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Chapter 12

Analysis of extended
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integro-differential equations of
some variable-coefficient BVP
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Abstract. For a function from the Sobolev space H1(Ω) definitions of non-unique external
and unique internal co-normal derivatives are considered, which are related to possible ex-
tensions of a partial differential operator and its right hand side from the domain Ω, where
they are prescribed, to the domain boundary, where they are not.
The notions are then applied to formulation and analysis of direct boundary-domain integral

and integro-differential equations (BDIEs and BDIDEs) based on a specially constructed
parametrix and associated with the Dirichlet boundary value problems for the ”Laplace”
linear differential equation with a variable coefficient and a rather general right hand side.
The BDI(D)Es contain potential-type integral operators defined on the domain under con-

sideration and acting on the unknown solution, as well as integral operators defined on
the boundary and acting on the trace and/or co-normal derivative of the unknown solu-
tion or on an auxiliary function. Solvability, solution uniqueness, and equivalence of the
BDIEs/BDIDEs/BDIDPs to the original BVP are investigated in appropriate Sobolev spaces.
Keywords. Partial differential equation, variable coefficients, Sobolev spaces, external and
internal co-normal derivatives, parametrix, integral equations, integro-differential equations,
equivalence, invertibility.

12.1 Introduction

Many applications in science and engineering can be modeled by boundary-value problems for
equations with variable coefficients. Reduction of the BVPs with arbitrarily variable coefficients
to boundary integral equations is usually not possible, since the fundamental solution necessary
for such reduction is generally not available in an analytical form (except for some special
dependence of the coefficients on coordinates). Using a parametrix (Levi function) as a substitute
of a fundamental solution, it is possible however to reduce such a BVP to a boundary-domain
integral equation (see e.g. [7, 6], [15, Sect. 18], [16, 17], where the Dirichlet, Neumann and
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Robin problems for some PDEs were reduced to indirect BDIEs). However, many questions
about their equivalence to the original BVP, solvability, solution uniqueness and invertibility of
corresponding integral operator remained open.

In [1, 2, 12], the 3D mixed (Dirichlet-Neumann) boundary value problem (BVP) for the
variable-coefficient ”Laplace” equation with a square integrable right hand side was considered.
Such equations appear e.g. in electrostatics, stationary heat transfer and other diffusion prob-
lems for inhomogeneous media. The BVP has been reduced to either segregated or united direct
Boundary-Domain Integral or Integro-Differential Equations, BDI(D)Es, or Boundary-Domain
Integro-Differential Problems, BDIDPs. Some of the BDI(D)Es/BDIDPs are associated with the
BDIDE and BDIE formulated in [11]. Although several of the integral and integro-differential
formulations for the mixed problem in [1, 2, 12] look like equations of the second kind, the
spaces for the out-of-integral terms are different from the spaces for the right hand sides of the
equations, thus the equations are of ”almost” second kind. Note that genuinely second kind
BDIEs and BDIDEs can be obtained for the pure Dirichlet BVP with a variable coefficient and
square integrable right-hand side, as shown in [13].

While considering a second order partial differential equation for a function from the Sobolev
space H1(Ω), with a rather general right-hand side, a co-normal external derivative operator is
usually defined with the help of the first Green identity, since the function derivatives do not
generally exist on the boundary in the trace sense. However this definition is related to an
extension of the PDE and its right hand side from the domain Ω, where they are prescribed,
to the domain boundary, where they are not. Since the extension is non-unique, the co-normal
derivative appears to be a non-unique operator, which is also non-linear in u unless a linear
relation between u and the PDE right hand side extension is enforced. This creates some
difficulties particularly in formulating the so-called united boundary-domain integro-differential
equations.

To avoid this, we introduce in this paper a subspace of H1(Ω), which is mapped by the PDE
operator into the space H̃−1/2(Ω) for the right hand sides. This allows to define an internal
co-normal derivative operator, which is unique, linear in u and coincides with the co-normal
derivative in the trace sense if the latter does exist. The approach is applied to formulation
and analysis of direct segregated and direct united BDIEs/BDIDE/BDIDP equivalent to the
Dirichlet BVP for the ”Laplace” PDE with a variable coefficient and right hand side from
H̃−1(Ω) and H̃−1/2(Ω). Equivalence of the considered BDI(D)Es/ BDIDP to the original BVP
is proved along with their solvability, solution uniqueness, and the operator invertibility in
corresponding Sobolev-Slobodetski spaces. It is particularly shown that the Dirichlet problem
can be reduced to genuine second-kind integral or integro-differential equations.

12.2 Co-normal derivatives and the boundary value problem

Let Ω be a bounded open three–dimensional region of R3. For simplicity, we assume that the
boundary ∂Ω is a simply connected, closed, infinitely smooth surface. Let a ∈ C∞(Ω), a(x) > 0
for x ∈ Ω. Let also ∂xj := ∂/∂xj (j = 1, 2, 3), ∂x = (∂x1 , ∂x2 , ∂x3).

We consider the scalar elliptic differential equation, which for sufficiently smooth u has the
following form,

Lu(x) := L(x, ∂x) u(x) :=
3∑

i=1

∂

∂xi

(
a(x)

∂u(x)
∂xi

)
= f(x), x ∈ Ω, (12.1)

where u is an unknown function and f is a given function in Ω.
In what follows Hs(Ω) = Hs

2(Ω), Hs(∂Ω) = Hs
2(∂Ω) are the Bessel potential spaces, where

s ∈ R is an arbitrary real number (see, e.g., [8], [19]). We recall that Hs coincide with the
Sobolev–Slobodetski spaces W s

2 for any non-negative or integer s.
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We denote by H̃s(Ω) the subspace of Hs(R3), H̃s(Ω) := {g : g ∈ Hs(R3), supp g ⊂ Ω},
while Hs(Ω) denotes the space of restriction on Ω of distributions from Hs(R3), Hs(Ω) :=
{rΩg : g ∈ Hs(R3)}, where rΩ denotes the restriction operator on Ω. We will also use notation
g|Ω := rΩg. We denote by Hs

∂Ω
the following subspace of Hs(R3) (and H̃s(Ω)), Hs

∂Ω
:= {g : g ∈

Hs(R3), supp g ⊂ ∂Ω}.
From the trace theorem (see e.g. [8, 19, 4, 9]) for u ∈ H1(Ω), it follows that u+ := τ+ u ∈

H
1
2 (∂Ω), where τ+ is the trace operator on ∂Ω from Ω.
For u ∈ H2(Ω) we can denote by T+ the corresponding co–normal differentiation operator

on ∂Ω in the sense of traces,

T+(x, n+(x), ∂x)u(x) :=
3∑

i=1

a(x) n+
i (x)

(
∂u(x)
∂xi

)+

= a(x)
(

∂u(x)
∂n+(x)

)+

,

where n+(x) is the outward (to Ω) unit normal vectors at the point x ∈ ∂Ω.
Let us denote

E(u, v) :=
∫

Ω

3∑

i=1

a(x)
∂u(x)
∂xi

∂v(x)
∂xi

dx.

Let u ∈ H1(Ω). Then the Lu is understood as the following distribution,

〈Lu, v〉Ω := −E(u, v) ∀v ∈ C∞
comp(Ω). (12.2)

The duality brackets 〈 g, · 〉Ω denote value of a linear functional (distribution) g, extending the
usual L2 inner product.

