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Abstract 

 

This thesis examined the cognitive processes and neural correlates 
involved in reading Spanish (a transparent orthography), English (an 
intermediate orthography) and Hebrew (an opaque orthography) by 
bilinguals and trilinguals. 
 
The main objectives of the five experiments were to: (i) extend previous 
findings which demonstrated that orthographic transparency influences the 
degree of reliance on lexical and sublexical processing, and (ii) assess the 
effects of orthographic transparency and language proficiency on 
strategies employed for reading in a second and third language. 
 
Word/non-word naming tasks undertaken by Spanish-English bilinguals, 
Hebrew-English bilinguals and English monolinguals, where frequency, 
length and lexicality were manipulated, showed a predominant reliance on 
sublexical processing in Spanish, lexical processing in Hebrew, and a 
balanced interplay in English. Effects of language proficiency were also 
observed as slower naming and lower accuracy in English as a second 
language. Concurrently, while showing an efficient adaptation of reading 
strategy to the level of orthographic transparency of English, Hebrew 
bilinguals appeared to show stronger reliance on sublexical processing 
than Spanish bilinguals, suggesting a compensatory mechanism. 
 
fMRI experiments showed that reading in all languages was associated 
with a common network of predominantly left-lateralised cerebral regions. 
Reading in each language was associated with some preferential 
activation within regions implicated in lexical and sublexical processing, in 
keeping with their graded levels of orthographic transparency. Effects of 
language proficiency were demonstrated as increased activation within 
medial frontal regions implicated in attentional processes as well as right-
lateralised homologous language-processing regions. Furthermore, the 
patterns of activation seen in Hebrew readers in English strengthened the 
notion of a compensatory mechanism. 
 
Finally, a trilingual experiment replicated findings observed in bilinguals, 
revealed the acute complexity of reading in Hebrew as an additional 
language and further strengthened the concept of a compensatory 
mechanism in English and Spanish. 
 
The present findings further contribute to current knowledge on teaching 
methods, diagnostic tools and therapeutic strategies for developmental 
and acquired reading disorders. 
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“Neither can embellishments of language be found without 

arrangement and expression of thoughts, nor can thoughts be made to 

shine without the light of language”. 

 

Marcus Tullius Cicero (106 – 43 BC) 
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Chapter 1 

Introduction 
 

 

The “light of language” is one of the hallmarks of humanity. It enables us 

to formulate thoughts, exchange ideas, alert each other to danger, make 

requests, express feelings, expand our knowledge and essentially function 

within a society. Equally, the “art of reading” (Quiller-Couch, 1920) has 

become an essential tool for survival. It enables us to enjoy literature, read 

the newspaper, decipher train timetables, identify products in the shop, 

study history, science and art, correspond through post, email, Facebook, 

and examine PhD theses.  

 

The remarkable ease with which infants learn to understand verbal 

language and transform mental representations of the surrounding 

environment into a sequence of sounds suggests that throughout the 

course of evolution, the human brain has developed an expertise for its 

processing. On the other hand, learning to visually decode and 

comprehend written language in the process of reading is an aspect of 

human communication that has emerged relatively late in human history, 

and requires effort and purposeful integrated learning. Since writing-

systems emerged in order to communicate spoken language, and reading 

and writing are achieved through the integration of visual and verbal 

information, it is not surprising that these abilities should be mediated 

largely by the same cerebral regions involved in spoken language 

processing (Pinker, 1994; Maynard Smith & Szathmary, 1995; Price, 

2000).  
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Much insight into the functional organization of language representation in 

the brain has been provided through reported cases of acquired language 

impairments following brain damage. Acquired speech disorders such as 

aphasia (e.g. Broca, 1861; Wernicke, 1874; Lichtheim 1885), reading 

impairments such as alexia (e.g. Dejerine, 1892) and dyslexia (e.g. 

Marshall & Newcombe, 1973), and writing disorders, such as dysgraphia 

(e.g. Hatfield & Patterson, 1983; Hatfield, 1985), have often been 

associated with damage to specific left-lateralised regions, leading to their 

labelling as putative language processing areas. 

 

Across the world, languages consist of a plethora of phonetic 

characteristics, grammatical structures, scripts, writing-systems and 

orthographic properties. The ability of humans to spread across the globe 

and adapt to new environments has given rise to the phenomenon of 

multilingualism, characterised by the ability to function in two languages or 

more, whether restricted to verbal communication, or expanded to literacy 

(Valdes, 2001). Communicating verbally and literally in different languages 

provides a means of unifying the diverse cultures of the world, and 

facilitates travel and exchange of information internationally and 

interculturally. This remarkable ability exemplifies the versatility of the 

human brain, capable of synthesizing and processing information in one 

language and deciphering codes in another without apparent interference. 

However, while the healthy human brain is capable of processing two or 

more languages, intriguing phenomena have been observed in bilingual 

and multilingual individuals with cortical lesions showing selectively 
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manifested impairments in the different languages, such as loss of one 

language but not the other, differential patterns of recovery (Paradis, 

1977), pathological mixing and switching between languages (Potzl, 1983; 

Kauders, 1983), inability to translate from one language to another, and 

translation without comprehension (Fabbro & Gran, 1997).  

 

These observations have raised several questions regarding the functional 

organisation of multilingual brains, such as whether multiple languages are 

represented in separate or overlapping cortical regions, or whether 

differentially manifested impairments may be attributed to the location of 

the lesion. In addition, other factors, such as patients‟ proficiency in each 

of the languages, the age of their acquisition, the level of exposure to each 

language, or the linguistic properties of the languages may influence the 

occurrence of such impairments. 

 

Since the early 20th century, the answers to these questions have been 

sought by inferring the function of cortical structures associated with 

language processing, through cases of language impairments associated 

with brain damage, relying primarily on neuropsychological and 

behavioural methods (e.g. Hinshelwood, 1902; Durgunoglu & Roediger, 

1987; Snodgrass, 1992; Roberts & Le Dorze, 1998). More recently, the 

development of functional neuroimaging techniques, such as 

electroencephalography (EEG), magnetoencephalography (MEG), 

positron emission tomography (PET) and functional magnetic resonance 

imaging (fMRI), has enabled the visualization of specific foci related to 

language representation by detecting local changes in correlates of 
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neuronal activation occurring in vivo (e.g. Pugh, Shaywitz Shaywitz, 

Constable, Skudlarski, Fulbright, Bronen, Shankweiler, Katz, Fletcher & 

Gore, 1996; Fiez; Balota; Raichle & Petersen, 1999; Wydell, Vuorinen, 

Helenius, & Samelin, 2003; McDermott, Petersen, Watson & Ojemann, 

2003; Joubert, Beauregard, Walter et al, 2004; Booth, Lu, Burman, Chou, 

Jin, Peng, Zhang, Ding, Deng & Liu, 2006; Bick, Goleman & Frost, 2008). 

While a great body of knowledge has emerged from these studies 

regarding monolingual language processing, much remains unresolved in 

the domain of multilingualism. For example, while some investigators have 

shown different areas of activation during exposure to a second language, 

relative to a first language (Klein, Zatorre, Milner, Meyer & Evans, 1994; 

D‟esposito & Alexander, 1995; Kim, Relkin, Lee & Hirsch, 1997), others 

have found largely overlapping regions associated with multiple-language 

representation (Yetkin, Haughton & Cox, 1996; Chee, Tan & Thiel, 1999; 

Pu, Liu, Spinks et al, 2001; Hernandez, Martinez & Kohnert, 2000; 

Hernandez, Dapretto, Mazziotta & Bookheimer, 2001; Vingerhoets, Van 

Borsel, Tesink et al, 2003; Briellmann, Saling, Connell, Waites, Abbott & 

Jackson, 2004; Meschyan & Hernandez, 2005; Halsband, 2006).  

 

In 1989, François Grosjean published a review entitled “Neurolinguists 

beware! – The bilingual is not two monolinguals in one person”. The 

author noted that the unique and specific attributes of each of the 

languages, the context in which they are used and the age of their 

acquisition render each bilingual individual a “unique and specific speaker-

hearer” (p.6). This contention, of course extends to literacy, whereby each 

biliteral individual must also be a unique and specific writer-reader. 
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Most written languages are structured in a universal hierarchical pattern. 

Texts are composed of sentences, arranged according to grammatical 

rules, sentences are assembled from words, arranged according to 

syntactic rules, and words consist of sounds („phonemes‟), arranged 

according to phonetic rules. In logographic writing-systems such as 

Chinese and Japanese Kanji, phonemes do not form part of written text 

since these languages use symbols to directly convey meaning. In syllabic 

writing-systems such as Japanese Kana phonemes form part of a 

relatively large linguistic unit – the syllable. In alphabetic writing-systems 

phonemes are encoded by letters or letter-clusters („graphemes‟), which 

are arranged according to orthographic rules, though the level of 

correspondence between the graphemic units of the writing-system (print) 

and their phonetic representations (sound) may vary greatly between 

different languages.  

 

The level of correspondence between graphemes and phonemes is often 

quantified in terms of „orthographic depth‟ (Frost, Katz & Bentin, 1987) or 

more recently, „orthographic transparency‟ (c.f. Wydell & Butterworth, 

1999). For example, in languages such as Spanish, Italian and Finnish, 

vowel sounds are usually straightforward and consistent: the letter „a‟ is 

pronounced as in „car‟, „e‟ is pronounced as in „den‟, „i‟ is pronounced as in 

„see‟, „o‟ is pronounced as in „cot‟ and „u‟ is pronounced as in „boot‟. These 

languages can therefore be regarded as highly phonetic, „shallow‟ or 

„transparent‟. By contrast, in languages such as English and French, 

several different phonemes may be represented by the same graphemes, 

rendering their orthographies „deeper‟ or less transparent. For example in 
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French, the phoneme /o:/ can be represented simply with the letter „o‟ as 

in „dos‟ (back), or with the letter cluster „eau‟ as in „gâteau‟ (cake), and in 

English the phoneme /i:/ can be represented in various forms, such as „ea‟ 

in „eat‟, „ee‟ in „feet‟, and „ie‟ in „achieve‟. Among the least transparent 

alphabetic orthographies are Arabic and Hebrew. In these languages 

vowels are depicted by diacritical marks, which consist of points and 

dashes placed under or above consonants. However, as will be described 

in detail in the next chapter, these marks are omitted in everyday texts. 

Written Arabic and Hebrew therefore consist almost entirely of consonants 

and phonemic information is essentially missing. 

 

Several studies using behavioural methods have suggested that reading in 

languages with different levels of orthographic transparency may involve 

distinct reading strategies (e.g. Frost, Katz & Bentin, 1987; Baluch & 

Besner, 1991; Tabossi & Laghi, 1992; Frost, 1994; 1995; Ziegler, Perry, 

Jacobs & Braun, 2001; de Groot, Borgwaldt, Bos & Eijnden, 2002; Abu 

Rabia & Siegel, 2003; Benuck & Peverly, 2004; Ellis, Natsume, 

Stavropoulou, et al, 2004). For example, in Spanish, as a transparent 

orthography, any word can be pronounced correctly simply by assigning to 

each written consonant the sound of the vowel that follows, a process 

often referred to as „phonological recoding‟ (Frederiksen & Kroll, 1976) or 

„assembly‟ (McCann & Besner, 1987). However in English, while this 

strategy might lead to correct pronunciation of some words, e.g. desk, cat, 

shrub, other words may require lexical knowledge, since the actual 

pronunciation is not in keeping with the phonemic spelling, e.g. gauge, 

yacht and cough. Moreover in Hebrew, the absence of written vowels 
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renders phonological assembly utterly inefficient, and the correct 

pronunciation of words must therefore be inferred through lexical 

knowledge or reliance on the context in which the words are placed (c.f. 

Katz & Frost, 1992).  

 

Different levels of orthographic transparency have also been suggested to 

influence the efficiency and speed at which fluent reading is achieved by 

young children (e.g. Caravolas & Bruck, 1993; Ellis & Hooper, 2001; 

Spencer & Hanley, 2003; Ziegler & Goswami, 2005; 2006) as well as give 

rise to differentially manifested symptoms of acquired and developmental 

reading disorders (e.g. Wydell & Butterworth, 1999; Ratnavalli, Geetha, 

Murthy et al, 2000; Beland & Mimouni, 2001; Karanth, 2002; Obler & 

Gjerlow, 2002).  

 

Moreover, suggestions that distinct cortical regions may mediate the 

different types of processing associated with reading in languages with 

varying levels of orthographic transparency have been put forward and 

examined using neuroimaging techniques (e.g. Illes, Francis, Desmond et 

al, 1999; Paulesu, McCrory, Fazio et al, 2000; Moreno & Kutas, 2005; 

Meschyan & Hernandez, 2005; Simon, Bernadr, Lalonde & Rebaï, 2006).  

 

To date, most behavioural and neuroimaging studies have relied upon 

within- and between-language comparisons with monolinguals (e.g. Frost 

et al, 1987; Frost 1994; 1995; Baluch & Besner, 1991; Paulesu et al, 2000; 

Ziegler et al, 2001) and bilinguals (e.g. Illes et al, 1999; Wydell & 

Butterworth, 1999; de Groot et al, 2002; Meschyan & Hernandez, 2005; 



 8 

Simon et al, 2006), but only few have addressed the issue of 

multilingualism (e.g. Yetkin et al, 1996; Wattendorf, Westermann, 

Zappatore et al, 2001; Vingerhoets et al, 2003; Abu-Rabia & Siegel, 2003; 

Briellmann et al, 2004; Van Hell & Dijkstra, 2002; Lemhofer et al, 2004). 

Furthermore, while reading in Hebrew has been extensively studied using 

behavioural measures (e.g. Frost et al, 1987; Frost 1994; 1995; Gollan, 

Forster & Frost, 1997; Benuck & Peverly, 2004), no reported neuroimaging 

study has made use of the uniqueness and versatility of this language for 

a cross-language comparative study of reading in the brain.  

 

The present study employs behavioural methods in conjunction with fMRI 

to address the question of how reading in different languages is processed 

and mediated in the brains of healthy multilinguals. Of particular interest in 

the present investigation are the processes involved in reading three 

languages which carry graded levels of orthographic transparency, and 

can therefore be viewed as placed along a „continuum‟, with Spanish as a 

transparent orthography, English as an intermediate orthography and 

Hebrew as an opaque orthography.  

 

The next chapter reviews the literature comprising the cornerstone of the 

present study. This is followed by 5 experiments conducted with bilinguals 

and trilinguals of Spanish, English and Hebrew, using behavioural 

measures and fMRI, aimed at answering three key questions: 

1. What are the effects of the graded levels of orthographic 

transparency of Spanish, English and Hebrew writing-systems on 

reading strategies employed by native readers? 
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2. How are the different types of strategies employed for reading in 

these three languages mapped at the cortical level? 

 

3. How do the orthographic properties of the native language affect 

the reading strategies employed in a second and third language? 

 

Finally, the study addresses how the findings from the combined 

behavioural and neuroimaging methodology of the present study can 

account for existing theories for reading in languages with different 

orthographic properties, and whether the present findings could contribute 

to the development of efficient teaching strategies and remedial 

interventions for developmental and acquired reading disorders. 
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Chapter 2 

Literature Review 
 

2.1 Introduction 

 

“…you and I belong to a species with a remarkable ability: we can shape 

events in each other’s brains with exquisite precision. I am not referring to 

telepathy or mind control or the other obsessions of fringe science; even in 

the depictions of believers these are blunt instruments compared to an 

ability that is uncontroversially present in every one of us. That ability is 

language. Simply by making noises with our mouths, we can reliably cause 

precise new combinations of ideas that arise in each other’s minds. The 

ability comes so naturally that we are apt to forget what a miracle it is”. 

(Pinker, 1994, p.15; The Language Instinct) 

 

How the remarkable phenomenon of language is mastered so naturally 

that it has been termed an „instinct‟ (Pinker, 1994) and how the need for 

expanding forms of communication have led to the development of writing-

systems has been, and continues to be thoroughly studied throughout the 

past 150 years. 

 

In contrast to verbal language, reading and writing cannot be viewed as 

instinctive, since their achievement and mastery comes about through 

effortful training rather than natural acquisition through the surrounding 

environment. Even so, in this day and age, literacy is essential for normal 

functioning as much as instinctive traits such as eating, drinking, sleeping 

and indeed speaking. Moreover, in this ever-changing and expanding 

world, speaking and understanding more than one language poses a 

tremendous advantage, enabling the exchange of information between 
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countries and bringing different cultures closer. At the same time, growing 

up with two or more languages may sometimes lead to disadvantages, 

such as attributing delay or difficulties in speech and reading acquisition to 

interference of an additional language, thereby possibly ignoring an 

underlying deficit or disability, which may be remediated if identified early 

(Geva, 2000; Everatt, Smythe, Ocampo & Gyarmathy, 2004). These points 

highlight the importance of understanding how this non-instinctive yet so 

wide-spread trait of human communication is achieved. 

 

This chapter reviews the key literature that forms the background to the 

present investigation. The studies reported in this literature review are 

presented in a combined order of chronology and relevance to the 

questions listed in Chapter 1. First, section 2.2 presents an overview of 

early observations of language disorders associated with brain damage 

leading to the identification of cerebral structures involved in verbal and 

written language processing, while section 2.3 provides an outline of 

models and theories regarding the types of processes thought to be 

specifically involved in visual word recognition, supported by a brief review 

of behavioural and neuroimaging studies. Then, the phenomenon of 

multilingualism is addressed in section 2.4 and finally, section 2.5 presents 

a detailed review of behavioural and neuroimaging studies that have 

focussed on understanding the processes associated with reading in 

different languages, particularly those with varying levels of orthographic 

transparency. This is followed by a summary of the orthographic properties 

of the three languages chosen for the present study.  
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2.2 Language processing in the brain 

 

Humans are the only mammals who cannot breathe and drink 

simultaneously. This is due to the low position of the larynx within the 

human throat, creating a vocal tract with a horizontal oral tube and a 

vertical pharyngeal one (Lieberman, McCarthy, Hiiemae & Palmer, 2001). 

This dual-tube vocal tract allows the production of vowel sounds, which 

would not be attainable if the human larynx had been located in the same 

high position as in other mammals. Therefore the „descent of the larynx‟, 

giving rise to the human „speech apparatus‟ has been a major transition in 

human evolution, without which the evolution of spoken language would 

have been impossible (Maynard Smith & Szathmary, 1995). Effective 

language use requires the integration of sensory input, motor output and 

executive functions such as phonological, orthographic and semantic 

memory and attention (Price 2000; Fernandez-Duque & Posner, 2001). 

Given that the human body contains a unique organ for speech, it is not 

surprising that the human brain should contain specialised regions for its 

mediation. Current knowledge about those regions has come from a 

myriad of studies using diverse types of methods, from lesion studies to 

structural and functional neuroimaging.   

 

2.2.1 Inferring cerebral function through observed dysfunction 

While most high cognitive functions cannot be said to be localised in 

particular cerebral regions, language processing has been repeatedly 

associated with a number of regions, predominantly within the left cerebral 

hemisphere, as first pointed out by French physician Paul Broca in 1861. 

Broca noted that damage to the left inferior frontal gyrus (IFG), adjacent to 
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the face area of the motor cortex, led to deficits in speech generation and 

fluency, coupled by intact comprehension.  

 

Similarly, in 1874, German neurologist and psychiatrist Carl Wernicke 

identified another type of disorder, characterised by impaired 

comprehension and incoherent, yet fluent speech. This type of 

impairment, sometimes referred to as fluent, or Wernicke‟s aphasia, was 

attributed to lesions in the left superior temporal gyrus (STG), located 

between the primary auditory cortex and the angular gyrus, within the 

association cortex. The dissociability between these two types of 

impairments has led to the notion that while the IFG may be involved in 

the mediation of language production, the STG may play a predominant 

role in language comprehension.  

 

In 1885, German physician Ludwig Lichtheim reported the case of an 

aphasic patient who exhibited inability to repeat sentences and a tendency 

to generate semantically anomalous speech, with otherwise unimpaired 

comprehension and utterance. Following a post mortem examination, it 

was discovered that the patient had suffered damage to a bundle of white 

matter fibres referred to as the arcuate fasciculus, which connects the IFG 

and STG. The type of aphasia associated with lesions to this tract is now 

referred to as „conduction aphasia‟ (Gazzaniga, Ivry & Mangun, 1998). 

Towards the end of the 19th century the French neurologist Joseph Jules 

Dejerine (1892), identified 2 major reading impairments; „alexia with 

agraphia‟ and „alexia without agraphia‟, related to specific cortical lesions. 

Alexia with agraphia was characterise by acquired deficits in reading 
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(alexia) and writing (agraphia) that were related to lesions in the left 

angular gyrus. By contrast, alexia without agraphia (also referred to as 

pure alexia), characterised by reading impairment with intact writing ability, 

was associated with lesions to the left occipital cortex and the splenium of 

the corpus callosum, and was therefore thought to arise from a 

disconnection of the left angular gyrus and the visual cortex. The left 

angular gyrus was thus assumed to be involved in storing memories of 

visual word forms, an idea, which later gave rise to the concept of the 

mental lexicon; a cerebral „database‟, which stores concepts of words and 

visual word forms represented in scattered cortical regions (rather than 

solely the left angular gyrus). These are connected to areas within the 

somatosensory junction, which link and integrate visual, auditory and 

somatic information from the surrounding environment (e.g. Geschwindt, 

1979; Gazzaniga, Ivry & Mangun, 1998; see Coltheart, 2004 for a review). 

 

Based on the association between cortical lesions and language 

impairment, Wernicke developed a model for language processing, whose 

general principles prevail in modern neurolinguistics. According to this 

model (illustrated in Fig 2-1), the underlying structure for language 

processing is the STG, often referred to as Wernicke‟s area. For language 

production, concepts from the mental lexicon are initially processed by the 

STG, transferred through the arcuate fasciculus to Broca‟s area – the IFG, 

where detailed and coordinated vocalization „programme‟ is formulated. In 

turn, this information is transferred to the face area in the primary motor 

cortex (PMC), where further processing results in speech. Wernicke‟s 

account of language comprehension follows a reversed pathway, whereby 
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auditory input is transferred from the primary auditory cortex (PAC) to the 

STG for coherent decoding, integrated in the IFG to form internal 

vocalization, which in turn is transferred to the mental lexicon for meaning 

retrieval (Gazzaniga et al, 1998; Price, 2000).  

 

PAC

IFG

(Broca‟s area)
STG

(Wernicke‟s area)

PMC

AF

 

Figure 2-1 The anatomy of Wernicke’s model of language processing (adapted from 
Price, 2000) 
Red arrows represent information flow along white matter pathways 
Abbreviations: IFG=inferior frontal gyrus; PMC=primary motor cortex; AF=arcuate 
fasciculus; STG=superior temporal gyrus; PAC=primary auditory cortex 

 

Similarly, 19th century models for the process of reading (illustrated in Fig 

2-2) incorporated largely the same left-lateralised regions involved in 

verbal language processing, as well as the visual cortex and regions 

around the left angular gyrus. 
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IFG

(Broca‟s area)

STG

(Wernicke‟s area)

PMC

AF

AG

PVC

 
Figure 2-2 The anatomy of 19

th
 century models of reading (adapted from Price, 2000) 

Red arrows represent information flow along white matter pathways 
Abbreviations: IFG=inferior frontal gyrus; PMC=primary motor cortex; AF=arcuate 
fasciculus; AG=angular gyrus; STG=superior temporal gyrus; PVC=primary visual cortex 
 

 

Since the time of Broca, Wernicke and Dejerine various other types of 

language impairments have been defined, the majority of which have been 

associated with damage to left-lateralized cortical regions. For example, 

transcortical motor aphasia, characterised by non-fluent explosive speech 

with preserved comprehension, has been associated with lesions 

encompassing areas anterior or superior to left IFG (Dronkers, 1996). By 

contrast, transcortical sensory aphasia, characterised by fluent speech, 

with impaired comprehension has been associated with lesions to areas 

adjacent to left STG, the left thalamus, as well as distributed lesions to the 

posterior and inferior parietal cortex and white matter connecting these 

areas (Price, 2000). Damage to the left angular gyrus, the middle portion 

of the left fusiform gyrus (referred to by some as visual word form area, 
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e.g. Cohen, Lehericy, Chochon, Lemer, Rivaud & Dehaene, 2002), and 

the pathways connecting these regions with the visual cortex, has been 

associated with various types of alexia (Geschwind, 1979; Damasio & 

Damasio, 1983). Similarly, damage to the left supramarginal and lingual 

gyri has been associated with word-finding difficulty, or anomia (Pinker, 

1994).  

 

It is remarkable that such a large body of knowledge has been gathered in 

those early years, relying solely on the inference of the function of cerebral 

structures from observed dysfunction, since cortical lesions tend to be 

extensive and extremely variable across patients, and may thus have 

differential effects on cognitive processing. Since the late 1980‟s, the 

development of neuroimaging techniques, in conjunction with behavioural 

methods as well as observed deficits, have provided an invaluable 

opportunity to study language processing in healthy and impaired 

individuals in vivo, thus enabling a more controlled and reliable approach 

to gathering knowledge, particularly on the process of reading, as will be 

described in the next section. 

 

2.3 To read and read not… 

 

Explained simply, reading begins with visual identification of word forms 

and culminates in comprehension. Any experienced reader knows 

however, that when confronted with a text, the processes occurring 

between the initial and final stages of reading may be far from simple.  

Some words may be read very easily, while others may involve 

considerable effort and time. For example, highly familiar words, which are 
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encountered often (high-frequency words), can be recognised very 

quickly, whereas rare (low-frequency) words may take considerably more 

time to pronounce (e.g. Forster & Chambers, 1973; Fredriksen & Kroll, 

1976; Balota & Chumbley, 1984). The difference in reaction time (RT) 

between reading high and low-frequency words is referred to as word-

frequency effect. Similarly, reading novel or nonexistent words may take 

significantly more time than both high- and low-frequency words, giving 

rise to lexicality effects (e.g. Forster & Chambers, 1973; Fredriksen & 

Kroll, 1976; Lukatela et al, 1989). Moreover, length effects may emerge in 

some cases, whereby short words may be read faster than long words 

(e.g. Fredriksen & Kroll, 1976; Balota & Chumbley, 1985; Weekes, 1997; 

Wydell et al, 2003; Juphard, Cabonnel & Valdois, 2004). Furthermore, the 

existence of irregularly spelled words, particularly in languages such as 

English, may sometimes lead to increased effort and reading time, 

resulting in regularity or consistency effects1 (e.g. Glushko, 1979; 

Andrews, 1982; Monsell, Patterson, Graham, Hughes & Milroy, 1992).  

 

Importantly, these effects may be inter-dependent, such that high-

frequency words may be read easily regardless of their consistency or 

length, whereas reading of low-frequency words and novel words may 

become considerably slower with the decrease of consistency level, and 

increase of number of letters. Therefore, word-frequency and lexicality 

may modulate consistency effects and length effects (e.g. Andrews, 1982 

                                                 
1
 The terms regularity and consistency, while in essence depicting the same 

phenomenon, have different implication on models of reading. Regularity is regarded as a 
binary characteristic, i.e. regular words follow grapheme-to-phoneme conversion (GPC) 
rules and irregular words do not. In contrast, consistency is a graded characteristic, 
whereby some irregular words are still phonologically consistent with many other 
orthographically similar words, e.g. hood, good; hive, chive; oat, boat (Glushko, 1979). 
For simplicity, the term consistency will be predominantly used throughout the thesis.  



 19 

& Weekes, 1997; Juphard et al, 2004 respectively). By the same token, 

length effects may also be modulated by consistency of low-frequency 

words and non-words (e.g. Ziegler et al, 2001; de Groot et al, 2002; 

Wydell et al, 2003).  

