to allow 

for cases where extra blood might be needed if complications arise, but many doctors 

still over-order to be on the safe side. Patients should ideally be given blood of the 

same type but “mismatching” is possible in emergencies – for example, O-negative 

blood can be given to anybody.  

 

Hospitals normally receive their orders daily and the blood remains in the hospital 

bank until it is cross-matched (tested for compatibility) for a named patient. It is then 

placed in “assigned inventory” for that patient for a fixed time after the operation. If it 

is not used, it is returned to “unassigned inventory” and can be cross-matched again 

for another patient.  On average a unit will be cross-matched three to four times 

before it is used or outdated. In practice, only half of the cross-matched blood is 

actually transfused. This clearly represents a huge potential for savings since the cost 

of a single unit of RBC is around £132. 
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THE CONVENTIONAL APPROACH 

This system is clearly stochastic since the demand for blood is variable (even for 

elective surgery) depending on the type of operation and the occurrence of 

complications requiring extra transfusions. The supply is also variable since it relies 

on volunteers showing up to donate. Other organisational issues arise since the NBS 

manages the supply side but the hospitals manage the demand side. Discrete-event 

simulation was chosen to investigate the problems of this supply chain as complex 

stochastic multi-product, multi echelon perishable inventory problems have been 

shown to be intractable by analytic techniques (Donselaar et al, 2006; Goyal and Giri, 

2001). Simulation was also the technique which the majority of the researchers have 

adopted to tackle this problem since some decades ago. 

 

The model was built using the Simul8™ COTS simulation package 

(www.simul8.com).  The supply chain model is very large and complex, and requires 

extensive data. Nineteen months’ data from the Southampton PTI Centre was 

provided and analysed using the NBS information system PULSE. This gave details 

of the products supplied to each hospital, by date, time, delivery type, quantity and 

blood group. Questionnaires were sent to the hospitals supplied by the Southampton 

centre, and interviews conducted with NBS staff and hospital blood bank managers.  

There are two main categories of entities in the model; items and orders. Items are the 

individual blood units (RBC and platelets) delivered from the NBS Centre to the 

hospitals in a one-way direction, since returns of products are not allowed. Orders are 

placed by the hospital blood bank mangers to the NBS Centre for blood products, and 

represent the backwards flow of information. Requests are matched with items 

according to their characteristics (attributes) as in a Kanban system and delivered as 

appropriate. 

 

While the model runs, data are reported in an Excel file, such as the day and time of 

placing an order with the Centre, the type of order (routine, ad-hoc or emergency), the 

requested product and the amount by blood group. The model time units are minutes, 

and the remaining shelf-life of blood products is counted in minutes. However, the 

hospitals’ blood bank stock for placing orders to the NBS is checked only every hour. 

Moreover, the decision to run the model in minutes was enforced by the fact that 

http://www.simul8.com/
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many processes, such as physician requests and delivery times, could be better 

approximated in small units of time. In addition, an attempt to run the model in hours 

did not significantly accelerate the overall running time. 

 

The smallest version of the model contains the processes of the NBS Centre, from 

collection of whole blood to delivery of blood products, and the processes within a 

single medium-volume hospital. The model captures physicians’ requests for blood 

and the processes whereby the hospital blood bank checks its stock levels and places 

orders. Figure 1 shows a simplified illustration of this simulation model. For multiple 

hospitals, Figure 2 shows an example of the relationships between the NBS supply 

centre and the hospitals it serves, which in the “conventional” approach is simulated 

on a single computer.  

 

Figure 1 and 2 about here 

 

In our conventional, single computer approach the execution times were as follows.  

A single NBS supply centre with a single hospital as outlined above took 

approximately 14 minutes to run for a whole simulated year in a 1.7GHz processor 

desktop PC with 1GB RAM. The runtime rises dramatically when we add more 

hospitals to the model. For a model with a single supply centre and two hospitals the 

execution time was 78 minutes, with three hospitals it was 17.5 hours and for a single 

supply centre and four hospitals the execution time was 35.8 hours (even after 

considerable help and advice from the package vendor on model profiling).  The 

enormous number of entities in the system, each of which carries many attributes, 

increases the computation time exponentially in the beginning and then linearly even 

though there are no such elements in the functions of the model to dictate the 

particular size of the increase. This increase results from a combination of two 

different factors. Firstly, the behaviour of the system being modelled is such that all 

entities (blood units) in the system have a limited shelf life. This behaviour is 

modelled in the NBS simulation by continually scheduling events that decrease the 

shelf life of each entity by the minute. This results in an increasing number of 

computations as the number of entities flowing through the system increases.  Further, 

this also contributes to a large event list that takes an increasing amount of time to 

manipulate when new events are scheduled.  Secondly, the large event list and large 
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amount of information generated by the model further exacerbates this processing 

load as these cannot be accommodated in the computer’s random access memory 

(RAM) alone.  When RAM is exhausted, a computer’s operating system will use 

“virtual memory”, an area of storage on the computer’s hard disk, to store additional 

data.  Moving data between RAM and virtual memory is slow and adds to the 

processing time of any computation.  Thus, as a model and its event list becomes 

large, more information is generated resulting in more transfers between the RAM 

and the virtual memory, thereby contributing to a further increase of execution time.  