Since the set C∞
comp(Ω) is dense in H̃1(Ω), the above formula defines a bounded operator

L : H1(Ω) → H−1(Ω) = [H̃1(Ω)]∗,

〈Lu, v〉Ω := −E(u, v) ∀v ∈ H̃1(Ω). (12.3)

Let us consider also the following operator L̂ : H1(Ω) → H̃−1(Ω) = [H1(Ω)]∗,

〈L̂u, v〉Ω := −E(u, v) ∀v ∈ H1(Ω), (12.4)

which is evidently bounded. For any u ∈ H1(Ω), the functional L̂u belongs to H̃−1(Ω) and is
an extension of the functional Lu ∈ H−1(Ω) domain from H̃1(Ω) to H1(Ω).

The extension is not unique, and any functional of the form

L̂u + g, g ∈ H−1
∂Ω (12.5)

provides another extension. On the other hand, any extension of Lu from H̃1(Ω) to H1(Ω) has
evidently form (12.5).

Let u ∈ H1(Ω) and Lu = f in Ω for some f ∈ H̃−1(Ω). Then one can correctly define the
generalised (or external) co–normal derivative T̃+(f, u) ∈ H− 1

2 (∂Ω) with the help of Green’s
formula (c.f., for example, [3], [9, Lemma 4.3]),

〈
T̃+(f, u) , v+

〉
∂Ω

:= 〈f, v〉Ω + E(u, v) = 〈f − L̂u, v〉Ω ∀ v ∈ H1(Ω). (12.6)

Note that because of the involvement of f , the generalised co-normal derivative T̃+(f, u)
is generally non-linear in u. It becomes linear if a linear relation is imposed between u and f
(including behaviour of the latter on the boundary ∂Ω), thus fixing an extension of f |Ω into
H̃−1(Ω). For example, f |Ω can be extended as f = L̂u. Obviously, T̃+(L̂u, u)=0.
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Let us point out another case when the co-normal derivative operator becomes linear. Let a
function u ∈ H1(Ω) be such that Lu = f |Ω in Ω, f ∈ H̃t(Ω), −1

2 ≤ t. Then the distribution Lu

can be extended to the functional f ∈ H̃t(Ω). Since Ht
∂Ω = {0} for t ≥ −1

2 (c.f. [9, L. 3.39]),
the extension of Lu into H̃s(Ω) is unique, and we will call it the canonical extension and denote
it by L0u or still use the notation Lu if this will not lead to a confusion. For this case, we can
introduce also the canonical (or internal) co-normal derivative T+u ∈ H− 1

2 (∂Ω),

〈
T+u , v+

〉
∂Ω

:=
〈
T̃+(L0u, u) , v+

〉
∂Ω

= 〈L0u, v〉Ω + E(u, v)

= 〈L0u− L̂u, v〉Ω ∀ v ∈ H1(Ω). (12.7)

The canonical co-normal derivative is defined by the function u and operator L only and does
not depend on the right hand side f (i.e. its behaviour on the boundary), unlike the generalised
co-normal derivative defined in (12.6), and the operator T+ is linear.
Note that the canonical co-normal derivative coincides with the classical co-normal derivative
T+u = a∂u

∂n if the latter does exist in the trace sense.
Motivated by this, we define a subspace of H1(Ω) for a linear operator L∗ on Ω.

DEFINITION 1 Let L∗ be a linear operator on Ω and t ≥ −1
2 . We introduce the following

subspace of Hs(Ω), Hs,t(Ω;L∗) := {g : g ∈ Hs(Ω), L∗g|Ω = f |Ω, f ∈ H̃t(Ω)} provided with
the norm ‖g‖Hs,t(Ω;L∗) := ‖g‖Hs(Ω) + ‖L0∗g‖H̃t(Ω)

, where L0∗g = f is the canonical extension of

the distribution L∗g into H̃t(Ω).

In this paper, we will particularly need the spaces Hs,− 1
2 (Ω, L∗) for L∗ being either the

operator L from (12.1) or the Laplace operator ∆. Since Lu−∆u =
3∑

i=1

∂a
∂xi

∂u
∂xi

∈ Hs−1(Ω) for

u ∈ Hs(Ω), we have Hs,− 1
2 (Ω;L) = Hs,− 1

2 (Ω;∆), s ≥ 1
2 . Note that the spaces H1,0(Ω; L∗) were

used in [3, 2, 12].
If u ∈ H1,− 1

2 (Ω; L), then evidently the canonical co-normal derivative T+u ∈ H− 1
2 (∂Ω) is

well defined.
Let u ∈ H1,− 1

2 (Ω;L). Then definition (12.6) implies that the generalised co-normal derivative
for any other extension f ∈ H̃−1(Ω) of the distribution Lu can be expressed as

〈
T̃+(f, u) , v+

〉
∂Ω

=
〈
T+u , v+

〉
∂Ω

+ 〈f − L0u, v〉Ω ∀ v ∈ H1(Ω). (12.8)

Let u ∈ H1(Ω) and v ∈ H1,− 1
2 (Ω; L) be such that Lv ∈ L2(Ω) in Ω. Swapping over the roles

of u and v, we obtain the first Green identity defining T+v,

E(u, v) +
∫

Ω
u(x)Lv(x)dx =

〈
T+v , u+

〉
∂Ω

. (12.9)

If, in addition, Lu = f in Ω, where f ∈ H̃−1(Ω), then according to to definition of T̃+(f, u),
(12.6), the second Green identity can be written as

〈f, v〉Ω −
∫

Ω
u(x)Lv(x)dx =

〈
T̃+(f, u) , v+

〉
∂Ω

− 〈
T+v , u+

〉
∂Ω

. (12.10)

If u ∈ H1,− 1
2 (Ω; L) and v ∈ H1,− 1

2 (Ω; L) is such that Lv ∈ L2(Ω) in Ω, then (12.10) becomes

〈Lu, v〉Ω −
∫

Ω
u(x)Lv(x)dx =

〈
T+u , v+

〉
∂Ω
− 〈

T+v , u+
〉

∂Ω
. (12.11)
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If, moreover, Lu ∈ L2(Ω) in Ω, then we arrive at the familiar form of the second Green identity
for the canonical extension and canonical co-normal derivatives

∫

Ω
[v(x)Lu(x)− u(x)Lv(x)]dx =

〈
T+u , v+

〉
∂Ω
− 〈

T+v , u+
〉

∂Ω
. (12.12)

We will consider the following Dirichlet boundary value problem. Find a function u ∈ H1(Ω)
satisfying the conditions

Lu = f in Ω, (12.13)

u+ = ϕ0 on ∂Ω, (12.14)

where ϕ0 ∈ H
1
2 (∂Ω), f ∈ H−1(Ω) or f ∈ H̃− 1

2 (Ω).
Equation (12.13) is understood in the distributional sense (12.2), and condition (12.14) in

the trace sense.
Applying the first Green identity (12.9), (12.4) with v = u as a solution of the homogeneous

Dirichlet problem, i.e., with f = 0, ϕ0 = 0, we have the following uniqueness theorem.

THEOREM 2 BVP (12.13)-(12.14) with ϕ0 ∈ H
1
2 (∂Ω) and f ∈ H−1(Ω) has at most one

solution in H1(Ω).