 

Cases of reading impairments, such as developmental and acquired 

dyslexia exemplify the complexity of the reading process. Some insight 

into the different processes that may operate in normal reading has come 

from the identification of different types of impairments and their 

dissociability (Marshall & Newcombe, 1973). For example, individuals with 

surface dyslexia may read regularly spelled words correctly, but tend to 

make regularization errors, such as reading the word „pint‟ as rhyming with 

„hint‟, „mint‟ or „tint‟. This type of dyslexia may arise as a result of impaired 

mediation of meaning retrieval (lexical access). By contrast, individuals 

with phonological dyslexia may be able to recognise familiar words 

regardless of their regularity, but exhibit an inability to correctly pronounce 

novel words and non-words, which are not represented in their mental 

lexicon. These individuals may read the non-word „motch‟ as „match‟ or the 

non-word „starn‟ as „start‟, suggesting that the impairment may lie in the 

process of sublexical / phonological recoding. Likewise, a third type of 

impairment, referred to as deep dyslexia, is characterised both by lexical 

and sublexical impairments, in addition to a tendency to make semantic 

errors, such as identifying the word „lemon‟ as „orange‟ (reviewed by 

Gazzaniga et al, 1998; Price, 2000; Price & Mechelli, 2005).  
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2.3.1 Cognitive models of reading 

It therefore emerges that the processes involved in reading include 

orthographic processing, semantic processing, sublexical / phonological 

decoding and lexical access, and given the dissociations between different 

reading impairments it logically follows that separate mechanisms may 

mediate them. Indeed, various theories and computer-simulated models 

have been developed to explain how exactly these processes occur during 

natural reading. The two most prominent models are presented herein. 

 

The „Dual-Route reading model‟ (Coltheart & Rastle, 1994; Rastle & 

Coltheart, 1998) postulates the existence of 2 parallel mechanisms; a 

lexical route and a sublexical / phonological route (Figure 2-3).  

 

The lexical route is thought of as a fast and direct process, whereby the 

orthographic form of whole words is accessed by the orthographic lexicon, 

followed either by directly addressing the whole word‟s phonology in the 

phonological lexicon (e.g. in the case of extremely high-frequency words), 

or via the mediation of semantic knowledge of stored concepts (e.g. in the 

case of low-frequency words). 
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Orthographic lexicon

Phonological lexicon

Phoneme buffer

Print

Speech

Grapheme-to-phoneme

conversion
Semantics

Lexical / Semantic

routes

Sub-lexical / Phonological

route

 Figure 2-3 Schematic representation of the Dual-Route reading model  
(after Ziegler, Perry & Coltheart, 2000) 

 

By contrast, the sublexical / phonological route operates sequentially 

along the letter string, serially transforming graphemic information into 

phonology (grapheme-to-phoneme conversion), thus by-passing both 

orthographic and phonological lexicons. This route is designed for coping 

with novel words, which do not have a stored lexical entry. The routes 

converge at the „phonemic buffer‟, where a phonological output is 

prepared for articulation. 

 

According to this model, natural reading involves the parallel activation of 

both routes in a competitive manner, such that the preferred route will be 

the first to generate the correct pronunciation to any given letter string. In 

the case of high-frequency words, fast and efficient naming latency is 

achieved thanks to the fast activation of the lexical route. However, in the 
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case of low-frequency words, the increased time required for semantic 

access may allow for the activation of the sublexical phonological route 

simultaneously, thus creating a conflict between the two routes. In such 

cases, the preference for either route may be modulated by factors such 

as consistency and length.  

 

For example, in the case of low-frequency inconsistent words, the use of 

grapheme-to-phoneme conversion would lead to regularization errors, 

such as those seen in surface dyslexia. The correct pronunciation of such 

words thus requires a “lexical lookup procedure” (Rastle & Coltheart, 

2000, p.343), and the competition between the routes may lead to slower 

naming than that achieved for high-frequency inconsistent words. By the 

same token, the correct pronunciation of novel words or non-words 

requires sublexical / phonological recoding. Otherwise, “lexical capture” 

(Funnell & Davidson, 1989) as seen in phonological dyslexia would occur. 

However, in the case of an irregularly spelled non-word, lexical access 

may be inevitable. For example, the non-word „jough‟ requires grapheme-

to-phoneme conversion, followed by lexical lookup, that would lead to its 

pronunciation as rhyming either with „cough‟, with „tough‟, or with „dough‟. 

Within this framework, the sublexical / phonological route may be sensitive 

to string-length, due to its sequential nature, such that the longer the letter-

string, the more processing time required for generating a full 

pronunciation. In contrast, the lexical / semantic routes are not sensitive to 

string-length or consistency, such that reading long or inconsistent words 

which are frequent enough to be readily available for lexical retrieval 

should not involve increased processing resources.  
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An alternative to the Dual-Route model, the Parallel Distributed 

Connectionist reading model (Figure 2-4) postulates that words and non-

words are all read by a single uniform mechanism based on the reader‟s 

experience (Seidenberg & McClelland, 1989; Plaut, McClelland, 

Seidenberg & Patterson, 1996; Plaut & Kello, 1999). According to this 

alternative model, reading requires the orthographic patterns of a word to 

generate an appropriate phonological pattern, achieved by the cooperative 

and competitive interactions between three types of units; orthographic, 

phonological and semantic units.  

Orthography Phonology

Semantics

Seen word

Written word

Heard word

Spoken word

 Figure 2-4 Schematic representation of Connectionist Distributed reading model  
(after Plaut & Kello, 1999). Light grey circles and ovals represent ‘hidden units’  

Within this theoretical framework, naming words and non-words alike 

occurs through a single interactive process relying on a network of 

weighted connections between orthography, phonology and semantics, 
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which are sensitive to statistical relationships between “hidden” units 

(depicted by light grey oval shapes in the figure), constituting distributed 

internal representations. These internal representations are modulated by 

the level of visual exposure to verbal stimuli, i.e. reading experience. 

Orthographic, phonological and semantic units consist of two layers; a 

visual input, and an articulatory output, which are mediated by hidden 

units. When reading familiar words, the model generates an orthographic 

representation of the entire word, which with weighted input from 

semantics, is used as input for the sequential articulatory output. The 

weight of the semantic input may vary with exposure as well as with 

consistency level, such that inconsistent words require a greater semantic 

input than consistent words (Plaut, 1996). By contrast, in the case of novel 

words, the model activates a sequence of phonemes, and simultaneously 

monitors grapheme-position. The visual monitoring remains fixed as long 

as the graphemic and phonemic units are consistent. However, in the case 

of inconsistent novel words or non-words, the model relies on multiple 

visual fixations on the stimulus, virtually phoneme by phoneme, until the 

correct pronunciation is achieved. These processes can thus account for 

frequency, consistency, lexicality and length effects, and similarly to the 

Dual-Route model, essentially depict two procedures (rather than a single 

process) of visual word recognition.  

 

Whether these procedures are activated in parallel or sequentially is still a 

matter of debate. Even so, evidence for their existence has come from 

some experimental studies with healthy participants examining the effects 

of different lexical factors on performance (reaction time and accuracy) in 
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tasks such as word naming or lexical decision2. Based on the premise that 

each type of processing should leave characteristic traces on 

performance, it has been shown that skilled readers tend to use whole-

word recognition when reading high-frequency words, whereas reading 

low-frequency words and non-words tends to involve the use of 

grapheme-to-phoneme conversion (e.g. Balota & Chumbley, 1984; 

Jescheniak & Levelt, 1984).  

 

Similarly, it has been shown that consistency may affect the strategy 

employed by readers, such that low-frequency consistent words tend to be 

read using grapheme-to-phoneme conversion, whereas inconsistent 

words require lexical access for correct pronunciation (e.g. Andrews, 

1982; Monsell et al, 1992; Jared, 1997). In addition, between-task 

comparisons have shown robust consistency, as well as length effects in 

tasks such as word naming, which explicitly require reading, relative to 

tasks that permit fast lexical decision without sequential processing (e.g. 

Andrews, 1982; Frost, Katz & Bentin, 1987; Tabossi & Laghi, 1992; Pugh 

Bennett, Shaywitz et al, 1996; de Groot et al, 2002; Wydell et al, 2003).  

 

2.3.2 The neural basis of reading 

More recently, findings from several functional neuroimaging studies have 

suggested that the dissociability between the different types of processing 

may be visualized at the cortical level (for comprehensive reviews see 

Price, 2000; Jobard, Crivello & Tzourio-Mazoyer, 2003; Price & Mechelli, 

                                                 
2
 The lexical decision task requires discrimination between real words and non-words in a 

forced choice paradigm e.g. pressing a “YES” response button if the stimulus is a real 
word and a “NO” button if the stimulus is a non-word. 
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2005; Balota & Yap, 2006). Before reviewing examples of seminal 

functional neuroimaging studies on the processes of reading, it is 

necessary to outline the fundamental principles of this newly emerging 

technology, as well as its advantages and disadvantages.  

2.3.2.1 Fundamental principles of functional neuroimaging 
techniques 

 

As mentioned in Chapter 1, functional neuroimaging techniques enable in 

vivo visualisation of local changes in neural activity (Raichle, 1994), in 

response to experimental manipulation, such as cognitive tests. The 

development of these techniques has provided a tremendous advantage 

to cognitive neuroscience by enabling multiple-subject studies to be 

carried out with healthy participants rather than relying on case studies of 

neurological patients, as well as avoiding the need to rely on lesions to 

infer neural function from observed dysfunction (e.g. Price, 2000). The 

visualisation of neural activity may be defined either in terms of its time 

course (temporal information) or its anatomical location (spatial 

information), measured by the electrophysiological or hemodynamic 

properties of neuronal depolarisation, respectively. 

 

Electromagnetic neuroimaging methods such as electroencephalography 

(EEG) and magnetoencephalography (MEG) measure electrical activity 

generated by neuronal depolarisation, or its associated magnetic activity, 

respectively, directly at the scalp. These methods can reliably map the 

time course of neural activation in real time (millisecond by millisecond; 

Okada, Mangee, Papuashvili & Chibing, 1995), though they do not provide 
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precise information about the anatomical sources of these signals, and 

thus afford relatively poor spatial accuracy (Frith and Friston, 1997). 

 

In contrast, hemodynamic neuroimaging methods such as functional 

magnetic resonance imaging (fMRI) and positron emission tomography 

(PET) measure correlates of neural activity by detecting changes in 

regional cerebral blood flow (rCBF) or energy metabolism accompanying 

neuronal depolarisation. Since these hemodynamic changes are 

considerably slower than electrical and magnetic changes3, these methods 

provide relatively low temporal resolution. However, the resulting images 

provide high spatial resolution, which enable the localisation of neural 

activity with high precision, both at the cortical level and deep in the brain 

(Matthews, 2001).  

 

Since both fMRI and PET rely on factors which correlate with neural 

activity, experimental paradigms require the inclusion of control tasks 

which are matched to the experimental tasks on all modalities save the 

processes of interest. This yields relative values of signal change, which 

are obtained with the use of „subtraction methodology‟ (Price, 2000), 

whereby the areas activated in the experimental task (e.g. silent word 

reading) are subtracted from areas activated in a non-linguistic baseline 

task. This approach eliminates from the analysis those areas which were 

activated in response to other cognitive processes, such as general visual 

processing. 

                                                 
3
 Measuring blood flow as an index of neural activity results in a 5-8 second lag between 

the changes in neuronal activity and the associated change in blood flow (Friston, 1994). 
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2.3.2.2. Functional neuroimaging of reading 

One of the first studies to examine the processes of reading using 

neuroimaging in healthy participants was conducted by Pugh and 

colleagues (Pugh, Bennett, Shaywitz et al, 1996). Testing 38 native 

English speakers using fMRI, these authors sought to isolate cortical 

networks associated with orthographic, phonological and lexical / semantic 

processes in reading using four types of judgement tasks; letter case 

judgement (orthographic task), non-word rhyme judgement (phonological 

task), semantic category judgement (semantic task) and line judgement 

(baseline task).  

 

Results showed that while orthographic processing was associated with 

strong activation in lateral middle and inferior occipital cortex bilaterally, 

phonological processing was strongly related to activation within left lateral 

orbital, prefrontal dorsolateral and inferior frontal cortex, though some 

activation within these regions was also observed during the semantic 

task. In contrast, semantic processing was specifically associated with 

activation within the medial occipital cortex and left superior and middle 

temporal regions.  

 

These findings therefore indicated that functional specialisation for the 

mediation of orthographic, phonological and semantic processing exists 

within the language processing network, which led the authors to propose 

a “sketch” of the possible architecture of some of the anatomical regions 

associated with reading. According to this model, initial visual processing 

of print recruits striate and extrastriate occipital regions, followed by 
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mapping of featural information onto orthographic representations 

mediated by lateral and medial extrastriate networks. Then, various 

inferior frontal and temporal regions contribute to the assembly of 

phonological representations, and  finally, access to and decisions about 

lexical-semantic information engages the middle and superior temporal 

gyri bilaterally. At those early days of neuroimaging, the authors noted that 

some regions known to be involved in the process of reading, such as the 

angular and supramarginal gyri, could not be visualised under the 

experimental conditions used at the time. The task of investigating reading 

processes within these regions and providing a more detailed account of 

the neural networks specifically involved in orthographic, phonological and 

semantic processing was therefore relayed to future studies.  

 

Subsequently, a PET study conducted by Fiez, Balota, Raichle and 

Petersen (1999) aimed to extend these findings by examining the neural 

correlates of frequency, consistency and lexicality effects in 11 native 

English speakers. Using a word / non-word naming task these authors 

showed significant patterns of activation associated with reading in a wide 

number of regions including bilateral inferior and middle frontal gyri, 

precentral gyrus and medial frontal gyrus, bilateral superior temporal gyrus 

and bilateral fusiform gyrus.  

 

Examining activation pattern in each condition showed strong activation 

associated with reading low-frequency words relative to high-frequency 

words around regions encompassing the left supplementary motor area 

(SMA), and the left STG. Consistency effects were detected with greater 
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intensity, showing significant patterns of activation associated with reading 

consistent words bilaterally around the precentral gyrus. Reading 

inconsistent words was associated with left lateralized activation detected 

around the lateral IFG, encompassing Brodmann‟s area (BA) 44. 

Importantly, frequency by consistency interaction was robustly visualized 

within the dorsal left IFG and the anterior insula, encompassing BA 44/45. 

This pattern was associated with reading low-frequency inconsistent 

words relative to all other conditions, similarly to the behavioural data 

observed in this study. Lexicality effects were visualized with significant 

activation associated with reading non-words, detected around the left 

fusiform gyrus (BA 37), and within the dorsal IFG near BA 44/45, similar to 

that detected in the low-frequency / inconsistent word condition. In 

addition, the authors noted that the intensity of activation observed in the 

non-word condition was significantly greater than all other conditions, with 

the exception of low-frequency / inconsistent words. This finding is 

counterintuitive, since non-words are thought to require sublexical 

processing whereas low-frequency inconsistent words cannot be correctly 

pronounced without lexical lookup (e.g. Andrews, 1982; Monsell et al, 

1992; Jared, 1997; Rastle & Coltheart, 2000). On the other hand, it is likely 

that low-frequency inconsistent words may be identified as non-words in 

some cases. The similarity in activation pattern between the two 

conditions was thus attributed to increased resources required for the 

processing of such stimuli.  

 

The authors proposed that activation in the left STG reflected sublexical / 

phonological processing associated with reading low-frequency words, 
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and activation in the precentral gyrus and SMA may be elicited as a result 

of sub-vocalization of the stimuli. At the same time, the inferior prefrontal 

cortex may underlie sublexical / phonological processing such as effortful 

retrieval, manipulation, or selection of phonological representations.  

 

These findings therefore suggested that the neural correlates of 

consistency effects may be robustly visualized, while only subtle 

differences related to frequency and lexicality effects may be observed. 

Although extremely informative, this study did not provide a clear 

dissociation between lexical and sublexical processing within the inferior 

prefrontal cortex. A possible reason may be the chosen experimental 

paradigm, which may not have been sensitive enough to detect subtle 

changes within this large cortical region, particularly due to the relatively 

low temporal resolution of PET as a hemodynamic neuroimaging method. 

 

In another study, Poldrack and colleagues (Poldrack, Wagner, Prull, 

Desmond, Glover & Gabrieli, 1999) employed fMRI, to examine functional 

specialization for lexical / semantic and sublexical / phonological 

processing specifically within the left inferior prefrontal cortex. These 

authors examined patterns of activation associated with semantic 

discrimination (abstract / concrete judgement), phonological processing 

(syllable counting of words and non-words), compared to a perceptual 

decision task (uppercase / lowercase decision) as baseline.,. Results 

showed that discriminating between abstract and concrete words 

(semantic task) led to significant activation in the left inferior prefrontal 

gyrus, encompassing Brodmann‟s areas 44, 45 and 47. In addition, this 
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task was associated with minor activation in more posterior / dorsal 

regions of the left inferior prefrontal cortex, in the vicinity of the precentral 

gyrus and SMA, which was also detected while participants performed the 

word-syllable-counting task (phonological task). Moreover, the non-word-

syllable counting task led to activation in the inferior frontal sulcus and the 

dorsal aspect of the gyrus (BA 44/45), similar to that reported by Fiez and 

colleagues (1999).  

 

The findings from this fMRI study thus showed distinct regions associated 

only with semantic processing, leading the authors to suggest that 

sublexical / phonological processing within the left inferior prefrontal cortex 

may be mediated by polymodal regions, which may also underlie 

processing of semantic information.  

 

More recently, McDermott and colleagues (McDermott, Petersen, Watson 

& Ojemann, 2003) extended these findings. Using fMRI, these authors 

instructed participants to think about the relationships between 

semantically or phonologically related words (e.g. tiger, circus, jungle as 

semantically related words, and skill, fill, hill as phonologically related 

words), and compared the activation patterns related to these two 

conditions relative to a baseline condition consisting of a crosshair fixation 

cue4.  

 

                                                 
4
 Crosshair fixation cues are often used as baseline tasks in functional neuroimaging 

studies, though these are considered as less reliable than baseline tasks which are 
visually similar to the experimental task. This point will be discussed further in Chapter 4. 
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Results showed large overlap between regions activated in both 

conditions, in the occipital cortex (BA 17/18/19) and fusiform gyrus (BA 37) 

bilaterally, the anterior and posterior parts of the left inferior frontal cortex 

(BA 44/45) and the medial frontal gyrus (BA 6). Moreover, the semantic 

condition was associated with stronger activation within the anterior 

portion of the IFG (triangular part) relative to the phonological condition, 

and exclusive activation in a region near the left superior / middle temporal 

sulcus (BA 22/21). In contrast, activation in the left precentral gyrus was 

observed with greater intensity during the phonological condition, relative 

to the semantic condition. Furthermore, the phonological condition was 

exclusively related to activation in the left inferior parietal cortex (BA 40), 

and in a ventral region within the posterior (opercular) part of the gyrus 

(BA 6/44). These authors therefore successfully distinguished between 

regions involved in semantic and phonological processing within the 

network of cortical regions involved in visual word recognition. 

 

Importantly, studies using languages other than English have produced 

similar findings. For example, Joubert and colleagues (Joubert, 

Beauregard, Walter, Bourgouin, Beaudion, Leroux et al, 2004), focussed 

on frequency and lexicality effects involved in silent reading of regular 

French words and non-words, relative to passive viewing of length-

matched consonant strings. Results showed extensive bilateral activation 

in the primary visual cortex and left-lateralized activation located around 

the IFG and temporo-parietal cortex for all linguistic tasks, as observed 

previously. Reading high-frequency words relative to the control task was 

associated with significant activation within the left angular and 
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supramarginal gyri (BA 39/40). By contrast, reading low-frequency words 

and non-words relative to control led to robust activation predominantly 

within the left inferior frontal cortex. The direct comparison between the 

sublexical and the lexical tasks revealed significantly more intense 

activation within the left IFG. Specifically, reading low-frequency words 

activated the lateral region of the left IFG (BA 44), whereas reading non-

words activated more dorsal regions of the gyrus (BA 45 and 47). 

Importantly, directly comparing the two putative sublexical tasks showed 

increased activation clusters associated with non-word reading in the left 

angular / supramarginal gyri (BA 39/40), as well as in the left precentral 

and medial frontal gyri, while significant bilateral regions within the STG 

were associated with low-frequency word reading.  

 

Based on these findings, the authors postulated that lexical processing 

may be mediated by areas around the left angular and supramarginal gyri, 

acting as associative polymodal regions for orthographic-to-phonological 

word processing5. Similarly to findings reported by Fiez et al (1999) 

Poldrack et al (1999) and McDermott et al (2003), the areas around the 

primary motor cortex (SMA and precentral gyrus) were suggested to 

subserve internal vocalization, stemming from phonological analysis 

related to the effort required for the recognition of low-frequency, or 

nonexistent words. In addition, the involvement of the left STG in the 

processing of low-frequency words implicates this region in sublexical / 

                                                 
5
 These authors based their arguments around the early suggestion that the left angular 

gyrus may be the site of the orthographic lexicon (Dejerine, 1892), and therefore 
approached the results with the a priori assumption that this region mediates lexical / 
semantic processes, however, greater activation in response to non-words could also 
reflect sublexical / phonological processing, since as noted earlier, this type of letter string 
is not represented in the mental lexicon  
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phonological processing, and not semantic processing, as suggested by 

McDermott et al (2003).  

 

In another recent study, Wydell, Vuorinene, Helenius and Samelin (2003) 

utilized MEG to examine the neural correlates of length and lexicality 

effects during reading in Finnish6. As mentioned above, this method 

provides considerably better temporal resolution than hemodynamic 

imaging techniques, albeit relatively less accurate spatial information. The 

authors compared the patterns of activation and their time course, while 

participants were silently reading short and long words and non-words. 

The two extremities of the comparison, short words and long non-words, 

reflected lexical / semantic and sublexical / phonological processing, 

respectively.  

 

Results showed that reading all stimulus types led to early activation 

(within 200 milliseconds [ms] of stimulus onset) primarily within the 

occipital midline, with significantly stronger patterns of activation 

associated with reading long letter strings (words and non-words alike). 

After 200 ms, the activation patterns expanded anteriorly, with most 

significant long-sustained duration of activation predominantly (though not 

exclusively) located within the left superior temporal cortex. These clusters 

were detected in response to long non-words. In contrast, reading short 

words revealed little activation, detected in the left parietal cortex, in the 

vicinity of the angular gyrus, and right mid-frontal cortex. Interestingly, 

                                                 
6
 The Finnish orthography is highly transparent, similar to Spanish and Italian, and 

therefore more advantageous for the examination of length effects than English. This 
issue is addressed in section 2.5. 
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length effects were predominantly observed during the early course of 

activation, whereas lexicality effects were only apparent at the later source 

clusters. These effects were observed as a systematic increase in duration 

of activation for each stimulus type, i.e. shortest duration associated with 

short words, somewhat longer duration for short non-words, longer yet for 

long words, and longest duration of activation associated with long non-

word stimuli.  

 

The authors therefore suggested that the combined length and lexicality 

effects observed within the left superior temporal region may reflect both 

types of processing during reading. 

 

More recently, Booth and colleagues (Booth, Lu, Burman, Chou et al, 

2006) examined the neural correlates of reading in native Chinese 

speakers using fMRI. The authors employed a rhyming judgement task, 

tapping into phonological processing, whereby participants determined 

whether a target word rhymed with two preceding words,  and a meaning-

association judgement task, tapping into semantic processing, whereby 

participants determined whether a target word was semantically 

associated with two preceding words. In this experiment the baseline task 

consisted of straight lines, where participants were required to determine 

whether the third stimulus was identical to either two preceding stimuli.  

 

Results showed that for both linguistic tasks relative to the control task, 

activation was predominantly left-lateralised, with peaks of activation 

detected within the left inferior and middle frontal gyri, medial frontal gyrus, 
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and bilateral occipital cortex, including fusiform gyrus. A direct comparison 

between the phonological and semantic tasks revealed similar patterns of 

activations to those observed previously (Fiez et al, 1999; Poldrack et al, 

1999; McDermott et al, 2003; Joubert et al, 2004). Specifically, greater 

activation was detected within the posterior portion of the left inferior / 

middle frontal gyrus (BA 9/44 opercular part) in response to the 

phonological task, whereas the semantic task was associated with 

stronger activation within the anterior portion of the left IFG (BA 44/47, 

triangular part). In addition, the superior / middle temporal gyrus (BA 

22/21) was more strongly activated during the semantic, relative to the 

phonological task, which led these authors to suggest that this region may 

include verbal semantic representation, as suggested by McDermott et al 

(2003) and in keeping with Wydell et al (2003). Moreover, the inferior 

parietal lobule (BA 40) was found to be more strongly activated in the 

semantic task, relative to the phonological task, strengthening the notion 

that this region may be involved in the mapping between orthography and 

phonology (Poldrack et al, 1999; Joubert et al, 2004).  

 

Finally, Bick, Goelman and Frost (2008) examined the neural correlates of 

reading in Hebrew using fMRI, employing four different types of linguistic 

task. In a semantic task, participants decided whether two words were 

semantically related, in an orthographic task, participants decided whether 

two words were orthographically similar, in a phonological task participants 

performed a rhyming decision of two words, and in a morphological task 

participants were instructed to decide whether two words were derived 

from the same root. Activation patterns of the linguistic tasks were 
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contrasted with a visual control task consisting of line judgements, similar 

to the task employed by Booth et al (2006).  

 

Results showed that linguistic tasks, relative to the control task elicited 

activation within the same neural circuits identified previously in reading 

tasks, namely left-lateralised regions within the middle / inferior frontal 

cortex, occipito-temporal cortex including fusiform gyrus, inferior parietal 

cortex and middle / superior temporal cortex. Importantly, within the middle 

/ inferior frontal cortex, as seen previously, the semantic task was 

associated with activation in relatively more anterior and inferior regions 

(BA 45/47) relative to the other tasks. In addition, this type of processing 

was associated with activation within the superior temporal cortex (BA 

22/21), further strengthening the suggestion that this region can be 

associated with both semantic and phonological processing. The 

orthographic task also led to activation within this region, as well as the 

fusiform gyrus, and the border of the superior occipital gyrus and the 

inferior parietal lobule (BA 39/19). The phonological task led to preferential 

activation in more posterior portions of the inferior frontal gyrus (BA 46) 

and precentral gyrus (BA 6), while the morphological task led to 

preferential activation in the middle frontal gyrus, similar to Booth et al‟s 

(2006) observation in Chinese. 

 

Despite differences in task demands and experimental procedures, the 

findings from the neuroimaging studies reported above largely mirror 

previously reported behavioural data and suggest that some functional 

specialization may exist within putative language processing regions, 
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although the different types of processing involved in reading may also be 

mediated by shared neural substrates, even in different languages such as 

Finnish, French, Chinese and Hebrew.  

 

A plausible interpretation of the neuroimaging data is that early visual 

analysis of all printed material occurs within the occipital cortex bilaterally, 

prior to any linguistic processing, gradually engaging left occipital regions 

for orthographic processing. Subsequently, lexical / semantic processing 

may be mediated predominantly within the anterior (triangular) portion of 

the left inferior frontal gyrus and middle frontal gyrus, while sublexical / 

phonological processing may be subserved predominantly by regions 

located around the left precentral gyrus and the lateral aspect of the 

inferior frontal cortex, such as the inferior frontal sulcus and opercular part 

of the IFG. Areas that act as mediators between orthographic and 

phonological information lie within the left association cortex, such as the 

left inferior parietal lobule, encompassing the angular and supramarginal 

gyri, as well as regions around the left middle and superior temporal gyrus.  

 

A more accurate model for the cerebral regions primarily involved in 

reading would therefore incorporate additional regions to those described 

in the 19th century model described in the previous section (Fig 2-2). 

