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Homogenization Methods and Macro-Strength of Composites

A multi-phase periodic composite subjected to inhomogeneous shrinkage or temperature deformation and prescribed
mechanical loads is considered. The asymptotic homogenisation is applied for calculation of homogenized macro-
stresses. A non-local approximate macro-strength condition, defined on homogenised stress-field, is derived from the
micro-strength conditions and their convergence to the approximate macro-strength condition, as the structure period
tends to zero, is proved.

1. Statement of problem

The thermo-elasticity problem for a composite materials with a large number of periodically distributed inclusions
or pores is given by the equilibrium equations and Hooke’s law in the domain Ω ∈ IR3,
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+ σ′εij(x), (1)

completed by corresponding boundary and transmission conditions. Here i, j, k, l = 1, ..., 3; aijkl are elastic moduli,
σ′εij(x) := −aijkl(x/ε)e′εkl(x) is the thermo- (or shrinkage) stress tensor occuring at completely constrained deforma-
tion of each material, where e′kl(x, t) = T (x)αkl(x/ε) is a free thermo- (or shrinkage) strain tensor of each material;
T (x) is the temperature rise; αij are linear expansion coefficients; fi are volume forces; ε is a small parameter related
to the period of structure. The problem is solved to find displacements uε

i and stresses σε
ij . Our aim is to derive

a macro-strength condition for the composite from the micro-strength conditions, which will allow to estimate the
macro-strength in terms of averaged mechanical characteristics and averaged stresses.

2. Elements of strength analysis

For a stress field σij(y) ∈ C(Ω̄), any local strength condition for micro-stresses at a point y can be written in the
form Λ (σ(y), y) < 1, where Λ ∈ C(Ω̄, C0(IR3×3)) is a normalised equivalent stress function, a material characteristic,
which is non-negative and positively homogeneous of the order +1 w.r.t. σ.

E x a m p l e 1. For some materials Λ is associated with the von Mises equivalent stress
ΛM (σ(y), y) =

√
[(σ1(y)− σ2(y))2 + (σ2(y)− σ3(y))2 + (σ3(y)− σ1(y))2]/(2σ2

c (y)), or with the Tresca equivalent
stress ΛT (σ(y), y) = maxk,m |σk(y) − σm(y)|/σc(y), where σ1, σ2, σ3 are the principal stresses and σc is a known
uniaxial strength of material.

Such local strength conditions, however, are generally not applicable to unbounded stress fields since the con-
ditions will predict fracture under almost any singular stress field. For more general classes of stress fields, e.g.
belonging to L2(Ω), a (point) non-local strength condition Λ(σ, y) < can be applied. Here Λ(σ, y) is a normalised
equivalent stress functional , which is defined on the tensor-functions σij ∈ L2(Ω) and is non-negative positively
homogeneous of the order +1 w.r.t. σ, see [3].

Particularly Λ can be connected with some kind of weighted averaging of σij(x), x ∈ Ω in some surrounding of
the point y, Λ(σ, y) = Λ (σ̃(y), y) , σ̃ij(y) =

∫
Ω

ϕ(x, y)σij(x)dx where σ̃ij ∈ C(Ω̄) are components of an auxiliary
non-local stress tensor, and ϕ(x, y) ∈ C(Ω̄, L2(Ω)) is a material characteristic, such as

∫
Ω

ϕ(x, y)dx = 1. Then the
strength condition for the whole body is ΛΩ (σ) := supy∈Ω Λ (σ̃, y) < 1, where ΛΩ(σ) ∈ IR is the body normalised
equivalent stress functional.

E x a m p l e 2. (i) In the simplest case ϕ(x, y) =
{

3
4πd3 |x− y| < d
0 |x− y| ≥ d

for 3D, where d is a material

constant, and σ̃(y) = 3
4πd3

∫ ∫ ∫
|x−y|<d

σ(x)dx. (ii) If ϕ(x, y) is the Dirac-function, then σ̃(y) = σ(y), and the
non-local strength-condition coincides with the local one.

3. Elements of homogenization technique

We use the following asymptotic expansion to the solution of (1)
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Here, Nq = {Npjq}3×3×3 ∈ Hper[0](Y ) and z = {zi}i=1,...,3 ∈ Hper[0](Y ) are solutions to the auxilliary periodic weak



problems of elasticity ∀vi ∈ Hper[0](Y ):
∫
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dξ = 0, p, q = 1, ..., 3.

The homogenized displacement and stress fields, u
(0)
i ∈ H1(Ω), σ̂ij ∈ L2(Ω) are a solution to the uniquely solvable

homogenized problem coincident with (1) after replacement there the elastic constants aihjk ∈ L∞per(Y ) and the
linear expansion coefficients αih ∈ L∞per(Y ) by their homogenized counterparts:
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Here â−1
pqγδ is the homogenized compliance tensor, which is the inverse to the homogenized stiffness tensor âγδαβ .

