A CHAIN THEOREM FOR 4-CONNECTED MATROIDS

RHIANNON HALL

Abstract

A matroid M is said to be k-connected up to separators of size l if whenever A is $(k-1)$-separating in M, then either $|A| \leq l$ or $|E(M)-A| \leq l$. We use $\operatorname{si}(M)$ and $\operatorname{co}(M)$ to denote the simplification and cosimplification of the matroid M. We prove that if a 3 -connected matroid M is 4 -connected up to separators of size 5 , then there is an element x of M such that either $\operatorname{co}(M \backslash x)$ or $\operatorname{si}(M / x)$ is 3-connected and 4 -connected up to separators of size 5 , and has a cardinality of $|E(M)|-1$ or $|E(M)|-2$.

1. Introduction

We begin by recalling Tutte's definition of matroid connectivity [8]. Let M be a matroid with ground set E. The connectivity function of M is given by $\lambda_{M}(A)=\mathrm{r}(A)+\mathrm{r}(E-A)-\mathrm{r}(M)+1$ where A is a subset of E. A subset A of E is k-separating if $\lambda_{M}(A) \leq k$. Thus, a partition (A, B) of E is a k-separation of M if A is k-separating and $|A|,|B| \geq k$. We say that M is k-connected if M has no k^{\prime}-separation where $k^{\prime}<k$.

Historically, the focus of much attention in matroid theory has been on 3 -connected matroids. One reason for this is that 3 -connected matroids possess significant structure in that a number of the degeneracies caused by low connectivity are ironed out in the 3 -connected case. A second crucial reason is that there exist satisfactory chain theorems such as Tutte's Wheels and Whirls Theorem and Seymour's Splitter Theorem that enable strong inductive arguments to be made in the class of 3 -connected matroids.

However, over recent years evidence has accumulated that 3-connectivity is not enough for substantial progress in matroid representation theory and that higher connectivity is needed. On the other hand it is also clear that strict 4 -connectivity is too strong a notion to be really useful. This notion excludes highly structured objects such as matroids of complete graphs. Moreover, it does not appear possible to find a reasonable analogue for chain theorems such as the Wheels and Whirls Theorem. Given this, it is natural to look for weakenings of 4 -connectivity. To be useful, such a weakening should allow natural structures such as matroids of complete graphs and it should also be possible to prove reasonable chain theorems. One such weakening is the notion of sequential 4 -connectivity introduced by Geelen

[^0]and Whittle [3]. With this notion it is possible to prove an analogue of the Wheels and Whirls Theorem.

Theorem 1.1. Let M be a sequentially 4-connected matroid. If M is not a wheel or a whirl, then there exists an element $e \in E(M)$ such that either $M \backslash e$ or M / e is sequentially 4-connected.

Sequential 4-connectivity is certainly a natural notion. However, if (A, B) is a 3 -separation in a sequentially 4 -connected matroid, then, while one of A or B is forced to have a certain simple structure, no bound can be placed on the sizes of A or B, that is, we may have arbitrarily large 3 -separations. In this paper we consider an alternative weakening of 4 -connectivity. A matroid M is k-connected up to separators of size l if whenever A is $(k-1)$ separating in M, then either $|A| \leq l$ or $|E(M)-A| \leq l$. Here, rather than focusing on the structure of 3 -separators, we focus solely on their size. The main theorem of this paper proves

Theorem 1.2. If a 3-connected matroid M is 4-connected up to 3-separators of size 5 then there is an element $x \in E(M)$ such that $\operatorname{co}(M \backslash x)$ or $\operatorname{si}(M / x)$ is 3-connected and 4-connected up to 3-separators of size 5 , with a cardinality of $|E(M)|-1$ or $|E(M)|-2$.

The paper is structured as follows. In Section 2 we deal with the case where the matroid M is 4 -connected. Section 3 deals with the internally 4 -connected case. We prove Theorem 3.1 which is stronger than we need for proving Theorem 1.2 however it is of independent interest, for example it is used in bounding the size of excluded minors for the matroids of branchwidth 3 [4]. Unfortunately the proof of Theorem 3.1 is rather cumbersome as it involves case analysis. In Section 4, we deal with the case where the matroid is 4 -connected up to separators of size 4, and in Section 5 we complete the proof of Theorem 1.2. Section 5 begins with a relatively straightforward proof for the matroids with more than 15 elements, however we require case analysis when we look at the matroids smaller than this.

We assume that the reader is familiar with matroid theory as set forth in Oxley [5]. Also notation follows Oxley with the following exceptions. We use $\operatorname{si}(M)$ and $\operatorname{co}(M)$ for the simplification and cosimplification of the matroid M. We let $\operatorname{cl}^{(*)}(X)$ denote $\operatorname{cl}(X) \cup \operatorname{cl}^{*}(X)$.

Finally we note a lemma [3, Proposition 3.2] that will be used frequently.
Lemma 1.3. Let λ_{M} be the connectivity function of a matroid M, and let A and B be subsets of the groundset of M. If A and B are 3 -separating and $\lambda_{M}(A \cap B) \geq 3$, then $\lambda_{M}(A \cup B) \leq 3$.

2. The 4-connected Case

In this section we deal with the case where the matroid is 4 -connected. The following lemma is [2, Lemma 5.2].

Lemma 2.1. Let x be an element of a matroid M, and let A and B be subsets of $E(M)-\{x\}$. Then

$$
\lambda_{M \backslash x}(A)+\lambda_{M / x}(B) \geq \lambda_{M}(A \cap B)+\lambda_{M}(A \cup B \cup\{x\})-1 .
$$

The next lemma is a straightforward consequence of Lemma 2.1. It appears well known but does not seem to appear in the literature.

Lemma 2.2. Let M be k-connected up to separators of size l. Then, for all $x \in E(M)$, either $M \backslash x$ or M / x is k-connected up to separators of size $2 l$.

Proof. Let $x \in E(M)$. Suppose that $M \backslash x$ is not k-connected up to separators of size $2 l$, so that there is a ($k-1$)-separation $\left(A_{1}, A_{2}\right)$ of $M \backslash x$ where $\left|A_{1}\right|,\left|A_{2}\right| \geq 2 l+1$. Consider M / x. Let $\left(B_{1}, B_{2}\right)$ be a $(k-1)$-separation of M / x. Then from Lemma 2.1, $\lambda_{M \backslash x}\left(A_{1}\right)+\lambda_{M / x}\left(B_{1}\right) \geq \lambda_{M}\left(A_{1} \cap B_{1}\right)+$ $\lambda_{M}\left(A_{1} \cup B_{1} \cup\{x\}\right)-1$ so that $\lambda_{M}\left(A_{1} \cap B_{1}\right)+\lambda_{M}\left(A_{2} \cap B_{2}\right) \leq 2 k-1$, and it follows that either $\lambda_{M}\left(A_{1} \cap B_{1}\right) \leq k-1$ or $\lambda_{M}\left(A_{2} \cap B_{2}\right) \leq k-1$. But if $A_{1} \cap B_{1}$ or $A_{2} \cap B_{2}$ is ($k-1$)-separating in M, then $\left|A_{1} \cap B_{1}\right| \leq l$ or $\left|A_{2} \cap B_{2}\right| \leq l$ respectively. By the same argument as above, we see that $\left|A_{1} \cap B_{2}\right| \leq l$ or $\left|A_{2} \cap B_{1}\right| \leq l$. We can assume without loss of generality that $\left|A_{1} \cap B_{1}\right| \leq l$. It is not possible to have $\left|A_{1} \cap B_{2}\right| \leq l$ because $\left|A_{1}\right| \geq 2 l+1$, so we must have $\left|A_{2} \cap B_{1}\right| \leq l$ and as a result $\left|B_{1}\right| \leq 2 l$. From this we see that M / x is k-connected up to separators of size $2 l$.

An immediate corollary of Lemma 2.2 is
Corollary 2.3. Let x be an element of the 4 -connected matroid M. Then $M \backslash x$ or M / x is 4-connected up to 3-separators of size 4 .

3. The Internally 4-connected Case

Recall that a matroid is internally 4 -connected if it is 3 -connected and 4connected up to separators of size 3. It is easily seen that if e is an element of a triangle in an internally 4 -connected matroid M with at least eight elements, then $M \backslash e$ is 3-connected.

The object of this section is to prove the following theorem.
Theorem 3.1. Let M be an internally 4-connected matroid, and let $\{a, b, c\}$ be a triangle of M. Then at least one of the following hold.
(1) At least one of $M \backslash a, M \backslash b$ and $M \backslash c$ is 4-connected up to 3-separators of size 4 .
(2) At least two of $M \backslash a, M \backslash b$ and $M \backslash c$ are 4-connected up to 3-separators of size 5 .

Before proving Theorem 3.1, we establish some preliminary lemmas. We begin with a definition. Let $\left(X_{1}, X_{2}\right)$ and $\left(Y_{1}, Y_{2}\right)$ be k-separations of a matroid M. Then $\left(X_{1}, X_{2}\right)$ is meatier than $\left(Y_{1}, Y_{2}\right)$ if $\min \left\{\left|X_{1}\right|,\left|X_{2}\right|\right\}>$ $\min \left\{\left|Y_{1}\right|,\left|Y_{2}\right|\right\}$. A meaty 3 -separation $\left(X_{1}, X_{2}\right)$ of a matroid M is one where $\left|X_{1}\right| \geq 5$ and $\left|X_{2}\right| \geq 5$.

Lemma 3.2 ([3, Lemma 6.1.1.]). Let M be an internally 4-connected matroid. Let $\{a, b, c\}$ be a triangle of M, and let (X, Y) be a meaty 3 -separation of $M \backslash a$. Then $b \in X, c \in Y, b \in \operatorname{cl}(X-\{b\})$ and $c \in \operatorname{cl}(Y-\{c\})$.

Proof. M is internally 4 -connected and $|X|,|Y| \geq 5$, so $a \notin \operatorname{cl}(X)$ and $a \notin \operatorname{cl}(Y)$. However $a \in \operatorname{cl}(\{b, c\})$ so without loss of generality, we must have $b \in X$ and $c \in Y$.

Now suppose that $b \notin \mathrm{cl}(X-\{b\})$, then $(X-\{b\}, Y \cup\{b\})$ is a 3 -separation of $M \backslash a$. But $a \in \operatorname{cl}(Y \cup\{b\})$ so ($X-\{b\}, Y \cup\{a, b\}$) is a 3-separation of M where $|X-\{b\}| \geq 4$ and $|Y \cup\{a, b\}| \geq 7$, contradicting the fact that M is internally 4 -connected. As a result, we see that $b \in \operatorname{cl}(X-\{b\})$, and similarly $c \in \operatorname{cl}(Y-\{c\})$.

In what follows, M is an internally 4 -connected matroid, $\{a, b, c\}$ is a triangle of M, and $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$ are meaty 3-separations of $M \backslash a, M \backslash b$ and $M \backslash c$ respectively, where $b \in A_{b}, c \in A_{c}, a \in B_{a}, c \in B_{c}$, $a \in C_{a}$, and $b \in C_{b}$. We use the following lemma of [3] to prove the lemma which follows it, which also appears in [3].

Lemma 3.3 ([3, Lemma 6.1.4.]). If $A_{b} \cap B_{c}$ (respectively $A_{c} \cap B_{c}$ or $A_{c} \cap B_{a}$) is k-separating in $M \backslash a, b$, then $A_{b} \cap B_{c}$ (respectively $A_{c} \cap B_{c}$ or $A_{c} \cap B_{a}$) is k-separating in M.

Proof. We have $a \in \operatorname{cl}\left(B_{a}-\{a\}\right)$ and $b \in \operatorname{cl}(\{a, c\})$. Therefore, if $A_{b} \cap B_{c}$ is k-separating in $M \backslash a, b$ then $A_{b} \cap B_{c}$ is k-separating in M. Similarly, if $A_{c} \cap B_{a}$ is k-separating in $M \backslash a, b$, then $A_{c} \cap B_{a}$ is k-separating in M. Moreover, since $a \in \operatorname{cl}\left(B_{a}-\{a\}\right)$ and $b \in \operatorname{cl}\left(A_{b}-\{b\}\right)$, we see that if $A_{c} \cap B_{c}$ is k-separating in $M \backslash a, b$ then $A_{c} \cap B_{c}$ is k-separating in M.

Lemma 3.4 ([3, Lemma 6.1.5.]).
(i) If $\left|A_{b} \cap B_{c}\right| \geq 2$, then $A_{c} \cap B_{a}$ is 3-separating in M and $\left|A_{c} \cap B_{a}\right| \leq$ 3.
(ii) If $\left|A_{c} \cap B_{a}\right| \geq 2$, then $A_{b} \cap B_{c}$ is 3-separating in M and $\left|A_{b} \cap B_{c}\right| \leq$ 3.
(iii) If $\lambda_{M \backslash a, b}\left(A_{b} \cap B_{a}\right) \geq 3$, then $A_{c} \cap B_{c}$ is 3-separating in M and $\left|A_{c} \cap B_{c}\right| \leq 3$.
(iv) If $\lambda_{M \backslash a, b}\left(A_{b} \cap B_{a}\right)=2$, then $A_{b} \cap B_{a}$ is 3-separating in M and $\left|A_{b} \cap B_{a}\right| \leq 3$.