Based on the synthesis of the data reported in the neuroimaging studies 

described above, Figure 2-5 illustrates a plausible schematic 

representation of those regions.  
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(pars opercularis)
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Anterior IFG
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Figure 2-5 Schematic representation of currently recognized major regions involved in 
reading 
Red arrows represent information flow along white matter pathways 
Abbreviations: IFG=inferior frontal gyrus; MFG=middle frontal gyrus; PMC=primary motor 
cortex; AG=angular gyrus; STG=superior temporal gyrus; SMG=supramarginal gyrus; 
PVC=primary visual cortex; MTG=middle temporal gyrus 

 

2.3.3 The role of the right cerebral hemisphere in reading 

So far the focus has been on the left cerebral hemisphere. Since language 

processing has been repeatedly shown to be associated primarily with left-

lateralised regions in neurologically intact populations, the role of the right 

hemisphere has been less thoroughly studied. However, aphasic patients and 

individuals with acquired reading disorders with left cerebral damage have often 

exhibited compensatory strategies recruited from right-hemisphere regions (e.g. 

Coltheart, 1980; Weekes, Coltheart & Gordon, 1997). Indeed, the studies 

outlined above have all reported activation within regions in the right 

hemisphere as well as the left in regular readers. Though due to the frequently 
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observed left-hemispheric dominance, the role of the right hemisphere in 

reading has been rather neglected until relatively recently.  

 

In regular readers, the role of the right hemisphere has often been investigated 

using the split visual field paradigm, whereby stimuli presented to the right 

visual field are processed in the left hemisphere and stimuli presented to the 

left visual field are processed in the right hemisphere. Studies employing this 

paradigm have repeatedly shown left visual field advantage for tasks involving 

orthographic and semantic processing.  

 

For example, Chiarello and colleagues (Chiarello, Burgess, Richards & Pollock, 

1990) have examined semantic priming effects to word-pairs presented to the 

right visual field (left hemisphere), left visual field (right hemisphere) and both 

(control condition). Three types of semantic relations were used; semantic 

category relation (e.g. animals; Deer-Pony, Cat-Dog), ordinate/subordinate 

relation (e.g. Bee-Honey, Music-Jazz) and a combined relation (e.g. Doctor-

Nurse). Results showed strong priming effects for all semantic relation types 

when pairs were centrally presented. However, when presentation was 

lateralised, the combined relation elicited similar priming effects for both visual 

fields, the ordinate/subordinate relation elicited no priming effects in either 

fields, and the semantic category relation elicited a left visual field advantage.  

 

These findings were taken to indicate that either cerebral hemisphere could 

process strongly semantically related words, while weakly related words 

required synergetic resources from both hemispheres. Specifically, automatic 

access to semantic category relatedness occurred primarily in the right 
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hemisphere, whereas the left hemisphere was engaged in rapid meaning 

selection, and inhibition of semantic competitors. These authors therefore 

concluded that the right hemisphere was involved in coarse semantic 

processing whereas the left hemisphere was involved in more fine-grained 

processes.  

 

More recently, Strange and colleagues (Strange, Henson, Friston & Dolan, 

2000), using fMRI, found stronger activation in the right hemisphere when 

participants were reading semantically illogical verb-noun phrases. Similarly, 

Lavidor and Ellis (2002) found stronger facilitatory effects of word 

neighbourhood size on lexical decision when words were presented to the right 

hemisphere, but not to the left hemisphere, implicating the right hemisphere in 

semantic processing.  

 

Having identified the regions involved in verbal and written language 

processing, a question that emerges with regard to the present study is: how is 

language represented in the brains of individuals who can speak and read more 

than one language? This issue is addressed in the final two sections of this 

chapter. 

 

2.4 Multilingualism 

Multilingualism can be defined as “the ability to speak, read or write 

several languages or many languages with some facility…” (The Online 

Medical Dictionary of the University of Newcastle; 

http://cancerweb.ncl.ac.uk). Since the onset of the industrial revolution in 

the late 18th century, transfer of knowledge across different countries has 
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led to an increase in demand for education and for foreign language 

acquisition. In addition, changes in political circumstances leading to 

changes of international borders have led to the merging and division of 

different cultures and languages, to a point in which several countries 

around the world today are officially bilingual or multilingual. Canada, 

Switzerland, Belgium and India are well-known examples. Moreover, with 

the development of sophisticated and relatively inexpensive means of 

transportation, international travel, for short as well as long periods of time, 

has become increasingly popular in the past 50 years. These are few of 

several examples of factors which have resulted in the rise of 

multilingualism across the world and with it, the aspiration to understand 

this phenomenon by a myriad of disciplines, ranging from social science 

and education, to neuroscience and medicine.  

 

Two of the central questions in the field of neurolinguistics have been 

whether the native language (L1) and additional languages (L2, L3 etc.) 

are represented within a common or separate mental lexicons, and 

whether overlapping or distinct cerebral regions are associated with 

processing multiple languages. These questions were fuelled by early 

observations of multilingual patients suffering from brain damage 

exhibiting symptoms of language impairment thought to be specific to 

multilingual aphasia (reviewed by Fabbro, 2001).  

 

Behavioural studies conducted with bilinguals have repeatedly shown a 

high level of interference or competition between participants‟ L1 and L2. 

For example, Beauvillain and Grainger (1987) conducted an experiment 
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using a cross-language semantic priming task with French-English 

bilinguals. Participants made English lexical decisions on target letter-

strings primed by French words. French primes were homographs7 of 

English words, e.g. coin (meaning corner in French), which were either 

semantically related to the target e.g. coin-money, or unrelated e.g. coin-

house. Results showed that lexical decisions were faster in the related 

condition relative to the unrelated condition, suggesting that although 

bilinguals were aware that primes were in French, and therefore should 

not interfere with lexical decision in English, the English reading of the 

primes induced a semantic priming effect.  

 

Another study using the lexical decision task as an experimental tool was 

conducted by Van Heuven, Dijkstra and Grainger (1998) with Dutch-

English bilinguals and English monolinguals. These authors manipulated 

the number of orthographic neighbours8 in the two languages. Results 

showed that increasing the number of Dutch neighbours of English target 

words (i.e. the number of Dutch words that can be formed by changing a 

single letter in the English word) slowed down English lexical decision in 

the bilinguals, but not in the monolinguals.  

 

Jared and Kroll (2001) showed similar results with phonological body 

neighbours9, using a word naming task with French-English, and English-

French bilinguals. In four experiments, the authors tested whether naming 

                                                 
7
 Interlingual homographs are words that share the same spelling in two or more 

languages; homographs can be cognates, i.e. share the same meaning, or non-cognates, 
i.e. have different meanings 
8
 I.e. the number of words in one language that can be formed by changing a single letter 

in another language 
9
 Word body neighbours are words that share their medial vowels and final consonants, 

e.g. save and wave. These do not necessarily rhyme, e.g. pint and mint  
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a word in the target language e.g. bait in English was affected by the 

existence of body neighbours with a different pronunciation in the non-

target language e.g. lait (milk) in French. Participants were presented with 

a list of English test words, which were either preceded or followed by a 

list of French filler words. Results showed cross-language interference, in 

the form of slower naming, in the French-English bilinguals regardless of 

the order of language presentation, whereas the English-French bilinguals 

showed slower RT for English words only when initially presented with the 

French list. Moreover, this interference was dependent on language 

proficiency, whereby less proficient English-French bilinguals showed less 

cross language interference relative to more proficient bilinguals. 

 

Similarly, Gollan, Forster and Frost (1997) have shown cross-language 

interference at the phonological level even in languages of different scripts 

such as English and Hebrew. Using a masked translation priming task with 

Hebrew-English cognates and non-cognates10, the authors showed (in 

Experiments 1 and 2) faster lexical decisions for L2 targets that were 

primed by L1 cognate translations of the targets, relative to non-cognate 

translations. 

 

An interesting study conducted by Marian, Spivey and Hirsch (2003) used 

eye-tracking to show that Russian-English bilinguals tended to make eye-

movements towards pictures of cross-language phonetically overlapping 

competitor objects. For example, when instructed in Russian to “pick up 

the stamp” (pronounced marku, in Russian), participants initially made 

                                                 
10

 Note that in languages with different scripts, cognates share phonological and semantic 
characteristics, but obviously no orthographic characteristics 
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eye-movements towards a picture of a marker. These effects were equally 

significant when participants were performing the task in English, their less 

dominant language. 

 

More recently, another interesting study conducted by Thierry and Wu 

(2004) investigated the qualitative differences between L1 and L2 

processing in Chinese-English bilinguals. These authors used behavioural 

measures in conjunction with EEG to examine semantic priming effects in 

English (L2), with concealed word-form repetition in the Chinese (L1) 

translation of the English words. Results showed that when English word-

pairs were semantically unrelated, but their Chinese translations shared 

logographic characters, bilingual participants exhibited slower RT‟s, lower 

accuracy levels and stronger negativities in the N400 component11, 

despite being unaware of the concealed word-form repetition. These 

findings were taken to indicate that bilinguals may tend to unconsciously 

translate words into their L1 when reading in their L2. Importantly, the 

participants in this study were regarded as „late‟ bilinguals, i.e., they had 

acquired their L2 at the age of 14 or 15. The authors therefore 

emphasised that in „early‟ bilinguals these effects may not necessarily 

have emerged. This point will be discussed further below. 

 

The studies described above suggest that both L1 and L2 may be 

represented by shared cognitive systems in bilinguals. Importantly, 

Lemhöfer, Dijkstra and Michel (2004) showed that this was also true for 

                                                 
11

 The N400 component was chosen by the authors since it has been specifically 
associated with semantic and repetition priming effects (Doyle et al, 1996; Dehaene et al, 
2001).  
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trilinguals. These authors tested Dutch-English-German trilinguals, using a 

lexical decision task in German (Participants‟ L3), using cognates, which 

overlapped in Dutch and German („double cognates‟) or in all three 

languages („triple cognates‟), as well as non-cognate German words. 

Results showed faster lexical decision times for double cognates relative 

to non-cognates, and even faster responses for triple, relative to double 

cognates. Moreover, the triple cognate effect was not influenced by 

whether participants had previously been exposed to an English text. 

 

Neuroimaging studies using various experimental paradigms and different 

languages have further strengthened this notion. For example, Klein et al 

(1994) have used PET to assess cerebral activation during verb-

generation tasks in Chinese-English bilinguals, while Hernandez et al 

(2001) have used fMRI with 6 Spanish-English bilinguals, switching 

between languages using picture-naming tasks. Kim et al (1997) 

compared cortical areas of activation during whole-sentence generation 

using fMRI, while Perani and colleagues (Perani, Dehaene, Grassy, 

Cohen, Cappa Dupoux, Fazio & Mahler, 1996) have used PET to examine 

activation patterns while subjects were listening to short stories. More 

recently, Pillai, Araque, Allison, Sethuraman et al (2003) used fMRI to 

compare the neural correlates involved in semantic and phonological 

processing in Spanish-English bilinguals, while Halsband (2006) used PET 

with Finnish-English bilinguals, to examine whether verbal memory in 

these two unrelated languages was mediated by separate or a shared 

neural system.  
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These studies have repeatedly shown that multiple languages are largely 

represented in overlapping language-processing regions as those seen in 

monolinguals, with differences emerging as a result of different levels of 

proficiency and exposure to the different languages.  

 

Recall Grosjean‟s warning (1989): “bilinguals are not two monolinguals in 

one person”. Balanced multilingualism is a rare phenomenon. Currently 

therefore, it is generally accepted that the earlier in life a language is 

acquired, the higher the level of proficiency eventually attained by the user 

due to a greater level of cortical plasticity during early childhood 

(Abutalebi, Cappa & Perani, 2005). Similarly, prolonged use and continued 

exposure to a second language has been correlated with proficiency level 

(e.g. Vingerhoets et al, 2003; Briellmann et al, 2004; Moreno & Kutas, 

2005), to a point which the second language may even replace the native 

language (Pallier, Dehaene, Poline et al, 2003; Meschan & Hernandez, 

2005).  

 

An innovative study by Mechelli and colleagues (Mechelli, Crinion, 

Noppeney et al, 2004), investigating structural plasticity in the bilingual 

brain using voxel-based morphometry, showed that bilinguals had 

increased grey-matter density in the left inferior parietal cortex relative to 

monolinguals. Moreover, these authors showed that the greater density 

was related to higher levels of proficiency and younger age of acquisition 

of L2. These results suggest that the structure of the brain may be altered 

by the experience of second language acquisition. 
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Some studies focussed on determining the functional role of language 

proficiency in the bilingual brain have shown that „early‟ or highly fluent 

bilinguals exhibited very little difference in the areas of activation while 

performing tasks in different languages, while „late‟ or less proficient 

bilinguals exhibited more extensive activation within overlapping regions, 

as well as some distinct regions, predominantly involved in working 

memory and attention (Perani et al, 1996; Dehaene, Dupoux, Mahler, Kim 

et al, 1997; Hernandez et al, 2001; Wattendorf, Westermann, Zappatore et 

al, 2001; Watenburger, Heekeren, Abutelabi, Cappa, Villringer & Perani, 

2003), as well as some homologous language processing regions in the 

right hemisphere (e.g. Dehaene et al, 1997; Proverbio, Cok & Zani, 2002; 

Pillai et al, 2003). Others, however, have shown largely (but not entirely) 

overlapping neural substrates even in late bilingual subjects (Klein et al, 

1994; Chee et al, 1999; Pu et al, 2001; Wattendorf, Westermann, 

Zappatore et al, 2003; Halsband, 2006), suggesting that even with 

relatively less exposure to a second language, the neural architecture of 

multiple-language representation may largely overlap.  

 

Conflicting findings may be related to variance in experimental techniques, 

e.g., reliability of control tasks, limited sample size, modality of stimuli 

presentation, complexity of linguistic tasks and the underlying cognitive 

demands, as well as the languages under investigation (see Abutalebi & 

Green, 2007 for a comprehensive review). The imaging studies described 

above have all relied on bilingual data, since from an empirical point of 

view, pairwise comparisons tend to be simpler than multiple comparisons. 

To date, three published neuroimaging studies have attempted to extend 
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current findings by examining multilingual participants, based on the idea 

that providing multiple points for comparison within the same participants 

would yield more reliable results. 

 

The first neuroimaging study to include multilinguals was conducted by 

Yetkin and colleagues (1996). The study aimed to assess the ability of 

fMRI to detect changes in patterns of brain activation in multilinguals, and 

determine whether different levels of language proficiency may elicit 

differential patterns of activation. The authors examined patterns of brain 

activation in 5 trilinguals, native speakers of English, with varied second 

and third languages (German, Turkish, Norwegian, Chinese, Japanese, 

Russian, French and Spanish). Language proficiency was defined as 

“speaking the language currently for at least 5 years” (p. 473). Trilinguals 

performed a word generation task in their respective languages, and 

results showed larger foci of activation within left-lateralized language 

processing areas in response to the less dominant languages compared to 

the native language. The authors thus confirmed the adequacy of fMRI as 

a neuroimaging method for examining the functional organization of 

different languages in multilinguals, and suggested that less dominant 

languages may require more processing resources, which may therefore 

lead to increased cortical activation. 

 

A more detailed evaluation of the issues of language proficiency was 

reported by Vingerhoets and colleagues (2003), who assessed the 

linguistic performance of 12 trilinguals of Dutch, French and English, using 

fMRI. Participants performed a verbal fluency task, a picture naming task, 
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and a reading comprehension task in the three languages. The authors 

included behavioural measures and questionnaires to assess language 

proficiency, age of acquisition and level of daily exposure to each 

language. Similar to the findings of Yetkin et al (1996), results suggested 

that multiple languages were represented in overlapping language 

processing areas, and that processing of less dominant languages 

entailed more extensive cortical activation than processing of the native 

language. Moreover, the correlation of behavioural and neuroimaging 

findings suggested that the most influential factor on language proficiency 

was the level of exposure to the language, rather than the age of its 

acquisition. These findings were later replicated by Briellmann and 

colleagues (2004), who assessed 6 heterogeneous quadri-lingual 

participants on a noun-verb generation task, also using fMRI. 

 

Taken together, current findings convey the general notion that different 

patterns of activation observed between different languages may be 

related to increased effort involved in the processing of a second (or third, 

or forth) language. These observations strengthen Grosjean‟s argument 

with regards to cortical representation of general language processing and 

provide convincing answers to the two questions listed at the beginning of 

this section, i.e., whether different languages are represented in separate 

or shared mental lexicons, and whether distinct or overlapping neural 

substrates subserve their processing. But how can these observations be 

applied to reading in different languages? This question is addressed in 

the next section. 
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2.5 Reading in different languages 

 

As highlighted in Chapter 1, different languages consist of various types of 

writing-systems, and despite the universal hierarchical patterns that unite 

them, the relationship between the graphemic units and their phonology is 

not always consistent.  

 

Non-alphabetic writing systems such as the syllabic Japanese Hiragana 

and Katakana consist of morphemes, which convey a reliable phonetic 

representation of syllables (Wydell, Butterworth & Patterson, 1995). By 

contrast, logographic writing systems such as Japanese Kanji (Wydell et 

al, 1995) and Chinese (e.g. Fang, Horng & Tzeng, 1986) consist of 

ideograms, representing whole words. In these writing systems no 

systematic relationship exists between the orthographic and phonological 

elements.  

 

Alphabetic writing systems consist of letters and letter-clusters that convey 

different levels of phonetic information. Semitic languages such as Hebrew 

and Arabic convey very little phonetic information relative to Indo-

European languages such as English and French, which in turn convey 

considerably less information that Spanish, Italian or Greek.  

 

As early as 1902, James Hinshelwood reported the case of a multilingual 

British patient, who following a stroke at the age of 34, had lost the ability 

to read in English. On examination one week following the stroke, the 

ophthalmologist noted that the patient could not read any continuous 

printed sentence, but was often able to pick out some words “by sight” (p. 
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359), particularly short and familiar ones. Long words often puzzled him, 

and he was not able to read them by sight, however, when allowed to spell 

the words out letter-by-letter the patient was often able to name them. 

Surprisingly, when examined in his other languages, the patient was able 

to correctly read whole texts printed in Greek, with very little difficulty. The 

physician noted that reading in Latin was somewhat less fluent, but 

nonetheless very close to Greek, whereas reading in French was 

considerably more difficult for the patient, though still more fluent than 

English.  

 

More recently, Wydell and Butterworth (1999) described the case of a 

fluent Japanese-English bilingual, with phonological dyslexia manifested in 

English only, and Beland and Mimouni (2001) presented the case of a 

French-Arabic bilingual with acquired deep dyslexia, characterised by 

semantic errors predominantly in French, but translation errors only in 

Arabic.  

 

These observations, similar to those seen in multilingual aphasia, suggest 

that different languages may be represented by distinct cerebral regions. 

However, having established that all languages known to an individual are 

represented by shared networks, and having identified the different types 

of processes involved in reading, the dissociability between the 

manifestations of dyslexia in different languages suggest that the 

difference may be related to the languages themselves. From this 

perspective, it is plausible that different levels of correspondence between 

orthography and phonology of different languages may affect the levels of 
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reliance upon lexical and sublexical processing (Ardila, 1991). Indeed, 

even among non-impaired individuals, a prevalent observation is that 

reading acquisition in different languages is attained at different rates (e.g. 

Seymor, Aro & Erksine, 2003; reviewed by Ziegler & Goswami, 2006). For 

example, it has been repeatedly shown that learning to read in English, 

even as a native language, is a more lengthy process than learning to 

read in more orthographically transparent languages such as Italian 

(Thorstad, 1991), Czech (Caravolas & Bruck, 1993), Greek (Goswami, 

Porpodas & Wheelwright, 1997), Spanish (Goswami, Gombert & de 

Barrara, 1998), German (Frith, Wimmer & Landerl, 1998) and Welsh (Ellis 

& Hooper, 2001; Spencer & Hanley, 2003). 

 

It thus logically follows that writing systems that convey a low level of 

orthographic transparency (such as English, Japanese and Arabic) do not 

„allow‟ for sublexical processing to occur without considerable cost, and 

should thus predominantly entail lexical processing, whereas in those 

languages whose orthography is relatively transparent (e.g. Greek, Latin, 

German, Spanish and Czech) the optimal processing strategy would be 

sublexical / phonological recoding. This is the premise of the „Orthographic 

Depth Hypothesis‟ (ODH; Klima, 1972; Liberman, Liberman, Mattingly & 

Shankweiler, 1980; Lukatela, Popadic, Ognjenovic & Turvey, 1980; Katz & 

Feldman, 1981), whose general principles have provided the cornerstone 

of the present study.  

 

The term „orthographic depth‟ is analogous to transparency, such that 

orthographies with low level of transparency are regarded as „deep‟, and 
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more transparent orthographies are referred to as „shallow‟. Findings from 

behavioural and neuroimaging studies have supported the notion that 

different levels of orthographic transparency may entail distinct types of 

cognitive processing in different languages. The next subsection describes 

these studies in detail. 

2.5.1 The effects of varied levels of orthographic transparency on 
reading strategies 

2.5.1.1 Behavioural studies 

Initial studies attempting to validate the ODH have compared existing 

findings of visual word recognition in English to Serbo-Croatian (c.f. 

Lukatela et al, 1980; Feldman & Turvey, 1983), and suggested that native 

readers of Serbo-Croatian were prone to employing sublexical / 

phonological assembly to a greater extent than English readers, since the 

shallow orthography of Serbo-Croatian allows it to occur more readily.  

Subsequently, a cross-language experiment conducted by Katz and 

Feldman (1983) compared word-naming performance and lexical decision 

in Serbo-Croatian versus English. Results showed that while naming 

latency was greater than lexical decision in both languages, the difference 

between the two tasks was smaller in English than in Serbo-Croatian. 

Similarly, including the factor of semantic priming in the experiment 

facilitated lexical decision in Serbo-Croatian, but not naming performance, 

while in English semantic priming effects did not differ between the two 

tasks. The inclusion of this factor stemmed from the idea that the 

occurrence of semantic priming effects reflects the type of processing 

involved in reading, such that when lexical access is the predominant 

strategy, strong semantic priming effects will be revealed, whereas if 
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reading is carried out primarily via grapheme-to-phoneme conversion, 

naming target words should not be facilitated by semantically related 

primes. 

 

These findings were therefore interpreted as to indicate that orthographic 

depth had a significant effect on the strategy employed by experienced 

readers of different languages. However, severe criticism was generated 

by authors who have found little or no effect of orthographic depth on 

visual recognition, even in comparisons of extreme orthographic depths, 

such as Serbo-Croatian and Chinese (Seidenberg, 1985; Seidenberg & 

Vidanovic, 1985).  

 

Consequently, Frost, Katz and Bentin (1987) initiated a new wave of 

cross-writing system comparisons, beginning with a multilingual study 

examining reading strategies in three groups of native speakers of 

alphabetic languages placed along an orthographic depth continuum; 

Serbo-Croatian at the shallow end, English as the midpoint and Hebrew at 

the deep end. Aiming to replicate previous studies comparing Serbo-

Croatian and English, the authors compared naming performance with 

lexical decision in each language, followed by the inclusion of semantic 

priming tasks.  

 

Results showed robust lexicality effects in naming performance in Hebrew, 

moderate effects in English, and none in Serbo-Croatian. Moreover, the 

difference between naming performance and lexical decision was largest 

in Serbo-Croatian, smaller in English, and practically nonexistent in 
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Hebrew12. Furthermore, semantic priming effects in naming were larger in 

Hebrew than in English and completely absent in Serbo-Croatian. 

Importantly, overall performance was found to be fastest in Serbo-

Croatian, somewhat slower in English, and slowest in Hebrew. These 

findings were taken as strong support for the ODH. 

 

However, these too were heavily criticised and counter-argued by Baluch 

and Besner (1991) who examined within-language effects of semantic 

priming and word-frequency on naming performance in Persian; a 

language that includes both deep and shallow types of spelling. Results 

from this study suggested that the inclusion of non-words in the stimulus 

list encouraged sublexical / phonological assembly of print-to-sound even 

in deep orthographies, thus confounding the data of previous studies.  

 

This claim was supported by Tabossi and Laghi (1992) who compared 

semantic priming effects in the shallow Italian orthography, and found that 

naming in this language was influenced by semantic relatedness only in 

the absence of non-words. In contrast, when non-words were included, 

semantic relatedness affected lexical decision, but not naming 

performance. Moreover, when compared with the relatively deep English 

orthography these authors showed that in accordance with the ODH, 

semantic priming elicited differences between naming and lexical decision 

in Italian but not in English, however, these differences disappeared in 

                                                 
12 Except for high-frequency words, where contrary to expectations, naming was 70 ms slower 

than lexical decision. This difference was statistically significant, but was not explained by the 
authors. 
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Italian when the stimuli required lexical knowledge for correct stress 

assignment.  

 

These findings led Katz and Frost (1992) to suggest a modified version to 

their hypothesis, thereafter referred to as the ‘weak version’ of the ODH. 

According to the weak version, both sublexical / phonological processing, 

and lexical / semantic processing can mediate visual word recognition in 

any orthography, though the degree to which each type is used is a 

function of the depth of the orthography. This modified ODH therefore 

revoked the initial “all-or-none” perspective, and proposed a more graded 

nature to the reliance upon each type of strategy. 

 

Giving a scientific hypothesis the label “weak version” does not provoke a 

great deal of credibility. Indeed, Besner and Smith (1992) in an article 

entitled “Basic Processes in Reading: Is the Orthographic Depth 

Hypothesis Sinking?” have compiled a mound of evidence suggesting that 

the psychological operations applied in oral reading share more common 

mechanisms than different ones, therefore bringing forward arguments in 

favour of a “universal hypothesis” for reading (p. 58). However, it cannot 

be disputed that different languages have different orthographic properties 

and by that virtue only, it logically follows that different levels of reliance on 

different types of strategies are necessary in order to achieve fast and 

fluent reading.  

 

The findings described by Tabossi and Laghi (1992) led to the notion that 

during normal reading of shallow and deep orthographies alike, the most 
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efficient strategy is fast lexical retrieval, which should thus predominate 

over the sublexical / phonological assembly so long as the orthography 

allowed it. Orthographic depth may thus influence the type of reading 

strategy only in “special conditions” (p. 309), such as when reading 

unfamiliar words, where visual lexical access is slower, giving way for 

sublexical assembly of phonology from print using grapheme-to-phoneme 

conversion rules. This suggestion has been supported by reported cases 

of deep and surface dyslexia and dysgraphia in speakers of languages 

with relatively shallow orthographies, such as Spanish (e.g. Ruiz, Ansaldo 

& Lecours, 1994; Iribarren et al, 2001) and Hindi (e.g. Ratnavalli et al 

2000; Karanth, 2002).  

 

A new debate therefore emerged, contesting the issue of which of the two 

processes may assume the „default‟ role during visual word recognition in 

different writing systems. Critics of the ODH have postulated the so called 

Visual Encoding Hypothesis, suggesting that the most efficient strategy for 

reading all writing systems is lexical / semantic processing, rather than 

sublexical / phonological assembly of print onto sound (e.g. Seidenberg, 

1985; Baluch & Besner, 1991; Tabossi & Laghi, 1992). This hypothesis 

supported the premise that addressed phonology, used for reading high-

frequency words or inconsistent words, is faster than phonological 

assembly, which due to its sequential nature, requires more processing 

time (Rastle & Coltheart, 1994).  

 

In contrast to the visual encoding hypothesis, the Phonological Hypothesis 

suggests that the default strategy of the cognitive system is phonological 
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recoding, based on findings showing the use of sublexical / phonological 

assembly in shallow orthographies (e.g. Katz & Feldman, 1983; Frost, 

Katz & Bentin, 1987; Tabossi & Laghi, 1992). This hypothesis, derived 

from the modified, weak version of the ODH argues that “if the reader can 

successfully employ pre-lexical phonological information, then it will be 

used first; the easier it is, the more often it will be used” (Frost, 1994, p. 

119).  