 

We now consider a distributed computing approach to this problem of long execution 

time.  

 

THE DISTRIBUTED APPROACH  

How can we distribute our “conventional” model across several computers?  The 

general approach taken by the field of distributed simulation is to divide and modify a 

model so that parts of the model (effectively submodels) reside on different computers 

linked together by a communication network.  (Note that this is very different to 

running separate replications or experiments on different computers) These 

“submodels” become Logical Processes (LPs) or federates that interact by 

timestamped messages that represent the interaction of one submodel with another 

(say, when an entity leaves one part of a model and arrives at another) (Chandy and 

Misra, 1979; Fujimoto, 2001).  More recently, the “practice” of distributed simulation 

has been effected on a wide scale by attempts to standardise approaches.  These 

standardisation efforts took place in the mid-to-late nineties and resulted in the IEEE 

1516 standard The High Level Architecture (HLA) that supports the general needs of 

distributed simulation (IEEE 2000).  This is rooted in the early work by Chandy and 

Misra but considerably updates it with advances in distributed computing.  The HLA 

defines the runtime infrastructure (HLA-RTI) software and the format of the data that 

is used by a collection of models (federates) running on different computers to 

interact (such a collection of models is termed a federation).  As we use the HLA in 

this paper, we will use the HLA term federate to refer to submodels running on 

different computers. 
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There have been several attempts to create distributed simulations of manufacturing 

systems and supply chains using the HLA. The first major work in the area was done 

by Straßburger (2001).  Various strategies have been investigated since then.  For 

example, McLean and Riddick (2000), Mertins et al. (2000), Hibino et al. (2002), 

Linn et al. (2002), Rabe and Jakel (2003), Straßburger et al. (2003) and Taylor, et al. 

(2005
a
) discuss the use of the HLA to support the distributed simulation of 

manufacturing systems.  This work, while contributing to the development of 

distributed simulation, presents a problem.  Virtually every author cited above uses 

different approach to distributed simulation of manufacturing and supply chains.  In 

an attempt to standardise the approach, an international standardisation group, 

Simulation Interoperability Standards Organization’s COTS Simulation Package 

Interoperability Product Development Group (CSPI PDG) (www.cspi-pdg.org), have 

produced a set of draft standards in this area and are described in Taylor, et al. (2005
b
) 

and Taylor, et al. (2006).  Related work in this area include, Wang, et al. (2005) 

discuss a general experimental test-bed used to investigate these standards.  Gan, et al. 

(2005) present a case study in the use of the standards to support semiconductor 

supply chain analysis using the COTS simulation package Autosched AP™.  The 

distributed approach used in this paper is based on the draft standards being 

developed by the CSPI PDG and can be found in full in Taylor, et al. (2006). 

 

In our distributed NBS simulation the HLA-RTI is presented as a black box.  Figure 3 

shows the conventional model of figure 2 using our distributed approach.  To give a 

brief overview of how the distributed approach works, consider a normal discrete-

event simulation.  Such a simulation uses an algorithm (simulation executive) to 

repeatedly select the next event from the event list, process it and then places any new 

events that have been generated in the correct order on the event list.  Events on an 

event list are held in ascending time (or timestamp) order and we say that a simulation 

is correct if these events have been processed in the right order.  In a distributed 

simulation, this becomes more complex.  If a submodel (federate) generates an event 

that takes place at another submodel at a given timestamp (say, an entity leaves one 

model and arrives at another submodel at the timestamp), then we must guarantee that 

that event is processed at the correct time in the receiving submodel.  This is difficult 

to do as in distributed simulation we typically do not have a global clock, i.e. each 

submodel advances in simulation time individually (this is done in the hope of 
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achieving better performance).  Events sent between submodels are done so by using 

timestamped event messages.  The correct processing of events is guaranteed by using 

an appropriate synchronisation protocol that ensures the event represented by a 

timestamped event messages are processed by a receiving submodel in the correct 

order.  In the HLA, the synchronisation protocol is implemented in the HLA-RTI.  