Proof.
(i) If $\left|A_{b} \cap B_{c}\right| \geq 2$, then $A_{b} \cap B_{c}$ cannot be 2 -separating in $M \backslash a, b$ because then it would be 2 -separating in M, by Lemma 3.3. So $A_{b} \cap B_{c}$ must be 3 -separating in $M \backslash a, b$. Now, from Lemma 1.3, $A_{c} \cap B_{a}$ is 3 -separating in $M \backslash a, b$, and by Lemma 3.3, $A_{c} \cap B_{a}$ is 3separating in M. Now, M is internally 4 -connected, so $\left|A_{c} \cap B_{a}\right| \leq 3$.
(ii) This argument follows from (i) and from the symmetry of $\{a, b, c\}$.
(iii) If $\lambda_{M \backslash a, b}\left(A_{b} \cap B_{a}\right) \geq 3$, then from Lemma 1.3, $A_{c} \cap B_{c}$ is 3-separating in $M \backslash a, b$, and from Lemma 3.3, it is 3 -separating in M. Now, M is internally 4-connected, so $\left|A_{c} \cap B_{c}\right| \leq 3$.
(iv) If $\lambda_{M \backslash a, b}\left(A_{b} \cap B_{a}\right)=2$, then since $M \backslash a$ is 3 -connected, $A_{b} \cap B_{a}$ is 3 -separating in $M \backslash a$. Now, $a \in \operatorname{cl}(\{b, c\})$, so $A_{b} \cap B_{a}$ is 3 -separating in M, and M is internally 4 -connected so $\left|A_{b} \cap B_{a}\right| \leq 3$.

Lemma 3.5. If $\left|A_{b} \cap B_{a}\right|=3$ and $\lambda_{M \backslash a, b}\left(A_{b} \cap B_{a}\right)=2$, then $M \backslash c$ is 4 -connected up to 3 -separators of size 5 .

Proof. By Lemma 3.4, $A_{b} \cap B_{a}$ is 3-separating in M, so it is a triangle or triad of M. Let $A_{b} \cap B_{a}=\left\{x_{1}, x_{2}, x_{3}\right\}$. Now, $\lambda_{M \backslash a, b}\left(A_{b} \cap B_{a}\right)=2$, but $M \backslash a$ and $M \backslash b$ are 3 -connected so $\lambda_{M \backslash a}\left(A_{b} \cap B_{a}\right)=3$ and $\lambda_{M \backslash b}\left(A_{b} \cap B_{a}\right)=3$. As a result, $a, b \notin \operatorname{cl}\left(A_{c} \cup B_{c}\right)$ and hence $a \in \operatorname{cl}_{M}^{*}\left(\left\{b, x_{1}, x_{2}, x_{3}\right\}\right)$ and $b \in$ $\operatorname{cl}_{M}^{*}\left(\left\{a, x_{1}, x_{2}, x_{3}\right\}\right)$. Now consider the 3 -separation $\left(C_{a}, C_{b}\right)$ of $M \backslash c$. We need to show that $\left|C_{a}\right| \leq 5$ or $\left|C_{b}\right| \leq 5$. By symmetry, there are two cases to check. In the first case $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq C_{a}$, and in the second case $x_{1}, x_{2} \in C_{a}$ and $x_{3} \in C_{b}$.

We begin with the first case where $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq C_{a}$. Since $b \in \operatorname{cl}_{M}^{*}\left(\left\{x_{1}, x_{2}, x_{3}, a\right\}\right)$, we know that $\left(C_{a} \cup\{b\}, C_{b}-\{b\}\right)$ is a 3 -separation of $M \backslash c$, and therefore $\left(C_{a} \cup\{b, c\}, C_{b}-\{b\}\right)$ is a 3 -separation of M. Now, M is internally 4connected so $\left|C_{b}-\{b\}\right| \leq 3$ and thus, $\left|C_{b}\right| \leq 4$

Now consider the second case where $x_{1}, x_{2} \in C_{a}$ and $x_{3} \in C_{b}$. Since $\left\{x_{1}, x_{2}, x_{3}\right\}$ is a triangle or triad of $\mathrm{M}, x_{3} \in \operatorname{cl}^{(*)}\left(\left\{x_{1}, x_{2}\right\}\right)$, hence $\left(C_{a} \cup\right.$ $\left.\left\{x_{3}\right\}, C_{b}-\left\{x_{3}\right\}\right)$ is a 3-separation of $M \backslash c$. Now, $b \in \operatorname{cl}_{M}^{*}\left(\left\{a, x_{1}, x_{2}, x_{3}\right\}\right)$, so ($C_{a} \cup\left\{x_{3}, b\right\}, C_{b}-\left\{x_{3}, b\right\}$) is a 3 -separation of $M \backslash c$, and as a result $\left(C_{a} \cup\left\{x_{3}, b, c\right\}, C_{b}-\left\{x_{3}, b\right\}\right)$ is a 3 -separation of M. But M is internally 4 -connected, so $\left|C_{b}-\left\{x_{3}, b\right\}\right| \leq 3$ and therefore $\left|C_{b}\right| \leq 5$. This shows that $M \backslash c$ is 4 -connected up to 3 -separators of size 5 .

Having proved these preliminary lemmas, we will now start bounding the size of the 3 -separators in the matroids $M \backslash a, M \backslash b$, and $M \backslash c$. In the following, we assume that $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$ are the meatiest 3-separators of $M \backslash a, M \backslash b$, and $M \backslash c$ respectively. Also in what follows, we make frequent use of Venn diagrams. The diagram below illustrates the 3 -separations $\left(A_{b}, A_{c}\right)$ and (B_{a}, B_{c}), and may assist the reader in following the proof of Lemma 3.6.

Lemma 3.6. Let $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$ be the meatiest 3-separations of $M \backslash a, M \backslash b$, and $M \backslash c$ respectively. If $\left|A_{b} \cap B_{a}\right| \leq 1,\left|A_{b} \cap B_{c}\right| \leq 1$, $\left|A_{c} \cap B_{a}\right| \leq 1$, or $\left|A_{c} \cap B_{c}\right| \leq 2$, then Theorem 3.1 is satisfied.

Proof. The above Venn diagram may assist in following the proof. First suppose that $\left|A_{b} \cap B_{a}\right| \leq 1$. It is easily seen that if $\left|A_{b} \cap B_{c}\right| \leq 3$ and $\left|A_{c} \cap B_{a}\right| \leq 3$, then $\left|A_{b}\right| \leq 5$ and $\left|B_{a}\right| \leq 5$, as required. If $\left|A_{c} \cap B_{a}\right|>3$, then $\left|A_{b} \cap B_{c}\right| \leq 1$ by Lemma 3.4, so $\left|A_{b}\right| \leq 3$ as required. The argument is symmetric if $\left|A_{b} \cap B_{c}\right|>3$.

Secondly, we suppose that $\left|A_{c} \cap B_{c}\right| \leq 2$. If $\left|A_{b} \cap B_{c}\right| \leq 3$ and $\left|A_{c} \cap B_{a}\right| \leq 3$, then $\left|A_{c}\right| \leq 5$ and $\left|B_{c}\right| \leq 5$ as required. If $\left|A_{c} \cap B_{a}\right|>3$ then $\left|A_{b} \cap B_{c}\right| \leq 1$ by Lemma 3.4, so $\left|B_{c}\right| \leq 3$ as required. The argument is symmetric if $\left|A_{b} \cap B_{c}\right|>3$.

Now suppose that $\left|A_{b} \cap B_{c}\right| \leq 1$. If $\left|A_{c} \cap B_{c}\right| \leq 3$, then $\left|B_{c}\right| \leq 4$ as required. If $\left|A_{c} \cap B_{c}\right|>3$, then by Lemma 3.4, $\lambda_{M \backslash a, b}\left(A_{b} \cap B_{a}\right)<3$ and $\left|A_{b} \cap B_{a}\right| \leq 3$. Firstly, if $\left|A_{b} \cap B_{a}\right| \leq 2$ then $\left|A_{b}\right| \leq 4$. Secondly, if $\left|A_{b} \cap B_{a}\right|=3$ then $\left|A_{b}\right| \leq 5$, and by Lemma $3.5 M \backslash c$ is 4 -connected up to 3-separators of size 5.

Finally, the case where $\left|A_{c} \cap B_{a}\right| \leq 1$ is symmetric to the case where $\left|A_{b} \cap B_{c}\right| \leq 1$.

Given 3-separations $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$, we use the following notation to simplify the statements of Lemmas 3.7-3.10.

$$
\begin{aligned}
\lambda_{1} & :=\left|A_{b} \cap B_{c} \cap C_{a}\right| & \lambda_{2} & :=\left|A_{c} \cap B_{a} \cap C_{b}\right| \\
\nu_{1 a} & :=\left|A_{b} \cap B_{a} \cap C_{a}\right| & \nu_{2 a} & :=\left|A_{c} \cap B_{a} \cap C_{a}\right| \\
\nu_{1 b} & :=\left|A_{b} \cap B_{c} \cap C_{b}\right| & \nu_{2 b} & :=\left|A_{b} \cap B_{a} \cap C_{b}\right| \\
\nu_{1 c} & :=\left|A_{c} \cap B_{c} \cap C_{a}\right| & \nu_{2 c} & :=\left|A_{c} \cap B_{c} \cap C_{b}\right|
\end{aligned}
$$

It is easily seen that the eight sets listed above along with $\{a, b, c\}$ partition the elements of the matroid M.

Lemma 3.7. Let $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$ be meaty 3-separations of the matroids $M \backslash a, M \backslash b$ and $M \backslash c$ respectively, such that $A_{b} \cap B_{c}, A_{c} \cap B_{a}$, $A_{b} \cap C_{a}, A_{c} \cap C_{b}, B_{a} \cap C_{b}$ and $B_{c} \cap C_{a}$ all have at least two elements. If $\lambda_{1} \geq 2$, then $\lambda_{1}+\nu_{1 a}+\nu_{1 b}+\nu_{1 c} \leq 3$. And similarly, if $\lambda_{2} \geq 2$ then $\lambda_{2}+\nu_{2 a}+\nu_{2 b}+\nu_{2 c} \leq 3$.
Proof. Assume that $\lambda_{1}=\left|A_{b} \cap B_{c} \cap C_{a}\right| \geq 2$. We know from Lemma 3.4 that each of $A_{b} \cap B_{c}, A_{c} \cap B_{a}, A_{b} \cap C_{a}, A_{c} \cap C_{b}, B_{a} \cap C_{b}$ and $B_{c} \cap C_{a}$ is 3-separating in M and has at most three elements. Suppose first that two of $A_{b} \cap B_{c}, B_{c} \cap C_{a}$ and $A_{b} \cap C_{a}$ have three elements, and that $\left|A_{b} \cap B_{c} \cap C_{a}\right|=2$. We may assume by symmetry that $\left|A_{b} \cap B_{c}\right|=\left|B_{c} \cap C_{a}\right|=3$. Then $A_{b} \cap C_{a}$ and $B_{c} \cap C_{a}$ are 3 -separating subsets of M whose intersection has two elements. But then Lemma 1.3 tells us that their union forms a four-element 3 -separator of M, contradicting that M is internally 4 -connected. Thus, we see that if two of $A_{b} \cap B_{c}, B_{c} \cap C_{a}$ and $A_{b} \cap C_{a}$ have three elements, then $\left|A_{b} \cap B_{c} \cap C_{a}\right|=3$.

Now suppose that two of $A_{b} \cap B_{c}, B_{c} \cap C_{a}$ and $A_{b} \cap C_{a}$ have three elements, and assume by symmetry that they are $A_{b} \cap B_{c}$ and $B_{c} \cap C_{a}$. Then $\mid A_{b} \cap$ $B_{c} \cap C_{a} \mid=3$, and hence $A_{b} \cap C_{a}=A_{b} \cap B_{c} \cap C_{a}$, since $\left|A_{b} \cap C_{a}\right| \leq 3$. But then $A_{b} \cap C_{a} \subseteq B_{c}$, thus $A_{b} \cap B_{a} \cap C_{a}=\emptyset$ and $\nu_{1 a}=0$. Similarly we see that $\nu_{1 b}=\nu_{1 c}=0$, and hence $\lambda_{1}+\nu_{1 a}+\nu_{1 b}+\nu_{1 c}=3$.

Just as with the paragraph above, if $\left|A_{b} \cap B_{c}\right|=\left|B_{c} \cap C_{a}\right|=\left|A_{b} \cap C_{a}\right|=$ $\left|A_{b} \cap B_{c} \cap C_{a}\right|=2$, then $\nu_{1 a}=\nu_{1 b}=\nu_{1 c}=0$. And hence $\lambda_{1}+\nu_{1 a}+\nu_{1 b}+\nu_{1 c}=$ 2.