 

In light of contradicting accounts, Frost (1994) conducted a within-

language / between orthography study in Hebrew, similar to Baluch and 

Besner‟s (1991) investigation of Persian. In a series of 4 elegant 

experiments, Frost demonstrated that experienced Hebrew readers, who 

would normally not rely on phonetic information to read this deep 

orthography, were inclined to turn to grapheme-to-phoneme conversion 

when diacritical marks were present. In the first experiment of this study it 

was shown that lexical decision and naming of shallow pointed Hebrew 

words were significantly affected by word-frequency and lexical status, 

relative to deep unpointed words. In the second experiment, semantic 

priming facilitated naming in the deep unpointed orthography relative to 

the shallow pointed orthography even in the absence of non-words in the 

stimulus list, thus contradicting previous claims of data being influenced by 

the inclusion of non-words (Baluch & Besner, 1991). In the third and fourth 

experiments participants were presented with consonant strings followed 

by diacritical marks, appearing at different stimulus onset asynchronies. 

The delay of presentation of diacritical marks significantly slowed naming 
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and lexical decision, even when words could have been named 

unequivocally using the lexical strategy.  

 

These findings contradicted the Visual Encoding Hypothesis, and 

suggested that the default reading strategy for visual word recognition may 

be sublexical / phonological assembly, rather than visual lexical access. 

Frost noted that these recent observations were in keeping with previous 

findings of extensive sublexical / phonological recoding in languages of 

shallow orthographies such as Serbo-Croatian (Lukatela et al, 1980; 

Feldman & Turvey, 1983 Katz & Feldman 1983), as well as languages of 

relatively deep orthographies such as English (e.g. Van Orden, 1987; Van 

Orden, Johston & Hale, 1988). 

 

In a second study, aiming to extend these findings, Frost (1995), 

manipulated the levels of ambiguity of Hebrew words, and showed 

significantly faster naming latency for unambiguous words than for those 

that could be correctly pronounced in more than one way. This was 

coupled by a strong frequency effect, which disappeared when the words 

were rendered completely transparent by the inclusion of diacritical marks. 

The manipulation of the levels of ambiguity in Hebrew reflected the 

amount of missing phonological information necessary for successful 

assembly of phonology from print, and thus permitted the assessment of 

lexical involvement in naming. The results suggested that lexical access 

occurred whenever a complete sublexical representation could not be 

assembled with the use of grapheme-to-phoneme conversion. Frost 

therefore argued that if the reader could successfully assemble a 
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sublexical representation from print, then the sublexical / phonological 

strategy would be used first. However, in the event of complex or 

inconsistent phonemic representations conveyed by the orthography, such 

as irregularly spelled words, this route would be bypassed, giving way to 

visual processing and direct retrieval from the mental lexicon.  

 

A more recent study conducted by Paulesu and colleagues (Paulesu, 

McCrory, Fazio, Mononcello, Brunswick, Cappa et al, 2000) provided 

further support for the modified ODH with an original experimental 

paradigm. These authors used behavioural measures in conjunction with 

PET, to show clear differences in the types of processing involved in 

reading English and Italian. The behavioural experiment compared word 

and non-word naming in two groups of 36 native speakers of each 

language. Each group named high-frequency regular words in their 

respective native language, high-frequency international words common to 

both languages, and two sets of non-words, derived from either English 

(e.g. marnet, connage, afton) or from Italian (e.g. ponda, moco, corla). 

Results showed that Italian readers were overall faster than their English 

counterparts at naming both words and non-words, although Italian-

derived non-words were named faster than those derived from English. In 

contrast, the English readers showed no difference in naming latency 

between the two types of non-words. In keeping with previous behavioural 

studies (Katz & Feldman, 1983; Tabossi & Laghi, 1992; Frost, 1994) the 

authors suggested that English readers were more prone to rely on lexical 

/ semantic strategies during reading this “quasi-regular” orthography, than 
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their Italian counterparts, who exhibited more extensive use of grapheme-

to-phoneme conversion. 

 

An effect that has not been examined in the studies mentioned above is 

the length effect. According to the prediction of current reading models, 

length effects emerge as a result of increased activation of the sublexical / 

phonological route (e.g. Rastle & Coltheart, 1998) or multiple visual 

fixations on unfamiliar and/or inconsistent words (Plaut & Kello, 1998). 

Indeed, authors examining length effects on naming performance have 

utilized relatively transparent languages such as Dutch (e.g. Hudson & 

Bergman, 1985), Finnish (e.g. Wydell et al, 2003) and German (Ziegler et 

al, 2001), where length effects are more likely to emerge than in relatively 

opaque languages such as English or Hebrew.  

 

A relatively recent cross-language study conducted by Ziegler et al (2001) 

investigated length and body-neighbourhood effects on naming words and 

non-words in native German and native English speakers. This study 

utilized cognates in the two languages; such that the majority of the stimuli 

were orthographically and semantically identical (80% of word stimuli and 

62% of non-word trials were orthographically identical). The advantage of 

this type of comparison lies in the contrasting levels of orthographic 

transparency despite the common Germanic origin of the languages. 

Results showed significantly stronger length effects in the native German 

speakers, particularly for non-word naming, relative to their English 

counterparts, and stronger body-neighbourhood effects in the native 

English speakers, relative to their German counterparts. The authors 
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concluded that orthographic transparency of the languages in question 

affected the type of processing routinely involved in reading in each 

language, but rather than the relative amount of each type of processing, it 

was suggested that it was the “very nature” of these processes that 

differed as a function of orthographic transparency (p.379).  

 

Taken together, the findings described above suggest that readers of 

shallow orthographies normally rely on sublexical / phonological assembly 

of sound from print, since the transparency allows for this strategy to 

reliably operate on small linguistic units, such as graphemes to generate a 

fast and efficient pronunciation. In contrast, readers of deep orthographies 

are forced to rely on a variety of complementary strategies, to compensate 

for the inability to sublexically decode the opaque print. That however, 

does not preclude the use of visual analysis of larger linguistic units such 

as whole words in shallow orthographies, as long as this strategy is more 

efficient than grapheme-to-phoneme conversion.  

 

Further support for this suggestion has recently come from an elegant and 

very complex study, examining the effects of orthographic transparency on 

reading acquisition in Japanese, Albanian, Greek and English children 

(Ellis, Natsume, Stavropoulou, Lorenc et al, 2004). These children, aged 

between 6 and 15 years, read words aloud in the transparent syllabic 

Japanese Hiragana, in alphabetic languages of graded levels of 

orthographic transparency; Albanian, Greek and English, and the 

orthographically opaque Japanese Kanji. The authors analysed response 

accuracy, naming latency and error types in each language. Results 
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showed a direct relationship between orthographic transparency and 

accuracy, whereby overall level of accuracy in Hiragana (90%) was higher 

than, in turn, Albanian (87%), Greek (85%), English (80%) and Kanji 

(70%).  

 

With regard to naming latency (Albanian not included), results showed that 

among the younger children (6-11 years) overall naming latency was 

initially slowest in Greek (1600 ms), faster in Hiragana (1200 ms), and 

fastest in English (950 ms), with a systematic decrease as a function of 

age (older children achieving faster naming), which, by age 11, reached 

an equal level in all 3 languages (800 ms). Among the older children (11-

15 years), no significant differences were seen in naming latency between 

the 3 languages, as well as the opaque Kanji, which was only tested 

among these older children. Importantly, naming latency was found to be 

linearly related to word-length, such that longer words were associated 

with slower naming, particularly in the more transparent orthographies. 

Specifically, regression analysis showed that naming latency for correct 

responses was predicted by word-length in Hiragana (60%) to a greater 

extent than, in turn, Greek (38%), English (36%) and Kanji (6%). The 

slower naming in the more transparent languages by younger children was 

taken as evidence for use of phonological assembly by beginner readers, 

who gradually, with experience learned to efficiently retrieve familiar words 

using lexical and semantic cues. Moreover, the linear relationship between 

naming latency and word-length in all age-groups supports the view that in 

more transparent orthographies, greater reliance on phonological 
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assembly leads to stronger length effects than in more opaque 

orthographies.  

 

Analysing the types of errors made by the children further supported this 

view. Previous research on the types of errors made by learners of 

transparent and opaque orthographies had shown that reliance on 

sublexical / phonological recoding strategies generated mispronunciation 

errors, which often led to naming real words as non-words (e.g. Wimmer & 

Hummer, 1990; Ellis & Hooper, 2001), whereas reliance on lexical / 

semantic strategies led to visually similar, real-word substitution errors 

(e.g. Seymour & Elder, 1986; Stuart & Coltheart, 1988). Concordantly, in 

this study the authors observed that non-responses accounted for 1% of 

all Hiragana trials, 2% of Albanian trials, 14% of Greek, 22% of English 

and 66% of Kanji trials. Similarly, whole-word substitution errors were most 

prevalent in Kanji (69%) and least prevalent in Albanian (31%). The 

authors interpreted the high proportion of non-responses and whole-word 

substitution in the opaque orthographies as an indication of lexical / 

semantic strategy for word identification. In contrast, non-word-like 

mispronunciations were highest in Albanian (68%) and lowest in Kanji 

(11%), suggesting that children learning to read transparent orthographies 

tend to assemble new words by means of grapheme-to-phoneme 

conversion rules. Indeed, a close examination of this type of errors 

showed that children tended to mix correct word segments with 

substitutions, gaps or misorderings, resulting in non-words.  
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Taken together, the findings of this elaborate study provide strong support 

for the (weak) ODH, suggesting that experienced and beginner readers of 

transparent orthographies tend to rely predominantly on sublexical / 

phonological assembly strategies, particularly for reading infrequent and 

novel words, whereas readers of opaque orthographies tend to rely 

predominantly on visual, lexical and semantic cues for word identification.   

 

It is important to note that these studies have all been conducted with 

native monolingual speakers of the languages in question. As a result, 

while the within-language between-writing system studies have had the 

advantage of comparing the effects of different conditions within the same 

participants, the cross-language studies have had to rely on the less 

reliable between-subject comparisons. In this respect, an optimal 

experimental group could be bilinguals or multilinguals who were highly 

proficient in all the languages under investigation. However, since 

balanced multilingualism is a rare phenomenon, language proficiency 

must always be taken into account. As outlined in section 2.4, this type of 

comparison has been extensively used, but surprisingly, few studies have 

focussed on the effects of orthographic transparency on reading in 

bilinguals and multilinguals, looking at alphabetic languages. 

 

An elaborate study reported recently by de Groot et al (2002) provides a 

thorough examination of naming and lexical decision performance in a 

group of Dutch-English bilinguals. These authors investigated the effects 

of several variables on performance in the two languages, including word-

frequency, string-length, cognate status and semantic definition accuracy.  
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Results resembled those reported in previous studies, showing overall 

faster performance and more robust between-task differences in the 

transparent Dutch orthography relative to the opaque English. Similarly, 

robust frequency and semantic effects were observed in English relative to 

Dutch. Moreover, strong cognate effects were observed in lexical decision 

and naming in English, while in Dutch these effects were weak, and 

apparent only in naming. However, contrary to previous findings, and to 

the authors‟ predictions, length effects were more pronounced in English 

naming and lexical decision than in Dutch.  

 

In a post-hoc analysis, the authors noted that a frequency by length 

interaction was present in English, indicating that length effects were most 

robust for English low-frequency words. However, no such interaction was 

observed in Dutch. This surprising finding led the authors to conclude that 

the lack of interaction in the shallow orthography had stemmed from a 

language proficiency effect in this bilingual group, whose native language 

was Dutch, and second language was English. The confounding variables 

of orthographic transparency and language proficiency could have been 

compensated had the authors included a second group of bilinguals, 

whose native language was English and second language was Dutch.  

2.5.1.2 Neuroimaging studies 

Reported neuroimaging studies focussed on reading in alphabetic writing 

systems with contrasting levels of orthographic transparency are 

surprisingly few. Within these few, some conflicting findings have 

emerged.  
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For example, Illes and colleagues (Illes, Francis, Desmond, Gabrieli, 

Glover, Poldrack et al, 1999) have used fMRI with a similar paradigm to 

that described in their monolingual study (Poldrack et al, 1999). These 

authors compared semantic processing (discrimination between abstract 

and concrete words) relative to non-semantic processing (discrimination 

between upper and lower case print) in a group of 8 highly proficient 

Spanish-English bilinguals. Similarly to the monolingual English study, the 

authors showed significant differences in patterns of activation within the 

left IFG (BA 44, 45, 47) between the semantic and non-semantic tasks, 

however, clear between-language differences were not found.  

 

The authors thus concluded that a common neural system mediates 

semantic processing in the bilingual brain. Furthermore, relying on 

previous suggestions that the semantic task may also involve sublexical / 

phonological processing to some extent (Poldrack et al, 1999), the authors 

briefly discussed the possibility that anterior regions of the IFG may 

subserve lexical / semantic processing whereas posterior regions may be 

involved in sublexical / phonological processing. However, the two 

languages examined in their bilingual study were said to have common 

phonological structures, and therefore shared cortical representations. No 

mention was made of the behavioural studies that have found clear 

differences in lexical and sublexical processing associated with reading in 

languages whose level of orthographic transparency was similar to 

Spanish, relative to the less transparent English. 
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The first study to show cross-language differences at the cortical level with 

alphabetic writing systems was that conducted by Paulesu and colleagues 

(2000). Using PET, these authors compared the activation patterns 

associated with reading words and non-words in English and Italian by two 

groups of 6 native speakers of each language, similarly to the behavioural 

experiment reported in their study, described earlier.  

 

Results were in keeping with previous and subsequent neuroimaging 

studies examining activation patterns associated with reading, showing 

extensive activation within putative language processing regions in the left 

hemisphere, with non-word reading in both languages associated with 

more robust activation relative to word reading (e.g. Fiez et al, 1999; 

Poldrack et al, 1999; Wydell et al, 2003; Joubert et al, 2004). Regions 

associated with reading English were detected with greater activation 

within the left posterior inferior temporal cortex (BA 21/37) and anterior 

portion of the left IFG (BA 45). By contrast, regions associated with 

reading in Italian were observed predominantly within the left superior 

temporal gyrus (BA 22/21). The findings from this study not only provided 

evidence that the level of orthographic transparency of different languages 

affected the preferred strategy adopted by readers, but also suggested 

that this preferred strategy may also affect the reading patterns in other 

languages, implying that bilinguals or multilinguals may employ the default 

strategy of their native language to read in their less dominant languages.  

 

Indeed, much interest has been generated on the issue of whether 

processing of a second language may be modulated by the orthographic 



 71 

properties of the native language. Several behavioural studies aiming to 

address this issue have employed extreme ends of the orthographic 

transparency continuum, such as Chinese and Japanese Kanji. While 

some have shown that bilinguals may transfer reading strategies from their 

native language to their second language, others have shown similar 

reading processes in different languages among bilinguals.  

 

For example, Muljani, Koda and Moates (1998) have shown that native 

readers of the transparent Indonesian performed better in an English (L2) 

lexical decision task than native Chinese readers, with equivalent level of 

English proficiency. Similarly, Wang, Koda and Perfetti (2003) showed that 

native readers of the transparent Korean tended to make errors on a 

semantic categorisation task in English, where items were homophones of 

category exemplars (e.g. category: ‘flower’, homophone: ‘rows’) whereas 

native readers of Chinese tended to respond accurately on this task. In 

contrast, on a phoneme deletion task, Chinese readers performed more 

poorly than Korean readers, and made more errors that were 

phonologically incorrect but orthographically acceptable. These authors 

thus concluded that Korean readers relied primarily on phonological 

information for reading in English, whereas Chinese readers tended to rely 

more on orthographic information. However, Akamatsu (2002) showed 

that bilingual readers, native speakers of Chinese, Japanese and Persian 

displayed similar word-recognition procedures for English high-frequency 

words, low-frequency consistent words and low-frequency inconsistent 

words.  
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Similarly, some authors have identified distinct cortical regions, such as 

the left middle frontal gyrus, associated with reading in such profoundly 

different languages, (e.g. Nakada, Fujii & Kwee, 2001; Valaki, Maestu, 

Simos, Ishibashi, Fernanadez, Amo & Ortiz, 2003; Lee, Tsai, Kuo, Yeh, 

Wu, Ho et al, 2004; Siok, Perfetti, Jin & Tan, 2004). Moreover, some have 

proposed the implication of right-hemisphere areas in reading logographic 

scripts relative to English or Spanish (e.g Tan, Feng, Fox, & Gao 2001; Liu 

& Perfetti, 2003; Ding, Perry, Peng, Ma, Li, Xu et al, 2003; Valaki et al, 

2004). However, within that sphere, alphabetic writing systems have been 

rather left at bay. 

 

Two recent neuroimaging studies have examined the effects of 

orthographic transparency on reading strategies in bilinguals, using 

alphabetic languages. First, Meschyan and Hernandez (2005) assessed 

the effects of language proficiency and orthographic transparency of 

English and Spanish on bilingual word recognition using fMRI. These 

authors tested early Spanish-English bilinguals, who were more proficient 

in their L2 (English) than in their native language (Spanish). The authors 

aimed to dissociate between the effects of age of acquisition and language 

exposure, by showing that the less proficient albeit native language would 

be associated with more extensive activation within a shared network of 

regions for both languages, as well as some activation within distinct 

regions, predominantly associated with sub-articulatory processes and 

working memory, reflecting a greater load on processing resources of the 

less practiced language. In addition, the authors aimed to distinguish 

between regions associated primarily with phonological processing and 
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those associated primarily with semantic processing, by showing that the 

former would be activated preferentially for the more transparent Spanish, 

whereas the latter would be associated with the more opaque English, 

despite the varied levels of language proficiency.  

 

Behavioral results of this study showed that participants were slower at 

reading Spanish relative to English, which could either be attributed to the 

superior proficiency of English, or the higher level of transparency of 

Spanish, which led to a greater reliance on phonological recoding, or a 

combination of these factors. The neuroimaging results clarified this by 

showing that Spanish was associated with more extensive activation in 

regions implicated in working memory and articulatory motor processes, 

namely the SMA, cingulate gyrus and insula, as well as preferential 

activation within regions associated with phonological processing, such as 

the left STG (BA 22) and precentral gyrus (BA 6). In contrast, reading in 

English was shown to preferentially activate regions associated with 

semantic processing, namely within occipito-parietal cortex and inferior 

parietal lobule (BA 40).  

 

The authors thus concluded that while language proficiency had a 

profound effect on the cortical organization of language representation, 

orthographic transparency was less affected by language exposure, and 

therefore strategies employed for reading in languages with different 

orthographic properties were not bound to be transferred from the 

dominant language to the less practiced language. 
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Soon afterwards, Simon and colleagues (Simon, Bernard, Lalonde & 

Rebaï, 2006) investigated the effects of orthographic transparency on 

reading strategies in French and Arabic using EEG. In this study French 

was considered as the transparent orthography relative to the opaque 

Arabic, and therefore was expected to be associated with activation 

around the N320 component (activation detected within 320 ms of 

stimulus onset, which has been associated with grapheme-to-phoneme 

conversion in languages of relatively low level of orthographic 

transparency such as French [Bentin et al, 1999], relative to more 

transparent languages such as Italian, where earlier components have 

been found, such as P185 [Proverbio et al, 2004]). These authors tested 

Arabic-French bilinguals and French monolinguals on a bilingual lexical 

decision task.  

 

Behavioural results showed that both groups, reading in their native 

languages achieved similar levels of accuracy and response latency. 

However, the French monolinguals were faster and more accurate than 

their bilingual counterparts, performing lexical decisions in their L2, an 

effect which could have risen as a result of language proficiency, despite 

the reported high level of exposure and early age of L2 acquisition. The 

electrophysiological results clarified this issue by showing clear N320 

amplitudes, most notably around the posterior region of the left temporal 

cortex, present in both groups while making lexical decisions in French, 

but not in Arabic. These results, similar to Meschyan and Hernandez 

(2005), therefore suggested that the level or orthographic transparency 
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was more influential for the processes of visual word identification than 

either age of acquisition or language exposure.   

 

These two studies were pioneering with regards to utilising neuroimaging 

to investigate the effects of orthographic transparency on the patterns of 

activation associated with reading in alphabetic languages. Meschyan and 

Hernandez‟s (2005) contribution was important in showing that language 

exposure was more significant than age of acquisition as far as processing 

resources were concerned, as well as demonstrating that orthographic 

transparency was more influential than either factors on the predominant 

strategy used for reading in Spanish and English. Simon et al (2006) 

showed that the orthographically transparent French could be associated 

with amplitudes reflecting phonological recoding, within regions associated 

with that type of reading strategy, relative to the opaque Arabic. However, 

they did not show a clear pattern that could be associated with reading in 

Arabic. In this respect, fMRI would be a more efficient method than EEG. 

Moreover, neither one of these studies examined the strategies involved in 

reading the languages under investigation in detail. Indeed, to date, the 

only neuroimaging study that has attempted to map reading strategies 

used for alphabetic languages less transparent than English was that 

conducted using Hebrew by Frost‟s group (Bick, Goelman & Frost, 2008). 

 

Taken together, the studies outlined above have shown that although the 

predominant strategy for reading in orthographically transparent 

languages involves a high level of phonological recoding using grapheme-

to-phoneme conversion, lexical and semantic processing of larger 
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linguistic units has also been shown, similar to reading in languages of 

opaque orthographies. Similarly, the opposite has been observed for 

orthographically opaque languages, whereby the predominant use of 

lexical and semantic processing could be substituted by phonological 

processing under certain circumstances. Importantly, behavioural 

evidence has suggested that the level of orthographic transparency of the 

native language may have an effect on the strategies employed by 

bilinguals and multilinguals while reading in their less dominant languages. 

More research is required in order to map the extent to which each 

strategy may be used in different languages at the cortical level, and to 

what degree, if any, does the level of orthographic transparency of the 

native language influence the strategies used for reading in a second 

language. 

 

The present study uses three alphabetic languages, whose orthographic 

properties can be viewed as placed along a continuum of orthographic 

transparency. These are described below. 

2.5.2 The Spanish orthography  

Spanish alphabet is classified as a phonemic writing system. As 

highlighted in Chapter 1, written Spanish conveys a near one-to-one 

relationship between orthography and phonology, such that each written 

vowel can be correctly pronounced in only one way, with very few 

exceptions. The letter „U‟ assumes a silent role when preceded by a „Q‟ or 

a „G‟, and the letter „Y‟ only acts as a vowel when in conjunction with other 

consonants. Basic orthographic rules apply in the few cases where the 

grapheme-to-phoneme relationship is not entirely consistent. For example, 
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the letter „X‟ can be pronounced as /s/ (xilófono), as /ks/ (examen), and as 

/h/ (México), and the letter „R‟ is pronounced as /rr/ when positioned in the 

beginning of the word, or after an „N‟ (Iribarren, Jarema & Lecours, 2001). 

In addition, basic rules govern stress assignment of polysyllabic words, 

such that all words ending with a vowel, an „N‟ and an „S‟, receive stress 

on the penultimate syllable, and words ending in all other consonants 

receive stress on the final syllable. In cases of exceptional words, the 

correct stress is marked by an accent above the corresponding vowel, e.g. 

corazón (heart). Non-native readers who are familiar with the script are 

almost always able to correctly pronounce words without necessarily 

understanding their meaning. Spanish orthography can thus be placed at 

the transparent end of the orthographic transparency continuum. 

2.5.3 The English orthography 

The English alphabet is classified as a morpho-phonemic writing system, 

since it incorporates both phonemic and morphological properties 

(Chomsky & Halle, 1968). As outlined in Chapter 1, in the English 

orthography, a relatively small number of graphemes represent a relatively 

large number of phonemes, and while many words do convey a one-to-

one relationship between orthography and phonology, e.g. cat, desk, 

scalpel, many other words convey the original etymological root, or 

morpheme, e.g. heal and health, muscle and musculature, sign and 

signature, which are not pronounced according to phoneme-based rules 

as Spanish words are. Reading in English therefore requires knowledge of 

the spelling of whole words, or memory of appropriate context-dependent 

pronunciation rules. 
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2.5.4 The Hebrew orthography  

The Hebrew alphabet consists of 24 consonants and no vowels. Instead, 

vowel sounds are signified by „diacritical marks‟: points and dashes, which 

are typically placed below or beside consonants to indicate the correct 

phonetic pronunciation. When vowelised, the Hebrew orthography is 

almost entirely transparent. However, diacritics are used predominantly in 

children‟s books, poetry, or Biblical scripts, and are omitted in everyday 

texts such as literature, press and correspondence. The prime 

characteristic of Semitic languages is the triconsonantal root, whereby all 

words are comprised of roots formed of three (and sometimes four) 

consonants, which are embedded in template morpho-phonological word-

patterns. Both roots and word patterns are abstract constructs, whose joint 

combination forms specific words, though the meaning of these is usually 

obscure due to the absence of vowel letters.  

 

To illustrate with an example, the combination of the root - -  (X-SH-V) 

and the phonological pattern *A*A*A (asterisks represent the position of 

root consonants) give rise to the Hebrew word  (MAXSHAVA; 

thought). This particular root refers to anything related to the concept of 

thinking, while the phonological pattern represents nouns which are 

products of the action specified by the root. The same root can be 

combined with the phonological pattern *I*U*, to form the word  

(XISHUV; calculation). Moreover, this same root can also be combined 

with the phonological pattern *A*A* to yield the word  (past tense, 

singular, masculine form of to think). This phonological pattern often 
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conveys past tense singular forms of verbs, but can also convey the 

morpho-syntactic information that the word is a noun which signifies a 

profession. The word  therefore, also means accountant. When 

vowelised, the verb and the noun can be easily distinguished, however, in 

the quotidian, unvowelised form; the appropriate meaning of the word may 

be extracted only when placed in context within a sentence (c.f. Benuck & 

Peverly, 2004). 

It is important to note that although the vowelised form of Hebrew is highly 

transparent, the non-vowelised form is not entirely opaque. Four 

consonants of the Hebrew alphabet play the dual-role of „mothers of 

reading‟, whereby these graphemes can signify either consonants or 

vowels, depending on their position within the word (much like the letter „Y‟ 

in English). Mothers of reading can assume any one of the 5 spoken 

vowels, rendering some words highly ambiguous. For example, the letter 

„ ‟ („VAV‟) represented the vowel /u/ in the word . However, in the 

letter combination  („DALED‟ „VAV‟ „DALED‟), the letter „VAV‟ may 

represent the consonant /v/, as in the name „David‟, or the vowel /o/, in the 

word „DOD‟, meaning uncle (see Navon & Shimron, 1984 for a detailed 

review of Hebrew orthography).  

 

The non-vowelised form of Hebrew is similar to the recent phenomenon 

that has emerged with the use of text messages in mobile phones, 

whereby “wrds cn b wrttn wtht vwls nd th rdr cn stll xtrct th mnng” with 

considerable effort! Therefore in the framework of the present study, 
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Hebrew can be placed at the opaque end of the orthographic transparency 

continuum. 

 

The following chapters report five experiments. Experiment 1 aimed to 

replicate and extend the findings of the initial cross-language naming 

experiment conducted by Frost et al (1987), by examining the reading 

strategies employed by proficient bilinguals of Spanish and English and of 

Hebrew and English, compared to English monolinguals. Experiment 2 

was subsequently designed in order to validate an outstanding issue 

observed while reading in Hebrew. Then, Experiments 3 and 4 examine 

the neural correlates of the reading strategies involved in reading in the 

three languages by the same bilinguals and monolinguals, using fMRI. 