12.3 Parametrix and potential type operators

We will say, a function P (x, y) of two variables x, y ∈ Ω is a parametrix (the Levi function) for
the operator L(x, ∂x) in R3 if (see, e.g., [7, 6, 15, 16, 17, 11])

L(x, ∂x) P (x, y) = δ(x− y) + R(x, y), (12.15)

where δ(·) is the Dirac distribution and R(x, y) possesses a weak (integrable) singularity at
x = y, i.e.,

R(x, y) = O (|x− y|−κ) with κ < 3. (12.16)

It is easy to see that for the operator L(x, ∂x) given by the right-hand side in (12.1), the function

P (x, y) =
−1

4π a(y) |x− y| , x, y ∈ R3, (12.17)

is a parametrix, the corresponding remainder function is

R(x, y) =
3∑

i=1

xi − yi

4π a(y) |x− y|3
∂ a(x)
∂xi

, x, y ∈ R3. (12.18)

and satisfies estimate (12.16) with κ = 2, due to the smoothness of the function a(x).
Evidently, the parametrix P (x, y) given by (12.17) is a fundamental solution to the operator

L(y, ∂x) := a(y)∆(∂x) with ”frozen” coefficient a(x) = a(y), i.e., L(y, ∂x) P (x, y) = δ(x− y).
For some scalar function g, let

V g(y) := −
∫

∂Ω

P (x, y) g(x) dSx, y 6∈ ∂Ω, (12.19)

Wg(y) := −
∫

∂Ω

[
T (x, n(x), ∂x))P (x, y)

]
g(x) dSx, y 6∈ ∂Ω, (12.20)
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be the single and the double layer surface potential operators.
The corresponding boundary integral (pseudodifferential) operators of direct surface values of

the simple layer potential, V, and of the double layer potential, W, and the co-normal derivatives
of the simple layer potential, W ′ and of the double layer potential, L+, for y ∈ ∂Ω are

V g(y) := −
∫

∂Ω

P (x, y) g(x) dSx, W g(y) := −
∫

∂Ω

[
T+

x P (x, y)
]

g(x) dSx, (12.21)

W ′ g(y) := −
∫

∂Ω

[
T+

y P (x, y)
]
g(x) dSx, L+g(y) := T+Wg(y). (12.22)

The parametrix-based volume potential operator and the remainder potential operator, cor-
responding to parametrix (12.17) and to remainder (12.18) are

Pg(y) :=
∫

Ω

P (x, y) g(x) dx, Rg(y) :=
∫

Ω

R(x, y) g(x) dx. (12.23)

For g1 ∈ H− 1
2 (∂Ω), and g2 ∈ H

1
2 (∂Ω), there hold the jump relations on ∂Ω

[V g1(y)]+ = Vg1(y), [Wg2(y)]+ = −1
2

g2(y) +Wg2(y), (12.24)

[T (y, n(y), ∂y)V g1(y)]+ =
1
2

g1(y) +W ′g1(y), y ∈ ∂Ω. (12.25)

The jump relations as well as mapping properties of potentials and operators (12.19)-(12.23)
are well known for the case a = const. They were extended to the case of variable coefficient
a(x) in [1, 2], and in addition to (12.24)-(12.25) some of them are presented in the Appendix
for convenience.

It is evident from definitions (12.16), (12.19), (12.20) that

∆(aV g) = 0, ∆(aWg) = 0 in Ω, ∀g ∈ Hs(∂Ω) ∀s ∈ R. (12.26)

Let us prove also that
∆(aPg) = g in Ω, ∀g ∈ H̃s(Ω) ∀s ∈ R, (12.27)

where the Laplace operator ∆ is understood in the distributional sense. Indeed, property (12.27)
holds true for g ∈ C∞

comp(Ω) since aP is the classical Newtonian volume potential operator.
Taking into account that C∞

comp(Ω) is dense in H̃s(Ω) and the operators P : H̃s(Ω) → Hs+2(Ω)
and ∆ : Hs+2(Ω) → Hs(Ω) are continuous for any s ∈ R, c.f. Theorem 12.8.2 in the Appendix,
this implies (12.27) for g ∈ H̃s(Ω).

12.4 The third Green identities and integral relations

12.4.1 Generalised form

For u ∈ H1(Ω) and v(x) = P (x, y), where the parametrix P (x, y) is given by (12.17), we obtain
from (12.9), (12.4), (12.15) by the standard limiting procedures (cf. [15], [5, S. 3.8]) the following
identity

u +Ru + Wu+ = PL̂u in Ω, (12.28)

where

PL̂u(y) := 〈L̂u, P (·, y)〉Ω = −E(u, P (·, y)) = −
∫

Ω

3∑

i=1

a(x)
∂u(x)
∂xi

∂P (x, y)
∂xi

dx. (12.29)
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If Lu = f |Ω in Ω, where f ∈ H̃−1(Ω), then recalling the definition of T̃+(f, u), (12.6), we
arrive at the generalised third Green identity in the following form,

G̃(f, u) := u +Ru− V T̃+(f, u) + Wu+ = Pf in Ω, (12.30)

where it was taken into account that

〈T̃+(f, u), P+(·, y)〉∂Ω = −V T̃+(f, u)(y), 〈f, P (·, y)〉Ω = Pf(y), y∈Ω.

For some functions f , Ψ, Φ, let us consider a more general ”indirect” integral relation,
associated with (12.30),

u(y) +Ru(y)− V Ψ(y) + WΦ(y) = Pf(y) y ∈ Ω. (12.31)

The following statement extends Lemma 4.1 from [1], where it was proved for f ∈ L2(Ω).

LEMMA 3 Let Ψ ∈ H− 1
2 (∂Ω), Φ ∈ H

1
2 (∂Ω), f ∈ H̃−1(Ω). Suppose a function u ∈ H1(Ω)

satisfies (12.31). Then

Lu = f in Ω, (12.32)
V (Ψ− T̃+(f, u))−W (Φ− u+) = 0 in Ω, (12.33)

u+ + (Ru)+ − VΨu− 1
2
Φ +WΦ = (Pf)+ on ∂Ω, (12.34)

T̃+(f, u) + T+Ru− 1
2
Ψ−W ′Ψ + L+Φ = T̃+(f +R0

∗f,Pf) on ∂Ω, (12.35)

where

R0
∗f(y) =

{
R∗f(y) if y ∈ Ω
0 if y 6∈ Ω

, R∗f(y) := −
3∑

j=1

∂j [(∂ja)Pf ](y). (12.36)

Proof. Subtracting (12.31) from identity (12.28), we obtain

V Ψ(y) + WΦ∗(y) = P[L̂u− f ](y), y ∈ Ω+, (12.37)

where Φ∗ := u+ − Φ.
Multiplying equality (12.37) by a(y), applying the Laplace operator ∆ and taking into ac-

count (12.26), (12.27), we get f |Ω = (L̂u)|Ω. This means f is an extension of the distribution
Lu in H̃−1, and u satisfies (12.32). Then (12.6) implies

P[L̂u− f ](y) = 〈L̂u− f, P (·, y)〉Ω
= −〈T̃+(f, u) , P (·, y)〉

∂Ω
= V T̃+(f, u), y ∈ Ω. (12.38)

Substituting (12.38) into (12.37) leads to (12.33). Equation (12.34) is implied by (12.24).
To prove (12.35), let us first remark that

LPf = f +R∗f in Ω, (12.39)

which implies, due to (12.32), L(Pf − u) = R∗f in Ω, and R∗f ∈ L2(Ω) due to (12.92). Then
L(Pf − u) can be canonically extended to L0(Pf − u) = R0∗f ∈ H̃0(Ω) ⊂ H̃−1(Ω), where R0∗ is
defined by (12.36). This implies that there exists a canonical co-normal derivative of (Pf − u),
which due to (12.7) is,