Now suppose that $\left|A_{b} \cap B_{c} \cap C_{a}\right|=2,\left|A_{b} \cap B_{c}\right|=3,\left|B_{c} \cap C_{a}\right|=2$ and $\left|A_{b} \cap C_{a}\right|=2$. Then as with the paragraph above, $\nu_{1 a}=\nu_{1 c}=0$. Also $\left|A_{b} \cap B_{c}\right|=3$ and $\left|A_{b} \cap B_{c} \cap C_{a}\right|=2$, so two elements of $A_{b} \cap B_{c}$ are contained in C_{a}, while the other is in C_{b}. Therefore, $\nu_{1 b}=\left|A_{b} \cap B_{c} \cap C_{b}\right|=1$, and $\lambda_{1}+\nu_{1 a}+\nu_{1 b}+\nu_{1 c}=3$.

By symmetry we know that if $\lambda_{1}=2$ and $\left|B_{c} \cap C_{a}\right|=3$, then $\nu_{1 c}=1$ and $\nu_{1 a}=\nu_{1 b}=0$. And we know that if $\lambda_{1}=2$ and $\left|A_{b} \cap C_{a}\right|=3$, then $\nu_{1 a}=1$ and $\nu_{1 b}=\nu_{1 c}=0$. Therefore, if $\lambda_{1} \geq 2$, then $\lambda_{1}+\nu_{1 a}+\nu_{1 b}+\nu_{1 c} \leq 3$.

Again, we may apply symmetry to the situation above to obtain the result that if $\lambda_{2} \geq 2$, then $\lambda_{2}+\nu_{2 a}+\nu_{2 b}+\nu_{2 c} \leq 3$.

Let M be an internally 4 -connected matroid with a triangle $\{a, b, c\}$. And let $M \backslash a, M \backslash b$ and $M \backslash c$ have meaty 3 -separations $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$ respectively, such that each of $A_{b} \cap B_{c}, A_{c} \cap B_{a}, A_{b} \cap C_{a}$, $A_{c} \cap C_{b}, B_{a} \cap C_{b}$ and $B_{c} \cap C_{a}$ have at least two elements. Then $|E(M)|=$ $3+\lambda_{1}+\lambda_{2}+\nu_{1 a}+\nu_{2 a}+\nu_{1 b}+\nu_{2 b}+\nu_{1 c}+\nu_{2 c}$ so by Lemma 3.7, if $\lambda_{1} \geq 2$ and $\lambda_{2} \geq 2$ then $|E(M)| \leq 9$. This means that we may assume that $\lambda_{2} \leq 1$ in proving Theorem 3.1. Our proof will be divided into the following three cases.
(1) $\lambda_{1} \leq 1$. This is the topic of Lemma 3.8.
(2) $\lambda_{1}=2$ and $\nu_{1 a}=1$. This is the topic of Lemma 3.9.
(3) $\lambda_{1} \geq 2$ and $\nu_{1 a}=\nu_{1 b}=\nu_{1 c}=0$. This is the topic of Lemma 3.10.

Lemma 3.8. Let M be an internally 4-connected matroid with a triangle $\{a, b, c\}$. And let $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$ be the meatiest 3separations of $M \backslash a, M \backslash b$ and $M \backslash c$ respectively, such that each of $A_{b} \cap B_{c}$, $A_{c} \cap B_{a}, A_{b} \cap C_{a}, A_{c} \cap C_{b}, B_{a} \cap C_{b}$ and $B_{c} \cap C_{a}$ have at least two elements. If $\lambda_{1} \leq 1$ and $\lambda_{2} \leq 1$, then Theorem 3.1 is satisfied.

Proof. First suppose that $\lambda_{1}=\left|A_{b} \cap B_{c} \cap C_{a}\right|=0$ and $\lambda_{2}=\left|A_{c} \cap B_{a} \cap C_{b}\right| \leq 1$. Let $X:=A_{b} \cap B_{c}, Y:=A_{b} \cap C_{a}$ and $Z:=B_{c} \cap C_{a}$, then since $\left|A_{b} \cap B_{c} \cap C_{a}\right|=$ 0 , basic set theory tells us that $X \subseteq A_{b} \cap C_{b}, X \subseteq B_{c} \cap C_{b}, Y \subseteq B_{a} \cap C_{a}$, $Y \subseteq A_{b} \cap B_{a}, Z \subseteq A_{c} \cap C_{a}$ and $Z \subseteq A_{c} \cap B_{c}$. These are illustrated on the following Venn diagrams which may assist the reader.

Now, $\lambda_{2}=\left|A_{c} \cap B_{a} \cap C_{b}\right| \leq 1$, while $A_{c} \cap B_{a}, A_{c} \cap C_{b}$ and $B_{a} \cap C_{b}$ have at least two elements each, therefore $\left|A_{c} \cap B_{a} \cap C_{a}\right| \geq 1,\left|A_{c} \cap B_{c} \cap C_{b}\right| \geq 1$ and $\left|A_{b} \cap B_{a} \cap C_{b}\right| \geq 1$. Let $p \in A_{c} \cap B_{a} \cap C_{a}, q \in A_{c} \cap B_{c} \cap C_{b}$ and $r \in$ $A_{b} \cap B_{a} \cap C_{b}$. These elements are shown above in the Venn diagrams. Now, since $|X| \geq 2,|Y| \geq 2$ and $|Z| \geq 2$, we see that $\left|A_{c} \cap B_{c}\right| \geq 4,\left|A_{b} \cap C_{b}\right| \geq 4$ and $\left|B_{a} \cap C_{a}\right| \geq 4$. But Lemma 3.4 then tells us that $\left|A_{b} \cap B_{a}\right|=3$ and $\lambda_{M \backslash a, b}\left(A_{b} \cap B_{a}\right)=2 ;\left|A_{c} \cap C_{a}\right|=3$ and $\lambda_{M \backslash a, c}\left(A_{c} \cap C_{a}\right)=2$; and $\left|B_{c} \cap C_{b}\right|=3$ and $\lambda_{M \backslash b, c}\left(B_{c} \cap C_{b}\right)=2$. And it follows from Lemma 3.5 that $M \backslash a, M \backslash b$ and $M \backslash c$ are all 4 -connected up to 3 -separators of size 5 .

By symmetry, we obtain the same result if $\lambda_{2}=0$ and $\lambda_{1} \leq 1$. Hence, we may now assume that $\lambda_{1}=\left|A_{b} \cap B_{c} \cap C_{a}\right|=1$ and $\lambda_{2}=\left|A_{c} \cap B_{a} \cap C_{b}\right|=1$. Let $\{p\}:=A_{b} \cap B_{c} \cap C_{a}$ and $\{q\}:=A_{c} \cap B_{a} \cap C_{b}, X:=A_{b} \cap B_{c}-\{p\}$, $Y:=A_{c} \cap B_{a}-\{q\}, Z:=A_{b} \cap C_{a}-\{p\}, W:=A_{c} \cap C_{b}-\{q\}, R:=B_{c} \cap C_{a}-\{p\}$ and $S:=B_{a} \cap C_{b}-\{q\}$. It is easily seen by Lemma 3.4 that each of X, Y, Z, W, R and S have either one or two elements. The following Venn diagrams are obtained by basic set theory. And basic set theory tells us that $E(M)=\{a, b, c, p, q\} \cup X \cup Y \cup Z \cup W \cup R \cup S$.

It is easily seen that if each of X, Y, Z, W, R and S has just one element, then $M \backslash a, M \backslash b$ and $M \backslash c$ are all 4 -connected up to 3-separators of size 5, because M has only eleven elements. Hence we may assume that one of X, Y, Z, W, R and S has two elements, and we may assume by symmetry that it is Y. By Lemma 3.4, we see that $\{q\} \cup Y$ is a triangle or triad of M. Now, suppose that $\lambda_{M \backslash a, c}\left(A_{c} \cap C_{a}\right)=2$, then $A_{c} \cap C_{a} \cup\{q\}$ is a 3 -separator of M with more than three elements, contradicting that M is internally 4 -connected. Thus we know that $\lambda_{M \backslash a, c}\left(A_{c} \cap C_{a}\right) \geq 3$ and by Lemma 3.4, $A_{b} \cap C_{b}$ is 3 -separating in M, and hence $|X|=|S|=1$. Next suppose that $|W|=2$. Then $\{q\} \cup W$ would be a triangle or triad of M. But $\left|B_{a} \cap C_{a}\right| \geq 4$ so Lemma 3.4 tells us that $B_{c} \cap C_{b}$ is a 3 -separator of M, and
hence $B_{c} \cap C_{b} \cup\{q\}$ is a four-element 3 -separator of M. This contradiction tells us that $|W|=1$, and hence $\left|C_{b}\right|=5$. A similar argument tells us that not both of R and Z may have two elements, thus either $\left|A_{b}\right|=5$ or $\left|B_{c}\right|=5$. And since $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$ are the meatiest 3 -separations of $M \backslash a, M \backslash b$ and $M \backslash c$ respectively, Theorem 3.1 is satisfied.

Lemma 3.9. Let M be an internally 4-connected matroid with a triangle $\{a, b, c\}$. And let $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$ be the meatiest 3separations of $M \backslash a, M \backslash b$ and $M \backslash c$ respectively, such that each of $A_{b} \cap B_{c}$, $A_{c} \cap B_{a}, A_{b} \cap C_{a}, A_{c} \cap C_{b}, B_{a} \cap C_{b}$ and $B_{c} \cap C_{a}$ have at least two elements. If $\lambda_{1}=2, \lambda_{2} \leq 1$ and $\nu_{1 a}=1$, then Theorem 3.1 is satisfied.

Proof. Since $\lambda_{1}=\left|A_{b} \cap B_{c} \cap C_{a}\right|=2$ and $\nu_{1 a}=\left|A_{b} \cap B_{a} \cap C_{a}\right|=1$, we see from the proof of Lemma 3.7 that $\nu_{1 b}=\left|A_{b} \cap B_{c} \cap C_{b}\right|=0, \nu_{1 c}=\left|A_{c} \cap B_{c} \cap C_{a}\right|=0$, $\left|A_{b} \cap C_{a}\right|=3,\left|A_{b} \cap B_{c}\right|=2$ and $\left|B_{c} \cap C_{a}\right|=2$. Let $\{p\}:=A_{b} \cap B_{a} \cap C_{a}$ and let $X:=A_{b} \cap B_{c} \cap C_{a}$. These are shown in the Venn diagrams below. Let $Y:=A_{c} \cap C_{a}$, then since $\left|A_{c} \cap B_{c} \cap C_{a}\right|=0, Y \subseteq B_{a}$. And let $Z:=B_{c} \cap C_{b}$, then since $\left|A_{b} \cap B_{c} \cap C_{b}\right|=0, Z \subseteq A_{c}$. These are also shown in the Venn diagrams below.

Now, if $|Y| \geq 2$ and $|Z| \geq 2$, then $\left|B_{a} \cap C_{a}\right| \geq 4$ and Lemma 3.4 tells us that $\lambda_{M \backslash b, c}\left(B_{c} \cap C_{b}\right)=2$. But then $M \backslash b$ and $M \backslash c$ are 3-connected so $b \in$ $\mathrm{cl}_{M}^{*}(Z \cup\{c\})$, thus $b \in \mathrm{cl}_{M}^{*}\left(A_{c}\right)$ contradicting Lemma 3.2 which states that $b \in \operatorname{cl}_{M}\left(A_{b}-\{b\}\right)$. As a consequence, we see that either $|Y|=\left|A_{c} \cap C_{a}\right| \leq 1$ or $|Z|=\left|B_{c} \cap C_{b}\right| \leq 1$. And it follows from Lemma 3.6, that Theorem 3.1 is satisfied.

Lemma 3.10. Let M be an internally 4-connected matroid with a triangle $\{a, b, c\}$. And let $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$ be the meatiest 3separations of $M \backslash a, M \backslash b$ and $M \backslash c$ respectively, such that each of $A_{b} \cap B_{c}$, $A_{c} \cap B_{a}, A_{b} \cap C_{a}, A_{c} \cap C_{b}, B_{a} \cap C_{b}$ and $B_{c} \cap C_{a}$ have at least two elements. If $\lambda_{1} \geq 2, \lambda_{2} \leq 1$ and $\nu_{1 a}=\nu_{1 b}=\nu_{1 c}=0$, then Theorem 3.1 is satisfied.

Proof. We see from the proof of Lemma 3.7, that since $\lambda_{1} \geq 2$ and $\nu_{1 a}=$ $\nu_{1 b}=\nu_{1 c}=0, A_{b} \cap B_{c} \cap C_{a}=A_{b} \cap B_{c}=A_{b} \cap C_{a}=B_{c} \cap C_{a}$. Let $X:=A_{b} \cap B_{c} \cap C_{a}$. Now, since $\nu_{1 a}=\left|A_{b} \cap B_{a} \cap C_{a}\right|=0, A_{b} \cap B_{a} \subseteq C_{b}$, and since $\nu_{1 b}=\left|A_{b} \cap B_{c} \cap C_{b}\right|=0, A_{b} \cap C_{b}-\{b\} \subseteq B_{a}$, so by simple set theory, $A_{b} \cap B_{a}=A_{b} \cap C_{b}-\{b\}$. Let $Y:=A_{b} \cap B_{a}$. Also, since $\nu_{1 c}=\left|A_{c} \cap B_{c} \cap C_{a}\right|=0$, $A_{c} \cap C_{a} \subseteq B_{a}$, and since $\nu_{1 a}=\left|A_{b} \cap B_{a} \cap C_{a}\right|=0, B_{a} \cap C_{a}-\{a\} \subseteq A_{c}$, and
thus $A_{c} \cap C_{a}=B_{a} \cap C_{a}-\{a\}$. Let $Z:=A_{c} \cap C_{a}$. By a similar argument we see that $B_{c} \cap C_{b}=A_{c} \cap B_{c}-\{c\}$. Let $W:=B_{c} \cap C_{b}$. These are all shown below on the Venn diagrams.