Finally, Experiment 5 was aimed at completing the picture by 

behaviourally examining the reading strategies employed by proficient 

trilinguals of the three languages. 
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Chapter 3 

Re-emergence of the Orthographic Depth 
Hypothesis 

 

 
3.1 Experiment 1:  
Naming words and non-words in Spanish, English and Hebrew 

3.1.1 Introduction 

Despite severe criticism, the modified version of the Orthographic 

Depth Hypothesis has been extensively relied upon to account for 

differences observed in reading patterns among native and non-native 

speakers of different languages consisting of writing systems that 

convey different levels of correspondence between orthography and 

phonology. Indeed, many recent studies have used alternative terms 

to describe orthographic depth, such as „transparency‟ (Wydell et al, 

1999; Meschyan & Hernandez, 2005; Simon et al, 2006), „consistency‟ 

(Jared et al,1990; Wydell et al, 1995; Fiez et al, 1999; Paulesu et al, 

2000) and „regularity‟ (Andrews, 1982), while some have also 

continued to use the term ‟depth‟ (Caravolas & Bruck, 1993; de Groot 

et al, 2002; Benuck & Pevery, 2004, Lemhöfer et al, 2004; Ellis et al, 

2004). Since the study published by Frost, Katz and Bentin in 1987, 

there have been numerous publications of studies attempting to argue 

against (e.g. Baluch & Besner, 1992; Tabossi & Laghi, 1992), and 

argue for (e.g. Katz & Frost, 1992; Frost, 1994; 1995) the hypothesis. 

However, no reported study has attempted to replicate and extend the 

initial cross-language investigation, which led to its proposal in the first 

place.  



 82 

In addition, it has been suggested that in bilinguals, the optimal 

strategy used for reading in the native language may be transferred to 

reading in the less dominant language (e.g. Muljani et al, 1998; Wang 

et al, 2003). Moreover, some studies have shown that language 

proficiency may also have an effect on the extent to which each 

strategy may be employed (e.g. de Groot et al, 2002), but there has 

been little research on the issue of which factor may be more 

influential; orthographic transparency or language proficiency. Indeed, 

most recently it has been suggested that while language proficiency 

had relatively little effect on the type of strategy used by bilinguals, 

reliance on lexical or sublexical processing was largely constrained by 

the orthographies themselves (e.g. Meschyan & Hernandez, 2005; 

Simon et al, 2006). 

 

The following experiment was aimed at examining the reading strategies 

employed by bilinguals of Spanish (L1) and English (L2), and Hebrew (L1) 

and English (L2), compared to English monolinguals, using a behavioural 

word / non-word naming task, measuring reaction time (RT) and accuracy. 

The rationale behind this type of experiment was that examining the 

differences between the three native languages would replicate the results 

observed by Frost and colleagues (1987), and the inclusion of bilinguals 

would allow for a controlled within-subject comparison between the two 

extremities of the continuum and English, as well as an examination of 

whether transfer of strategy may occur between L1 and L2, and if so, to 

what extent.  
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These comparisons would prove reliable if the between-language 

differences were to vary systematically, in keeping with their „position‟ 

along the orthographic transparency continuum, while within-language 

trends in English were to be similarly manifested across the 3 groups.  

 

As an optimal reflection of natural reading (e.g. Balota & Chumbley, 1984; 

de Groot et al, 2002), the naming task has been chosen for the 

behavioural aspect of the study, with naming latency and accuracy as the 

experimental measures. The variance observed in these measures, 

shaped by word-frequency, string-length and lexicality, have been 

previously shown to be reflective of the interplay between sublexical and 

lexical processing occurring during natural reading in monolinguals (e.g. 

Glushko, 1979; Henderson, 1982; Balota & Chumbley, 1985; Weeks, 

1997; Rastle & Coltheart, 1998). The naming task has therefore been 

extensively used in conjunction with other types of tasks, in cross-

language (Frost et al, 1987; Wydell & Butterworth, 1999; Wydell, 

Butterworth, & Patterson, 1995; Paulesu et al, 2000; Ziegler et al, 2001; de 

Groot et al, 2002) and within-language studies (e.g. Baluch & Besner, 

1991; Wydell et al, 2003; Frost et al, 1994; 1995). These have pointed 

towards the notion that the type of processing involved in word recognition 

is largely shaped by the level of orthographic transparency of the writing 

system. 

 

Bilinguals and monolinguals alike were therefore expected to show faster 

naming latency and higher accuracy levels for high-frequency words and 
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for short words, relative to low-frequency words and long words, 

respectively, as well as faster naming latency for real words relative to 

non-words. Since the battery of stimuli was compiled using various 

databases (please refer to section 3.1.2.2: experimental stimuli and 

procedure), such finding would also confirm their adequacy for subsequent 

experiments. In addition, if reliance on lexical / semantic processing is the 

most efficient strategy for reading in Hebrew, then word-frequency and 

lexicality would have pronounced effects on naming latency in this 

language, relative to string-length. This pattern would be reversed in 

Spanish, where predominant sublexical assembly of phonology would lead 

to increased naming latency for long letter-strings, particularly for low-

frequency words and non-words. Given that English is less transparent 

than Spanish, but more transparent than Hebrew, both bilingual groups as 

well as English monolinguals were expected to show naming latency 

patterns resembling those observed in Hebrew for real word trials, and 

those observed in Spanish for non-word trials.  

 

Moreover, an assessment of the patterns of naming accuracy would 

further support the predicted reliance on different strategies for naming in 

the different languages (c.f. Wimmer & Hummer, 1990; Ellis & Hooper, 

2001; Seymour & Elder, 1986; Stuart & Coltheart, 1988; Ellis et al, 2004). 

Specifically, in the transparent Spanish orthography, naming accuracy was 

expected to mirror the putative naming latency patterns. In English and 

Hebrew, high levels of accuracy was expected for high-frequency words, 

while the low level of exposure to low-frequency words was expected to 
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give rise to a relatively high proportion of mispronunciations. Non-word 

accuracy was expected to be high in both languages, since in English non-

words can be correctly pronounced using sublexical assembly, and in 

Hebrew, any assignation of spoken vowels would be considered as correct 

in a consonant string that has no meaning.  

 

3.1.2 Method 

3.1.2.1 Participants 

Ninety participants13 (47 female, 43 male), aged between 18 and 65 (mean 

age 32 years ±9) took part in the present experiment. These were 

recruited by word of mouth and were not paid for participation. All had 

normal or corrected-to-normal vision, received between 12 and 26 years of 

formal education (mean 18 years ±3), and had no history of learning 

disability or reading impairment.  

 

Participants were divided into 3 groups, according to their respective 

native language; Spanish-English bilinguals, Hebrew-English bilinguals, 

and English monolinguals. Bilinguals were chosen on account of language 

proficiency, based on personal history and questionnaires (please refer to 

Appendix 1), and corroboration with data from behavioural experiment.  

 

                                                 
13

 The original sample comprised 95 participants. The data of 4 participants were 
excluded from the analyses due to considerably low level of accuracy (more than 20 
errors) and / or slow reaction time resulting in a high proportion of non-responses (more 
than 10). One participant was texting on their mobile phone between trials and therefore 
also excluded from the analysis 
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Bilinguals were considered as those individuals who could speak and read 

fluently in two languages, normally through formal education, residence in 

2 countries and/or as a result of having spoken 2 languages at home. 

Spanish-English bilinguals (N=30; 14 female, 16 male) had been raised in 

a Spanish-speaking country (Chile, Argentina, Mexico, Spain, Bolivia and 

Venezuela), and Hebrew-English bilinguals (N=30; 18 female, 12 male) 

had been raised in Israel. All bilinguals had received English lessons in 

their native country since primary school. All were living in the UK for a 

minimum of 1 year at the time of testing, and were either enrolled in an 

English-speaking higher education programme, or were working in an 

English-speaking environment. English monolinguals (N=30; 15 female, 15 

male), had been raised in the UK and were not proficient in any other 

language. 

 

Table 3-1 shows bilingual and monolingual participants‟ demographic 

details. 
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Table 3-1 Bilingual and Monolingual participants’ demographic details 

 
Spanish-English 
bilinguals (N=30) 

Hebrew-English 
bilinguals (N=30) 

English monolinguals 
(N=30) 

 Range Mean (SD) Range Mean (SD) Range Mean (SD) 

Age (years) 18-55 31.6 (7.7) 19-61 32.2 (9.1) 18-65 31.4 (10.5) 

Formal education (years) 

 Overall 13-26 19.1 (3.4) 12-22 16.7 (2.2) 14-24 18.1 (2.4) 

 Spanish 0-23 15.3 (5.6) - - - - 

 Hebrew - - 8-18 13.7 (2.7) - - 

 English 0-13 4.5 (3.7) 0-9 2.6 (2.3) 14-24 18.1 (2.4) 

Age of acquisition (years) 

 Spanish Native - - - - 

 Hebrew - - Native - - 

 English* 0-14 8.6 (3.9) 0-13 8.7 (2.9) Native 

Length of residence (years) 

Spanish-speaking country 4-52 25.7 (8.4) - - - - 

Israel (Hebrew speaking) - - 13-47 24.7 (9) - - 

English-speaking country 1-20 6.1 (4.6) 1-36 6.1 (5.6) Native 

Language exposure (hours per week) 

 Spanish 0.5-90 30.8 (27) - - - - 

 Hebrew - - 1.5-90 37 (30.2) - - 

 English 5-90 74.4 (25.8) 3-90 68.8 (25.7) 90 90 

 
Figures in bold indicate a statistically significant difference between the two 
bilingual groups, as revealed by a one-way ANOVA, F(1,58)=4.04 p=0.05 (all other 
demographic factors did not differ significantly between the two groups [F’s < 1.1 

p  0.05]) 

 
* note that 1 Spanish-English bilingual and 2 Hebrew-English bilinguals were raised by 
English-speaking parents, and considered themselves as native English speakers. For 
these participants English AoA was therefore annotated as zero
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3.1.2.2 Experimental stimuli and procedure 

Experimental stimuli consisted of Hebrew, Spanish and English words and 

non-words (presented in Appendix 2). Words were selected according to 

frequency of occurrence, with high-frequency words occurring over 100 times 

per million and low frequency words occurring less than 10 times per million, 

from a number of available databases, as well as previous studies (Hebrew 

words: McCauly, in preparation; Frost, 1994; Spanish words: Almeida,199514; 

English words: MRC Psycholinguistic database, 1987; Behrmann & 

Bub,1992). In order to avoid between-language priming effects, none of the 

chosen words shared semantic characteristics with the other languages. Non-

word stimuli were created by replacing one or two single letters of real words, 

or selected from previous studies (English non-words: Behrmann & Bub, 1992; 

Spanish non-words Tamariz, 2003). All non-words were pronounceable, and 

followed the grammatical and orthographic rules of each language. The 

phonology of non-words in any given language did not represent real words in 

the other languages. The number of initial phonemes of all experimental trials 

was balanced in order to minimise possible effects of differential sensitivity of 

the voice-key to sound intensity and onset of naming. 

 

Each language comprised one experimental block. Each block contained 90 

trials; 60 words and 30 non-words. Word trials were divided into sub-blocks of 

15 trials. These were high-frequency short words, high-frequency long words, 

                                                 
14

 Note that since Spanish bilinguals were nationals of several different countries, care was 
taken to include only words which were universal to the Spanish-speaking population, for 
example, the word ámbito (field) features regularly in newspapers and is therefore considered 
as high-frequency, whereas the word abad (priest), in contrast to its popular synonym 
sacerdote appears relatively rarely in Spanish writings and is therefore considered as low-
frequency.  
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low-frequency short words and low-frequency long words. Non-word trials 

were subdivided into 15 short and 15 long items. String-length was chosen in 

accordance with the optimal average of word length in each language (Kamps, 

Monz & Rijke, 2002). Short words and non-words therefore consisted of 3 

letters for the Hebrew and English blocks, and 4 letters for the Spanish block. 

Consequently, long words consisted of 5 letters for the Hebrew and English 

blocks, and 6 letters for the Spanish block.  

 

The experiment took place in a quiet room, at a place of the participants‟ 

convenience; usually their home or office. Experiments were conducted using 

a Pentium 4 Packard Bell laptop, connected to a voice-activated key and a 

microphone. The microphone was attached to a head-set such that it 

remained in a fixed position relative to participants‟ mouth. Stimuli were 

presented using SuperLab Pro 2.0.4 (Cedrus, 2003).  

 

Bilingual participants were presented with stimuli in their native language and 

in English, while monolingual participants were presented with English stimuli 

only. The experiment lasted approximately 45 minutes. The session 

commenced with the calibration of the voice-key, followed by instructions and 

a short practice session of 18 word trials in each language. Once the 

instructions had been clearly understood and participants‟ comfort was 

ensured, the experiment began. Participants were instructed to read each 

word once, as quickly and as accurately as possible. It was highlighted that in 

the event of an unknown word appearing, participants should try to guess the 

correct pronunciation as quickly as possible. Prior to the onset of each 
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language block an introductory sentence appeared at the centre of the screen, 

in the corresponding language, instructing participants to read aloud the words 

that were to follow. At the end of each language block, a smile sign appeared, 

followed by a concluding sentence indicating that the block had finished and 

the language was about to change. This was followed by a new introductory 

sentence indicating the language that was to follow. Participants were asked 

to read these introductory and concluding sentences silently. 

 

Each stimulus appeared following a 500 ms fixation cross in the centre of the 

screen, and disappeared with the detection of onset of voice input. Naming 

latency was recorded by the computer, and accuracy of pronunciation by the 

experimenter. Stimuli were displayed for a maximum of 3000 ms. Where no 

response was detected during this time the programme proceeded to display 

the next trial. Words and non-words were presented in a randomised order, 

and the order of language block presentation was counterbalanced across the 

entire experimental group. Statistical analysis was performed using SPSS 13.0 

for windows (SPSS Inc. 2000). 

3.1.3 Results 

Naming latencies for correct responses were averaged across participants for 

each language and each condition. Within each participant, response 

latencies in each condition falling outside the range of 2.5 standard deviations 

(SD) from the respective mean were discarded, and the mean was 

recalculated. Outliers accounted for less than 2% of all trials. Other discarded 

trials were those where the voice-key had been triggered by environmental 
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noise or where participant response was not recorded due to voice-key 

insensitivity. These trials accounted for less than 4% of all trials.  

 

Table 3-2 shows the mean reaction times in milliseconds and SD of correct 

responses, for each experimental condition for the three different languages, 

with Figures 3-1, 3-4 and 3-7 illustrating the effects and interactions between 

the different variables in each language, respectively. Note that for visual 

clarity error bars were omitted due to overlap in these multiple series figures. 

Table 3-3 and Figures 3-2, 3-5 and 3-8 show the error rate for each condition. 

As in Ellis et al‟s study (2004) incorrect responses were categorised according 

to 4 different „types‟. These are shown in Table 3-4 and Figures 3-3, 3-6 and 

3-9. Table 3-5 shows the proportional differences in naming latency between 

different conditions within each language (ms and % effect). Regression 

analysis showed no effect of age, gender or level of formal education on 

overall naming latency. For interest, these are presented in Appendix 3. 
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Table 3-2 Mean naming latency in milliseconds (ms), achieved by bilinguals and monolinguals 
in each language (figures in brackets represent SD.) 

 Spanish-English bilinguals Hebrew-English bilinguals English monolinguals 

 Spanish English Hebrew English English 

High-freq short words 716 (72) 734 (78) 709 (90) 729 (76) 660 (57) 

High-freq long words 728 (75) 770 (96) 806 (93) 772 (90) 682 (72) 

Low-freq short words 753 (80) 779 (94) 774 (90) 777 (109) 679 (55) 

Low-freq long words 824 (102) 821 (100) 842 (106) 882 (160) 721 (66) 

Overall word naming 755 (79) 776 (87) 783 (56) 790 (65) 685 (59) 

Short non-words 844 (110) 815 (113) 1054 (281) 824 (160) 726 (78) 

Long non-words 945 (154) 886 (140) 1072 (242) 982 (197) 816 (128) 

Overall nw naming 894 (129) 850 (121) 1063 (13) 903 (111) 771 (97) 

 
 
 
Table 3-3 Incorrect responses [mean (SD)] made by bilinguals and monolinguals  

 Spanish-English bilinguals Hebrew-English bilinguals English monolinguals 

 Spanish English Hebrew English English 

Overall naming errors 3.17 (2.7) 4.87 (3.1) 1.27 (0.9) 4.57 (2.1) 1.2 (1.1) 

High-freq short words 0 0 0 0 0 

High-freq long words 0 0.1 (0.4) 0 0.17 (0.4) 0 

Low-freq short words 0.03 (0.2) 0.57 (1) 0.33 (0.6) 0.47 (0.6) 0.07 (0.4) 

Low-freq long words 0.33 (0.9) 2.93 (1.4) 0.43 (0.7) 2.67 (1.2) 0.6 (0.7) 

Short non-words 0.73 (1) 0.87 (1.2) 0.3 (0.5) 0.37 (0.6) 0.17 (0.5) 

Long non-words 2.07 (1.7) 0.4 (0.6) 0.2 (0.4) 0.9 (0.8) 0.37 (0.8) 

 

Table 3-4 Types of errors made by bilinguals and monolinguals [mean errors (SD)] 

 Spanish-English bilinguals Hebrew-English bilinguals English monolinguals 

 Spanish English Hebrew English English 

Stress Assignment 2.2 (2.0) 0.17 (0.5) 0.03 (0.2) 0.03 (0.2) 0 

Phonological errors 0.47 (0.7) 4.1 (2.5) 0.77 (0.8) 3.0 (1.6) 0.93 (0.8) 

Lexicalisation 0.2 (0.5) 0.53 (0.8) 0.17 (0.4) 0.6 (0.8) 0.17 (0.5) 

Word Substitution 0.3 (0.8) 0.07 (0.2) 0.3 (0.2) 0.97 (1.1) 0.13 (0.4) 

Types of errors were categorised as:  

 Stress assignment; referring to incorrect assignment of stress of polysyllabic words 

 Phonological errors; referring to violation of correct phonemic pronunciation of words. In 
Spanish, these errors could be pronouncing a silent H. In English, these errors can be 
made predominantly in irregular words e.g. ‘gauge’, while in Hebrew these errors can be 
made by assigning an incorrect vowel to a consonant string, e.g. the string GMD , 
which should be pronounced as ‘gamad’ to mean dwarf, could be mistakenly pronounced 
‘gemed’, which has no meaning 

 Lexicalisation; pronouncing non-words as though they were real words, e.g. ‘grink’ as drink 

 Word substitution; errors stemming from swapping the position of letters within words, such 
as ‘beard’ and ‘bread’. 
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Table 3-5 Proportional differences in naming latency between different conditions within each 
language (ms and %) 

 Spanish-English 
bilinguals 

Hebrew-English 
bilinguals 

English 
monolinguals 

Spanish English Hebrew English English 

ms % ms % ms % ms % ms % 

Freq effects 
(low – high) 

Short words 37 5 44 5 65 8 48 6 19 3 

Long words 96 11 50 6 36 4 110 11 39 5 

Overall 66 8 47 6 50 6 79 9 29 4 

Length 
effects 
(long – short) 

High-freq words 12 2 36 4 97 12 43 5 22 3 

Low-freq words 71 8 41 5 68 8 105 11 42 6 

Overall words 41 5 38 5 82 10 74 9 32 4 

Non-words 101 10 71 7 18 2 157 15 89 10 

Lexicality 
effects 
(nw – words) 

Short letter-strings 109 13 58 7 312 26 71 8 57 8 

Long letter-strings 168 17 90 10 248 21 154 14 114 13 

Overall 139 15 74 8 280 24 112 12 85 10 

 

Statistical significance of naming patterns was assessed using repeated-

measures analysis of variance (ANOVA), across subjects (F1) and across 

items (F2) separately. Data obtained in native languages was analysed within 

each group individually, and data obtained in English as a second language 

(ESL) was analysed between the two bilingual groups. 

 

3.1.3.1 Naming in Spanish 

3.1.3.1.1 Naming latency 

Naming latency in Spanish increased systematically between high-frequency 

short words and long non-words. A 3x2 ANOVA, with “Frequency” (high-

frequency words, low-frequency words and non-words) and “Length” (short 

words and long words) as within-subject factors, revealed significant main 

effects of frequency: F1(2,58)=126.99, p<0.0001; F2(2,28)=48.38, p<0.0001 and 

length: F1(1,29)=84.85, p<0.0001; F2(1,14)=38.29, p<0.0001, and a significant 

interaction between them: F1(2,58)=27.64, p<0.0001; F2(2,28)=4.11 p<0.02. 

Figure 3-1 illustrates very clearly the systematic increase in naming latency 
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between high-and low-frequency words, particularly for long letter-strings, 

indicating a strong modulation of length effect by word frequency in Spanish.  

The overall lexicality effect in Spanish was 139 ms, with a 109 ms difference in 

naming latency between short words and short non-words, and a 168 ms 

difference between long words and long non-words. A 2x2 ANOVA, with 

“Lexicality” (real words and non-words) and “Length” (short and long letter-

strings) with high- and low-frequency words averaged together, as within-

subject factors, thus revealed main effects of lexicality: F1(1,29)=128.18, 

p<0.0001; F2(1,14)=52.82, p< 0.0001 and of length: F1(1,29)=75.96, p<0.0001; 

F2(1,14)=43.09, p<0.0001. The interaction between them was significant in the 

subject analysis: F1(1,29)=20.94, p<0.0001, and approached significance in the 

item analysis (F2(1,14)=3.42, p=0.09), suggesting that length effects were also 

modulated by lexicality in Spanish, i.e. the magnitude of length effects was 

stronger for non-words than for words. 
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Figure 3-1 Naming latency in Spanish 

 3.1.3.1.2 Naming accuracy  

Native Spanish bilinguals responded accurately on 96.5% of trials in their 

native language. Out of a mean of 3.17 (see Table 3-3), no errors were made 

while naming high-frequency words. Figure 3-2 clearly illustrates the naming 

accuracy pattern was similar to that of naming latency, whereby participants 

tended to make more errors while naming longer and less frequent words. A 

paired-samples Wilcoxon test on raw error scores revealed a significant 

frequency effect on naming accuracy for long words: z=-2.33, p<0.02, but not 

for short words (z=-1, p=0.32). Moreover, the length effect increased 

systematically as frequency decreased, with a nearly significant effect for low-

frequency words (z=-1.90 p=0.06), and a strongly significant effect for non-

words: z=-3.49, p<0.0001. Similarly, length effects on naming accuracy were 

modulated by lexicality, with a significant lexicality effect seen for short letter-

strings: z=-3.37, p<0.001, and a stronger effect seen for long letter-stings: z=-

4.39, p<0.0001.  
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As seen in Table 3-4 and Figure 3-3, incorrect stress assignment was the 

predominant type of error in Spanish (70%). Since error types were grouped 

into four categories, as in Ellis et al‟s study (2004) a Friedman‟s two-way 

analysis by ranks was used to measure the statistical significance of this 

observation. The analysis revealed that this type of error was significantly 

greater than the proportion of phonological errors (14%), lexicalisation (7%) 

and word substitutions (9%): χ2
(3)= 60.86, p<0.001. 
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Figure 3-2 Naming errors in Spanish 
Error bars represent SD from the mean as indicated in Table 3-3 
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Correlation analysis, performed between accuracy levels and the demographic 

data obtained in the initial questionnaire in each language for each group, 

revealed that the overall Spanish accuracy rate was related to the proportional 

amount of time of formal education in Spanish: r=0.42, p<0.02, indicating that 

those participants who had spent more time studying in their native language 

relative to their second language tended to make less naming errors. 

 

3.1.3.2 Naming in Hebrew  

3.1.3.2.1 Naming latency 

As shown in Table 3-2, high-frequency words in Hebrew were named faster 

than low-frequency words, short words were named faster than long words 

and short non-words were named faster than long non-words. 3x2 ANOVA 

therefore revealed significant main effects of frequency: F1(2,58)=59.68, 

p<0.0001; F2(2,28)=98.96, p<0.0001,  and length: F1(1,29)=38.40, p<0.0001; 

F2(1,14)=12.33, p<0.003. However, the interaction between these factors, 
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although significant across subjects: F1(2,58)=7.89, p<0.005, did not reach 

significance across items (F2(2,28)=1.79, p=0.19). More importantly, the 

interaction was in the opposite direction to that seen in Spanish. As clearly 

seen in Figure 3-4, the length effect in Hebrew systematically decreased as a 

function of frequency; for high-frequency words participants showed a 97 ms 

increase between short and long items, for low-frequency words this difference 

was 68 ms, and for non-words it was only 18 ms. It is important to note that 

short letter-strings in Hebrew are phonologically more ambiguous than long 

letter-strings, which are likely to carry partial phonetic information conveyed by 

mothers of reading, and allow some phonological recoding to take place when 

a lexical representation is not available.  

 

In addition, the lexicality effect was considerably large in Hebrew (280 ms), 

particularly for short (312 ms) relative to long letter-strings (248 ms). The 2x2 

ANOVA produced significant main effects of lexicality: F1(1,29)=59.73, 

p<0.0001; F2(1,14)=111.77 p<0.0001 and length: F1(1,29)=15.01, p<0. 001; 

F2(1,14)=5.78, p<0.03, and an interaction, which was inversely related to string-

length, and statistically significant across subjects: F1(1,29)=7.87, p<0.009, but 

not across items (F2(1,14)=2.79, p=0.12). 
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Figure 3-4 Naming latency in Hebrew 

 

3.1.3.2.2 Naming accuracy 

Native Hebrew bilinguals achieved an accuracy level of 98.6%. The largest 

proportion of errors in Hebrew was related to phonological mispronunciations 

(Fig 3-6): χ2
(3)= 39.31, p<0.001, made mostly during low-frequency word 

naming, with no errors for high-frequency words, and a very small proportion 

of errors made while naming non-words (Fig 3-5)15. Correlation analysis 

revealed that the overall accuracy rate in Hebrew was strongly related to the 

total number of years of formal education: r=0.54, p<0.002, suggesting that 

those participants who had a higher level of education tended to make fewer 

errors in Hebrew. In keeping with this observation, considerably strong effects 

of word-frequency were observed for short and long words: z=-2.64, p<0.008 

and z=-2.92, p<0.004, respectively, though no significant effects of string-

                                                 
15

 Note that the criteria for assessing an error in the three languages are shaped by their 
orthographic properties. This is particularly important for Hebrew non-words, where any 
pronunciation that is consistent with the consonant string may be regarded as correct, since 
the lack of written vowels allows a high level of flexibility in non-word naming.  
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length or lexicality were observed for naming accuracy (all z values > -1.40 

and all p values > 0.16).  
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Figure 3-5 Naming errors in Hebrew 
Error bars indicate SD from the mean as indicated in Table 3-3 
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Figure 3-6 Types of errors made in Hebrew 
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3.1.3.3 Naming in English  

3.1.3.3.1 Naming latency 

Native English speakers, having performed the test in one language only, 

exhibited overall considerably faster naming relative to their bilingual 

counterparts. The latency patterns, however, were similar to those seen 

previously, with high-frequency words being named faster than low-frequency 

words, short letter-strings being named faster than long letter-strings, and real 

words being named faster than non-words. Concordantly, the 3x2 ANOVA 

revealed significant main effects of frequency: F1(2,58)=53.13, p<0.0001; 

F2(2,28)=31.40, p<0.0001, and length: F1(1,29)=53.23, p<0.0001; F2(1,14)=24.32, 

p<0.0001, and a significant interaction between them: F1(2,58)=13.04, 

p<0.0001; F2(2,28)=3.97, p<0.03. The 2x2 ANOVA revealed significant main 

effects of lexicality: F1(1,29)=55.75, p<0.0001; F2(1,14)=46.44, p<0.0001, and 

length: F1(1,29)=46.79, p<0.0001; F2(1,14)=26.03, p<0.0001, and a significant 

interaction between them: F1(1,29)=14.08, p<0.001; F2(1,14)=6.82, p<0.02. 