〈T+(Pf − u), v+〉∂Ω = 〈L0(Pf − u)− L̂Pf + L̂u, v〉Ω = 〈R0
∗f − L̂Pf + L̂u, v〉Ω =



12.4. THE THIRD GREEN IDENTITIES AND INTEGRAL RELATIONS 113

〈R0
∗f + f − f − L̂Pf + L̂u, v〉Ω = 〈L̃Pf − L̂Pf + L̂u− f, v〉Ω =

〈T̃+(L̃Pf,Pf)− T̃+(f, u), v+〉∂Ω ∀v ∈ H1(Ω), (12.40)

where L̃Pf = f +R0∗f ∈ H̃−1(Ω) is the extension of LPf associated with (12.39).
From (12.31) we have Pf − u = Ru − V Ψ + WΦ in Ω. Substituting this in the left hand

side of (12.40) and taking into account jump relation (12.25), we arrive at (12.35)
¤

Lemma 3 and Green’s identity (12.30) imply, the following

COROLLARY 4 If u ∈ H1(Ω) is such that Lu = f in Ω, where f ∈ H̃−1(Ω), then

G̃(f, u) :=
1
2
u+ + (Ru)+ − VT̃+(f, u) +Wu+ = (Pf)+ on ∂Ω, (12.41)

T̃ (f, u) :=
1
2
T̃+(f, u) + T+Ru−W ′T̃+(f, u) + L+u+

= T̃+(f +R0
∗f,Pf) on ∂Ω. (12.42)

The following statement is well known, see e.g. [1, L. 4.2] and references therein.

LEMMA 5

(i) Let Ψ∗ ∈ H− 1
2 (∂Ω). If V Ψ∗(y) = 0, y ∈ Ω, then Ψ∗ = 0.

(ii) Let Φ∗ ∈ H
1
2 (∂Ω). If WΦ∗(y) = 0, y ∈ Ω, then Φ∗ = 0.

THEOREM 6 Let f ∈ H̃−1(Ω). A function u ∈ H1(Ω) is a solution of PDE (12.13) in Ω if
and only if it is a solution of BDIDE (12.30).

Proof. If u ∈ H1(Ω) solves PDE (12.13) in Ω, then it satisfies (12.30). On the other hand,
if u solves BDIDE (12.30), then using Lemma 3 for Ψ = T̃+(f, u), Φ = u+ completes the proof.

¤

12.4.2 Canonical form

We specify here the results of Section 12.4.1 in the more narrow spaces H1,− 1
2 (Ω; L), which we

will especially need for the united integro-differential formulations.
Let u ∈ H1,− 1

2 (Ω;L), then (12.28) and (12.7) imply

u(y) +Ru(y)− V T+u(y) + Wu+(y) = PLu(y), y ∈ Ω, (12.43)

where Lu in (12.43) means the canonical extension L0u of the distribution Lu into H̃− 1
2 (Ω).

If u ∈ H1,− 1
2 (Ω; L) is a solution of equation (12.1) with f ∈ H̃− 1

2 (Ω), then (12.43) gives

Lu = f in Ω, (12.44)
Gu := u +Ru− V T+u + Wu+ = Pf in Ω, (12.45)

Gu :=
1
2
u+ + (Ru)+ − VT+u +Wu+ = (Pf)+ on ∂Ω, (12.46)

T u :=
1
2
T+u + T+Ru−W ′T+u + L+u+ = T+Pf on ∂Ω. (12.47)

Equalities (12.46), (12.47) constitute a counterpart of Corollary 4 for u ∈ H1,− 1
2 (Ω; L),

f = Lu if one takes into account that T̃+(f, u) = T+u, T̃+(f +R0∗f,Pf) = T+Pf .
Let us consider the canonical case of indirect integral relation (12.31). Lemma 3 may be

reformulated for this case as follows.
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LEMMA 7 Let Ψ ∈ H− 1
2 (∂Ω), Φ ∈ H

1
2 (∂Ω), f ∈ H̃− 1

2 (Ω). Suppose a function u ∈ H1(Ω)
satisfies (12.31). Then u ∈ H1,− 1

2 (Ω; L), it is a solution of PDE (12.13) in Ω and

V (Ψ− T+u)−W (Φ− u+) = 0 in Ω,

u+ + (Ru)+ − VΨu− 1
2
Φ +WΦ = (Pf)+ on ∂Ω,

T+u + T+Ru− 1
2
Ψ−W ′Ψ + L+Φ = T+Pf on ∂Ω.

Proof. Equation (12.31) and mapping properties of the operators R, P, V and W (see the
Appendix) imply u ∈ H1,− 1

2 (Ω;L). The rest of the lemma claims follow from Lemma 3.
¤

THEOREM 8 Let f ∈ H̃− 1
2 (Ω). A function u ∈ H1,− 1

2 (Ω; L) is a solution of PDE (12.13) in
Ω if and only if it is a solution of BDIDE (12.45).

Proof. If u ∈ H1,− 1
2 (Ω;L) solves PDE (12.13) in Ω, then it satisfies (12.45). On the other

hand, if u ∈ H1,− 1
2 (Ω; L) solves BDIDE (12.45), then using Lemma 7 for Ψ = T+u, Φ = u+

completes the proof.
¤

12.5 Segregated boundary-domain integral
equations

Let us consider a segregated purely integral boundary-domain formulation for the Dirichlet
problem, similar to the formulations introduced and analysed in [1, 2, 12] for the mixed problem
with u ∈ H1(Ω) and u ∈ H1,0(Ω;∆) but f ∈ L2(Ω). We will obtain here results for u ∈ H1(Ω)
with f ∈ H̃−1(Ω) and for u ∈ H1,− 1

2 (Ω;L) with f ∈ H̃− 1
2 (Ω).

12.5.1 Integral equation system (GG)

To reduce BVP (12.13)-(12.14) to a BDIE system in this section, we will use equation (12.30)
in Ω and equation (12.41) on ∂Ω, where the known function ϕ0 is substituted for u+ and an
auxiliary unknown function ψ ∈ H− 1

2 (∂Ω) for T̃+(f, u). Then we arrive at the following system
(GG),

u +Ru− V ψ = F0 in Ω, (12.48)
R+u− Vψ = F+

0 − ϕ0 on ∂Ω, (12.49)

where

F0 := Pf −Wϕ0 in Ω. (12.50)

Note that for ϕ0 ∈ H
1
2 (∂Ω), we have the inclusion F0 ∈ H1(Ω) if f ∈ H̃−1(Ω), and F0 ∈

H1,− 1
2 (Ω;L) if f ∈ H̃− 1

2 (Ω), due to the mapping properties of the Newtonian (volume) and layer
potentials, c.f. (12.85), (12.86), (12.90).

REMARK 9 Let f ∈ H̃−1(Ω) and ϕ0 ∈ H
1
2 (∂Ω). Then (F0, F

+
0 − ϕ0) = 0 if and only if

(f, ϕ0) = 0. Indeed, the latter equality evidently implies the former. Inversely, let (F0, F
+
0 −

ϕ0) = 0. Consequently ϕ0 = 0. Taking in mind equation (12.50), Lemma 3 with u = F0 = 0,
Φ = ϕ0 = 0, Ψ = 0 implies f = 0 in Ω (i.e. f ∈ H−1

∂Ω) and V (T̃+(f, 0)) = 0 in Ω. Then Lemma
5(i) gives T̃+(f, 0)) = 0, which along with definition (12.6) means f = 0 in R3.
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Let us prove that BVP (12.13)–(12.14) in Ω is equivalent to the system of BDIEs (12.48)-
(12.49).