Suppose that $A_{b} \cap B_{a}$ and $B_{c} \cap C_{b}$ have at least two elements each. If $A_{b} \cap B_{a}$ is 2-separating in $M \backslash a, b$, then since $M \backslash b$ is 3-connected, $a \in \mathrm{cl}_{M \backslash b}^{*}(Y)$. Hence $a \in \operatorname{cl}_{M}^{*}(Y \cup\{b\})$. But $Y \cup\{b\} \subseteq C_{b}$ so $a \notin \operatorname{cl}\left(C_{a}-\{a\}\right)$ contradicting Lemma 3.2. As a result, we see that $\lambda_{M \backslash a, b}\left(A_{b} \cap B_{a}\right) \geq 3$, and Lemma 3.4 then tells us that $\{c\} \cup W$ is 3 -separating in M. Now, M is internally 4connected so $\{c\} \cup W$ is either a triangle or a triad. And $c \in \operatorname{cl}_{M}(\{a, b\})$, so $c \notin \operatorname{cl}_{M}^{*}(W)$, thus $\{c\} \cup W$ is a triangle of M. But $W \subseteq C_{b}$, which means that $c \in \operatorname{cl}_{M}\left(C_{b}\right)$ contradicting the fact that $\left(C_{a}, C_{b} \cup\{c\}\right)$ is not a 3 -separation of M. It follows that either $\left|A_{b} \cap B_{a}\right| \leq 1$ or $\left|B_{c} \cap C_{b}\right| \leq 1$, and Lemma 3.6 then tells us that Theorem 3.1 holds.

Proof of Theorem 3.1. Let M be an internally 4 -connected matroid with a triangle $\{a, b, c\}$. And let $\left(A_{b}, A_{c}\right),\left(B_{a}, B_{c}\right)$ and $\left(C_{a}, C_{b}\right)$ be the meatiest 3 -separations of $M \backslash a, M \backslash b$ and $M \backslash c$ respectively. By Lemma 3.6, if any of $A_{b} \cap B_{c}, A_{c} \cap B_{a}, A_{b} \cap C_{a}, A_{c} \cap C_{b}, B_{a} \cap C_{b}$ and $B_{c} \cap C_{a}$ has less than two elements, then Theorem 3.1 holds. Hence we now assume that each of $A_{b} \cap B_{c}, A_{c} \cap B_{a}, A_{b} \cap C_{a}, A_{c} \cap C_{b}, B_{a} \cap C_{b}$ and $B_{c} \cap C_{a}$ has at least two elements. By Lemma 3.7, we know that if $\lambda_{1} \geq 2$ and $\lambda_{2} \geq 2$, then $|E(M)| \leq 9$ so Theorem 3.1 holds. Also from the proof of Lemma 3.7 and the symmetry of the situation, we may now assume that one of the following holds, (1) $\lambda_{1} \leq 1$ and $\lambda_{2} \leq 1$; or (2) $\lambda_{2} \leq 1, \lambda_{1}=2$ and $\nu_{1 a}=1$; or (3) $\lambda_{2} \leq 1, \lambda_{1} \geq 2$ and $\nu_{1 a}=\nu_{1 b}=\nu_{1 c}=0$ In case (1), Lemma 3.8 tells us that Theorem 3.1 holds; in case (2), Lemma 3.9 tells us that Theorem 3.1 holds; and in case (3), Lemma 3.10 tells us that Theorem 3.1 holds.

4. Separators of Size 4

In this section we deal with the case where the matroid is 4 -connected up to separators of size 4. A segment in a matroid M is a subset A of $E(M)$ with the property that every 3 -element subset of A is a triangle. A cosegment is a subset of $E(M)$ that is a segment in the dual matroid M^{*}.

Lemma 4.1. If a 3-connected matroid M is 4-connected up to 3-separators of size k and contains a 4-element segment or cosegment, then there is an
element $x \in E(M)$ such that $M \backslash x$ or M / x is 3-connected and 4-connected up to 3-separators of size k.
Proof. Suppose M contains a 4 -element segment. Let x be an element of the segment. Then it is easily checked that $M \backslash x$ is 3-connected. Let (X, Y) be a 3 -separation of $M \backslash x$. We can assume that X contains two elements of the segment, so $x \in \operatorname{cl}(X)$. Then $(X \cup\{x\}, Y)$ is a 3 -separation of M, so $|X \cup\{x\}| \leq k$ or $|Y| \leq k$ as required. The case where M has a 4 -element cosegment follows by duality.

Theorem 4.2. Let M be a 3 -connected matroid with more than nine elements. If M is 4 -connected up to 3 -separators of size 4 and contains a 3 -separator of size 4 , then there is an element $x \in E(M)$ such that $M \backslash x$ or M / x is 3-connected and 4-connected up to 3-separators of size 5 .

Proof. By Lemma 4.1, we can assume that M does not have a 4 -element segment or cosegment, so by duality M contains one of the three following structures. The first structure is a quad. It is a 4 -element circuit-cocircuit. The second structure is a 4 -element fan. The elements $\left\{x_{1}, x_{2}, x_{3}\right\}$ form a triangle, while the elements $\left\{x_{2}, x_{3}, x_{4}\right\}$ form a triad. The third structure is a type-4 3 -separator. It is a 4 -element circuit where the elements $\left\{x_{2}, x_{3}, x_{4}\right\}$ form a triad.

It is easily checked that $M \backslash x_{1}$ is 3 -connected for each of these structures. Let $T:=\left\{x_{2}, x_{3}, x_{4}\right\}$. In each case, T is a triad in $M \backslash x_{1}$ and $x_{1} \in \operatorname{cl}(T)$. Now let (X, Y) be a 3 -separation of $M \backslash x_{1}$ with $|X \cap T| \geq 2$. Then, since T is a triad in $M \backslash x_{1},(X \cup T, Y-T)$ is a 3 -separation in $M \backslash x_{1}$, and, since $x_{1} \in \operatorname{cl}(T),\left(X \cup T \cup\left\{x_{1}\right\}, Y-T\right)$ is a 3 -separation of M. Thus $|X| \leq 2$ or $|Y| \leq 5$, as required.

5. Proof of Main Theorem

In this section we prove Theorem 1.2. The following theorem of Tutte is from [8].

Theorem 5.1 (Wheels and Whirls Theorem). If M is a 3 -connected matroid that is neither a wheel nor a whirl, then M has an element x such that either $M \backslash x$ or M / x is 3 -connected.

If the 3 -connected matroid M has at most 12 elements then by Theorem 5.1, for some $x \in E(M)$, either $\operatorname{co}(M \backslash x)$ or $\operatorname{si}(M / x)$ is 3 -connected with cardinality $|E(M)|-1$ or $|E(M)|-2$. Furthermore, since this minor
can have at most eleven elements, it is automatically 4 -connected up to 3 -separators of size 5 . Now, if M is 4 -connected, internally 4 -connected, or 4 -connected up to separators of size 4 , then by Corollary 2.3, Theorem 3.1, and Theorem 4.2, there is an element $x \in E(M)$ such that $M \backslash x$ or M / x is 3 -connected and 4 -connected up to 3 -separators of size 5 . As a result, from here on we are interested in matroids that have at least 13 elements and have a 5 -element 3 -separator, and by Lemma 4.1 we can assume that they don't contain a 4 -element segment or cosegment. It is easily checked that such a 3 -separator A has rank 3 or rank 4 . Using the equation $\mathrm{r}^{*}(X)=|X|-\mathrm{r}(M)+\mathrm{r}(E-X)$ we see that $\mathrm{r}(A)=3$ if and only if $\mathrm{r}^{*}(A)=4$. So by duality we can assume that $\mathrm{r}(A)=3$.

Lemma 5.2. Let M be a 3-connected matroid that is 4-connected up to 3separators of size 5 , and has a cardinality of at least 16. If A is a 5 -element 3 -separator, then there is some $x \in A$ such that $\operatorname{co}(M \backslash x)$ or $\operatorname{si}(M / x)$ is 3connected and 4-connected up to 3-separators of size 5, and has a cardinality of $|E(M)|-1$ or $|E(M)|-2$.

Proof. From the paragraph above, we may assume that the 5 -element 3separator, A, has a rank of 3 . Then there are eleven possible structures for A, shown below.

For each 3-separator except for the fan, let x be one of the elements with a box around it. Then it is easily checked that (i) $M \backslash x$ is 3 -connected, and (ii) $A-x$ does not contain a triangle. Suppose that $M \backslash x$ has a 3separation (X, Y) where $|X|,|Y| \geq 6$. Then $x \notin \operatorname{cl}(X)$ and $x \notin \operatorname{cl}(Y)$ since M is 4 -connected up to 3 -separators of size 5 . But $\mathrm{r}(A)=3$ and $A-\{x\}$ has no triangle so $|A \cap X|=|A \cap Y|=2$. Also $M \backslash x$ is 3 -connected so $\lambda_{M \backslash x}(A \cap X)=\lambda_{M \backslash x}(A \cap Y)=3$. It follows that $X \cap(E(M)-A)$ and $Y \cap(E(M)-A)$ are 3-separators of $M \backslash x$, and since $x \in \operatorname{cl}(A-\{x\})$, they are 3 -separators of M. But M is 4 -connected up to 3 -separators of size 5 so $|X \cap(E(M)-A)| \leq 5$ and $|Y \cap(E(M)-A)| \leq 5$, hence $|E(M)| \leq 15$. This contradiction shows that $M \backslash x$ is 3-connected and 4-connected up to 3 -separators of size 5 .

Now consider the fan with elements labelled x_{1}, \ldots, x_{5} as shown below. It follows from results in [6] that $M \backslash x_{1}, M \backslash x_{5}$, and co($\left.M \backslash x_{3}\right)$ are 3-connected, with $\left|\operatorname{co}\left(M \backslash x_{3}\right)\right|=|E(M)|-2$.

Suppose that $M \backslash x_{1}$ has a 3-separation (X, Y) where $|X|,|Y| \geq 6$. Then $x_{1} \notin \operatorname{cl}(X)$ and $x_{1} \notin \operatorname{cl}(Y) . M \backslash x_{1}$ is 3 -connected so if $|X \cap A|=|Y \cap A|=$ 2 then we use the previous argument to show $|E(M)| \leq 15$. So we can assume that $x_{2} \in X$ and $\left\{x_{3}, x_{4}, x_{5}\right\} \subseteq Y$. Now, $x_{2} \in \operatorname{cl}_{M \backslash x_{1}}^{*}(Y)$ and $x_{1} \in \operatorname{cl}_{M}\left(Y \cup\left\{x_{2}\right\}\right)$ so $X-\left\{x_{2}\right\}$ is a 3 -separator of M, so $\left|X-\left\{x_{2}\right\}\right| \leq 5$. But $|X| \geq 6$ so $|X|=6$.

Now consider $M \backslash x_{3}$. Suppose that $M \backslash x_{3}$ has a 3-separation (C, D) where $|C|,|D| \geq 6$. Then $x_{3} \notin \operatorname{cl}(C)$ and $x_{3} \notin \operatorname{cl}(D)$ so $|A \cap C|=|A \cap D|=2$. If $\lambda_{M \backslash x_{3}}(A \cap C)=\lambda_{M \backslash x_{3}}(A \cap D)=3$, then we can use the previous argument to show $|E(M)| \leq 15$. So we can assume that $\lambda_{M \backslash x_{3}}(A \cap D)=2$ so that $A \cap C=\left\{x_{1}, x_{5}\right\}$ and $A \cap D=\left\{x_{2}, x_{4}\right\}$. Now, $\mathrm{r}\left(C \cup\left\{x_{2}, x_{4}\right\}\right)=\mathrm{r}(C)+1$ and $\mathrm{r}\left(D-\left\{x_{2}, x_{4}\right\}\right) \leq \mathrm{r}(D)-1$ so $D-\left\{x_{2}, x_{4}\right\}$ is a 3 -separator of $M \backslash x_{3}$. And $x_{3} \in \operatorname{cl}\left(C \cup\left\{x_{2}, x_{4}\right\}\right)$ hence $D-\left\{x_{2}, x_{4}\right\}$ is a 3 -separator of M, and
$\left|D-\left\{x_{2}, x_{4}\right\}\right| \leq 5$ so $|D| \leq 7$. If $|D|=6$ then consider $\operatorname{co}\left(M \backslash x_{3}\right)$ and let $\left(C, D^{\prime}\right)$ be the resulting 3 -separation of $\operatorname{co}\left(M \backslash x_{3}\right)$. Then $\left|D^{\prime}\right|=5$ so $\operatorname{co}\left(M \backslash x_{3}\right)$ is 4 -connected up to 3 -separators of size 5 . As a result, we can assume that $|D|=7$.
5.2.1. $x_{2} \in \operatorname{cl}\left(D-\left\{x_{2}\right\}\right)$ and $x_{4} \in \operatorname{cl}\left(D-\left\{x_{4}\right\}\right)$.