 

These observations suggest that similar to Spanish, length effects were 

modulated by frequency and lexicality in English, though as seen in Figure 3-

7, this modulation was not as strong as in Spanish.  
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Figure 3-7 Naming latency in English 
 

3.1.3.3.2 Naming accuracy 

Accuracy level in English was a high 98.7%. As observed in the two bilingual 

groups, no naming errors were made in high frequency-word trials (Table 3-3, 

Fig. 3-8). The majority of errors were phonological mispronunciations (Fig.3-9): 

χ
2

(3)=70.05, p<0.001, made predominantly while naming long low-frequency 

long words. Concordantly, the difference between long and short low-

frequency words was significant: z=-3.63, p<0.0001. As observed in Hebrew, 

less errors were made in non-words relative to low-frequency words, though 

the difference did not reach statistical significance (all z values > -1.67, all p 

values >0.09). In this group of participants there was no indication that 

lexicality significantly modulated the effect of string-length on naming 

accuracy, despite the fact that more errors were made while naming long, 

relative to short non-words. In addition, no correlations were observed 

between accuracy level and any demographic data in this group of 

participants.  
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Figure 3-8 Naming errors in English 
Error bars indicate SD from the mean as indicated in Table 3-3 
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Figure 3-9 Types of errors made in English 
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3.1.3.4 Naming in English as a second language (ESL) 

3.1.3.4.1 Naming latency 

Naming words in ESL was somewhat slower than in the native languages, 

though naming non-words was somewhat faster. For the native Hebrew 

speakers, the within-subject / between-language ANOVA revealed significant 

main effects of language: F1(1,29)=5.82, p<0.02; F2(1,14)=17.54, p<0.001 in the 

frequency and length effects analysis and F1(1,29)=10.07, p<0.004; 

F2(1,14)=27.83, p<0.0001, for the lexicality and length effects analysis, 

suggesting that naming latency of words was significantly faster in Hebrew 

than in English, while naming non-words was significantly faster in English 

than in Hebrew. For the native Spanish speakers the trends were similar, 

thought did not reach statistical significance (F1 (1,29)=0.002, p=0.97; 

F2(1,14)=0.006, p=0.94 for the frequency and length effects analysis, and F1 

(1,29)=0.51, p=0.46; F2(1,14)=1.37, p=0.26 for the lexicality and length effects 

analysis). 

 

Both bilingual groups showed a similar pattern of effects and interactions in 

ESL to that observed in the native English counterparts, whereby high-

frequency words were named faster than low frequency words, short letter-

strings were named faster than long letter-strings and real words were named 

faster than non-words. The between-subject / within-language 3x2 ANOVA 

revealed significant main effects of frequency: F1(2,116)= 118.73, p<0.0001; 

F2(2,56)=49.25, p<0.0001, and length: F1(1,58)=109.81, p<0.0001; F2(1,28)=53.33, 

p<0.0001, and a significant interaction between them: F1(2,116)=20.21, 

p<0.0001; F2(2,56)=4.88, p<0.001, suggesting that length effects in ESL were 
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modulated by word frequency. The main effect of group did not reach 

statistical significance (F1(1,58)=0.96, p=0.33, F2(1,28)=3.44, p=0.07), suggesting 

that overall, both bilingual groups exhibited a similar naming pattern in ESL. 

 

From Fig. 3-10, however, it is clear that group differences emerged in naming 

long letter-strings. Specifically, the native Hebrew speakers (Fig.3-10b) 

showed a considerable increase in latency when naming long low-frequency 

words and long non-words, compared to the native Spanish speakers (Fig. 3-

10a). In keeping with this observation, the interaction between group and 

frequency was significant across subjects: F1(2,116)=5.61, p<0.01, though not 

across items (F2(2,56)=2.01, p=1.43), and the interaction between group and 

length was strongly significant across both: F1(1,58)=13.09, p<0.001; 

F2(1,28)=5.21, p<0.03. Similarly, the 3-way interaction was significant across 

subjects: F1(2,116)=5.95 p<0.004, but did not reach significance across items 

(F2(2,56)=1.23, p=0.30). 

 

The 2x2 ANOVA revealed significant main effects of lexicality: F1(1,58)=138.25, 

p<0.0001; F2(1,14)=59.39, p<0.0001, and length: F1(1,58)=102.97, p<0.0001; 

F2(1,28)=45.78, p<0.0001, and a significant  interaction between them: 

F1(1,58)=30.72, p<0.0001; F2(1,28)=6.28, p=0.02. The main effect of group was 

not significant across subjects (F1(1,58)=1.30, p=0.26) though it approached 

significance across items: (F2(1,28)=4.22, p=0.06). However, the interaction 

between group and lexicality was significant in the subject analysis: 

F1(1,58)=5.79, p<0.02, but not in the item analysis (F2(1,28)=2.16, p=0.15), and 

the interaction between group and length was significant in both: 
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F1(1,58)=13.05, p<0.001; F2(1,28)=4.69, p<0.04. This was due to the presence of 

an interaction between lexicality and length in the native Hebrew group, but 

not in the native Spanish group Fig 3-10). In keeping with these observations, 

the 3-way interaction was significant across subjects: F1(1,58)=5.97, p<0.02, but 

not significant across items (F2(1,28)=0.92, p=0.25). 
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b. Hebrew-English bilinguals
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Figure 3-10 Naming latency in English as a second language by bilingual participants; 
a. Spanish-English bilinguals; b. Hebrew-English bilinguals 
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The between-group comparison of the proportional frequency, length and 

lexicality effects (independent samples t-test) showed that all effects were 

significantly stronger for the native Hebrew speakers relative to the native 

Spanish speakers: frequency effect: t(58)=-2.13, p<0.01, word length effect: 

t(58)=-3.12, p<0.003, non-word length effect: t(58)=-3.36, p<0.001, and lexicality 

effect: t(58)=-2.36, p<0.02. Table 3-5 clearly shows that this was predominantly 

true for low-frequency words and long letter-strings.  

 

3.1.3.4.2 Naming accuracy 

Both Spanish and Hebrew bilinguals exhibited a similar overall lower level of 

accuracy in ESL relative to their native languages. With accuracy levels of  

94.6% and 94.9%, respectively, a within-group comparison revealed that ESL 

accuracy in both groups (see Fig. 3-11) was significantly lower than in the 

respective native languages: z=-2.37, p<0.02 for Spanish bilinguals and z=-

4.56, p<0.0001 for Hebrew bilinguals. Equally, a between-group comparison 

revealed that both bilingual groups‟ ESL accuracy level was significantly lower 

than that of English monolinguals: z=-5.2, p<0.0001, for Spanish bilinguals 

and z=-5.8, p<0.0001 for Hebrew bilinguals, though clearly, no significant 

differences were seen between the two groups (z=-0.28, p=0.78). 
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Figure 3-11 Naming errors in English as a second language 
Error bars indicate SD from the mean as indicated in Table 3-3 
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Figure 3-12 Types of errors in English as a second language 

 

Both Spanish and Hebrew bilinguals showed a systematic increase in the 

mean number of errors made in word naming, from 0 errors for high-frequency 

short words to 2.93 and 2.67, respectively, for low-frequency long words 

(Table 3-3), and similar to their monolingual counterparts, the majority of 

errors were phonological mispronunciations: χ2
(3)=67.85, p<0.001 for the 
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Spanish bilinguals; χ2
(3)=58.92, p<0.001 for the Hebrew bilinguals, made 

predominantly in low-frequency long words. Interestingly, the Hebrew 

bilinguals showed a relatively large proportion of word substitution in ESL (a 

mean of 0.97, constituting 21% of overall number of errors), though this was 

not statistically significant (χ2
(3)=1.20, p=0.27). As seen in Table 3-6, frequency 

effects on naming accuracy in ESL were strong for both bilingual groups, and 

length effects were moderate for high-frequency words but strong for low-

frequency words, suggesting an interaction between frequency and length 

effects on naming accuracy. For non-word trials both groups made a similar 

number of errors, though the pattern was somewhat different, whereby 

Spanish bilinguals made more errors in naming short non-words than long 

non-words, and Hebrew bilinguals showed the opposite pattern. Table 3-6 

shows a marginal length effect on non-word naming accuracy for Spanish 

bilinguals, despite the strong lexicality effects, while for Hebrew bilinguals, a 

strong length effect on non-word naming accuracy emerged since the lexicality 

effect was only significant for long letter-strings. 

 



 110 

Table 3-6 Statistical values for effects of word frequency, string length and lexicality on naming 
accuracy in ESL – within-group comparison – related samples Wilcoxon signed ranks test 

 Spanish-English bilinguals Hebrew-English bilinguals 

Frequency effect on  
short word accuracy 

z=-2.87 
p<0.004 

z=-3.5 
p<0.0001 

Frequency effect on  
long word accuracy 

z=-4.68 
p<0.0001 

z=-4.74 
p<0.0001 

Length effect on  
High-frequency word accuracy 

z=-1.34 
p=0.18 

z=-2.23 
p<0.02 

Length effect on  
low-frequency word accuracy 

z=-4.49 
p<0.0001 

z=-4.5 
p<0.0001 

Length effect on  
non-word accuracy 

z=-1.95 
p=0.05 

z=-2.65 
p<0.008 

Lexicality effect on  
short letter-string accuracy 

z=-3.03 
p<0.002 

z=-0.87 
p=0.38 

Lexicality effect on 
Long letter-string accuracy 

z=-2.27 
p<0.0001 

z=-2.71 
p<0.007 

Figures in bold highlight statistical significance 

 

Correlation analysis showed that for the native Spanish bilinguals ESL naming 

accuracy was related to the age of acquisition of English: r=-0.4, p<0.02, 

suggesting that those participants who had started learning English at a 

younger age tended to achieve a higher accuracy level in the experiment. 

Similarly, for both groups ESL accuracy was related to the number of years of 

formal education in English: r=0.4, p<0.03 for Spanish bilinguals and r=0.5, 

p<0.01 for Hebrew bilinguals, suggesting that higher levels of exposure to 

English may have contributed to higher levels of accuracy achieved by 

bilingual participants. 

 

3.1.4 Discussion 

The present experiment was aimed at examining the different reading 

strategies employed by readers of 3 different languages, whose levels of 

orthographic transparency are considered to be placed along a continuum; 

from Spanish at the most transparent end, to Hebrew at the most opaque end, 

and English as the midpoint (c.f. Frost Katz and Bentin, 1987). 
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Bilinguals of Hebrew and English, and of Spanish and English were the 

chosen experimental sample, with English monolinguals as „controls‟, 

providing a point of comparison for the common language to all participants. 

 

Participants performed a behavioural word / non-word naming task, with 

naming latency and accuracy as the experimental measures. Results showed 

a consistent pattern for all participants, whereby high-frequency words were 

named faster than low-frequency words, short words were named faster than 

long words, and real words were named faster than non-words, thus 

confirming the adequacy of the experimental materials chosen for this and 

subsequent experiments. In addition, bilingual participants showed faster 

naming and higher accuracy in the respective native languages (with the 

exception of naming latency for non-words), as previously observed in 

multilingual studies (e.g. Chee et al, 2000; Hernandez et al, 2001; Jared & 

Kroll, 2001; de Groot et al, 2002; Vingerhoets et al, 2003; Meschyan & 

Hernandez, 2005; Simon et al, 2006). Concurrently, interesting between-

language differences were observed in the patterns of naming latency and 

accuracy.  

 

First, the interactions observed in the effects of frequency, length and lexicality 

on naming latency were varied. In Spanish, naming latency increased 

systematically as a function of word frequency, an effect which was strongly 

modulated by string length, i.e. naming low-frequency words and non-words 

was slower than naming high-frequency words, significantly more so for long 

letter-strings than for short ones. This type of pattern is suggestive of heavy 
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reliance upon sublexical assembly of phonology for the correct pronunciation 

of low-frequency words and non-words (Balota & Chumbley, 1984; Jescheniak 

& Levelt, 1984). Concurrently, the strong frequency and lexicality effects were 

in accordance with previous studies showing that lexical access is essential for 

efficient reading even in transparent languages (Baluch & Besner, 1991; Ruiz, 

Ansaldo & Lecours, 1994; Paulesu et al, 2000; Rantavalli et al 2000; Iribarren 

et al, 2001; Karanth, 2002; Paulesu, 2006).  

 

In English as a native language, a similar pattern was seen, with a somewhat 

weaker effect of string-length on the increase in naming latency for less 

frequent words, suggesting that naming in the language located in the „middle‟ 

of the continuum was mediated by lexical / semantic processing to a greater 

extent than in Spanish, while phonological assembly of sound from print was 

also evident to some extent (Feldman, 1980; Lukatela et al, 1980; Feldman & 

Turvey, 1983; Frost et al, 1987; Weekes, 1997).  

 

In contrast, the trend observed in Hebrew was reversed, with a decrease in 

the magnitude of frequency and lexicality effects, as a function of string-length. 

This inverse interaction was suggestive of predominant reliance on lexical 

knowledge for naming frequent as well as less frequent words. These findings 

are in-keeping with the weak version of the Orthographic Depth Hypothesis 

(Katz & Frost, 1992), predicting that in languages of shallow orthography the 

principal reading strategy is the sublexical assembly of phonology from print, 

while in languages of deeper orthographies the most efficient strategy is direct 

lexical retrieval. This notion was strengthened by the patterns observed in 
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non-word naming, where logically, the most efficient strategy should be 

sublexical / phonological recoding due to the lack of lexical representation 

(Frost et al, 1987; Baluch & Besner, 1991, Tabossi & Laghi, 1992; Wydell et 

al, 2003). As expected, lexicality effects in Hebrew were markedly stronger 

than in Spanish and English, since lexical retrieval of nonexistent words is 

inefficient, and the absence of vowels in Hebrew renders the assembly of 

phonology virtually impossible. Moreover, when length effects were averaged 

out by averaging short and long letter-strings together, naming latency 

patterns from the present experiment replicated those of Frost et al‟s (1987) 

Naming Experiment 1 (Figure 3-13). 
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a. Naming latency of bilinguals; short and long letter-strings averaged together
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b. Naming latency of monolinguals as described in Frost et al’s (1987) Experiment 1
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Figure 3-13 a. Naming latency of bilinguals; short and long letter-strings averaged together. b. 
Naming latency of monolinguals as described in Frost et al’s (1987) Experiment 1 
 

 

Second, naming accuracy in all 3 native languages was 100% in high-

frequency words, and systematically decreased as a function of word-

frequency, particularly for long words. In Spanish this trend extended to non-

words, parallel to the naming latency data, showing a significant modulation of 
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frequency and lexicality effects by string-length on naming accuracy. In 

contrast, the greatest proportion of errors in English and Hebrew were made in 

low-frequency long words. The latter finding is not surprising, since in both 

languages, reliance on lexical knowledge should give rise to more errors in 

less frequent words. 

 

In addition, the low error rate in non-words stemmed from the fact that in 

Hebrew, as noted earlier, there is no particular correct way to pronounce non-

words, and in English, the phonology of non-words can be correctly 

assembled with the use of vowels. This of course had a cost, reflected in 

slower RTs. 

 

In Spanish, however, the large proportion of errors in non-words may seem 

initially counterintuitive, though considering that the majority of errors were 

related to incorrect stress assignment of polysyllabic letter-strings, it is to be 

expected, since stress assignment is one of the few aspects of the Spanish 

orthography which requires implementing a set of rules, or lexical knowledge, 

in order to achieve correct pronunciation. Indeed, correlation analysis revealed 

that accuracy level was related to formal education, suggesting that more 

practised participants tended to have more knowledge of stress assignment 

rules. The present findings are also similar to those observed by Frost et al 

(1987), who found that in the shallow Serbo-Croatian, participants tended to 

make more lexical decision errors in non-words, whereas in English and 

Hebrew most errors were made in low-frequency words. Concordantly, errors 

in English and Hebrew were related predominantly to incorrect phonetic 
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pronunciation. In addition, naming in Hebrew was associated with a relatively 

high proportion of lexicalisation errors i.e. wrongly perceiving a non-word as a 

word, and as in the native Spanish speakers, accuracy was related to 

participants‟ level of education.  

 

Overall, the types of errors made in each language provide further support for 

the differential degrees of involvement of sublexical and lexical processing in 

each language, and show that the predominant reading strategies can be 

placed along the continuum in parallel to the level of orthographic 

transparency of each language. 

 

One intriguing observation, which deserved further investigation, was the 

surprisingly strong length effect in Hebrew high-frequency words (97 ms). If 

the predominant strategy for reading in an orthographically opaque language 

such as Hebrew is direct lexical retrieval, then word-length, particularly at high-

frequency should not affect naming latency. In order to continue interpreting 

the results of the bilingual naming experiment, it was necessary to ascertain 

whether this effect was „real‟ i.e. originated as a result of slower perceptual 

analysis of longer high-frequency words in Hebrew, or whether some other 

unidentified factor had influenced this result. This led to the following delayed 

naming experiment in Hebrew. 
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3.2 Experiment 2:  
Delayed naming in Hebrew 

3.2.1 Introduction 

In order to clarify the issue of the counter-intuitive strong length effect seen in 

Hebrew high-frequency words, a delayed naming experiment was carried out 

with native Hebrew speakers only. Unlike standard naming, in a delayed 

naming task participants are instructed to name the word appearing on screen 

at the onset of a cue, presented some hundred milliseconds after initial 

stimulus presentation. Reaction time is measured from the onset of the cue 

rather than the stimulus. Since lexical access is believed to be completed 

within about 300 ms from stimulus presentation (Gough & Cosky, 1977; 

Rayner, 1978; McRae et al, 1990), the inclusion of a delay of 400 ms or more, 

should allow the participant to fully prepare a phonological output of the 

printed stimulus before responding. In keeping with this logic, the delayed 

naming task has been previously shown to significantly reduce overall naming 

latency (Balota & Chumbley, 1985; Monsell, Doyle & Haggard, 1989), diminish 

the magnitude of frequency effects (Mc Rae et al, 1999; de Groot et al, 2002) 

and in some cases cancel out length effects (e.g. Weekes, 1997; Zoccolotti et 

al, 2006). 

 

In the present experiment, the delay was set at 600 ms, following the 

paradigm used by de Groot et al (2002), examining task effects on visual word 

recognition in bilinguals. It was expected that the inclusion of a delay would 

lead to a reduction in the exaggerated length effect seen between high- and 

low-frequency words in Hebrew, providing that it had emerged as a result of 
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slower perceptual analysis of long high-frequency words, and not a 

confounding methodological variable. 

 

3.2.2 Method 

3.2.2.1 Participants 

Twenty five native Hebrew speakers (14 female, 11 male), aged between 18 

and 46 years (mean age 30.7 years ± 7.9) participated in the delayed naming 

experiment. All had received between 12 and 23 years of formal education 

(mean 16.6 years ± 3), and had no history of learning disability or reading 

impairment.  

 

3.2.2.2 Experimental procedure 

The delayed naming experiment was conducted using the laptop and voice-

activated key as described in section 3.1.1.2 above.  

The experiment lasted for approximately 30 minutes, and began with voice-

key calibration, followed by verbal instructions, and a practice session of 10 

word trials. The main experimental session consisted of the same 90 words 

and non-words used in the bilingual experiment, presented at the centre of the 

screen following a 500 ms fixation cross. Each stimulus appeared for 600 ms, 

followed by a question mark, coupled by an auditory cue. Participants were 

instructed to respond upon the appearance of the cue, by saying aloud the 

word they had seen, pronouncing it as quickly and as accurately as possible. 
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3.2.3 Results 

Trials exceeding the threshold of 2.5 standard deviations above the mean of 

each subject and each condition were discarded and the mean was 

recalculated. These trials accounted for 1.9 % of all trials. In addition, where 

the microphone was triggered by an outside noise, participant had stuttered, 

made no response, or made an error, the mean was recalculated. Discarded 

trials accounted for 3% of all trials. As expected from a delayed naming task, 

overall latencies were reduced significantly relative to standard naming, as 

seen in Table 3-7. Concordantly, the effects of frequency, word-length and 

lexicality were weaker, as seen in Table 3-8.  

 

Accuracy was considerably higher in the present experiment, with 14 

participants responding correctly on all trials, 9 participants making 1 error, 1 

participant making 2, and 1 participant making 3 errors. Accuracy data is 

therefore not included in the analysis. 

 
 
Table 3-7: Delayed and standard naming in Hebrew; Mean naming latency in milliseconds 
(ms), achieved by native Hebrew speakers [mean (SD)] 

 Delayed naming Standard naming 

High-frequency short words 332 (92) 709 (90) 

High-frequency long words 355 (104) 806 (93) 

Low-frequency short words 343 (98) 774 (90) 

Low-frequency long words 369 (98) 842 (106) 

Overall word naming latency 348 (93) 783 (56) 

Short  non-words 390 (106) 1054 (281) 

Long  non-words 405 (112) 1072 (242) 

Overall  non-word naming latency 398 (107) 1063 (13) 
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Table 3-8: Delayed and standard naming in Hebrew; Proportional differences in naming 
latency between different conditions (ms and %) 

 Delayed naming Standard naming 

 ms % ms % 

Frequency effects 

Short words 11 2 65 8 

Long words 14 5 36 4 

Overall 12.5 3.5 50 6 

Length effects 

High-frequency words 23 5 97 12 

Low-frequency words 26 7 68 8 

Overall words 24.5 6 82 10 

Non-words 15 3 18 2 

Lexicality effects 

Short letter-strings 53 13 312 26 

Long letter-strings 42 10 248 21 

Overall 47.5 12.5 280 24 

 
 

 

Repeated measures ANOVA on the delayed naming data revealed significant 

main effects of frequency: F1(2,48)=20.19, p<0.0001; F2(2,28)=18.99, p<0.0001 

and length: F1(1,24)=12.7, p=0.002; F2(1,14)=12.12, p<0.004, but no interaction 

between them (F1(2,48)=0.74, p=0.48; F2(1,14)=0.43, p=0.66), suggesting that 

high frequency words were named significantly faster than low frequency 

words and short words were named significantly faster than long words, 

despite the 600 ms delay. However, the lack of interaction between frequency 

and length suggests that in this experiment the effect of length was not 

modulated by word frequency. 

 

Similarly, the main effect of lexicality was significant: F1(1,24)=28.46, p<0.0001; 

F2(1,14)=27.76, p<0.0001, as was the main effect of length: F1(1,24)=11.77, 

p=0.002; F2(1,14)=7.54, p<0.02, but the interaction did not reach statistical 

significance (F1(1,24)=0.66, p=0.42; F2(1,14)=0.58, p=0.46). Therefore, real 

words were named significantly faster than non-words, and short letter-strings 

were named significantly faster than long-letter strings, but unlike in standard 
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naming, string-length did not modulate lexicality effects in the delayed naming 

experiment.  

 

Table 3-9 presents the statistical values of a 1-way ANOVA conducted in order 

to compare the magnitude of effects between standard and delayed naming. 

As seen in the table, the frequency effect for short words was significantly 

reduced with the delay, whereas that of long words was not. Importantly, the 

very strong 97 ms length effect in high-frequency words was reduced to 23 ms 

by the inclusion of a delay, as seen in Table 3-8. This difference was 

statistically significant, while the difference in length effect for low-frequency 

words was not, as illustrated in Table 3-9. 

 
Table 3-9: 1-way ANOVA on the differences in magnitude of frequency, length and lexicality 
effects between standard and delayed naming task in Hebrew 

 F(1,54) p 

% Frequency effects 

Short words 7.91 0.007 

Long words 0.05 0.82 

Overall 2.45 0.12 

% Length effects 

High-frequency words 9.64 0.003 

Low-frequency words 0.24 0.63 

Overall words 3.83 0.06 

Non-words 0.23 0.63 

% Lexicality effects 

Short letter-strings 20.18 <0.001 

Long letter-strings 12.26 0.001 

Overall 18.69 <0.001 

Figures in bold highlight statistical significance 
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Figure 3-14 Delayed naming latency in Hebrew 

 

3.2.4 Discussion 

The delayed naming experiment was conducted in order to ascertain whether 

the unusually strong length effect seen in standard naming of Hebrew high-

frequency words could have arisen as a result of an artefact. The logic of this 

type of experiment assumes that instructing subjects to respond to a cue, 

appearing some hundred milliseconds following a written stimulus allows 

lexical access to take place during the delay, and prepare a phonological 

output prior to the response (e.g. Balota and Chumbley, 1985; Weekes, 1997; 

Mc Rae et al, 1999), resulting in significantly smaller naming latencies 

compared to standard naming.  

 

In the present experiment, the delay was set at 600 ms, following the 

paradigm used by de Groot et al (2002), who examined the factors influencing 

visual word recognition in bilinguals. It was felt that using a longer delay might 
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eliminate the effects of frequency and length altogether, as seen in the studies 

conducted by McRae et al (1990), Weekes (1997) and Zoccolotti et al (2006), 

which in this context, would render the results uninformative. 

 

Indeed, significant effects of frequency, length and lexicality still materialised 

at a delay of 600 ms, as observed previously (Balota & Chumbley, 1985; 

Monsell, Doyle & Haggard, 1989; McRae et al, 1990; de Groot et al, 2002). 

However, unlike the standard naming task in Experiment 1, the interactions 

between the variables were abolished. Importantly, the unexpected length 

effect in high-frequency words was greatly reduced by the inclusion of this 

delay, and was no longer larger than the effect for low-frequency words. It is 

therefore reasonable to conclude that the considerable difference in naming 

latency between short and long high-frequency words in Hebrew was due to 

slower perceptual analysis of long, relative to short letter-strings. This effect 

became less apparent as the frequency of the items decreased, since lexical 

processing became more demanding, and thus took its toll in the form of 

slower naming.  

 

3.3 General Discussion 

Having identified and validated the length effect in Hebrew naming, it still 

remained to understand why this effect materialised in the first place, in a 

language with such an opaque orthography. Indeed, length effects have been 

previously observed in Hebrew (Lavidor, Ellis & Pansky, 2002; Lavidor & 

Whitney, 2005), but to date, no attention has been given to the influence of 

word-frequency on length effects in this language. According to current 
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reading models, highly familiar words should be immune to any form of 

spelling-to-sound inconsistencies (Coltheart & Rastle, 1994; Rastle & 

Coltheart, 1998; Seidenberg & McClelland, 1989; Plaut et al, 1996; Plaut & 

Kello, 1998). One study, however, challenged this view, by showing that even 

in the relatively consistent orthography of English16, high-frequency words 

were named more slowly when the level of spelling-to-sound consistency was 

decreased (Jared, 1997).  

 

Indeed, the data from Experiment 1 clearly showed a significant length effect 

for high-frequency words in English (22 ms), and even in Spanish (12 ms). 

Since length effect is reflective of attempted sequential assembly of phonology 

from print, this finding can be explained in light of the Phonological Hypothesis 

(c.f. Frost, 1994; 1995), in terms of a „strategic dilemma‟ faced by the reader. 

In a language as transparent as Spanish, any word which cannot be easily 

recognised via direct lexical retrieval can be assembled using grapheme-to-

phoneme conversion rules. In this case the reader faces no dilemma. However 

in English, and more so in Hebrew, the latter strategy would usually be 

effortful, time-consuming and is not guaranteed to yield the correct 

pronunciation. Nevertheless, when faced with a relatively unfamiliar word, the 

reader is bound to resort to the less efficient sublexical assembly, even in 

Hebrew, as observed by Frost (1994; 1995).  

 

It has been previously suggested by advocates of the alternative, Visual 

Encoding Hypothesis that the presence of non-words in the stimulus list might 

                                                 
16

 English is by no means considered to be a consistent orthography, however in this case, it 
is more consistent than Hebrew, hence the term „relatively‟ must be emphasised. 
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encourage participants to use phonological assembly to a greater extent than 

in their absence (Baluch & Besner, 1991; Tabossi & Laghi, 1992). In the 

present experiments, high- and low-frequency words, and non-words were 

presented in randomised order. Participants therefore had no knowledge of 

what type of stimulus was to follow. Moreover, participants were instructed, in 

the event of an unknown word appearing, to try guessing the correct 

pronunciation as quickly as possible, but were not told that the stimulus list 

would contain non-words. Under such conditions, it is likely that the knowledge 

of the existence of „strange‟ words might have prompted participants to 

attempt a sequential assembly of letter-strings, regardless of frequency or 

length, within the first few milliseconds of exposure. This led to slower naming, 

most apparent in long high-frequency words in English and more so in 

Hebrew, but not in Spanish. Interestingly, the magnitude of length effect for 

high-frequency words seemed to increase systematically with 2% in Spanish, 

3% in English, and 12% in Hebrew, parallel to the position of these languages 

along the orthographic transparency continuum. These findings can therefore 

be interpreted in accordance with both, the Visual Encoding and the 

Phonological Hypotheses.  