THEOREM 10 Let f ∈ H̃−1(Ω) and ϕ0 ∈ H
1
2 (∂Ω).

(i) If some u ∈ H1(Ω) solves BVP (12.13)–(12.14) in Ω, then the solution is unique and the
couple (u, ψ) ∈ H1(Ω)×H− 1

2 (∂Ω), where

ψ = T̃+(f, u) on ∂Ω, (12.51)

solves BDIE system (12.48)-(12.49).
(ii) If a couple (u, ψ) ∈ H1(Ω) × H− 1

2 (∂Ω) solves BDIE system (12.48)-(12.49), then the
solution is unique, u solves BVP (12.13)–(12.14), and ψ satisfies (12.51).

Proof. Let u ∈ H1(Ω) be a solution to BVP (12.13)–(12.14). It is unique due to Theorem
2. Setting ψ by (12.51) evidently implies ψ ∈ H− 1

2 (∂Ω). Then it immediately follows from
relations (12.30), (12.41) that the couple (u, ψ) solves system (12.48)-(12.49), which completes
the proof of item (i).

Let now a couple (u, ψ) ∈ H1(Ω) × H− 1
2 (∂Ω) solves BDIE system (12.48)-(12.49). Taking

trace of equation (12.48) on ∂Ω and subtracting equation (12.49) from it, we obtain,

u+(y) = ϕ0(y), y ∈ ∂Ω, (12.52)

i.e. u satisfies the Dirichlet condition (12.14).
Equation (12.48) and Lemma 3 with Ψ = ψ, Φ = ϕ0 imply that u is a solution of PDE

(12.13) and V Ψ∗(y) − WΦ∗(y) = 0, y ∈ Ω, where Ψ∗ = ψ − T̃+(f, u) and Φ∗ = ϕ0 − u+.
Due to equation (12.52), Φ∗ = 0. Lemma 5(i) implies Ψ∗ = 0, which completes the proof of
conditions (12.51).

Uniqueness of the solution to BDIE system (12.48)-(12.49) follows from (12.51) along with
Remark 9 and Theorem 2.

¤
System (12.48)-(12.49) can be rewritten in the form

AGGU = FGG ,

where U> := (u, ψ) ∈ H1(Ω)×H− 1
2 (∂Ω),

AGG :=
[

I −R −V
R+ −V

]
, FGG :=

[
F0

F+
0 − ϕ0

]
.

Due to the mapping properties of operators V , V, W , W, P, R and R+ (see [12, 2] and the
Appendix), we have FGG ∈ H1(Ω)×H

1
2 (∂Ω) if f ∈ H̃−1(Ω), and FGG ∈ H1,− 1

2 (Ω; L)×H
1
2 (∂Ω)

if f ∈ H̃− 1
2 (Ω), while the operators

AGG : H1,− 1
2 (Ω;L)×H− 1

2 (∂Ω) → H1,− 1
2 (Ω; L)×H

1
2 (∂Ω) (12.53)

: H1(Ω)×H− 1
2 (∂Ω) → H1(Ω)×H

1
2 (∂Ω) (12.54)

are continuous. Due to Theorem 10 and the uniqueness Theorem 2, both operators (12.53),
(12.54) are injective.

The proof of the following invertibility theorem below uses the scheme similar to [7, Th. 4.4].

THEOREM 11 Operators (12.53) and (12.54) are continuous and continuously invertible.
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Proof. Let us consider the proof for the operator AGG given by (12.54) first. The continuity and
injectivity is proved above. To prove the invertibility, let us consider the following operator

AGG
0 :=

[
I −V
0 −V

]

As a result of compactness properties of the operatorsR andR+ (see Corollary 28), the operator
AGG

0 is a compact perturbation of the operator AGG .
The operator AGG

0 is an upper triangular matrix operator with the following scalar diagonal
invertible operators

I : H1(Ω) → H1(Ω),

V : H− 1
2 (∂Ω) → H

1
2 (∂Ω),

c.f. [4, Ch. XI, Part B, §2, T. 3] for V. This implies that

AGG
0 : H1(Ω)×H− 1

2 (∂Ω) → H1(Ω)×H
1
2 (∂Ω)

is an invertible operator. Thus the operator AGG possesses the Fredholm property and its index
is zero. The injectivity of the operator AGG already proved, completes the theorem proof for
operator (12.54).

Let us now construct an inverse to operator (12.53). Let (AGG)−1 : H1(Ω) × H
1
2 (∂Ω) →

H1(Ω) × H− 1
2 (∂Ω) be the operator inverse to (12.54). Thus, for any H1,− 1

2 (Ω;L) × H
1
2 (∂Ω),

the solution of the system AGGU = FGG in H1(Ω) × H− 1
2 (∂Ω) is U = (AGG)−1FGG . Taking

into account that the operators V : H− 1
2 (∂Ω) → H1,0(Ω;∆) and R : H1(Ω) → H2,− 1

2 (Ω;∆) are
continuous due to Theorem 22 and Corollary 27, the first equation of this system then implies
u = U1 ∈ H1,− 1

2 (Ω;L) and the operator (AGG)−1 is continuous also from H1,− 1
2 (Ω; L)×H

1
2 (∂Ω)

to H1,− 1
2 (Ω;L)×H− 1

2 (∂Ω).
¤

Original BVP (12.13) - (12.14) can be written in the form

ADu = FD,

where

AD :=
[

L
τ+

]
, FD =

[
f
ϕ0

]
.

The operators

AD : H1,− 1
2 (Ω; L) → H̃− 1

2 (Ω)×H
1
2 (∂Ω) (12.55)

: H1(Ω) → H−1(Ω)×H
1
2 (∂Ω) (12.56)

are evidently continuous and due to the uniqueness theorem for the BVP are also injective.

COROLLARY 12 Operators (12.55) and (12.56) are continuous and continuously invertible.

Proof. The invertibility of the operators (12.53) and (12.54) and equivalence Theorem 10 im-
mediately lead to the corollary claim for operator (12.55).

The claim for operator (12.56) will similarly follow if there exists a linear continuous extension
operator E : H−1(Ω) → H̃−1(Ω). Let τ+ : H1(Ω) → H

1
2 (∂Ω) be the bounded trace operator

and e : H
1
2 (∂Ω) → H1(Ω) be a bounded extension operator, which do exist due to the trace
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theorem (although the latter operator is not unique). Then u−eτ+u = (I−eτ+)u is a bounded
projector from H1(Ω) to H̃1(Ω). Thus any functional g ∈ H−1(Ω) can be continuously mapped
into the functional g̃ ∈ H̃−1(Ω) such that g̃u = g(I − eτ+)u for any u ∈ H1(Ω), i.e., one can
take E = (I − eτ+)∗, which finalise the proof.

¤
Note that the Corollary statement for operator (12.56) is well known and can be obtained

e.g. by the Lax-Milgram theorem.

12.5.2 Integral equation system (GT )

To obtain a segregated BDIE system of the second kind, we will use equation (12.30) in Ω
and equation (12.42) on ∂Ω, where again the known function ϕ0 is substituted for u+ and an
auxiliary unknown function ψ ∈ H− 1

2 (∂Ω) for T̃+(f, u). Then we arrive at the following system
(GT ),

u +Ru− V ψ = FGT
1 in Ω, (12.57)

1
2

ψ + T+Ru−W ′ψ = FGT
2 on ∂Ω, (12.58)

where

FGT =

[ Pf −Wϕ0

T̃+(f +R0∗f,Pf)− L+ϕ0

]
. (12.59)

Due to the mapping properties of the operators involved in (12.59) we have FGT ∈ H1(Ω+)×
H− 1

2 (∂Ω) if f ∈ H̃−1(Ω), and FGT ∈ H1,− 1
2 (Ω; L)×H− 1

2 (∂Ω) if f ∈ H̃− 1
2 (Ω).