Proof. Suppose that $x_{2} \notin \operatorname{cl}\left(D-\left\{x_{2}\right\}\right)$, then $\left(C \cup\left\{x_{2}\right\}, D-\left\{x_{2}\right\}\right)$ is a 3separation of $M \backslash x_{3}$. So $\left(C \cup\left\{x_{2}, x_{3}\right\}, D-\left\{x_{2}\right\}\right)$ is a 3-separation of M. But $x_{4} \in \operatorname{cl}\left(C \cup\left\{x_{2}, x_{3}\right\}\right)$ and $x_{4} \in \operatorname{cl}^{*}\left(C \cup\left\{x_{2}, x_{3}\right\}\right)$ so $D-\left\{x_{2}, x_{4}\right\}$ is a 2 -separator of M. This is a contradiction as M is 3 -connected, so we see that $x_{2} \in \operatorname{cl}\left(D-\left\{x_{2}\right\}\right)$ and similarly $x_{4} \in \operatorname{cl}\left(D-\left\{x_{4}\right\}\right)$.

Now we compare the 3 -separators X and D. Let $X^{\prime}=X \cap(E(M)-A)$, $Y^{\prime}=Y \cap(E(M)-A), C^{\prime}=C \cap(E(M)-A)$ and $D^{\prime}=D \cap(E(M)-A)$. Then $\left|X^{\prime}\right|,\left|D^{\prime}\right|=5$, and they are both 3-separators of M. There are four cases to consider. They are (1) $X^{\prime}=D^{\prime}$, (2) $2 \leq\left|X^{\prime} \cap D^{\prime}\right| \leq 4$, (3) $\left|X^{\prime} \cap D^{\prime}\right|=1$, and (4) $\left|X^{\prime} \cap D^{\prime}\right|=0$.
(1) If $X^{\prime}=D^{\prime}$ then $Y^{\prime}=C^{\prime}$. But since $x_{1} \notin \operatorname{cl}(Y)$, we have $x_{1} \notin$ $\operatorname{cl}\left(C-\left\{x_{1}\right\}\right)$ so $\left(D \cup\left\{x_{1}\right\}, C-\left\{x_{1}\right\}\right)$ is a 3 -separation of $M \backslash x_{3}$, and hence $\left(D \cup\left\{x_{1}, x_{3}\right\}, C-\left\{x_{1}\right\}\right)$ is a 3 -separation of M. This implies that $\left|C-\left\{x_{1}\right\}\right| \leq 5$ so $|E(M)| \leq 14$.
(2) If $2 \leq\left|X^{\prime} \cap D^{\prime}\right| \leq 4$ then $X^{\prime} \cup D^{\prime}$ is a 3 -separator of M. But $6 \leq\left|X^{\prime} \cup D^{\prime}\right| \leq 8$ so $\left|E-\left(X^{\prime} \cup D^{\prime}\right)\right| \leq 5$ hence $|E(M)| \leq 13$.
(3) If $\left|X^{\prime} \cap D^{\prime}\right|=1$ and $X^{\prime} \cap D^{\prime}=\{e\}$ then either (i) $e \in \operatorname{cl}\left(X^{\prime}-\{e\}\right)$ and $e \in \operatorname{cl}\left(D^{\prime}-\{e\}\right)$, or (ii) $e \in l_{M}^{*}\left(X^{\prime}-\{e\}\right)$ and $e \in \operatorname{cl}_{M}^{*}\left(D^{\prime}-\{e\}\right)$. So ($X-\{e\}, Y \cup\{e\}$) is a 3 -separation of $M \backslash x_{1}$ with $D-\left\{x_{2}\right\} \subseteq$ $Y \cup\{e\}$. But since $x_{2} \in \operatorname{cl}\left(D-\left\{x_{2}\right\}\right)$, we have $x_{2} \in \operatorname{cl}(Y \cup\{e\})$. And $x_{1} \in \operatorname{cl}\left(Y \cup\left\{e, x_{2}\right\}\right)$ so $x_{1} \in \operatorname{cl}(Y \cup\{e\})$. Therefore $X-\{e\}$ is a 3 -separator of M. But $x_{2} \in \operatorname{cl}\left(Y \cup\left\{e, x_{1}\right\}\right)$ and $x_{2} \in \operatorname{cl}^{*}\left(Y \cup\left\{e, x_{1}\right\}\right)$ so $X-\left\{e, x_{2}\right\}$ is a 2 -separator of M. This is a contradiction as M is 3 -connected.
(4) If $\left|X^{\prime} \cap D^{\prime}\right|=0$ then $D-\left\{x_{2}\right\} \subseteq Y$. But $x_{2} \in \operatorname{cl}\left(D-\left\{x_{2}\right\}\right)$ so $x_{2} \in \operatorname{cl}(Y)$. And $x_{1} \in \operatorname{cl}\left(Y \cup\left\{x_{2}\right\}\right)$ so $x_{1} \in \operatorname{cl}(Y)$. This is a contradiction since $x_{1} \notin \operatorname{cl}(Y)$.
As a result of the contradictions above, we see that if $|E(M)| \geq 16$, then $M \backslash x_{1}$ or $\operatorname{co}\left(M \backslash x_{3}\right)$ is 3-connected and 4-connected up to 3-separators of size 5, with $\left|\operatorname{co}\left(M \backslash x_{3}\right)\right|=|E(M)|-2$.

Now we know that Theorem 1.2 holds for matroids with more than 15 elements. The following argument for matroids with at most 15 elements is just a finite case check.

Proof of Theorem 1.2. By the previous lemmas, it suffices to prove that if $13 \leq|E(M)| \leq 15$ and M has a 5 -element 3 -separator, A, then there is an element $x \in A$ such that $\operatorname{co}(M \backslash x)$ or $\operatorname{si}(M / x)$ is 3-connected and 4connected up to 3 -separators of size 5 , with a cardinality of $|E(M)|-1$ or
$|E(M)|-2$. It is easily checked that for each of the 3 -separators below, if x is one of the elements with a box around it, then $M \backslash x$ is 3 -connected (provided M has more than eleven elements).

5.2.2. Theorem 1.2 is satisfied if M has a type- A 3-separator.

Proof. We label the elements of the type-A 3-separator x_{1}, \ldots, x_{5} as shown below.

Suppose $M \backslash x_{1}$ has a 3-separation (X, Y) with $|X|,|Y| \geq 6$, then $x_{1} \notin \operatorname{cl}(X)$ and $x_{1} \notin \operatorname{cl}(Y)$ so without loss of generality $x_{4}, x_{5} \in X$ and $x_{2}, x_{3} \in Y$. Let
$X^{\prime}=X-\left\{x_{4}, x_{5}\right\}$ and let $Y^{\prime}=Y-\left\{x_{2}, x_{3}\right\}$. As with Lemma 5.2, X^{\prime} and Y^{\prime} are 3 -separating in M with $4 \leq\left|X^{\prime}\right| \leq 5$, and since $x_{3} \in \mathrm{cl}^{*}(X)$, $Y^{\prime} \cup\left\{x_{2}\right\}$ is 3-separating in $M \backslash x_{1}$. Now, $x_{1} \in \operatorname{cl}\left(X \cup\left\{x_{3}\right\}\right)$ so $Y^{\prime} \cup\left\{x_{2}\right\}$ is 3 -separating in M and $\left|Y^{\prime}\right|=4$.

Now suppose that $M \backslash x_{2}$ has a 3-separation (B, C) where $|B|,|C| \geq 6$. Then $x_{2} \notin \operatorname{cl}(B)$ and $x_{2} \notin \operatorname{cl}(C)$ so without loss of generality $x_{1}, x_{i} \in B$ and $x_{j}, x_{k} \in C$ where $\left\{x_{i}, x_{j}, x_{k}\right\}=\left\{x_{3}, x_{4}, x_{5}\right\}$. Let $B^{\prime}=B-\left\{x_{1}, x_{i}\right\}$ and let $C^{\prime}=C-\left\{x_{j}, x_{k}\right\}$. As above, C^{\prime} and B^{\prime} are 3 -separating in M with $4 \leq\left|C^{\prime}\right| \leq 5$ and $\left|B^{\prime}\right|=4$. Also since $x_{1} \in \operatorname{cl}\left(E(M)-B^{\prime}\right)$, we have $x_{1} \in \operatorname{cl}\left(B^{\prime}\right)$. Now, since $x_{1} \notin \operatorname{cl}\left(X^{\prime}\right)$ and $x_{1} \notin \operatorname{cl}\left(Y^{\prime}\right), B^{\prime} \nsubseteq X^{\prime}$ and $B^{\prime} \nsubseteq Y^{\prime}$ so $B^{\prime} \cap X^{\prime} \neq \emptyset$ and $B^{\prime} \cap Y^{\prime} \neq \emptyset$. We now compare the 3 -separators B^{\prime}, X^{\prime} and Y^{\prime}. There are two possible cases.
(1) If $\left|B^{\prime} \cap Y^{\prime}\right| \geq 2$ then $B^{\prime} \cup Y^{\prime}$ is 3 -separating in M, and since $x_{1} \in$ $\operatorname{cl}\left(B^{\prime}\right), B^{\prime} \cup Y^{\prime} \cup\left\{x_{1}\right\}$ is 3 -separating in M. But $6 \leq\left|B^{\prime} \cup Y^{\prime} \cup\left\{x_{1}\right\}\right| \leq$ 7 and $|E(M)| \geq 13$ contradicting that M is 4 -connected up to $3-$ separators of size 5 .
(2) If $\left|B^{\prime} \cap X^{\prime}\right| \geq 2$ then $B^{\prime} \cup X^{\prime}$ is 3 -separating in M, and as above, $B^{\prime} \cup X^{\prime} \cup\left\{x_{1}\right\}$ is 3 -separating in M. But either $6 \leq\left|B^{\prime} \cup X^{\prime}\right| \leq 7$ or $6 \leq\left|B^{\prime} \cup X^{\prime} \cup\left\{x_{1}\right\}\right| \leq 7$ contradicting that $|E(M)| \geq 13$ and that M is 4 -connected up to 3 -separators of size 5 .
These contradictions show that either $M \backslash x_{1}$ or $M \backslash x_{2}$ is 4-connected up to 3 -separators of size 5 .
5.2.3. Theorem 1.2 is satisfied if M has a type-B 3-separator.

Proof. We label the elements of the type-B 3-separator x_{1}, \ldots, x_{5} as shown below.

Suppose that $M \backslash x_{1}$ has a 3 -separation (X, Y) where $|X|,|Y| \geq 6$. Then $x_{1} \notin \operatorname{cl}(X)$ and $x_{1} \notin \operatorname{cl}(Y)$ so without loss of generality $x_{2}, x_{5} \in X$ and $x_{3}, x_{4} \in Y$. Let $X^{\prime}=X-\left\{x_{2}, x_{5}\right\}$ and let $Y^{\prime}=Y-\left\{x_{3}, x_{4}\right\}$. Then as with 5.2.2, $X^{\prime}, X^{\prime} \cup\left\{x_{5}\right\}$, and Y^{\prime} are 3 -separators of M with $4 \leq\left|Y^{\prime}\right| \leq 5$, and $\left|X^{\prime}\right|=4$ and $x_{5} \in\left(X^{\prime}\right)$. As with Lemma 5.2, $x_{3} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$ and $x_{4} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{3}\right\}\right)$.