The HLA allows several alternatives to send and receive event messages.  Our 

approach uses HLA interactions as suggested by the CSPI PDG and are described 

more generally by (Kuhl et al, 1999).  In summary, each submodel (federate) 

represents either the NBS supply centre or a hospital running in a separate copy of 

Simul8 running on a separate computer.  When a submodel determines that an entity 

representing orders or blood is to be “sent” to another submodel, a timestamped event 

message is sent to that submodel.  Operationally, the event message is sent as a HLA 

interaction and the HLA-RTI ensures that the receiving submodel processes the event 

(the arriving entity) in the correct order with its own events.  Let us now consider the 

performance of this distributed approach. 

 

Figure 3 about here 

EVALUATION OF EXECUTION TIMES 

To investigate the distributed approach against the conventional approach, four 

scenarios were investigated.  These were one NBS supply centre serving one, two, 

three and four hospitals respectively. Before experimentation commenced, the outputs 

for the conventional and distributed models were compared to check that the same 

results for a year’s run was produced (except as noted below).  This was done to 

check that the minor modifications to link Simul8/Excel/HLA-RTI in the distributed 

model did not artificially increase/decrease the workload.  All experiments were 

conducted on Dell Inspiron laptop computers running Microsoft Windows XP 

operating system with 1.73GHz processors and 1GB RAM connected through a 

100Mbps CISCO switch. The same computer specifications were used to guarantee 

consistency in runtimes. The results of the execution times for each of the models are 

based on the average of 5 runs.  The deviation from the average of the total execution 

time between the runs was small. This deviation was less than 2.5% for each of the 5 
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runs in the 1% significance level except for the conventional model with one NBS 

supply centre and four hospitals which was around 19%.   

 

Furthermore, the hospitals which were added to the models were all of the same 

volume (medium). For instance, physician requests were around 1000 blood units for 

each hospital per month, with each hospital diverging by a small percentage (≤6%) 

from the mean. Accordingly, the distribution parameters for every hospital were 

slightly different. Also, every hospital adhered to its own rules about routine ordering 

times, re-ordering stock points, time of returning unused units to the Blood Bank, etc. 

The reason for this imprecision was to ensure a spread of courses of action happening 

during the day, such as the time the orders are matched with the units, a fact that 

affects the performance of the models including the runtime. 

 

As previously noted, the conventional model with one hospital took approximately 14 

minutes to run for a whole simulated year. The run time rose to 78 minutes when the 

model ran with two hospitals and to approximately 17.5 hours with three hospitals. 

The addition of the fourth hospital rockets the execution time to 35.8 hours. The 

distributed model with one NBS supply centre and one hospital ran in approximately 

8.5 hours, with two hospitals in 9.8 hours, with three hospitals in 12.7 hours and with 

four hospitals in 16.5 hours. Figure 4 shows these execution times in seconds for both 

methods. 

 

Figure 4 about here. 

 

DISCUSSION 

It is apparent that the versions with one or two hospitals are less time consuming to 

run using the conventional approach. Conversely, when a third and fourth hospital are 

added then the distributed method bests the runtime of the conventional approach.  

There also appears to be a high escalation of the runtime in the conventional version 

while increasing the number of hospitals in the model. This is quite a contrast to the 

substantially smaller and smoother rise in the runtime in the distributed method.  

Further, a more exhaustive analysis of the results reveals another significant feature. 

Every model for each method was monitored for its execution time per simulated 

month until the end of the run (1 year) as Figure 5 shows. The graph clearly 
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demonstrates that for the conventional method there is an upwards incremental trend 

in the runtime per added month. Especially for the model with one NBS supply centre 

and three hospitals, the monthly runtime rockets up from month 10 and over. For the 

model with four hospitals, this trend is apparent right from the first month, for the 

reason which was explained in the last part of the conventional model section. The 

fluctuations in the runtimes between consecutive months are due to random variation.   

 

Figure 5 about here. 

 

Figure 5 shows the percentage difference of the time taken for the conventional 

models to execute every consecutive month of the year versus the corresponding 

difference of the distributed models. Figure 6 shows, for the conventional models, the 

percentage difference of the runtime between each month and the month that took less 

time to run. The latter is equal to 0%. The month that took less to run in the first two 

models (with one NBS supply centre and one or two hospitals) is month four, and for 

the three hospital and four hospital models is the first month. It can be seen that the Y 

axis scale takes values from 0% to 1100% while in Figure 7 the equivalent range for 

the distributed models is from 0% to 71%. The maximum percentage differences for 

one to four hospital models using the conventional method against the distributed 

method are 53% to 5% (10.6:1), 315% to 8% (39.4:1), 1100% to 26% (42.3: 1) and 

176% to 71% (2.5:1) respectively. The small ratio observed in the last case is due to 

the fact that the model takes considerably more time to run even from the first month. 