REMARK 13 Let f ∈ H̃−1(Ω), ϕ0 ∈ H
1
2 (∂Ω) and FGT be given by (12.59). Then FGT = 0

if and only if (f, ϕ0) = 0.

Proof. The latter equality evidently implies the former. Inversely, let FGT = 0. Taking in mind
equation (12.59), Lemma 3 with u = FGT

1 = 0, Φ = ϕ0, Ψ = 0 gives,

f = 0 in Ω, (12.60)
−V (T̃+(f, 0))−W (ϕ0) = 0 in Ω, (12.61)

T̃+(f, 0) + L+ϕ0 = T̃+(f +R0
∗f,Pf) on ∂Ω. (12.62)

Equation (12.60) means f ∈ H−1
∂Ω . Equations FGT

2 = 0 and (12.62) imply T̃+(f, 0) = 0 on ∂Ω,
which along with definition (12.6) means f = 0 in R3. Then equation (12.61) and Lemma 5(ii)
give ϕ0 = 0.

¤
Let us prove that BVP (12.13)–(12.14) is equivalent to system (12.57)–(12.58).

THEOREM 14 Let f ∈ H̃−1(Ω) and ϕ0 ∈ H
1
2 (∂Ω).

(i) If some u ∈ H1(Ω) solves BVP (12.13)–(12.14) in Ω, then the couple (u, ψ)> ∈ H1(Ω)×
H− 1

2 (∂Ω), where
ψ = T̃+(f, u) on ∂Ω, (12.63)

solves BDIE system (12.57)-(12.58).
(ii) If a couple (u, ψ)> ∈ H1(Ω) × H− 1

2 (∂Ω) solves BDIE system (12.57)-(12.58), then the
solution is unique, u solves BVP (12.13)–(12.14), and ψ satisfies (12.63).
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Proof. Let u ∈ H1(Ω) be a solution to BVP (12.13)–(12.14). Setting ψ = T̃+(f, u) we evidently
have ψ ∈ H− 1

2 (∂Ω). Then it immediately follows from relations (12.30) and (12.42) that the
couple (u, ψ) solves system (12.57)-(12.58) with the right hand side (12.59), which completes
the proof of item (i).

Let now a couple (u, ψ) ∈ H1(Ω)×H− 1
2 (∂Ω) solves BDIE system (12.57)-(12.58).

Lemma 3 for equation (12.57) implies that u is a solution of equation (12.1), and equations
(12.33) and (12.35) hold for Ψ = ψ and Φ = ϕ0. Subtracting (12.35) from equation (12.58) gives

Ψ∗ := ψ − T̃+(f, u) = 0 on ∂Ω, (12.64)

that is equation (12.63) is proved.
Equations (12.33) and (12.64) give WΦ∗(y) = 0, y ∈ Ω, where Φ∗ = ϕ0−u+. Then Lemma

5(ii) implies Φ∗ = 0 on ∂Ω. This means that u satisfies the Dirichlet condition (12.14).
Due to Remark 13, unique solvability of BDIE system (12.57)-(12.58) then follows from the

unique solvability of BVP (12.13)–(12.14) and relation (12.63).
¤

System (12.57)-(12.58)) can be rewritten in the form

AGT U = FGT ,

where U> := (u, ψ)> ∈ H1(Ω)×H− 1
2 (∂Ω) and

AGT :=




I +R −V

T+R 1
2

I −W ′


 . (12.65)

Due to the mapping properties of the operators involved in (12.65), see [12, 2] and the
Appendix, the operators

AGT : H1,− 1
2 (Ω; L)×H− 1

2 (∂Ω) → H1,− 1
2 (Ω;L)×H− 1

2 (∂Ω) (12.66)

: H1(Ω)×H− 1
2 (∂Ω) → H1(Ω)×H− 1

2 (∂Ω) (12.67)

are continuous. Due to Theorem 14, and the uniqueness Theorem (2), both operators (12.66)
and (12.67) are injective.

THEOREM 15 Operators (12.66) and (12.67) are continuous and continuously invertible.

Proof. The operator

AGT
0 :=

[
I −V

0
1
2

I

]
.

is a compact perturbation of both operators (12.66) and (12.67) due to compactness properties
of the operators R and W, see [1, 2, 12] and Corollary 28 from the Appendix. The invertibility
of operators (12.66) and (12.67) then follows by the arguments similar to those in the proof of
Theorem 11.

¤

12.6 United boundary-domain integro-differential equations

In this section we consider the boundary-domain equations containing the canonical co-normal
derivative operator T+ of the internal field instead of introducing an auxiliary function ψ. For
the operator T+ to exist, we will work in the space H̃1,− 1

2 (Ω; L) for u.
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12.6.1 United integro-differential problem (GD)

Let us supplement BDIDE (12.45) with the original Dirichlet boundary conditions and arrive
at BDIDP (GD) constituted by equations (12.45), (12.14). The BDIDP is equivalent to the
Dirichlet boundary value problem (12.13)–(12.14) in Ω, in the following sense.

THEOREM 16 Let f ∈ H̃− 1
2 (Ω), ϕ0 ∈ H

1
2 (∂Ω). A function u ∈ H1,− 1

2 (Ω;L) solves BVP
(12.13)–(12.14) in Ω if and only if u solves BDIDP (12.45), (12.14). Such solution does exist
and is unique.

Proof. A solution of BVP (12.13)–(12.14) does exist and is unique due to Corollary 12 and
provides a solution to BDIDP (12.45), (12.14) due to Theorem 8. On the other hand, any
solution of BDIDP (12.45), (12.14) satisfies also (12.13) due to the same Theorem 8.

¤
BDIDP (12.45), (12.14) can be written in the form

AGDu = FGD, (12.68)

where

AGD :=
[

I +R− V T+ + Wτ+

τ+

]
, FGD =

[ Pf
ϕ0

]
.

Due to the mapping properties of operators V , W , P and R (see the Appendix), we have
FGD ∈ H1,− 1

2 (Ω; L)×H
1
2 (∂Ω), and the operator AGD : H1,− 1

2 (Ω;L) → H1,− 1
2 (Ω; L)×H

1
2 (∂Ω)

is continuous. AGD is also injective due to Theorem 16. Let us now characterise the range of
the operator AGD.

THEOREM 17 Let FGD be a couple (FGD
1 ,FGD

2 ) ∈ H1,− 1
2 (Ω; L)×H

1
2 (∂Ω). System (12.68)

has a solution in H1,− 1
2 (Ω;L) if and only if there exists f∗ ∈ H̃− 1

2 (Ω) such that

FGD
1 = Pf∗ in Ω. (12.69)

When the solution does exist, it is unique.

Proof. If condition (12.69) is satisfied, then, according to Theorem 16, there exists a unique
solution of system (12.68).

On the other hand, if u ∈ H1,− 1
2 (Ω; L) is a solution of system (12.68), then it satisfies the

third Green identity (12.43). Comparing it with the first equation of system (12.68) implies
representation (12.69) with f∗ = Lu.

¤
Let T+

∆ , V∆ and W∆ denote the operators of co-normal derivative, simple layer potential and
double layer potential associated with the Laplace operator, that is, for the coefficient a = 1.