Suppose that $M \backslash x_{5}$ has a 3 -separation (B, C) where $|B|,|C| \geq 6$. Then $x_{5} \notin \operatorname{cl}(B)$ and $x_{5} \notin \operatorname{cl}(C)$. If $|A \cap B|=|A \cap C|=2$, then we obtain a similar contradiction to the one in 5.2 .2 , so we can assume that $x_{4} \in B$ and $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq C$. Let $B^{\prime}=B-\left\{x_{4}\right\}$ and let $C^{\prime}=C-\left\{x_{1}, x_{2}, x_{3}\right\}$. Then
since $x_{4} \in \operatorname{cl}^{*}(C)$ and $x_{5} \in \operatorname{cl}\left(C \cup\left\{x_{4}\right\}\right)$, we see that B^{\prime} is a 3 -separator of M and $\left|B^{\prime}\right|=5$. Now, since $x_{5} \in \operatorname{cl}\left(X^{\prime}\right)$, we have $X^{\prime} \nsubseteq B^{\prime}$ and $X^{\prime} \nsubseteq C^{\prime}$ so $X^{\prime} \cap B^{\prime} \neq \emptyset$ and $X^{\prime} \cap C^{\prime} \neq \emptyset$. We now compare the 3 -separators B^{\prime} and X^{\prime}. There are two cases to consider.
(1) If $\left|B^{\prime} \cap X^{\prime}\right| \geq 2$ then $B^{\prime} \cup X^{\prime}$ is 3 -separating in M. But $6 \leq\left|B^{\prime} \cup X^{\prime}\right| \leq$ 7 contradicting that $|E(M)| \geq 13$ and that M is 4 -connected up to 3 -separators of size 5 .
(2) If $\left|B^{\prime} \cap X^{\prime}\right|=1$ and $\left|B^{\prime} \cap Y^{\prime}\right|=4$ then $B^{\prime} \cup Y^{\prime}$ is 3-separating in M. If $\left|B^{\prime} \cup Y^{\prime}\right|=6$ then we have the same contradiction as above. If $\left|B^{\prime} \cup Y^{\prime}\right|=5$ then $Y^{\prime} \subset B^{\prime}$ and $C^{\prime} \subset X^{\prime}$, and since $x_{3} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$, we have $x_{3} \in \operatorname{cl}(B)$. Also $x_{2} \in \operatorname{cl}^{*}\left(B \cup\left\{x_{3}\right\}\right)$ and $x_{5} \in \operatorname{cl}\left(B \cup\left\{x_{2}, x_{3}\right\}\right)$ so $C^{\prime} \cup\left\{x_{1}\right\}$ is 3 -separating in M. Now, $x_{1} \in \operatorname{cl}\left(A-\left\{x_{1}\right\}\right)$ so $x_{1} \in \operatorname{cl}\left(C^{\prime}\right)$. But $C^{\prime} \subset X^{\prime}$, hence $x_{1} \in \operatorname{cl}\left(X^{\prime}\right)$. This is a contradiction since $x_{1} \notin \operatorname{cl}(X)$.
As a result, we see that $M \backslash x_{1}$ or $M \backslash x_{5}$ is 4 -connected up to 3 -separators of size 5 .
5.2.4. Theorem 1.2 is satisfied if M has a type-C, type-D, or type-E 3separator.

Proof. We label the elements x_{1}, \ldots, x_{5} as shown below.

If M has a type-C 3 -separator then we look at $M \backslash x_{1}$ and $M \backslash x_{2}$ and construct a similar argument to 5.2 .2 . If M has a type-D 3 -separator then we look at $M \backslash x_{3}$ and $M \backslash x_{4}$ and construct a similar argument to 5.2.2. If M has a type-E 3 -separator then we look at $M \backslash x_{1}$ and $M \backslash x_{2}$ and construct a similar argument to 5.2.2.
5.2.5. Theorem 1.2 is satisfied if M has a type- $F 3$-separator.

Proof. We label the elements x_{1}, \ldots, x_{5} as shown below.

Suppose that $M \backslash x_{3}$ has a 3 -separation (X, Y) where $|X|,|Y| \geq 6$. Then $x_{3} \notin \operatorname{cl}(X)$ and $x_{3} \notin \operatorname{cl}(Y)$ so without loss of generality $x_{1}, x_{4} \in X$ and $x_{2}, x_{5} \in Y$. Let $X^{\prime}=X-\left\{x_{1}, x_{4}\right\}$ and let $Y^{\prime}=Y-\left\{x_{2}, x_{5}\right\}$. As with 5.2.2, Y^{\prime}, X^{\prime}, and $X^{\prime} \cup\left\{x_{1}\right\}$ are 3 -separating in M with $4 \leq\left|Y^{\prime}\right| \leq 5,\left|X^{\prime}\right|=4$ and $x_{1} \in \operatorname{cl}\left(X^{\prime}\right)$.

Suppose that $M \backslash x_{1}$ has a 3 -separation (B, C) where $|B|,|C| \geq 6$. Then $x_{1} \notin \operatorname{cl}(B)$ and $x_{1} \notin \operatorname{cl}(C)$. If $|A \cap B|=|A \cap C|=2$ then we obtain a similar contradiction to the one in 5.2 .2 , so we can assume that $\left\{x_{3}, x_{4}, x_{5}\right\} \subseteq B$ and $x_{2} \in C$. Let $B^{\prime}=B-\left\{x_{3}, x_{4}, x_{5}\right\}$ and let $C^{\prime}=C-\left\{x_{2}\right\}$. As with 5.2.3, C^{\prime} is a 3 -separator of M and $\left|C^{\prime}\right|=5$. Since $x_{1} \in \operatorname{cl}\left(X^{\prime}\right), X^{\prime} \nsubseteq B^{\prime}$ and $X^{\prime} \nsubseteq C^{\prime}$ so $X^{\prime} \cap B^{\prime} \neq \emptyset$ and $X^{\prime} \cap C^{\prime} \neq \emptyset$. We now compare the 3 -separators X^{\prime} and C^{\prime}. There are two possible cases.
(1) If $\left|X^{\prime} \cap C^{\prime}\right| \geq 2$, or if $\left|X^{\prime} \cap C^{\prime}\right|=1$ and $\left|Y^{\prime}\right|=5$, then we obtain a similar contradiction to the one in 5.2.2.
(2) If $\left|X^{\prime} \cap C^{\prime}\right|=1$ and $\left|Y^{\prime}\right|=4$, then $Y^{\prime} \subset C^{\prime}$ and $B^{\prime} \subset X^{\prime}$. Let $\{e\}=C^{\prime}-Y^{\prime}$ (or equivalently $\{e\}=X^{\prime}-B^{\prime}$), then since C^{\prime} and Y^{\prime} are both 3-separators of M, we have $e \in \mathrm{cl}^{(*)}\left(Y^{\prime}\right)$. But $X^{\prime} \cup\left\{x_{1}\right\}$ is a 3-separator of M with $e \in \operatorname{cl}^{(*)}\left(E(M)-\left(X^{\prime} \cup\left\{x_{1}\right\}\right)\right)$, so $B^{\prime} \cup\left\{x_{1}\right\}$ is a 3 -separator of M. But $x_{1} \in \operatorname{cl}\left(A-\left\{x_{1}\right\}\right)$ so $x_{1} \in \operatorname{cl}\left(B^{\prime}\right)$ contradicting that $x_{1} \notin \operatorname{cl}(B)$.
These contradictions show that either $M \backslash x_{1}$ or $M \backslash x_{3}$ is 4-connected up to 3 -separators of size 5 .
5.2.6. Theorem 1.2 is satisfied if M has a type-G 3-separator.

Proof. We label the elements x_{1}, \ldots, x_{5} as shown below.

Suppose that $M \backslash x_{1}$ has a 3-separation (X, Y) where $|X|,|Y| \geq 6$. Then $x_{1} \notin \operatorname{cl}(X)$ and $x_{1} \notin \operatorname{cl}(Y)$ so without loss of generality $x_{2}, x_{5} \in X$ and $x_{3}, x_{4} \in Y$. Let $X^{\prime}=X-\left\{x_{2}, x_{5}\right\}$ and let $Y^{\prime}=Y-\left\{x_{3}, x_{4}\right\}$. Then as with 5.2.2, X^{\prime} and Y^{\prime} are 3 -separators of M with $4 \leq\left|X^{\prime}\right|,\left|Y^{\prime}\right| \leq 5$. As with Lemma 5.2, $x_{3} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$ and $x_{2} \in \operatorname{cl}\left(X^{\prime} \cup\left\{x_{5}\right\}\right)$.

Suppose that $M \backslash x_{3}$ has a 3 -separation (B, C) where $|B|,|C| \geq 6$. Then $x_{3} \notin \operatorname{cl}(B)$ and $x_{3} \notin \operatorname{cl}(C)$. If $|A \cap B|=|A \cap C|=2$ then we obtain a similar contradiction to the one in 5.2.2, so we can assume that $\left\{x_{1}, x_{4}, x_{5}\right\} \subseteq C$ and $x_{2} \in B$. Let $B^{\prime}=B-\left\{x_{2}\right\}$ and let $C^{\prime}=C-\left\{x_{1}, x_{4}, x_{5}\right\}$. Then as with 5.2.3, B^{\prime} is 3 -separating in M and $\left|B^{\prime}\right|=5$. We now compare the 3 -separators X^{\prime}, Y^{\prime}, and B^{\prime}. There are three cases to check.
(1) If $X^{\prime} \nsubseteq B^{\prime}$ and $Y^{\prime} \nsubseteq B^{\prime}$ then we obtain a similar contradiction to the one in 5.2.2.
(2) If $X^{\prime} \subseteq B^{\prime}$ then $C^{\prime} \subseteq Y^{\prime}$. If $C^{\prime}=Y^{\prime}$ then $x_{3} \in \operatorname{cl}\left(C^{\prime} \cup\left\{x_{4}\right\}\right)$ contradicting that $x_{3} \notin \operatorname{cl}(C)$. So we see that $C^{\prime} \subsetneq Y^{\prime}$ and $X^{\prime} \subsetneq B^{\prime}$. Let $\{e\}=B^{\prime}-X^{\prime}$ (or equivalently $\{e\}=Y^{\prime}-C^{\prime}$). Since X^{\prime} and B^{\prime} are both 3 -separators of M, we have $e \in \mathrm{cl}^{(*)}\left(X^{\prime}\right)$. And since Y^{\prime} is a 3 -separator with $e \in \mathrm{cl}^{(*)}\left(E(M)-Y^{\prime}\right)$, we see that C^{\prime} is also a $3-$ separator with $e \in \operatorname{cl}^{(*)}\left(C^{\prime}\right)$. But then $\left(Y^{\prime} \cup\left\{x_{1}, x_{4}, x_{5}\right\}, X^{\prime} \cup\left\{x_{2}\right\}\right)$ is a 3-separation of $M \backslash x_{3}$ with $x_{3} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$. So $X^{\prime} \cup\left\{x_{2}\right\}$ is a 3separator of M. But $x_{2} \in \operatorname{cl}\left(A-\left\{x_{2}\right\}\right)$ and $x_{2} \in \operatorname{cl}^{*}\left(A-\left\{x_{2}\right\}\right)$ so X^{\prime} is a 2 -separator of M contradicting the fact that M is 3 -connected.
(3) If $Y^{\prime} \subseteq B^{\prime}$ then $C^{\prime} \subseteq X^{\prime}$. If $C^{\prime}=X^{\prime}$ then $x_{2} \in \operatorname{cl}\left(C^{\prime} \cup\left\{x_{5}\right\}\right)$ so $x_{2} \in \operatorname{cl}(C)$. But $x_{3} \in \operatorname{cl}\left(C \cup\left\{x_{2}\right\}\right)$ so $x_{3} \in \operatorname{cl}(C)$ contradicting the fact that $x_{3} \notin \operatorname{cl}(C)$, so we see that $C^{\prime} \subsetneq X^{\prime}$ and $Y^{\prime} \subsetneq B^{\prime}$. Let $\{e\}=B^{\prime}-Y^{\prime}$ (or equivalently $\{e\}=X^{\prime}-C^{\prime}$). Then as above, we have $e \in \mathrm{cl}^{(*)}\left(C^{\prime}\right)$ so ($\left.X^{\prime} \cup\left\{x_{1}, x_{4}, x_{5}\right\}, Y^{\prime} \cup\left\{x_{2}\right\}\right)$ is a 3 -separation of $M \backslash x_{3}$ with $x_{2} \in \mathrm{cl}_{M \backslash x_{3}}\left(X^{\prime} \cup\left\{x_{5}\right\}\right)$ and $x_{2} \in \operatorname{cl}_{M \backslash x_{3}}^{*}\left(\left\{x_{4}, x_{5}\right\}\right)$. Hence Y^{\prime} is a 2 -separator of $M \backslash x_{3}$ contradicting that $M \backslash x_{3}$ is 3 -connected.

From the contradictions above, we see that either $M \backslash x_{1}$ or $M \backslash x_{3}$ is 4_{-}^{-} connected up to 3 -separators of size 5 .
5.2.7. Theorem 1.2 holds if M has a type-H 3-separator.

Proof. We label the elements x_{1}, \ldots, x_{5} as shown below.

Suppose that $M \backslash x_{1}$ has a 3 -separation (X, Y) where $|X|,|Y| \geq 6$. Then $x_{1} \notin \operatorname{cl}(X)$ and $x_{1} \notin \operatorname{cl}(Y)$ so without loss of generality $x_{2}, x_{3} \in X$ and $x_{4}, x_{5} \in Y$. Let $X^{\prime}=X-\left\{x_{2}, x_{3}\right\}$ and let $Y^{\prime}=Y-\left\{x_{4}, x_{5}\right\}$. Then as with 5.2.2, X^{\prime} and Y^{\prime} are 3 -separators of M with $4 \leq\left|X^{\prime}\right|,\left|Y^{\prime}\right| \leq 5$. As with Lemma 5.2, $x_{3} \in \operatorname{cl}\left(X^{\prime} \cup\left\{x_{2}\right\}\right), x_{2} \in \operatorname{cl}\left(X^{\prime} \cup\left\{x_{3}\right\}\right), x_{4} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{5}\right\}\right)$, and $x_{5} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$.