Similar to [1] one can prove that σε ∈ L2(Ω) containes a subsequense, which two-scale converges to σ0 ∈ L2(Ω× Y )
(ξ = x

ε ), that is,
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ϕ(x, ξ)σ0
ij(x, ξ)dxdξ, ∀ϕ ∈ L2(Ω, Cper(Y )),

σ0
ij(x, ξ) = Aijkl(ξ)[σ̂kl(x)− σ̂′kl(x)] + σ′′ij(x, ξ), (2)

where Aijkl(ξ) = aijγβ(ξ)[ ∂
∂ξβ

Nq
γp(ξ) + δβqδγp]â−1

pqkl is the elastic stress concentration tensor [2], σ̂′kl(x) =
−T (x)âklpq(x)α̂pq(x) is the macro-thermo-stress at constrained deformation, and σ′′ij(x, ξ) := −T (x)aijkl(ξ)[αkl(ξ)−
∂

∂ξl
zk(ξ)] is the micro-thermo-stress in the periodic medium at constrained deformation.

4. Homogenization of micro-strength

The functional Λε(σ, y) depends generally both on the global coordinate of the considered point y, e.g., on its dis-
tance to the boundary of the body Ω, and on the position of the point y in the periodicity cell εY , that is on the
material, to which the point belongs in the cell. Suppose first Λε(σε, y) = Λ(σε(y), y, y

ε )

P r op o s i t i o n 1 (homogenization of local micro-strength). Let σε ∈ C(Ω̄) converges to a function
σ0(y, ζ) ∈ C(Ω̄, (Cper(Y ))3×3) uniformly w.r.t. y, i.e. limε→0 supy∈Ω |σε(y) − σ0(y, y

ε )| = 0 and Λ(σ, y, ζ) ∈
C(Ω, Cper(Y, C0(IR3×3))). Then limε→0 Λε

Ω (σε) := limε→0 supy∈Ω Λ
(
σε(y), y, y

ε

) ≤ supy∈Ω supζ∈Ω Λ
(
σ0(y, ζ), y, ζ

)
.

Furthermore, if σ0 is expressed by (2), then limε→0 Λε
Ω (σε) ≤ supy∈Ω Λ̂(σ̂ − σ̂′, σ′′; y), Λ̂(σ̂ − σ̂′, σ′′; y) :=

supζ∈Ω Λ(Aijkl(ζ)(σ̂kl(y) − σ̂′kl(y)) + σ′′ij(y, ζ), y, ζ). Then the limit sufficient non-local macro-strength condition is
supy∈Ω Λ̂(σ̂ − σ̂′, σ′′; y) < 1.

For ε > 0, the last strength condition can be considered as approximate.
Let us consider the limit of Λε

Ω (σε, y) as ε → 0 for non-local micro-strength condition. Suppose ϕε(x, y) =
ϕ(x, y, x

ε , y
ε ), where ϕ ∈ C(Ω̄, Cper(Y, L2(Ω, Cper(Y )))),
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P r op o s i t i o n 2 (homogenization of non-local micro-strength). Let σε ∈ L2(Ω) be a sequence of so-
lutions to (1). Suppose the body microstrength condition is Λε

Ω (σε) < 1, where Λε
Ω is given by (3). Then

limε→0 Λε
Ω (σε) ≤ supy∈Ω Λ̂(σ̂ − σ̂′, σ̃′′; y), Λ̂(σ̂ − σ̂′, σ′′; y) := supζ∈Ω Λ(

∫
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ϕ̂ijkl(y, ζ, x)(σ̂kl(x) − σ̂′kl(x))dx +
σ̃′′ij(y, ζ), y, ζ), ϕ̂ijkl(y, ζ, x) = 1
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|Y |
∫
Ω

∫
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ϕ(x, y, ξ, ζ)σ′′ij(x, ξ)dxdξ. Finally

the limit sufficient non-local macro-strength condition is supy∈Ω Λ̂(σ̂ − σ̂′, σ′′; y) < 1.

E x a m p l e 3. In the particular case when the non-local weight function is independent of the cell character-
istics, i.e. ϕε(x, y) = ϕ(x, y), we have ϕ̂ihγδ(x, y, ζ) = ϕ(x, y), σ̃′′ij(y, ζ) =

∫
Ω

ϕ(x, y)σ̂′ij(x)dx and Λ̂(σ̂ − σ̂′, σ′′; y) =
supζ∈Y Λ

(∫
Ω

ϕ(x, y)σ̂(x)dx, y, ζ
)
, that is the cell stress concentration and micro-thermo-stress do not influence the

composite strength for sufficiently small cells obeying the non-local strength condition.
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