REMARK 18 Condition (12.69) for an FGD
1 ∈ H1,− 1

2 (Ω; L) is equivalent to the condition

V∆T+
∆ (aFGD

1 )−W∆(aFGD
1 )+ = 0 in Ω. (12.70)

or, the same,

V

[
T+FGD

1 + FGD+
1

∂a

∂n+

]
−W (FGD

1 )+ = 0 in Ω. (12.71)
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Proof. Condition (12.69) can be rewritten as

aFGD
1 = P∆f∗ in Ω. (12.72)

Third Green’s identity (12.43) for u = aFGD
1 and for the potentials associated with the operator

∆ gives
aFGD

1 − V∆T+
∆ (aFGD

1 ) + W (aFGD
1 )+ = P∆∆(aFGD

1 ) in Ω. (12.73)

Thus (12.70) implies (12.72) with f∗ = ∆(aFGD
1 ).

On the other hand, if (12.72) is satisfied, then application of the Laplace operator to it gives
∆(aFGD

1 ) = f∗, which substitution into (12.73) and comparison with (12.72) implies (12.70).
Condition (12.71) follows from (12.70) and the definitions of V and W .

¤
To realise, how restrictive is condition (12.69) or, the same, conditions (12.70) and (12.71),

let us prove the following statement.

LEMMA 19 For any function F1 ∈ H1,− 1
2 (Ω; L), there exists a unique couple (f∗, Φ∗) =

CΦF1 ∈ H̃− 1
2 (Ω)×H

1
2 (∂Ω) such that

F1(y) = Pf∗(y)−WΦ∗(y), y ∈ Ω, (12.74)

and CΦ : H1,− 1
2 (Ω; L) → H̃− 1

2 (Ω)×H
1
2 (∂Ω) is a linear bounded operator.

Proof. We adapt here the proof scheme from [2, Lemma 5.2].
Suppose first there exist some functions f∗(y), Φ∗(y) satisfying (12.74) and find their expres-

sions in terms of F1(y). Taking into account definitions (12.17) and (12.19) for the volume and
double layer potentials, ansatz (12.74) can be rewritten as

a(y)F1(y) = P∆f∗(y)−W∆[aΦ∗](y), y ∈ Ω. (12.75)

Applying the Laplace operator to (12.75) we obtain that

f∗ = ∆(aF1) in Ω. (12.76)

Then (12.75) can be rewritten as

W∆[aΦ∗](y) = Q(y), y ∈ Ω, (12.77)

where
Q(y) := P∆[∆(aF1)](y)− a(y)F1(y), y ∈ Ω. (12.78)

The trace of (12.77) on the boundary gives
[− 1

2
I +W∆

]
[aΦ∗](y) = Q+(y), y ∈ ∂Ω. (12.79)

Since [−1
2I +W∆

]
is isomorphism in H

1
2 (∂Ω) (see e.g. [4, Ch. XI, Part B, §2, Remark 8]),

and a(y) 6= 0, we obtain the following expression for Φ∗

Φ∗(y) =
1

a(y)
[− 1

2
I +W∆

]−1
Q+(y), y ∈ ∂Ω, (12.80)

Now we have to prove that Φ∗(y) and f∗(y) given by (12.80) and (the canonical extension
of) (12.76) do satisfy (12.74). First, (12.80) and (12.76) imply Φ∗ ∈ H

1
2 (∂Ω) and f∗ ∈ H̃− 1

2 (Ω).
Then the potential W∆[aΦ∗](y) with Φ∗(y) given by (12.80) is a harmonic function, and one
can check that Q given by (12.78) is also harmonic. Since (12.79) implies that they coincide
on the boundary, the two harmonic functions should coincide also in the domain, i.e. (12.77)
holds true, which implies (12.74). Thus we constructed a bounded operator CΦ : H1,− 1

2 (Ω; L) →
H̃− 1

2 (Ω)×H
1
2 (∂Ω) given by (12.76), (12.80), (12.78).

¤
Lemma 19 implies that ansatz (12.69) does not cover the whole space H1,− 1

2 (Ω;L).
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12.6.2 United integro-differential equation (G)

In this section, we will get rid of the Dirichlet boundary condition to deal with only one integro-
differential equation. Substituting the Dirichlet boundary condition (12.14) into Wu+ in (12.45)
leads to the following BDIE (G) for u ∈ H1,− 1

2 (Ω; L),

AGu := u +Ru− V T+u = FG in Ω, (12.81)

where

FG = F0 = Pf −Wϕ0. (12.82)

Let us prove the equivalence of the BDIDE to the BVP (12.13)–(12.14).

THEOREM 20 Let f ∈ H̃− 1
2 (Ω), ϕ0 ∈ H

1
2 (∂Ω). A function u ∈ H1,− 1

2 (Ω;L) solves BVP
(12.13)–(12.14) in Ω if and only if u solves BDIDE (12.81) with right-hand side (12.82). Such
solution does exist and is unique.

Proof. Any solution of BVP (12.13)–(12.14) solves BDIDE (12.81) due to the third Green
formula (12.45).

On the other hand, if u is a solution of BDIDE (12.81), then Lemma 7 implies that u satisfies
equation (12.13) and W (ϕ0−u+) = 0 in Ω. Lemma 5(ii) then implies that Dirichlet’s boundary
condition (12.14) is satisfied. The unique solvability of BDIDE (12.81) is implied by Corollary
12.

¤
The mapping properties of operators V , W , P and R (see the Appendix) imply the mem-

bership FG ∈ H1,− 1
2 (Ω;L) and continuity of the operator AG in H1,− 1

2 (Ω;L), while Theorem
20 implies its injectivity.

THEOREM 21 The operator AG is continuous and continuously invertible in H1,− 1
2 (Ω; L).

Proof. The continuity of AG is already proved, and we have to prove existence of a bounded
inverse operator (AG)−1. Let us consider equation (12.81) with an arbitrary function FG from
H1,− 1

2 (Ω; L). Due to Lemma 19, FG can be presented as

FG(y) = Pf∗(y)−WΦ∗(y) y ∈ Ω,

where (f∗, Φ∗) = CΦFG and CΦ is a bounded operator from H1,− 1
2 (Ω; L) to H̃− 1

2 (Ω)×H
1
2 (∂Ω).

Then Theorem 20 and Corollary 12 imply that equation (12.81) has a unique solution u =
(AD)−1(f∗, Φ∗)>, where (AD)−1 is a bounded operator from H̃− 1

2 (Ω)×H
1
2 (∂Ω) to H1,− 1

2 (Ω; L).
¤

12.7 Concluding remarks

After introduction of external and internal co-normal derivative operators, the Dirichlet problem
for a variable–coefficient PDE with a right-hand side function from H−1(Ω) or from H̃− 1

2 (Ω), and
with the Dirichlet data from H

1
2 (∂Ω), was considered in the paper. It was shown that the BVP

can be equivalently reduced to two direct segregated boundary-domain integral equation systems,
one of them of the second kind. On the other hand, the BVP can be equivalently reduced to a
united boundary-domain integro-differential problem, or to a united boundary-domain integro-
differential equation of the second kind. It was shown that the operators associated with the
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left-hand sides of all the four systems/problems/equations, are continuous and continuously
invertible in the corresponding Sobolev-Slobodetski spaces.

A further analysis of spectral properties of the two second kind equations obtained in the
paper is needed to decide whether the resolvent theory and the Neumann series method (c.f.
[10, 18] and references therein) are efficient for solving the equations.