 

Figures 6 and 7 about here. 

 

These findings indicate that for the conventional method an expansion in model size 

will be accompanied by an approximate exponential increase in both the total runtime 

and the time between iterations when the results are being collected. On the other 

hand, for the distributed method an increase in the number of hospitals (and therefore 

of computers) will be followed by a much smaller increase in total runtime, with no 

extensive increase in the time between iterations. Therefore, if more than two 

hospitals are added to any model, the distributed method would be a better platform in 

which to develop and run the simulation experiments.  Overall, the distinctive trend 

that the two methods follow concerning runtimes seems to be continuous; in other 
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words the more hospitals we add to the model, the more the differences in the 

runtimes between the two methods favour the distributed approach.  As noted in the 

discussion of the conventional approach, the increase in runtime appears to be 

primarily due to the processing of a large event list caused by a combination of the 

volume of entities and the “counting down” of the shelf life.  The large event list in 

turn causes a high number of transfers between RAM and virtual memory which, 

compounded by the processing of the event list, further causes long runtimes.  Our 

results suggest that the distributed approach allows the processing and memory 

demands made by large event lists to be shared over several computers. 

 

The complete model, in the case of the Southampton NBS Centre which we are 

concerned with, should include 16 hospitals. According to this study, it is clearly not 

feasible to run such a model in a single PC, but the use of distributed simulation 

allows us the possibility of running the full model. 

 

CONCLUSIONS 

This paper has described an investigation into using conventional and distributed 

approaches to simulating the supply chain of blood from a National Blood Service 

(NBS) Centre to hospitals with the COTS simulation package Simul8™.  For this 

scenario at least, when the supply chain grows in size and complexity, distributed 

simulation appears to offer a viable alternative to conventional simulation by sharing 

the processing and memory requirements of the simulation across multiple computers.   

 

The potential for such an approach in healthcare simulation modelling is interesting. 

There is an increasing recognition that healthcare systems do not exist in a vacuum 

and that even seemingly well-defined subsystems such as emergency departments, 

operating theatres or out-patient clinics have complex interconnectivity with other 

parts of the overall healthcare system, both within the hospital and outside its walls. 

This can lead either to the development of enormous models which attempt to capture 

these relationships, or to oversimplification by ignoring them and making the model 

boundaries artificially narrow.  In this feasibility study we have demonstrated that 
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distributed simulation offers a viable solution to this problem, using low cost off-the-

shelf software which is widely available and increasingly used in the NHS. 

 

In terms of further work, the key question is whether all large, complex simulations 

could equally benefit?  The development of a distributed simulation requires some 

extra investment in time which is hopefully balanced by an increase in execution 

speed and therefore a decrease in the time taken to get results from experimentation 

with the simulation.  However, it is not clear if this will be the case in all distributed 

simulations of this type.  Further work is required to determine if such factors exist 

and how they can be determined before work on creating a distributed simulation 

begins.  Previous work has indicated that the configuration of the supply chain 

described in this paper has the right characteristics to benefit from a distributed 

approach (Taylor, et al., 2005
c
). It appears that the supply chain “topology”, the 

relationship of the submodels and their interconnection (how the entities are passed 

between submodels), and the relationship between processing and synchronisation 

loads play and important part.  For example, in our supply chain the simple topology 

and the high amount of processing done by each submodel relative to the amount of 

synchronisation required to correctly execute the distributed simulation mean that 

good performance was attained for the larger models.  What of other supply chain 

configurations?  The development of metrics to indicate what could be distributed and 

what should not be distributed will help bring this technology closer to the simulation 

practitioner. 
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Figure 1 Screenshot of a simplified version of the Simul8 model showing one 

hospital. 
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Figure 2 Conventional simulation approach. 
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Figure 3 Distributed simulation approach. 
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Figure 4 Runtimes of conventional and distributed method for one NBS Centre with 

one to four hospitals. 
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Figure 5 Execution time per month of the four models (conventional and distributed). 
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Figure 6 Execution time per month of the four models for the conventional method.  
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Figure 7 Execution time per month of the four models for the distributed method. 
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Figure 1 Screenshot of a simplified version of the Simul8 model showing one 

hospital. 

 

Figure 2 Conventional simulation approach. 

 

Figure 3 Distributed simulation approach. 
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