Suppose that $M \backslash x_{2}$ has a 3 -separation (B, C) where $|B|,|C| \geq 6$. Then $x_{2} \notin \operatorname{cl}(B)$ and $x_{2} \notin \operatorname{cl}(C)$ so $x_{i}, x_{j} \in C$ and $x_{k}, x_{l} \in B$ where $\left\{x_{i}, x_{j}, x_{k}, x_{l}\right\}=$ $\left\{x_{1}, x_{3}, x_{4}, x_{5}\right\}$. Let $C^{\prime}=C-\left\{x_{i}, x_{j}\right\}$ and let $B^{\prime}=B-\left\{x_{k}, x_{l}\right\}$. Then as with 5.2.2, B^{\prime} and C^{\prime} are 3 -separating in M with $4 \leq\left|B^{\prime}\right|,\left|C^{\prime}\right| \leq 5$. As with Lemma 5.2, $x_{i} \in \operatorname{cl}\left(C^{\prime} \cup\left\{x_{j}\right\}\right), x_{j} \in \operatorname{cl}\left(C^{\prime} \cup\left\{x_{i}\right\}\right), x_{k} \in \operatorname{cl}\left(B^{\prime} \cup\left\{x_{l}\right\}\right)$, and $x_{l} \in \operatorname{cl}\left(B^{\prime} \cup\left\{x_{k}\right\}\right)$. We now compare the 3 -separators $X^{\prime}, Y^{\prime}, B^{\prime}$, and
C^{\prime} to show that we may assume that $X^{\prime}=B^{\prime}$ and $Y^{\prime}=C^{\prime}$. There are three cases to check.
(1) If $\left|X^{\prime}\right|=\left|Y^{\prime}\right|=5$, then we must have $B^{\prime}=X^{\prime}$ or $B^{\prime}=Y^{\prime}$ otherwise we obtain a similar contradiction to the one in 5.2.2.
(2) If $\left|X^{\prime}\right|=4$ and $\left|Y^{\prime}\right|=5$ then we can assume that $\left|C^{\prime}\right|=4$ and $\left|B^{\prime}\right|=5$. Either $C^{\prime} \subseteq Y^{\prime}$ or $B^{\prime}=Y^{\prime}$ otherwise we obtain a similar contradiction to the one in 5.2.2. And if $C^{\prime} \subseteq Y^{\prime}$ with $\{e\}=Y^{\prime}-C^{\prime}$, then as with 5.2.6, $e \in \mathrm{cl}^{(*)}\left(C^{\prime}\right)$ so $\left(Y^{\prime} \cup\left\{x_{i}, x_{j}\right\}, X^{\prime} \cup\left\{x_{k}, x_{l}\right\}\right)$ is a 3-separation of $M \backslash x_{2}$ where $\left|Y^{\prime} \cup\left\{x_{i}, x_{j}\right\}\right|,\left|X^{\prime} \cup\left\{x_{k}, x_{l}\right\}\right| \geq 6$. A similar argument applies if $\left|X^{\prime}\right|=5$ and $\left|Y^{\prime}\right|=4$.
(3) If $\left|X^{\prime}\right|=\left|Y^{\prime}\right|=4$, then $\left|B^{\prime} \cap X^{\prime}\right| \neq 2$ otherwise we obtain a similar contradiction to the one in 5.2.2. And if $\left|B^{\prime} \cap X^{\prime}\right|=3$ then $B^{\prime} \cup$ X^{\prime} is 3 -separating in M with $\left|B^{\prime} \cup X^{\prime}\right|=5$. Let $\{e\}=B^{\prime}-X^{\prime}$ and $\{f\}=X^{\prime}-B^{\prime}$. Then since X^{\prime} and $X^{\prime} \cup\{e\}$ are 3 -separators of M, we have $e \in \operatorname{cl}^{(*)}\left(X^{\prime}\right)$. And since $e \in \operatorname{cl}^{(*)}\left(X^{\prime}\right)$, we have $Y^{\prime}-\{e\}$ is a 3 -separator of M with $e \in \mathrm{cl}^{(*)}\left(Y^{\prime}-\{e\}\right)$. Similarly, $e \in \operatorname{cl}^{(*)}\left(B^{\prime}-\{e\}\right), f \in \operatorname{cl}^{(*)}\left(X^{\prime}-\{f\}\right)$, and $f \in \operatorname{cl}^{(*)}\left(C^{\prime}-\{f\}\right)$. So we see that $\left(X^{\prime} \cup\left\{x_{k}, x_{l}\right\}, Y^{\prime} \cup\left\{x_{i}, x_{j}\right\}\right)$ is a 3 -separation of $M \backslash x_{2}$ where $\left|X^{\prime} \cup\left\{x_{k}, x_{l}\right\}\right|,\left|Y^{\prime} \cup\left\{x_{i}, x_{j}\right\}\right| \geq 6$. A similar argument applies if $\left|B^{\prime} \cap Y^{\prime}\right|=3$.

The upshot of the three arguments above is that we can assume without loss of generality that $X^{\prime}=B^{\prime}$ and $Y^{\prime}=C^{\prime}$. Now, $M \backslash x_{1}$ has the $3-$ separation $\left(X^{\prime} \cup\left\{x_{2}, x_{3}\right\}, Y^{\prime} \cup\left\{x_{4}, x_{5}\right\}\right)$ where $x_{1} \notin \operatorname{cl}\left(X^{\prime} \cup\left\{x_{2}, x_{3}\right\}\right)$ and $x_{1} \notin$ $\operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}, x_{5}\right\}\right)$, and $M \backslash x_{2}$ has the 3-separation $\left(X^{\prime} \cup\left\{x_{k}, x_{l}\right\}, Y^{\prime} \cup\left\{x_{i}, x_{j}\right\}\right)$ where $x_{2} \notin \operatorname{cl}\left(X^{\prime} \cup\left\{x_{k}, x_{l}\right\}\right)$ and $x_{2} \notin \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{i}, x_{j}\right\}\right)$. We see from $M \backslash x_{1}$ that $x_{2} \in \operatorname{cl}\left(X^{\prime} \cup\left\{x_{3}\right\}\right)$ so $x_{k} \neq x_{3}$ and $x_{l} \neq x_{3}$. Suppose that $Y^{\prime} \cup\left\{x_{i}, x_{j}\right\}=$ $Y^{\prime} \cup\left\{x_{3}, x_{4}\right\}$, then $x_{3} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$ and $x_{1} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{3}, x_{4}, x_{5}\right\}\right)$, and it follows that $x_{1} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}, x_{5}\right\}\right)$. This contradicts the fact that $x_{1} \notin \operatorname{cl}\left(Y^{\prime} \cup\right.$ $\left\{x_{4}, x_{5}\right\}$), so we see that $\left\{x_{i}, x_{j}\right\} \neq\left\{x_{3}, x_{4}\right\}$. Similarly $\left\{x_{i}, x_{j}\right\} \neq\left\{x_{3}, x_{5}\right\}$ so the 3-separation of $M \backslash x_{2}$ must be ($\left.X^{\prime} \cup\left\{x_{4}, x_{5}\right\}, Y^{\prime} \cup\left\{x_{1}, x_{3}\right\}\right)$.

Now consider $M \backslash x_{5}$, and suppose that it is not 4 -connected up to 3separators of size 5 . Then a similar argument to the one above shows that $M \backslash x_{5}$ has a 3 -separation of the form ($X^{\prime} \cup\left\{x_{m}, x_{n}\right\}, Y^{\prime} \cup\left\{x_{p}, x_{q}\right\}$) where $\left\{x_{m}, x_{n}, x_{p}, x_{q}\right\}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $x_{5} \notin \operatorname{cl}\left(X^{\prime} \cup\left\{x_{m}, x_{n}\right\}\right)$ and $x_{5} \notin$ $\operatorname{cl}\left(Y^{\prime} \cup\left\{x_{p}, x_{q}\right\}\right)$. Then from $M \backslash x_{1}$ we know that $x_{5} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$, so $x_{4} \notin\left\{x_{p}, x_{q}\right\}$. But from $M \backslash x_{2}$ we know that $x_{5} \in \operatorname{cl}\left(X^{\prime} \cup\left\{x_{4}\right\}\right)$ so $x_{4} \notin$ $\left\{x_{m}, x_{n}\right\}$. This is a contradiction since $x_{4} \in\left\{x_{m}, x_{n}, x_{p}, x_{q}\right\}$, so we see that one of $M \backslash x_{1}, M \backslash x_{2}$ and $M \backslash x_{5}$ is 4 -connected up to 3 -separators of size 5.
5.2.8. Theorem 1.2 holds if M has a type-J 3-separator.

Proof. We label the elements x_{1}, \ldots, x_{5} as shown below. If we look at $M \backslash x_{1}$, $M \backslash x_{2}$ and $M \backslash x_{3}$ then we obtain a similar proof to 5.2.7.

5.2.9. Theorem 1.2 holds if M has a type-K 3-separator.

Proof. We label the elements x_{1}, \ldots, x_{5} as shown below.

Suppose that $M \backslash x_{3}$ has a 3-separation (X, Y) where $|X|,|Y| \geq 6$. Then $x_{3} \notin \operatorname{cl}(X)$ and $x_{3} \notin \operatorname{cl}(Y)$ so without loss of genarality $x_{1}, x_{4} \in X$ and $x_{2}, x_{5} \in Y$. Let $X^{\prime}=X-\left\{x_{1}, x_{4}\right\}$ and let $Y^{\prime}=Y-\left\{x_{2}, x_{5}\right\}$. Then as with 5.2.2, X^{\prime} and Y^{\prime} are 3 -separators of M with $4 \leq\left|X^{\prime}\right|,\left|Y^{\prime}\right| \leq 5$. As with Lemma 5.2, we have $x_{1} \in \operatorname{cl}\left(X^{\prime} \cup\left\{x_{4}\right\}\right), x_{4} \in \operatorname{cl}\left(X^{\prime} \cup\left\{x_{1}\right\}\right), x_{2} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{5}\right\}\right)$, and $x_{5} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{2}\right\}\right)$.

Suppose that $M \backslash x_{1}$ has a 3 -separation (B, C) where $|B|,|C| \geq 6$. Then $x_{1} \notin \operatorname{cl}(B)$ and $x_{1} \notin \operatorname{cl}(C)$ so we have two possibilities. In the first case $x_{2}, x_{i} \in C$ and $x_{3}, x_{j} \in B$ where $\left\{x_{i}, x_{j}\right\}=\left\{x_{4}, x_{5}\right\}$, and in the second case $x_{2} \in C$ and $\left\{x_{3}, x_{4}, x_{5}\right\} \subseteq B$. We consider the first case. Let $C^{\prime}=$ $C-\left\{x_{2}, x_{i}\right\}$ and let $B^{\prime}=B-\left\{x_{3}, x_{j}\right\}$. As with 5.2.2, B^{\prime} and C^{\prime} are $3-$ separators of M with $4 \leq\left|B^{\prime}\right|,\left|C^{\prime}\right| \leq 5$. Then by a similar argument to the one in 5.2.7, we can assume that $C^{\prime}=X^{\prime}$ or $C^{\prime}=Y^{\prime}$. Suppose that $x_{i}=x_{4}$ and $x_{j}=x_{5}$ so that our 3-separation of $M \backslash x_{1}$ is $\left(C^{\prime} \cup\left\{x_{2}, x_{4}\right\}, B^{\prime} \cup\left\{x_{3}, x_{5}\right\}\right)$. Now, $x_{2} \notin \operatorname{cl}\left(B^{\prime} \cup\left\{x_{3}, x_{5}\right\}\right)$ otherwise x_{1} would be in $\operatorname{cl}\left(B^{\prime} \cup\left\{x_{3}, x_{5}\right\}\right)$, and $x_{5} \notin \operatorname{cl}\left(C^{\prime} \cup\left\{x_{2}, x_{4}\right\}\right)$ otherwise x_{1} would be in $\operatorname{cl}\left(C^{\prime} \cup\left\{x_{2}, x_{4}\right\}\right)$. Then from $M \backslash x_{3}, x_{2} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{5}\right\}\right)$ so $Y^{\prime} \neq B^{\prime}$. But $x_{5} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{2}\right\}\right)$ so $Y^{\prime} \neq C^{\prime}$. This contradiction shows us that $x_{i} \neq x_{4}$ and $x_{j} \neq x_{5}$. So we see that $x_{i}=x_{5}$ and $x_{j}=x_{4}$. From $M \backslash x_{3}$, we see that $x_{1} \in \operatorname{cl}\left(X^{\prime} \cup\left\{x_{4}\right\}\right)$ so $X^{\prime} \neq B^{\prime}$, and our 3-separation in $M \backslash x_{1}$ is $\left(X^{\prime} \cup\left\{x_{2}, x_{5}\right\}, Y^{\prime} \cup\left\{x_{3}, x_{4}\right\}\right)$. Now, $x_{5} \in \operatorname{cl}\left(\left\{x_{3}, x_{4}\right\}\right)$ and $x_{2} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{5}\right\}\right)$ so $x_{2} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{3}, x_{4}\right\}\right)$. But $x_{1} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{2}, x_{3}, x_{4}\right\}\right)$ so $x_{1} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{3}, x_{4}\right\}\right)$ contradicting that $x_{1} \notin \operatorname{cl}(B)$. Therefore, it is not the case that $x_{2}, x_{i} \in C$ and $x_{3}, x_{j} \in B$.