This study can serve as a step forward approaching BDIDEs/BDIDPs based on the localised
parametrices, leading after discretization to sparsely populated systems of linear algebraic equa-
tions, attractive for computations, c.f. [11]. This can be then extended to analysis of localised
BDIDEs/BDIDPs of nonlinear problems, c.f. [14].

12.8 Appendix – Properties of potential operators

12.8.1 Surface potentials

The mapping and jump properties of the potentials of type (12.19)-(12.20) and the corresponding
boundary integral and pseudodifferential operators in the Hölder (Ck+α), Bessel potential (Hs

p)
and Besov (Bs

p,q) spaces are well studied nowadays for the constant coefficient, a = const, (see,
e.g., a list of references in [1]). Some of the properties were extended in [1, 2] to the case of
variable positive coefficient a ∈ C∞(R). A selection of those results is provided here without
proofs, while proofs are given only for new statements involving spaces Hs,− 1

2 (Ω;L).

THEOREM 22 The following operators are continuous,

V : Hs− 3
2 (∂Ω) → Hs(Ω), s ∈ R, (12.83)

: Hs− 3
2 (∂Ω) → Hs,− 1

2 (Ω; L), s >
1
2
; (12.84)

W : Hs− 1
2 (∂Ω) → Hs(Ω), s ∈ R, (12.85)

: Hs− 1
2 (∂Ω) → Hs,− 1

2 (Ω; L), s >
1
2
. (12.86)

Proof.

V Ψ(y) =
1

a(y)
V∆Ψ(y), V∆Ψ(y) :=

∫

S

P∆(x, y)Ψ(x) dx (12.87)

WΦ(y) =
1

a(y)
W∆[aΦ](y), W∆[aΦ](y) :=

∫

S

∂P∆(x, y)
∂n(x)

a(x)Φ(x) dx, (12.88)

where P∆(x, y) := −(4π)−1 |x− y|−1 is the fundamental solution to the Laplace equation.
This is well known that the operators

V∆ : Hs− 3
2 (∂Ω) → Hs(Ω), W∆ : Hs− 1

2 (∂Ω) → Hs(Ω) (12.89)

are continuous for any s ∈ R (see e.g. the above references). Since a(x) 6= 0 and a ∈ C∞(R),
equalities (12.87), (12.88) imply the similar properties, (12.83), (12.85), for the operators V and
W .

On the other hand,

[∆V Ψ](y) =
[
∆

1
a(y)

]
V∆Ψ(y) +

3∑

i=1

∂

∂yi

[
1

a(y)

]
∂V∆Ψ(y)

∂yi
,
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[∆WΦ](y) =
[
∆

1
a(y)

]
V∆[aΦ](y) +

3∑

i=1

∂

∂yi

[
1

a(y)

]
∂W∆[aΦ](y)

∂yi
,

since ∆V∆Ψ(y) = ∆W∆[aΦ](y) = 0 for y ∈ Ω.
Due to the continuity of operators (12.89) this implies the operators ∆V : Hs− 3

2 (∂Ω) →
Hs−1(Ω) and ∆W : Hs− 1

2 (∂Ω) → Hs−1(Ω) are continuous for s ∈ R. Since Hs−1(Ω) ⊂ H̃− 1
2 (Ω)

for s > 1
2 , this implies (12.84), (12.86) and completes the theorem.

¤

THEOREM 23 Let s ∈ R. The following pseudodifferential operators are continuous

V : Hs(∂Ω) → Hs+1(∂Ω),
W, W ′ : Hs(∂Ω) → Hs+1(∂Ω),

L+ : Hs(∂Ω) → Hs−1(∂Ω).

THEOREM 24 Let s ∈ R. The following operators are compact,

rS2
V : Hs(∂Ω) → Hs(∂Ω),

rS2
W : Hs(∂Ω) → Hs(∂Ω),

rS2
W ′ : Hs(∂Ω) → Hs(∂Ω).

THEOREM 25 The operator V : Hs−1(∂Ω) → Hs(∂Ω) is continuously invertible for all
s ∈ R.

12.8.2 Volume potentials

The following theorem about mapping properties was proved in [1].

THEOREM 26 Let Ω be a bounded open three–dimensional region of R3 with a simply con-
nected, closed, infinitely smooth boundary. The following operators are continuous

P : H̃s(Ω) → Hs+2(Ω), s ∈ R, (12.90)

: Hs(Ω) → Hs+2(Ω), s > −1
2
; (12.91)

R : H̃s(Ω) → Hs+1(Ω), s ∈ R, (12.92)

: Hs(Ω) → Hs+1(Ω), s > −1
2
; (12.93)

P+ : H̃s(Ω) → Hs+ 3
2 (∂Ω), s > −3

2
, (12.94)

: Hs(Ω) → Hs+ 3
2 (∂Ω), s > −1

2
; (12.95)

R+ : H̃s(Ω) → Hs+ 1
2 (∂Ω), s > −1

2
, (12.96)

: Hs(Ω) → Hs+ 1
2 (∂Ω), s > −1

2
; (12.97)

T+P : H̃s(Ω) → Hs+ 1
2 (∂Ω), s > −1

2
, (12.98)

: Hs(Ω) → Hs+ 1
2 (∂Ω), s > −1

2
; (12.99)

T+R : H̃s(Ω) → Hs− 1
2 (∂Ω), s >

1
2
, (12.100)

: Hs(Ω) → Hs− 1
2 (∂Ω), s >

1
2
. (12.101)



COROLLARY 27 The following operators are continuous,

P : H̃s(Ω) → Hs+2,− 1
2 (Ω; L), s ≥ −1

2
, (12.102)

: Hs(Ω) → Hs+2,− 1
2 (Ω; L), s > −1

2
; (12.103)

R : Hs(Ω) → Hs+1,− 1
2 (Ω; L), s >

1
2
. (12.104)

Proof. Continuity of operators (12.90), (12.91) and (12.93) imply continuity of operator (12.102)
for s > −1

2 , as well as (12.103) and (12.104). Let us prove (12.102) for s = −1
2 . For g ∈ H̃− 1

2 (Ω),
we have, P g ∈ H

3
2 (Ω) due to (12.90), and

∆P g = ∆
[
1
a
P∆ g

]
=

1
a
g + 2

3∑

j=1

∂j

[
1
a

]
∂j [P∆ g ] +

[
∆

1
a

]
P∆ g in R3, (12.105)

where P∆ := P|a=1, and we taken into account that ∆P∆ g = g. Since a ∈ C∞(Ω̄), a > 0,
the first term in (12.105) belongs to H̃− 1

2 (Ω), while the sum of the second and the third term
belongs to H

1
2 (Ω) and can be extended by zero to H̃0(Ω) ⊂ H̃− 1

2 (Ω), which completes the proof.
¤

COROLLARY 28 The operators

R : Hs(Ω) → Hs(Ω), s > −1
2
, (12.106)

: Hs(Ω) → Hs,− 1
2 (Ω; L), s >

1
2
, (12.107)

R+ : Hs(Ω) → Hs− 1
2 (∂Ω), s > −1

2
, (12.108)

T+R : Hs(Ω) → Hs− 3
2 (∂Ω), s >

1
2
, (12.109)

are compact for any infinitely smooth boundary curve ∂Ω.

Proof. Compactness of the operators (12.106), (12.108) and (12.109) follows from (12.93),
(12.97), and (12.101), respectively, and the Rellich compact embedding theorem. Then (12.106)
and (12.93) imply (12.107). ¤
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