 

Further investigation into this issue could be conducted in a future study 

employing numerous different word lengths of high-frequency words in the 3 

languages, and possibly also visualising the time-course of activation using 

electrophysiology. As will be seen in the next chapter, visualising a length 

effect within areas involved in orthographic processing using fMRI could also 

shed some light on this issue. 
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In an attempt to extend previous findings by including a within-subject 

comparison, in addition to their native languages, bilinguals named words and 

non-words in English as their second language. The patterns of accuracy in 

ESL naming were similar to native English naming, whereby phonological 

mispronunciation was the predominant type of error, and most were made in 

low-frequency long words. Overall accuracy was, as expected, lower in ESL 

than in each bilingual group‟s native language, and correlation analysis 

suggested that this was related to language exposure, particularly formal 

education. In light of previous suggestions that bilingual readers might transfer 

reading strategies from the native to the second language (Muljani et al, 1998; 

Wang et al, 2003), it transpires that any differences in the patterns of 

interactions between frequency, length and lexicality between the two bilingual 

groups in the present experiment would be reflective of an influence of the 

native language on ESL naming. Indeed, in addition to phonological errors, the 

native Hebrew speakers showed a trend towards word substitution errors to a 

greater extent than the native Spanish speakers. This type of error may reflect 

reliance on lexical / semantic processing, whereby whole word processing is 

vulnerable to erroneous recognition of orthographically similar words.  

 

Interestingly however, Spanish readers tended to make more naming errors in 

short, relative to long non-words. In addition, the observed differences in the 

RT data between the two groups were in fact in the opposite direction to that 

which would be expected. Specifically, while Spanish bilinguals showed a 

similar pattern to that observed in the English monolinguals, the native 

Hebrew bilinguals showed a stronger modulation of string-length on frequency 
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and lexicality effects, than that seen for the native English speakers, and 

indeed the native Spanish speakers. In other words, the modulation of string-

length was stronger in the native Hebrew speakers than in the native Spanish 

speakers.  

 

This finding can be explained in terms of a „compensatory mechanism‟, utilised 

by readers whose native language differs significantly from their second 

language in levels of orthographic transparency, leading to an exaggerated 

use of the opposite strategy to the one that would be most efficient in their 

native language. This suggestion is in keeping with findings of Frost (1994, 

1995) who showed that experienced Hebrew readers showed a preference of 

vowelised Hebrew words, even at the expense of delaying their response by 

as much as 300 ms, and the greater the phonological ambiguity of the word, 

the slower the time of making a lexical decision. 

 

An alternative explanation could be that unequal levels of language exposure 

may have given rise to the present results. The differences between the two 

bilingual groups emerged as a result of slower naming of long low-frequency 

words and non-words by native Hebrew speakers, relative to native Spanish 

speakers, despite similar accuracy levels. Participants‟ demographic data, 

shown in Table 3-1, suggests that although age of acquisition of English was 

similar for both bilingual groups, as was the relative length of residence in an 

English-speaking country, the native Spanish speakers had spent significantly 

more time receiving formal education in English, and had overall more 

language exposure than the native Hebrew speakers. Given that formal 
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education is related to lexical knowledge (Tainturier, Tremblay & Lecours, 

1992), this finding suggests that the less proficient bilinguals may have been 

using sublexical assembly of English low-frequency words and non-words to a 

greater extent than more proficient bilinguals, and indeed, the native English 

monolinguals.  

 

However, two factors render this alternative explanation less plausible; (i) the 

level of accuracy in ESL was almost identical between the two bilingual 

groups, and (ii) Hebrew-English bilinguals showed remarkably similar naming 

latencies for high and low-frequency words between their native Hebrew, and 

ESL. The present data therefore does not entirely support the view that 

reading strategies from the native language may be transferred to the less 

dominant language, however, some kind of influence does seem to emerge, 

whereby the Hebrew bilinguals may resort to an exaggerated reliance on 

phonological assembly for reading in a language that carries a higher level of 

orthographic transparency than their native language. More cross-language 

studies are clearly needed in order to verify this suggestion. In the present 

study, Experiments 4 and 5 reported in the next two chapters shed further light 

on this issue. 

 

Taken together, the results reported above suggest that the 3 languages, 

arranged along an orthographic transparency continuum, entail different 

strategies for visual word recognition, as seen by variance in the effects of 

word-frequency, string length and lexicality on naming latency and accuracy. 

Specifically, while Spanish words and non-words can be easily read using 
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sublexical assembled phonology, the successful pronunciation of Hebrew 

letter-strings, in the absence of vowels, requires lexical knowledge, which 

leads to slower naming of unfamiliar or nonexistent words. As the midpoint of 

the orthographic transparency continuum, the English orthography permits 

both strategies to be used; the presence of vowels allows for sublexical 

assembly of any letter-string, though the different levels of correspondence 

between orthography and phonology require the reader to rely on larger 

graphemic units than single letters, and often apply lexical knowledge for 

correct pronunciation of frequent, infrequent and even nonexistent words.  

 

The behavioural results observed in Experiment 1 replicate and extend 

previous results (Frost et al., 1987) and can serve as solid background data 

for the functional MRI experiments described in the next chapter, aimed at 

investigating the neural correlates of reading strategies in Spanish English and 

Hebrew. 
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Chapter 4 

How do Different Levels of Orthographic Transparency 
and Language Proficiency Affect the Brain? 

 
 

4.1 Introduction 

The development of functional neuroimaging techniques has provided a 

unique opportunity to look into the brains of neurologically intact individuals.  

When combined with behavioural measures, the ability to visualise neural 

correlates of cognitive processes presents a great advantage; it can 

strengthen and extend observed patterns of behaviour beyond their theoretical 

framework and provide a better understanding of human cognitive function.  

 

Several studies have made use of converging methodology to investigate the 

neural correlates of reading processes in monolingual participants (reviewed 

by Price, 2000; Jobard et al, 2003; Price & Mechelli, 2005; Balota & Yap, 

2006). As described in Chapter 2, these studies have contributed a great body 

of knowledge to the field of neuroscience of language, and have given rise to 

a general consensus, attesting that the process of reading is mediated by a 

widely distributed network of cortical regions, involving predominantly left 

inferior frontal, premotor, inferior parietal and superior / middle temporal 

regions, typically associated with language processing, as well as bilateral 

occipital and occipito-temporal regions, related to early visual and linguistic 

processing of written material, respectively. Of particular interest in the current 

framework, were those studies that attempted to segregate regions involved in 

semantic, phonological and orthographic processing (e.g. Pugh et al, 1996; 
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Fiez et al, 1999; Poldrack et al, 1999; McDermott et al, 2003; Wydell et al, 

2003; Joubert et al, 2004; Booth et al, 2006; Bick et al, 2008), following earlier 

observations of differential manifestations of acquired and developmental 

dyslexia (e.g. Marshall & Newcombe, 1973), as well as those that have looked 

at cross-language differences in patterns of activation, using monolinguals and 

multilinguals (e.g. Paulesu et al, 2000; Vingerhoets et al, 2003; Meschyan and 

Hernandez, 2005; Simon et al, 2006), following observations of differential 

manifestations of reading impairments in different languages (e.g. 

Hinshelwood, 1902; Wydell & Butterworth,1999; Beland & Mimouni, 2001). 

 

The behavioural experiments reported in the previous chapter showed that 

native readers of Spanish, English and Hebrew relied on lexical and sublexical 

strategies for reading in these languages to different extents, in keeping with 

their position along the orthographic transparency continuum. However, while 

the patterns observed in Spanish and English were straightforward, the 

inversed interactions between frequency and length effects, observed in 

Hebrew were due to a strong length effect for word trials, particularly high-

frequency words. Although Experiment 2 confirmed that slower naming of long 

words had stemmed from slower visual processing relative to short words, this 

observation had not been reported previously and required further 

investigation. Moreover, while reading in English as a second language the 

native Spanish bilinguals showed a pattern of frequency, length and lexicality 

effects indicating an efficient adaptation of their reading strategy to the more 

opaque L2, the Hebrew bilinguals showed a pattern which was suggestive of 

an exaggerated reliance on phonological recoding for reading in this relatively 
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more transparent language. While it was suggested that this observation was 

not related to inferior English proficiency but to a „compensatory mechanism‟ 

employed by these bilinguals, this novel suggestion required further 

investigation. 

 

The present chapter reports two experiments, aimed at visualising the different 

reading strategies employed by bilinguals of Spanish and English, and 

Hebrew and English at the cortical level. Since a great body of studies 

concerned with multiple-language processing has been focussed on the 

neural architecture and localisation of functional processes, the present study 

employed fMRI as the investigative tool. As outlined in Chapter 2, fMRI; a 

hemodynamic neuroimaging method provides accurate spatial information on 

correlates of neural activation, in contrast to electrophysiological methods, 

which can map the time course of cognitive processes with great precision, but 

provide relatively little information on their anatomical source.  

 

The first experiment reported below (Experiment 3) was conducted as a pilot 

with 3 participants, in order to examine the prospect of visualising the neural 

correlates of reading in bilingual participants, identify putative cortical regions 

involved in reading in the different languages, and assess the validity and 

reliability of the experimental design. The second experiment (Experiment 4) 

was conducted with 24 participants, using word and non-word stimuli, as those 

used in Experiment 1. It was aimed at replicating the behavioural patterns 

observed in the native languages, clarifying the unresolved issues, and of 

course, give rise to new questions. 
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4.2 Experiment 3:  
Visualising the neural correlates of reading in Spanish, 
English and Hebrew; a pilot study  
 

4.2.1 Introduction 

Before embarking on a multi-subject fMRI experiment, it was necessary to 

ascertain whether the experimental design was appropriate for visualising the 

neural correlates of visual word recognition in multilinguals. The rationale 

behind the pilot experiment was therefore to explore the patterns of cortical 

activation in single subjects. To this end, a simple covert naming task was 

constructed, which would provide continuous exposure to each language, and 

would enable fast and simple analysis of the data, before proceeding with the 

main experiment.  

Three participants were included in the pilot; one from each target population 

(i.e., Hebrew, Spanish and English speakers). These were two bilinguals, 

native speakers of Spanish and Hebrew, respectively, and one English 

monolingual. It was expected that all participants would activate cortical 

regions which have been previously described as being involved in visual 

word recognition, and that each language would be associated with some 

distinct regions of activation, reflecting reliance on differential reading 

strategies, in keeping with their different orthographic properties (e.g. Paulesu 

et al, 2000, Meschyan & Hernandez et al, 2005; Simon et al, 2006). Moreover, 

reading in ESL was expected to yield overlapping, but more extensive 

activation patterns relative to each bilingual‟s native language, which would 

reflect increased cognitive demand for processing a less dominant language 

(Perani et al, 1996; Kim et al, 1997; Dehaene et al, 1997; Hernandez et al, 
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2001; Yetkin et al, 1996; Vingerhoets et al, 2003; Briellmann et al, 2004; 

Meschyan & Hernandez, 2005). The findings from the pilot experiment were 

expected to provide a basis for Experiment 4. 

 

4.2.2 Method 

4.2.2.1 Participants 

Two male bilinguals, native speakers of Spanish and Hebrew, respectively, 

with English as their second language, and one female English monolingual 

took part in the experiment. The Spanish-English bilingual, aged 31 had been 

born and raised in Argentina, where he received comprehensive English 

tuition from the age of 10. He subsequently completed 2 post-graduate 

degrees in the UK (MSc and PhD; a total of 19 years of formal education). The 

Hebrew-English bilingual, aged 32, was born and raised in Israel until the age 

of 10. Subsequently he immigrated with his family to the UK, where he 

received formal education in English until the age of 18. His higher education 

was completed in Israel (a total of 19 years). Both participants were therefore 

considered as fluent speakers and readers of their native language and of 

English. The monolingual participant, aged 50, was a PhD student (received 

17 years of formal education) who had lived in the UK all her life. All 

participants were 100% right-handed as assessed by the Edinburgh 

handedness inventory (Olfield, 1971) and had normal or corrected-to-normal 

vision.  

 

Although fMRI poses no known health risks (Berns, 1999), the use of human 

subjects in this type of research requires great attention to safety and 
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participant welfare. All participants were therefore given verbal and written 

information regarding the fundamental principles of fMRI, requirements for 

entering the MRI environment and scanning procedure (please refer to 

Appendix 4), and were required to undergo a 3-stage screening procedure. The 

initial screening (please see Appendix 5) took place at least a week prior to the 

scanning session, thereby allowing participants to thoroughly review the 

information sheet and carefully consider their participation. The second 

screening procedure was applied just before the scanning session began 

(Appendix 6), followed by receipt of written informed consent by the participants 

(Appendix 7).  

 

The present study was carried out in accordance with Brunel University's 

ethical guidelines and procedures for research involving human participants 

(http://intranet.brunel.ac.uk/registry/minutes/researchethics/ethicsguidelinesv2.

pdf), and was given ethical approval by the Research Ethics Committee of the 

Brunel University School of Social Sciences and Law. In addition, the conduct 

of fMRI experiments was in accordance with the Rules of Operation of CUBIC 

(2002; an internal document, approved by the Brunel Ethics Committee). 

 

4.2.2.2 Experimental stimuli and procedure 

Two separate reading tasks were constructed for the pilot experiment; a 

Spanish-English task and a Hebrew-English task. The Spanish-English 

bilingual was presented with the Spanish-English task and the Hebrew-English 

bilingual was presented with the Hebrew-English task. The English 

https://owa1.brunel.ac.uk/exchweb/bin/redir.asp?URL=http://intranet.brunel.ac.uk/registry/minutes/researchethics/ethicsguidelinesv2.pdf
https://owa1.brunel.ac.uk/exchweb/bin/redir.asp?URL=http://intranet.brunel.ac.uk/registry/minutes/researchethics/ethicsguidelinesv2.pdf
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monolingual was presented with the Spanish-English task in order to maintain 

an equal time of exposure to the task between the subjects.  

 

Experimental stimuli consisted of 120 words of 4 and 5 letters (please refer to 

Appendix 8 for the stimulus list), selected according to frequency of 

occurrence per million, with high-frequency words occurring more than 100 

times per million, and low-frequency words occurring less than 10 times per 

million. Words were selected from a number of databases and appendices of 

previous studies, as described in Chapter 3. In order to avoid between-

language priming effects, none of the chosen words shared semantic 

characteristics with the other languages. During functional image acquisition 

participants were instructed to silently read single words appearing at the 

centre of a screen, or to fixate on a flashing crosshair (baseline task). Words 

were presented in four alternating blocks, each word appearing for 1.8 

seconds, corresponding to the functional image acquisition repetition time. 

Twenty words were presented in each block. These were high-frequency 

words in Hebrew or Spanish, high-frequency words in English, low-frequency 

words in Hebrew or Spanish, and low-frequency words in English. The 

baseline condition consisted of a crosshair symbol, presented at the centre of 

the screen. Two fixation blocks of 40 seconds, appeared between the word 

blocks. Each test thus consisted of four experimental conditions, and one 

baseline condition. A schematic representation of the scanning sequence is 

presented in Figure 4-1. 
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In order to minimise task-switching effects, written instructions appeared prior 

to the onset of each word block, instructing the participant to read the following 

words in the corresponding language (“Please read the following words”; “Lee 

las siguientes palabras; “ ”). 

 

Cue

Cue Fixation Cue Fixation3.76 sec

37.6 sec

Hebrew or Spanish

high freq

English 

high freq

Hebrew or Spanish

low freq

English

low freq

37.6 sec 37.6 sec

Figure 4-1 Schematic representation of experimental design of Experiment 3 

 

4.2.2.3 Functional data acquisition and analysis 

The study was conducted using a 3-Tesla Siemens Trio MRI scanner, housed 

at the Combined Universities Brain Imaging Centre (CUBIC) at Royal 
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Holloway College London17. Participants were positioned supine in the 

scanner and the head was supported by foam cushions to minimise 

movement. An alarm buzzer was placed near the participant‟s right hand, and 

communication between the examiner and participants was enabled via an 

intercom system.  

 

The scanning procedure began with a pre-scanning routine used to guide the 

scanner operator in prescribing slice / volume positions for the experimental 

scans. Stimuli were projected at 60Hz onto a screen at the back of the 

scanner, reflected by a mirror positioned above the head of the participant. 

The projector (Sanyo PLC XP40L, LCD projector) was connected to a Packard 

Bell laptop displaying stimuli using MS PowerPoint. The laptop was also 

connected to the scanner so that stimulus transition was controlled by 

synchronisation pulses transmitted by the scanner at the onset of each volume 

acquisition. 

 

Functional images were acquired using a T2*-weighted gradient echo planar 

imaging (EPI) sequence (TR=1800 ms, TE=3000 ms; FOV=192 mm2; matrix 

size= 64x64; voxel size=3x3x3 mm). For each participant, 130 volumes were 

acquired comprising 27 axial slices. In order to identify the precise location of 

brain activity, high-resolution anatomical images for each participant are 

typically used. In the present study these images were acquired using a T1-

                                                 

17
 The scanner is jointly owned and run by Brunel University, Royal Holloway College, the 

University of Reading and the University of Surrey, Guilford. It is installed at the Royal 
Holloway campus, and provides research-dedicated MRI facitilities. 
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weighted MPR sequence (TR=1830 ms, TE=4.43 ms; FOV 256 mm2; matrix 

size=256x256; voxel size=1x1x1 mm), obtained over 176 sagittal slices. 

 

Statistical analysis of functional neuroimaging data was conducted using 

statistical parametric mapping (SPM; version 2, Wellcome Department of 

Imaging Neuroscience; http://www.fil.ion.ucl.ac.uk/spm), implemented in 

MATLAB (version 6.5; Mathworks Inc.). This software applies standard 

statistical tests to each data point or volume pixel (voxel) in a univariate 

fashion, producing a map which displays areas of significant activation. These 

images were overlaid onto the anatomical image of the participants‟ brain.  

 

Prior to statistical analysis, a pre-processing procedure was applied to the 

data, in order to minimise the variability between the several images acquired 

throughout the experiment. Initially, all functional images were „realigned‟ to 

the first image, in order to correct for slight continuous head movements in the 

course of data acquisition. This was followed by „coregistration‟ of the 

functional images and the participant‟s anatomical image, for accurate 

superimposition. In order to accurately identify cortical regions, a process of 

„spatial normalisation‟ was employed. This procedure warps functional and 

anatomical images to fit a standard brain template, which conforms to the 

Talairach and Tournoux stereotactic brain atlas (Talairach and Tournoux, 

1988). Since this process may skew the data, a final „smoothing‟ procedure 

was applied, using a 6 mm FWHM (full width at half-maximum) Gaussian 

kernel, which averages out uncorrelated noise, thereby increasing the signal-

to-noise ratio.  
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Following the pre-processing procedure, the experimental design (as shown in 

Fig. 4-1) was specified in SPM (e.g. Block 1 = Hebrew high-frequency words, 

Block 2= Hebrew low-frequency words, Block 3 = fixation etc.). The model was 

smoothed by convolution with SPM‟s canonical hemodynamic-response 

function (HRF) in order to account for the typical 6 sec temporal lag in the 

blood oxygenation level dependent (BOLD) response. Clusters of activated 

voxels were then identified by the general linear model. Linear contrasts of 

Reading > Fixation were established for each one of the four experimental 

blocks, and each was assigned an F value. These contrasts compute the 

general differences between the specified conditions (e.g. high-frequency 

words relative to fixation). Specific differences between the conditions were 

then calculated using t-tests, which employ a subtraction approach, thereby 

enabling the assessment of the direction of the differences between the 

conditions (e.g. Reading  Fixation relative to Fixation  Reading). 

 

Ten contrasts were explored within and between the languages; these were: 

within language contrasts (1) L1 high-frequency words > L1 low-frequency 

words and (2) L1 low-frequency words > L1 high-frequency words, (3) L2 high-

frequency words > L2 low-frequency words and (4) L2 low-frequency words > 

L2 high-frequency words. Between-language contrasts (5) Reading L1 > 

Reading English and (6) Reading English > Reading L1, (7) L1 high-frequency 

words > L2 high-frequency words, (8) L2 high-frequency words > L1 high-

frequency words, (9) L1 low-frequency words > L2 low-frequency words and 

(10) L2 low-frequency words > L1 low-frequency words. 
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The contrast results were superimposed on the stereotaxically normalised 

anatomical image, in order to identify anatomical regions. Region names were 

identified using the „MNI‟ toolbox in SPM, which conforms to the Talairach and 

Tournoux stereotactic brain atlas (Talairach and Tournoux, 1988).  

 

4.2.3 Results 

Cortical regions found to be activated in response to reading in each language 

relative to fixation are presented in Table 4-1, displaying peak activation 

statistics for each activation cluster; number of voxels and regional t values. In 

the present study effects were reported significant where more than 10 voxels 

were activated above the threshold of p<0.001, corrected for multiple 

comparisons.  

 

Centres of regions of activation are referenced in x, y, z coordinates in the 

Talairach and Tournoux (1988) stereotactic atlas, which represent the 

distance in mm to the right (+) or left (-) of the midline (x axis), anterior (+) or 

posterior (-) to the anterior commissure (y axis), and superior (+) and inferior  

(-) to the horizontal plane (z axis). 
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Table 4-1 Regions of activation identified in the Reading L1 > fixation and Reading English > fixation conditions 
 

 

Spanish-English Bilingual Hebrew-English Bilingual English Monolingual 

Anatomical 
region 

Voxels t 
Coordinates Anatomical 

region 
Voxels t 

Coordinates Anatomical 
region 

Voxels t 
Coordinates 

x y z x y z x y z 

 

Frontal      Frontal       Frontal      
L PreCG 1018 11.26 -54 -10 48 L PreCG 545 9.60 -54 -2 40 L PrecG 274 8.57 -40 2 54 
L PreCG 1018 11.15 -42 -16 60 L PreCG 545 8.74 -38 -14 68       
L PreCG 1018 10.78 -56 -6 40 L PreCG 545 7.12 -46 -14 58       

L IFG 30 6.36 -40 26 -4 L IFG 53 7.84 -60 10 16 L IFG 87 8.70 -48 36 -8 
L IFG 52 5.92 -44 34 2 L IFG 26 6.52 -50 8 -19 L IFG 27 5.80 -52 28 2 

L MFG 62 6.27 -44 32 20       L IFG 27 5.72 -54 20 4 

 

L MFG 15 6.11 -52 18 20       L MFG 22 6.88 -54 16 26 
L MFG 44 6.57 -46 10 30       L MFG 274 7.27 -50 8 46 

      L SFG 25 7.80 -22 52 -14 L SFG 71 7.99 -36 62 -12 
      L SFG 21 7.15 -18 58 14       

L SFG 53 6.51 -8 8 58 L Medial FG 31 6.56 -8 50 42 L SFG 128 7.33 -2 8 70 
      L ACG 11 5.68 -8 44 2 L SFG 128 5.87 -8 18 64 
      L CG 13 5.54 -6 0 50       

L1: 
Spanish 
Hebrew or 
English 

      R PreCG 156 6.36 36 -26 68       
      R PreCG 156 6.19 42 -14 64       
      R PreCG 156 6.08 22 -20 76       
      R PreCG 50 5.92 60 -2 34       
      R PreCG 34 7.47 64 -18 45       

R IFG 12 6.28 62 6 20 R IFG 31 7.45 62 6 -4 R IFG 11 6.69 56 36 -2 
      R IFG 13 5.96 64 6 24       

 

      R IFG 31 7.45 62 6 -4       
      R MFG 50 5.85 54 8 42 R MFG 37 6.46 40 6 44 
             37 6.06 42 6 54 
      R SFG 13 5.44 8 6 68       
                  

Parietal      Parietal            
L IPL 15 6.24 -58 -14 16       L IPL 148 7.50 -42 -60 50 

 

            L IPL 148 6.41 -32 -70 50 

      R IPL 30 7.26 46 -36 62       

      R Precuneus 15 6.29 24 -72 40       
                  

Temporal      Temporal      Temporal      
- - - - - - - - - - - - L STG 466 8.74 -58 -54 14 

Abbreviations: L=left, R=right PreCG= pre-central gyrus PostCG=post-central gyrus FG=frontal gyrus 
IFG=inferior frontal gyrus SFG= superior frontal gyrus MFG=middle frontal gyrus IPL=inferior parietal lobule  
SPL=superior parietal lobule SMG=supramarginal gyrus MTG=middle temporal gyrus STG=superior temporal gyrus 
IOG=inferior occipital gyrus MOG=middle occipital gyrus CG=cingulate gyrus ACG=anterior cingulate gyrus 

L MTG 466 9.27 -62 -46 2 

 
L MTG 466 8.57 -60 -52 -4 

L MTG 48 7.50 -60 -34 -12 

 R MTG 14 6.19 66 -34 -4 
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Table 4-1 Continued Spanish-English Bilingual Hebrew -English Bilingual English Monolingual 

L1 cont. 

Region Voxels t x y z Region Voxels t x y z Region Voxels t x y z 

Occipital      Occipital      Occipital      
L IOG 651 10.95 -34 -88 -8 L IOG 1439 9.10 -40 -84 -6 L IOG 22 6.21 -28 -88 -16 
L IOG 651 9.59 -36 -88 -16             

 

L Lingual G 651 8.43 -14 -96 -20       L Lingual G 22 5.31 -16 -90 -18 
L MOG 14 6.40 -46 -76 -14 L MOG 1439 8.65 -36 -14 58 L MOG 36 6.68 -32 -92 0 

      L Cuneus 1439 10.82 -18 -102 0 L Cuneus 91 8.97 -18 -102 0 
      L fusiform G 19 7.11 -30 -74 -20       

R IOG 575 10.86 32 -90 -18 R MOG 981 11.29 36 -88 8 R Cuneus 363 9.71 18 -100 0 
R IOG 575 8.31 36 -84 -26 R MOG 981 10.74 52 -72 -10 R Lingual G 363 8.73 14 -90 -18 

R Fusiform G 575 8.00 20 -92 -18 R MOG 981 10.01 30 -92 0 R Lingual G 363 7.96 10 -96 -8 

             
Abbreviations:  
L=left, R=right  
PreCG= pre-central gyrus 
PostCG=post-central gyrus 
FG=frontal gyrus 
IFG=inferior frontal gyrus  
SFG= superior frontal gyrus 
MFG=middle frontal gyrus  
IPL=inferior parietal lobule  
SPL=superior parietal lobule  
SMG=supramarginal gyrus 
MTG=middle temporal gyrus 
STG=superior temporal gyrus  
IOG=inferior occipital gyrus 
MOG=middle occipital gyrus  
CN=caudate nucleus  
 

 Frontal      Frontal      

 L PreCG 3037 18.89 -52 -10 48 L PrecG 492 9.05 -54 0 38 

 L PreCG 3037 17.36 -42 -16 60       

 L PreCG 3037 15.76 -52 2 38       

 L IFG 97 7.76 -44 36 2 L IFG 25 8.31 -62 10 16 

 L IFG 34 7.29 -42 26 -6 L IFG 25 7.07 -32 22 -18 

       L IFG 48 6.68 -46 34 -6 

       L IFG 23 6.20 -56 36 4 

       L IFG 23 5.53 -52 28 8 

       L MFG 492 10.32 -48 22 44 

L2: English 

      L MFG 492 8.06 -46 18 36 

      L MFG 112 6.17 -24 26 6 

      L CN 112 6.33 -14 16 4 

 L SFG 60 7.62 -28 66 2 L SFG 74 8.00 -18 56 14 

 L SFG 10 5.41 -16 54 22 L SFG 1840 14.52 -22 52 -14 

 L SFG 60 7.41 -4 4 54 L SFG 50 6.50 -4 14 56 
       L SFG 50 5.96 -2 6 62       
       L SFG 75 6.79 -12 14 72       
       L SFG 75 6.56 14 20 68       
       L SFG 112 6.89 -30 32 6       
 L Medial FG 131 7.50 -4 48 26 L Medial FG 1840 13.42 -8 50 -14       
 L Medial FG 131 5.37 -4 58 26 L Medial FG 1840 11.08 -4 38 -14       
 L Medial FG 61 7.09 -2 46 56 L Medial FG 64 6.79 -6 48 42       
 L Medial FG 61 6.06 0 40 50             
 L Medial FG 20 6.08 -2 -6 66             
 R PreCG 162 8.59 58 -2 42 R IFG 31 7.45 62 6 -4       
 R IFG 118 8.80 64 6 20 R MFG 98 8.76 28 48 -2       
 R IFG 118 8.31 66 -4 10 R MFG 98 7.18 26 56 2       
 R IFG 118 7.88 66 -2 2 R SFG 13 5.44 8 6 68       
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Table 4-1 Continued Spanish-English Bilingual Hebrew-English Bilingual       

 Region  Voxels t x y z Region Voxels t x y z 

Abbreviations:  
L=left, R=right  
CG=central gyrus  
PreCG= pre-central gyrus 
PostCG=post-central gyrus 
FG=frontal gyrus 
IFG=inferior frontal gyrus  
SFG= superior frontal gyrus 
MFG=middle frontal gyrus  
IPL=inferior parietal lobule  
SPL=superior parietal lobule  
SMG=supramarginal gyrus 
MTG=middle temporal gyrus 
STG=superior temporal gyrus  
IOG=inferior occipital gyrus 
MOG=middle occipital gyrus 

 Parietal      Parietal      

       L IPL 10 5.69 -46 -36 48 

 L SPL 209 7.57 -20 -74 54       

 L SPL 209 6.64 -12 -76 56       

 L SPL 209 6.40 -36 -68 52       

       L Precuneus 31 7.13 -22 -64 32 

       L SMG 100 7.07 -54 -54 26 

       R PostCG 257 9.95 50 -36 62 

       R PostCG 257 8.47 52 -28 56 

       R PostCG 257 7.55 60 -22 46 

       R Precuneus 102 8.45 26 -70 42 

L2 cont. 
            