Now we consider the second case where $x_{2} \in C$ and $\left\{x_{3}, x_{4}, x_{5}\right\} \subseteq B$. Let $C^{\prime}=C-\left\{x_{2}\right\}$ and let $B^{\prime}=B-\left\{x_{3}, x_{4}, x_{5}\right\}$, then by a similar argument
to $5.2 .3, C^{\prime}$ is 3 -separating in M and $\left|C^{\prime}\right|=5$. If $X^{\prime} \nsubseteq C^{\prime}$ and $Y^{\prime} \nsubseteq C^{\prime}$ then we obtain a similar contradiction to the one in 5.2 .2 , so we see that either $X^{\prime} \subseteq C^{\prime}$ or $Y^{\prime} \subseteq C^{\prime}$. If $Y^{\prime} \subseteq C^{\prime}$ then from $M \backslash x_{3}$ we know that $x_{5} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{2}\right\}\right)$ so $x_{5} \in \operatorname{cl}\left(C^{\prime} \cup\left\{x_{2}\right\}\right)$. And as with Lemma 5.2, we have $x_{3} \in \operatorname{cl}\left(B^{\prime} \cup\left\{x_{4}\right\}\right)$. But $B^{\prime} \subseteq X^{\prime}$ so $x_{3} \in \operatorname{cl}\left(X^{\prime} \cup\left\{x_{4}\right\}\right)$ contradicting that $x_{3} \notin \operatorname{cl}(X)$. So we see that $X^{\prime} \subseteq C^{\prime}$. Now, either $C^{\prime}-X^{\prime}=\emptyset$ or $C^{\prime}-X^{\prime}=\{e\}$ for some $e \in E(M)$. If $C^{\prime}-X^{\prime}=\{e\}$ then by a similar argument to 5.2.6, $e \in \mathrm{cl}^{(*)}\left(B^{\prime}\right)$. In either case, we see that $\left(X^{\prime} \cup\left\{x_{2}\right\}, Y^{\prime} \cup\left\{x_{3}, x_{4}, x_{5}\right\}\right)$ is a 3-separation of $M \backslash x_{1}$. But $x_{2} \in \operatorname{cl}_{M \backslash x_{1}}^{*}\left(\left\{x_{3}, x_{4}, x_{5}\right\}\right)$ and $x_{2} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{5}\right\}\right)$ so X^{\prime} is a 2 -separator of $M \backslash x_{1}$. This contradicts the fact that $M \backslash x_{1}$ is 3-connected.

As a result of the contradictions above, we see that $M \backslash x_{1}$ or $M \backslash x_{3}$ is 4 -connected up to 3 -separators of size 5 .
5.2.10. Theorem 1.2 holds if M has a fan.

Proof. We label the elements of the fan x_{1}, \ldots, x_{5} as shown below.

Suppose that $M \backslash x_{3}$ has a 3 -separation (X, Y) where $|X|,|Y| \geq 6$. Then $x_{3} \notin \operatorname{cl}(X)$ and $x_{3} \notin \operatorname{cl}(Y)$. If $x_{1}, x_{4} \in X$ and $x_{2}, x_{5} \in Y$ then it is easily checked that $\left(X \cup\left\{x_{2}\right\}-\left\{x_{4}\right\}, Y \cup\left\{x_{4}\right\}-\left\{x_{2}\right\}\right)$ is also a 3-separation of $M \backslash x_{3}$ where $\left|X \cup\left\{x_{2}\right\}-\left\{x_{4}\right\}\right|,\left|Y \cup\left\{x_{4}\right\}-\left\{x_{2}\right\}\right| \geq 6$. But $x_{3} \in \operatorname{cl}\left(X \cup\left\{x_{2}\right\}-\left\{x_{4}\right\}\right)$ and $x_{3} \in \operatorname{cl}\left(Y \cup\left\{x_{4}\right\}-\left\{x_{2}\right\}\right)$ contradicting that M is 4 -connected up to 3 -separators of size 5 , so we see that $x_{1}, x_{5} \in X$ and $x_{2}, x_{4} \in Y$. Let $X^{\prime}=X-\left\{x_{1}, x_{5}\right\}$ and let $Y^{\prime}=Y-\left\{x_{2}, x_{4}\right\}$. By the same argument as in Lemma 5.2, Y^{\prime} is 3-separating in $M,\left|Y^{\prime}\right|=5, x_{2} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$ and $x_{4} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{2}\right\}\right)$. Since $|X| \geq 6,\left|X^{\prime}\right| \geq 4$ so $14 \leq|E(M)| \leq 15$.

Suppose that $M \backslash x_{1}$ has a 3 -separation (B, C) where $|B|,|C| \geq 6$, then $x_{1} \notin \operatorname{cl}(B)$ and $x_{1} \notin \mathrm{cl}(C)$. There are two possibilities. In the first case $x_{2} \in B$ and $\left\{x_{3}, x_{4}, x_{5}\right\} \subseteq C$ and in the second case $|B \cap A|=|C \cap A|=2$. We consider the first case. Let $B^{\prime}=B-\left\{x_{2}\right\}$ and let $C^{\prime}=C-\left\{x_{3}, x_{4}, x_{5}\right\}$. By a similar argument to the one in $5.2 .3, B^{\prime}$ is 3 -separating in M and $\left|B^{\prime}\right|=5$. We now compare the 3 -separators B^{\prime} and Y^{\prime}. There are four cases to consider.
(1) If $2 \leq\left|B^{\prime} \cap Y^{\prime}\right| \leq 4$ then we obtain a similar contradiction to the one in 5.2.2.
(2) If $\left|B^{\prime} \cap Y^{\prime}\right|=0$ then $B^{\prime}=X^{\prime}$ and $C^{\prime}=Y^{\prime}$. Since $x_{2} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$ we see that $x_{2} \in \operatorname{cl}(C)$. But $x_{1} \in \operatorname{cl}\left(C \cup\left\{x_{2}\right\}\right)$ so $x_{1} \in \operatorname{cl}(C)$ contradicting the fact that $x_{1} \notin \operatorname{cl}(C)$.
(3) If $\left|B^{\prime} \cap Y^{\prime}\right|=1$, let $B^{\prime} \cap Y^{\prime}=\{e\}$. Then by a similar argument to 5.2.6, $e \in \operatorname{cl}^{(*)}\left(Y^{\prime}-\{e\}\right)$ so $(B-\{e\}, C \cup\{e\})$ is a 3 -separation of $M \backslash x_{1}$ where $Y^{\prime} \cup\left\{x_{4}\right\} \subseteq C \cup\{e\}$. Now, $x_{2} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$ so $x_{2} \in \operatorname{cl}(C \cup\{e\})$. But $x_{2} \in \mathrm{cl} *(C \cup\{e\})$ so $B^{\prime}-\{e\}$ is a 2 -separator of $M \backslash x_{1}$ contradicting that $M \backslash x_{1}$ is 3-connected.
(4) If $B^{\prime}=Y^{\prime}$ then $X^{\prime}=C^{\prime}$, and since $x_{4} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{2}\right\}\right)$, we have $x_{4} \in \operatorname{cl}(B)$. Also $x_{3} \in \operatorname{cl}^{*}\left(B \cup\left\{x_{4}\right\}\right)$ and $x_{1} \in \operatorname{cl}\left(B \cup\left\{x_{3}, x_{4}\right\}\right)$ so $C^{\prime} \cup\left\{x_{5}\right\}$ is a 3 -separator of M. By a similar argument to 5.2.2, $\left|C^{\prime}\right|=4$ and $x_{5} \in \operatorname{cl}\left(C^{\prime}\right)$. At this stage we need to consider $M \backslash x_{5}$. Suppose that (D, F) is a 3 -separation of $M \backslash x_{5}$ where $|D|,|F| \geq 6$. Let $D^{\prime}=D-A$ and let $F^{\prime}=F-A$. Then as with earlier cases, at least one of D^{\prime} and F^{\prime} is 3 -separating in M, so we can assume that D^{\prime} is 3 -separating in M with $4 \leq\left|D^{\prime}\right| \leq 5$. Now, since $x_{5} \notin \operatorname{cl}(D)$ and $x_{5} \notin \mathrm{cl}(F)$, we have $C^{\prime} \nsubseteq D^{\prime}$ and $C^{\prime} \nsubseteq F^{\prime}$. But now we obtain a similar contradiction to the one in 5.2 .2 by looking at the sizes of $D^{\prime} \cup B^{\prime}, D^{\prime} \cup C^{\prime}$, and $D^{\prime} \cup C^{\prime} \cup\left\{x_{5}\right\}$.
These contradictions rule out the first case. Now we consider the second case where $|B \cap A|=|C \cap A|=2$. Then $x_{2}, x_{i} \in B$ and $x_{3}, x_{j} \in C$ where $\left\{x_{i}, x_{j}\right\}=\left\{x_{4}, x_{5}\right\}$. Let $B^{\prime}=B-\left\{x_{2}, x_{i}\right\}$ and let $C^{\prime}=C-\left\{x_{3}, x_{j}\right\}$. Then as with 5.2.2, B^{\prime} and C^{\prime} are 3 -separating in M with $4 \leq\left|B^{\prime}\right|,\left|C^{\prime}\right| \leq 5$. We now compare $X^{\prime}, Y^{\prime}, B^{\prime}$, and C^{\prime}. There are three possible situations.
(1) If $B^{\prime} \nsubseteq Y^{\prime}$ and $C^{\prime} \nsubseteq Y^{\prime}$ then we obtain a similar contradiction to the one in 5.2.2.
(2) If $C^{\prime} \subseteq Y^{\prime}$ then $X^{\prime} \subseteq B^{\prime}$, and by a similar argument to 5.2 .6 , $\left(X^{\prime} \cup\left\{x_{2}, x_{i}\right\}, Y^{\prime} \cup\left\{x_{3}, x_{j}\right\}\right)$ is a 3 -separation of $M \backslash x_{1}$. And $x_{i} \in$ $\operatorname{cl}\left(\left\{x_{3}, x_{j}\right\}\right)$ so $\left(X^{\prime} \cup\left\{x_{2}\right\}, Y^{\prime} \cup\left\{x_{3}, x_{4}, x_{5}\right\}\right)$ is a 3 -separation of $M \backslash x_{1}$. Now $x_{2} \in \operatorname{cl}\left(Y^{\prime} \cup\left\{x_{4}\right\}\right)$ and $x_{2} \in \operatorname{cl}^{*}\left(\left\{x_{3}, x_{4}\right\}\right)$, so X^{\prime} is a 2 -separator of $M \backslash x_{1}$ contradicting that $M \backslash x_{1}$ is 3-connected.
(3) If $B^{\prime} \subseteq Y^{\prime}$ then $X^{\prime} \subseteq C^{\prime}$, and by a similar argument to 5.2.6, $\left(Y^{\prime} \cup\left\{x_{2}, x_{i}\right\}, X^{\prime} \cup\left\{x_{3}, x_{j}\right\}\right)$ is a 3 -separation of $M \backslash x_{1}$, and $x_{i} \in$ $\operatorname{cl}\left(\left\{x_{3}, x_{j}\right\}\right)$ so $\left(Y^{\prime} \cup\left\{x_{2}\right\}, X^{\prime} \cup\left\{x_{3}, x_{4}, x_{5}\right\}\right)$ is a 3 -separation of $M \backslash x_{1}$ where $\left|Y^{\prime} \cup\left\{x_{2}\right\}\right|,\left|X^{\prime} \cup\left\{x_{3}, x_{4}, x_{5}\right\}\right| \geq 6$. But this is just an instance of the first case above, where we obtained a contradiction by looking at $M \backslash x_{5}$.

As a result of the contradictions above, we see that one of $M \backslash x_{1}, M \backslash x_{5}$, and $\operatorname{co}\left(M \backslash x_{3}\right)$ is 4 -connected up to 3 -separators of size 5 .

It follows from 5.2.2,5.2.3,.., 5.2.10 that M contains an element x such that $\operatorname{co}(M \backslash x)$ or $\operatorname{si}(M / x)$ is 4 -connected up to 3 -separators of size 5 , and has a cardinality of $|E(M)|-1$ or $|E(M)|-2$.

Acknowledgements

I thank James Geelen and Geoff Whittle for valuable discussions on matters related to the subject of this paper.

References

[1] R. E. Bixby, A simple theorem on 3-connectivity, Liner Algebra Appl. 45:123-126, 1982
[2] James Geelen, A. M. H. Gerards, Geoff Whittle, Branch-width and well-quasiordering in matroids and graphs, preprint
[3] James Geelen and Geoff Whittle, Matroid 4-connectivity: A deletion-contraction theorem, to appear in Journal of Combinatorial Theory, Series B
[4] R. Hall, Excluded Minors for the Matroids of Branch-Width 3, Masters thesis, Victoria University of Wellington, 2000
[5] James G. Oxley, Matroid Theory Oxford University Press, New York, 1992
[6] James Oxley, The structure of a 3-connected matroid with a 3-separating set of essential elements, preprint
[7] James Oxley and Haidong Wu, On the structure of 3-connected matroids and graphs, Europ. J. Combin. 21:667-688, 2000
[8] W. T. Tutte, Connectivity in matroids, Canad. J. Math. 18:1301-1324, 1966
School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

[^0]: This research was supported in part by a Summer Research Assistantship from the Science Faculty of Victoria University of Wellington.