Temporal      Temporal      

L MTG 39 6.67 -64 -26 -6 L MTG 37 8.35 -68 -26 -8 

       L MTG 26 6.60 -42 -42 4 

 L STG 53 7.39 -50 4 -6       

 L STG 11 5.97 -56 -48 18       

             

 Occipital      Occipital      

 L IOG 1933 18.06 -34 -90 -10 L IOG 2936 17.55 -40 -86 -6 

 L IOG 1933 14.74 -18 -84 -28 L Cuneus 2936 16.70 -20 -104 0 

 L Lingual G 1933 13.03 -12 -98 -22       

 L MOG 14 6.40 -46 -76 -14 L MOG 2936 15.69 -36 -90 -8 

 L Fusiform G 21 7.07 -32 -66 -24       

       L fusiform G 23 6.87 -36 -56 -18 

 R IOG 1278 16.68 32 -90 -18 R MOG  11.29 36 -88 8 

 R IOG  12.92 20 -94 -14 R IOG 1792 11.08 40 -74 -12 

 R IOG  11.37 36 -84 -26 R Lingual G 1792 13.42 20 -90 -8 

 R MOG 59 8.51 52 -72 -8 R MOG 1792 16.00 36 -88 8 
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4.2.3.1 Within-language effects 

4.2.3.1.1 Spanish-English bilingual 

As shown in Figure 4-2, reading in Spanish relative to fixation led to bilateral 

occipital activation encompassing inferior and middle occipital gyri, cuneus, 

precuneus, lingual gyrus and fusiform gyrus. Frontal activation was almost 

exclusively left-lateralised with a very large cluster identified in the precentral 

gyrus, extending ventrally to encompass the middle frontal gyrus. Two clusters 

were identified within the posterior and anterior regions of the inferior frontal 

gyrus, as well as three clusters within the middle frontal gyrus (Table 4-1). In 

the right frontal cortex one small cluster was identified in the inferior frontal 

gyrus. In addition, a small midline cluster was identified in the superior frontal 

gyrus. 

 

 

Figure 4-2 Clusters of significant activation detected while reading in Spanish  Baseline 

 

Reading high-frequency words relative to low-frequency words did not lead to 

differences in the pattern of activation in Spanish, however, as shown in 

Figure 4-3, reading low-frequency words relative to high-frequency words led 

to extensive activation within the medial frontal gyrus (295 voxels; x=-2, y=46, 
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z=54; t(122)=7.23. 53 voxels; x=2, y=-12, z=76; t(122)=7.21. 27 voxels; x=0, 

y=70, x=20; t(122)=6.73. 32 voxels; x=4, y=14, z=74; t(122)=6.44), as well as the 

left inferior occipital gyrus (30 voxels; x=-36, y=-90, z=-14; t(122)=6.27), left 

posterior precentral gyrus (54 voxels; x=-16, y=-28, z=70; t(122)=7.29) and right 

middle frontal gyrus (63 voxels; x=30, y=58, z=24; t(122)=6.52). 

 

 
Figure 4-3 Clusters of significant activation identified while reading low-frequency words 
relative to high-frequency words in Spanish; Continued below
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Figure 4-3 continued 

 

Reading in ESL led to activation within largely overlapping regions as in 

Spanish, with extensive bilateral occipital, and left-lateralised precentral 

activation. Table 4-1 and Figure 4-4 show that the main difference between 

ESL and Spanish reading were in the spatial extent of activated voxels. 
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Figure 4-4 Clusters of significant activation identified while reading in Spanish and English. 
Spanish is represented in red; English in blue; purple clusters represent overlap 

 

As can be seen from Figure 4-5, reading high-frequency words relative to low-

frequency words in ESL revealed little difference, with two clusters identified 

within the posterior and inferior parts of the left precentral gyrus (215 voxels; 

x=50, y=-10, z=50; t(122)=7.62 and 66 voxels; x=-62, y=2, z=22; t(122)=7.51, 

respectively). By contrast, reading low-frequency words relative to high-

frequency words led to activation only in the left inferior parietal lobule (41 

voxels; x=-48, y=-48, z=42; t(122)=6.01). 

 

 

Figure 4-5 Clusters of significant activation identified while reading high and low-frequency 
words in ESL by Spanish-English bilingual; high-frequency words are represented in red; low-
frequency words in green. 
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4.2.3.2.2 Hebrew-English bilingual 

Reading in Hebrew led to extensive bilateral occipital activation, 

encompassing largely the same regions as identified in Spanish (Fig 4-6). As 

shown in Table 4-1, frontal activation was considerably more extensive than in 

Spanish, and predominantly left-lateralised, with a large cluster identified in 

the precentral gyrus, 2 clusters in the inferior frontal gyrus, 2 in the lateral 

superior frontal gyrus and 3 clusters around the midline, encompassing medial 

frontal gyrus, and cingulate cortex. Activation within homologous right 

lateralised regions was also detected, though this was less spatially extensive. 

 

 

Figure 4-6 Clusters of significant activation detected while reading in Hebrew  Baseline 

 

No differences were revealed in patterns of activation between high-and low-

frequency words in Hebrew. 
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Reading in ESL led to bilateral occipital, medial frontal and parietal activation, 

similar to Hebrew, though as seen in Figures 4-7 and 4-8, activation in these 

regions were considerably more extensive. In addition, ESL was associated 

with extensive scattered activation within the anterior inferior frontal, as well as 

middle temporal cortices, which was not seen in Hebrew (Fig 4-7). 

 

Figure 4-7 Clusters of significant activation identified while reading in Hebrew and ESL by 
Hebrew-English bilingual; Hebrew is represented in green; ESL in blue; light blue clusters 
represent overlap.   
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Figure 4-8 Clusters of significant activation identified within midline structures while reading in 
Hebrew and ESL by Hebrew-English bilingual  
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Reading high-frequency words in ESL relative to low-frequency words 

revealed very weak activation in the left superior temporal gyrus (30 voxels; 

x=-64, y=-20, z=-4; t(122)=6.41) and in the right inferior frontal gyrus (11 voxels; 

x=58, y=24, z=22; t(122)=5.78). As shown in Figure 4-9, reading low-frequency 

words relative to high-frequency words led to somewhat more extensive 

activation within the left posterior superior temporal gyrus, and bilateral middle 

temporal gyri (left: 32 voxels; x=-66, y=-30, z=-22; t(122)=6.42. 28 voxels; x=-

70, y=-38, z=0; t(122)=6.53. right: 35 voxels; x=60, y=-56, z=8; t(122)=6.38. 15 

voxels; x=56, y=-8, z=-6; t(122)=5.63), left inferior frontal gyrus (16 voxels; x=-

48, y=32, z=- 16; t(122)=5.73), left inferior parietal lobule (28 voxels; x=-58, y=-

48, z=30; t(122)=5.68), and around the midline, bilateral superior frontal gyrus 

(left: 36 voxels; x=-6, y=14, z=70; t(122)=6.63. right: 47 voxels; x=12, y=20, 

z=62; t(122)=7.44), and right anterior cingulate gyrus (10 voxels; x=10, y=40, 

z=14; t(122)=5.82).  
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Figure 4-9 Clusters of significant activation identified while reading high and low-frequency 
words in English by Hebrew-English bilingual; high-frequency words are represented in red; 
low-frequency words in green. 

 

4.2.3.2.3 English monolingual 

As in Spanish and Hebrew, reading in English as a native language revealed 

bilateral occipital activation, and predominantly left lateralised frontal 

activation, with homologous right hemisphere activation in inferior frontal and 

middle frontal gyri. As seen in Table 4-1, reading in English also led to strong 

activation in the left superior and middle temporal gyri, with a small 

homologous right hemisphere cluster, and left inferior parietal lobule (Fig 4-

10).   
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As in Hebrew, no differences were observed in patterns of activation between 

high and low-frequency words in English as a native language. 

Figure 4-10 Clusters of significant activation identified while reading in English by English 
monolingual 

 

4.2.3.2 Between-language effects 

The direct comparison between overall reading in Spanish and ESL revealed 

no differences in patterns of activation, since the Spanish-English bilingual 

activated largely the same regions while reading in both languages, as seen in 

Figure 4-4. However, reliable differences between the two languages emerged 

in the direct comparison of high and low-frequency words (Fig 4-11), whereby 

reading in ESL led to more extensive activation within overlapping regions 

relative to Spanish. Specifically, reading high-frequency words in ESL relative 

to high-frequency words in Spanish led to extensive activation in the left 

precentral gyrus (429 voxels; x=-50, y=-12, z=50; t(122)=9.03), bilateral inferior 

occipital gyrus (left: 107 voxels; x=-18, y=-78, z=-28; t(122)=7.69, right: 479 

voxels; x=16, y=-78, z=-36; t(122)=8.40), left middle occipital gyrus (72 voxels; 

x=-34, y=-90, z=-12; t(122)= 7.17), right middle frontal gyrus (27 voxels; x=52, 

y=6, z=38; t(122)=5.77, and around the midline, left superior frontal gyrus (36 

voxels; x=-18, y=70, z=10; t(122)=6.78). In addition, reading low-frequency 
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words in ESL relative to Spanish revealed a few clusters of activation within 

the left inferior parietal lobule (123 voxels; x=-54, y=-48, z=46; t(122)=7.01), left 

middle temporal gyrus (32 voxels; x=-62, y=-50, z=-8; t(122)=6.93), left cuneus 

(29 voxels; x=-6, y=-72, z=32; t(122)=5.47) and left precuneus (68 voxels; x=-

26, y=-72, z=42; t(122)=6.47). 

 

 
Figure 4-11 Clusters of significant activation identified in the direct comparison of high-

frequency words (red) and low-frequency words (green) between ESL and Spanish (ESL  
Spanish) 

 

Comparing reading in Hebrew and ESL directly revealed some differences 

(Fig 4-7), whereby reading in Hebrew relative to ESL led to bilateral activation 

in superior and middle temporal gyri (left:104 voxels; x=-60, y=-6, z=-6; 

t(122)=6.77, right: 99 voxels; x=60, y=4, z=-4; t(122)=7.95), and bilateral 
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precentral gyrus (left: 28 voxels; x=-54, y=-10, z=40; t(122)=6.10, right: 10 

voxels; x=40, y=-12, z=32; t(122)=6.02), as well as left fusiform gyrus (49 

voxels; x=-30, y=-36, z=-22; t(122)=6.72), whereas reading in ESL relative to 

Hebrew led to strong medial frontal activation (411 voxels), encompassing  

right anterior cingulate (x=2, y=36, z=-8; t(122)=8.09) and medial frontal gyri 

(x=0, y=40, z=-16; t(122)=8.66), as well as right lingual gyrus (44 voxels; x=12, 

y=-86, y=-12; t(122)=6.12).   

 

4.2.4 Discussion 

The present experiment was aimed at assessing the possibility of visualising 

the neural correlates of reading in Spanish, English and Hebrew in bilinguals 

using fMRI, by examining patterns of cortical activation associated with 

reading in 3 participants, native speakers of each of these languages. Results 

showed that all 3 participants, while reading in their native languages, 

activated the left precentral gyrus, previously associated with sub-vocalisation 

of written stimuli (Fiez et al, 1999; Poldrack et al, 1999; Joubert et al, 2004), 

particularly of low-frequency items, anterior regions of the IFG and MFG, 

proposed to subserve semantic processing (Price et al, 1997; McDermott et al, 

2003; Booth et al, 2006; Bick et al, 2008), posterior IFG, implicated in 

sublexical processing (Fiez et al, 1999; Poldrack et al, 1999; McDermott et al, 

2003; Booth et al, 2006; Bick et al, 2008), bilateral occipital cortex, 

encompassing the primary visual cortex, as well as inferior and middle 

occipital gyri, the lingual gyrus, fusiform gyrus and cuenus, typically associated 

with early orthographic analysis of written material (Fiez et al, 1999; Poldrack 

et al, 1999; Wydell et al, 2003; Joubert et al, 2004). In addition, reading in 
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English as a native language led to activation in the left inferior parietal lobule, 

encompassing the supramarginal gyrus, typically associated with grapheme-

to-phoneme conversion (Fiez et al, 1999; McDermott et al, 2003). A small 

cluster in this region was also detected in Spanish, but not in Hebrew, 

suggesting that the differences in the levels of orthographic transparency 

between the 3 languages may lead to differential patterns of activation.  

 

Interestingly, reading in English led to robust activation within the left middle 

temporal gyrus, not detected in Spanish and Hebrew, though both bilingual 

participants showed activation in the same region while reading in ESL, 

particularly high-frequency words. Activation in the middle temporal gyrus has 

been previously associated with reading words in English (Pugh et al, 1996; 

Paulesu et al, 2000; McDermott et al, 2003), suggesting that anterior portions 

of the temporal cortex might be involved in lexical and semantic processing.  

Experiment 4, conducted with 24 participants could elucidate whether among 

the three languages presently investigated, activation in the middle temporal 

gyrus is unique to English, as findings from the pilot appear to suggest.  

 

In keeping with previous bilingual and multilingual neuroimaging studies, 

findings of the present experiment showed that reading in English as a second 

language relative to the native language led to more extensive activation 

within left frontal, parietal and temporal regions, as well as medial frontal and 

bilateral occipital regions, reflecting the increased cognitive demand involved 

in reading the less dominant language (e.g. Perani et al, 1996; Kim et al, 

1997; Dehaene et al, 1997; Hernandez et al, 2001; Yetkin et al, 1996; 
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Vingerhoets et al, 2003; Briellmann et al, 2004; Meschyan & Hernandez, 

2005). 

 

The present findings suggest that the chosen experimental design was 

sensitive enough to reliably detect patterns of cortical activation related to 

reading in different languages. Moreover, the observed differences in patterns 

of activation between high and low-frequency words in Spanish suggest that 

reading low-frequency words required additional resources, such as 

subarticulatory processing, reflected in activation within the left posterior 

precentral gyrus (Fiez et al, 1999; Poldrack et al, 1999; Joubert et al, 2004), 

working memory, seen as activation in the medial frontal gyrus (Fernandez-

Duque & Posner, 2001), orthographic processing, reflected by activation in left 

inferior occipital and occipito-temporal cortex, and additional homologous right 

middle frontal regions (Fiez et al, 1999; Poldrack et al, 1999; Wydell et al, 

2003; Joubert et al, 2004). Similar patterns were detected while reading low-

frequency words in ESL in the present experiment, where the Spanish-English 

bilingual also activated left precentral gyrus as well as inferior parietal lobule. 

Since these regions have been implicated in sublexical processing, greater 

activation in these regions while reading low-frequency words may reflect a 

greater reliance on phonological codes for processing this type of words, 

especially when they are written in the less dominant language. 

 

The Hebrew-English bilingual showed an even greater reliance on additional 

resources for reading low-frequency words in ESL, with low-frequency words 

leading to extensive activation in regions involved in lexical, semantic and 
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working memory processes, such as bilateral middle temporal gyrus, left 

inferior frontal gyrus and medial frontal cortex, as well as left inferior parietal 

lobule and left posterior superior temporal gyrus, implicated in phonological 

processing. The latter observation may hint towards the notion that Hebrew 

readers may rely on phonological processing for reading in ESL to a greater 

extent than Spanish readers. In contrast, while reading in Hebrew no 

differences were detected between the patterns of activation related to high- 

and low-frequency words, since the type of processing required for reading 

words in an orthographically opaque language may be more similar in terms of 

cognitive demands than those required in an orthographically transparent 

language, and the present experimental design may not be sensitive enough 

to detect any differences that might have emerged.. Indeed, the baseline task 

in the present experiment consisted of a crosshair fixation point, which was 

not visually matched for the experimental stimuli. It is therefore likely that the 

subtraction analysis eliminated activation which may have been related to 

frequency effects in Hebrew. This could also account for the absence of 

effects in the native English monolingual, and suggests that a more stringent 

approach is needed in order to detect frequency effects in these languages. 

As described in the next section, this problem was circumvented in Experiment 

4 with the inclusion of a non-linguistic baseline task which was visually 

matched to the experimental stimuli.  

 

Taken together, the findings from the pilot experiment confirm the adequacy 

of the chosen experimental design for the investigation of the neural 
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correlates of reading in Spanish, English and Hebrew in multilingual 

participants, and provide solid background for the next experiment. 

 

4.3 Experiment 4:  
Naming words and non-words in Spanish, English and Hebrew; 
an fMRI study 
 

4.3.1 Introduction 

Having confirmed that the neural correlates of reading can be visualised using 

fMRI in bilingual participants, the present experiment was conducted in order 

to specifically examine the neural correlates underlying the different reading 

strategies, afforded by the graded levels of orthographic transparency of 

Spanish, English and Hebrew, with three main goals: 

 

First, the experiment was aimed at distinguishing between cortical regions 

commonly activated in all native languages and those specifically activated in 

Spanish, English and / or Hebrew, and assessing whether these could point 

towards a predominant reliance on reading strategies in accordance with the 

position of the languages along the orthographic transparency continuum.  

 

Second, the experiment set out to identify regions associated with reading in 

ESL relative to the native languages, in order to clarify what type of 

adaptation bilinguals employed for reading in their L2. Visualising the 

cognitive processes involved in ESL reading could help dissociate between 

effects of orthographic transparency and language proficiency, as well as 
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shed light on the issue of the exaggerated reliance on phonological 

processing, proposed to occur while Hebrew bilinguals read in English. 

 

Finally, the experiment aimed to asses the effects of frequency, length and 

lexicality within regions commonly activated in all languages, as well as some 

regions associated specifically with each language, in order to elucidate the 

nature of the unusually strong length effect observed in Hebrew words, and 

provide new insight beyond inference of the type of processing solely through 

localisation of function.  

 

Experimental materials consisted of modified versions of the word / non-word 

naming task used in Experiment 1. As in Experiment 3, participants were 

required to silently read words and non-words consistently presented in 

blocks, starting with high-frequency short words, proceeding to high-

frequency long words, low-frequency short words, low-frequency long words, 

and ending with non-words, short letter-strings followed by long letter-strings. 

This „blocked design‟ was chosen to ensure continuous exposure to each 

condition, since the relatively small number of experimental stimuli did not 

allow for a reliable „event-related‟ type of analysis (see Henson, Shallice & 

Dolan, 2000, Pilgrim, Fadili, Fletcher & Tyler, 2002 for discussion regarding 

event-related vs. blocked fMRI designs). Importantly, since the experimental 

design used in Experiment 3 was not sensitive enough to detect frequency 

effects in Hebrew and English as a native language (ENL), the present 

experiment employed a different type of baseline task, whereby rather than 

visually fixating on a crosshair, participants were presented with a string of 
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symbols, matched for word and non-word length. This type of baseline was 

deemed more reliable since it was visually similar to the linguistic stimuli, 

though did not require reading. Subtracting it from the experimental tasks 

would therefore minimise irrelevant activation to a greater extent than a 

crosshair fixation cue.  

 

Results were expected to replicate the behavioural patterns seen in 

Experiment 1. Specifically, it was predicted that reading in Spanish would be 

associated with activation in regions reflecting predominant reliance on 

phonological assembly such as the opercular portion of the left IFG and the 

left inferior parietal lobule , reading in Hebrew would yield activation in regions 

predominantly associated with lexical and semantic processing such as the 

triangular portion of the left IFG and the left superior frontal gyrus, whereas 

reading in English would show activation patterns suggestive of reliance on 

both types of processing.  

 

Furthermore, reading in ESL was expected to activate putative language-

processing regions to a greater extent than in the native languages, as well 

as lead to strong activation within regions involved in working memory and 

attention such as the anterior cingulate gyrus, reflecting a greater processing 

demand for reading in L2. Moreover, the patterns of reading in ESL relative to 

each group‟s native language were expected to vary in keeping with the type 

of adaptation required for reading in a language whose level of orthographic 

transparency differs from the native language. Specifically, the native Spanish 

readers were expected to show a greater reliance on lexical and semantic 
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processing in ESL relative to Spanish, whereas the native Hebrew readers 

were expected to show a greater reliance on phonological processing relative 

to Hebrew. In addition, a direct comparison between the two groups was 

anticipated to yield a pattern of activation which would clarify whether the 

Hebrew bilinguals were indeed resorting to exaggerated phonological 

processing in ESL, relative to their native Spanish counterparts.  

 

Finally, the effects of frequency, length and lexicality within regions 

associated with reading in each language and the interactions between them 

were expected to vary in keeping with their position along the orthographic 

transparency continuum. Similar to findings from behavioural studies (e.g. 

Forster & Chambers, 1973; Frederiksen & Kroll, 1976; Glushko, 1979; Balota 

& Chumbley, 1984; Lukatela et al, 1989; Weekes, 1997; Ziegler et al 2001; de 

Groot et al, 2002; Juphard et al, 2004), systematic increase in neural 

activation while reading high-frequency words and low-frequency words has 

been shown to reflect reliance on lexical / semantic processing (Fiez et al, 

1999; Paulesu et al, 2000; Wydell et al, 2003; Joubert et al, 2004). In 

contrast, an increase in activation while reading long relative to short letter-

strings has been associated with sequential assembly of print (Wydell et al 

2003). Furthermore, increase in activation while reading non-words relative to 

real words may reflect either type of strategy, depending on the orthography 

(lexical processing in logographic writing systems such as Chinese, e.g. Siok 

et al, 2004; phonological processing in alphabetic writing systems with 

transparent orthography such as Italian, e.g. Paulesu et al, 2000; and Finnish, 

e.g. Wydell et al, 2003; and both types of processing in less transparent 
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orthographies such as English e.g. Fiez et al, 1999; or French, e.g. Joubert et 

al, 2004). In the present study, reading in Spanish was therefore expected to 

give rise to robust length effects and positive strong interactions between 

these and frequency and lexicality effects. Reading in English was expected 

to give rise to moderate length effects and interactions, and reading in 

Hebrew was anticipated to give rise to strong frequency and lexicality effects 

but no length effects. The present study is the first to specifically asses the 

magnitude of frequency, length and lexicality effects and the interactions 

between them in bilinguals of Spanish-English and Hebrew-English using 

fMRI. It was hoped that visualising these effects at the cortical level using a 3-

point comparison could strengthen current findings, and provide solid 

background for future bilingual and multilingual studies.  

 

4.3.2 Method 

4.3.2.1 Participants 

Twenty four participants (13 female, 11 male) who had taken part in 

Experiment 1, were screened to comply with MRI safety regulations and gave 

informed consent for participation in the present fMRI experiment. All 

participants were right-handed according to the Edinburgh handedness 

inventory (Olfield, 1971; mean score 93% ±9) and had normal or corrected-to-

normal vision. Eight participants were Spanish-English bilinguals (4 female, 4 

male), 8 were Hebrew-English bilinguals (4 female, 4 male), and 8 were 

English monolinguals (5 female, 3 male). Demographic details of these 

participants are presented in Table 4-2. 
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Table 4-2 Demographic details of Bilingual and Monolingual participants who took part in 
Experiment 4  

 
Native Spanish 
Speakers (N=8) 

Native Hebrew 
Speakers (N=8) 

Native English 
Speakers (N=8) 

 range mean (SD) range mean (SD) range mean (SD) 

Age (years) 18-35 27.6 (6.4) 19-33 27.6 (4.4) 18-35 27.1 (6.4) 

Formal education (years) 

 Overall 13-22 17.6 (3.2) 13-18 15.6 (1.6) 14-22 18.1 (2.9) 

 Spanish 3-17 12.8 (5.2) - - - - 

 Hebrew - - 10-16 12.6 (1.9) - - 

 English 1-13 6.4 (3.8) 1-9 4.3 (2.7) 14-22 18.1 (2.9) 

Age of acquisition (years) 

 Spanish Native - - - - 

 Hebrew - - Native - - 

 English 3-14 7.5 (4.2) 4-10 7.7 (2.4) Native 

Length of residence (years) 

Spanish-speaking country 4-28 20.8 (9.5) - - - - 

Israel (Hebrew speaking) - - 14-26 21.0 (4.2) - - 

English-speaking country 1-14 6.8 (4.6) 1-10 6.3 (3.1) Native 

Language exposure (hours per week) 

 Spanish 0.5-65 18.9 (21.6) - - - - 

 Hebrew - - 1.5-70 29.4 (31.1) - - 

 English 65-90 86.9 (8.8) 30-90 75.0 (21.2) 90 90 

 

4.3.2.2 Experimental stimuli and procedure 

The tests used for the present imaging experiment were modified versions of 

the behavioural tests used in Experiment 1. Since the word and non-word 

stimuli were the same as those used for the behavioural experiment, scanning 

sessions took place at least 10 days after behavioural data collection for each 

participant. As in Experiment 1, Spanish-English bilinguals were presented 

with Spanish and English words and non-words, Hebrew-English bilinguals 

were presented with Hebrew and English words and non-words, and English 

monolinguals were presented only with English words and non-words. 

 

Stimuli were presented in 6 separate experimental sub-blocks in each 

language. In addition, 2 types of fixation blocks were included to serve as 

baseline conditions. In the present experiment the baseline condition 

consisted of a string of # symbols, which was matched in length to the reading 
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conditions, i.e. 3 symbols (###) for English and Hebrew and 4 symbols (####) 

for Spanish matched to short letter-strings, and 5 symbols (#####) for Hebrew 

and English and 6 symbols (######) for Spanish, matched to the long letter-

strings. 

 

During functional image acquisition participants were instructed to silently read 

single words or non-words appearing at the centre of a screen, or to fixate on 

a single baseline cue at the same position. As described in Experiment 3, in 

order to ensure accuracy of stimulus-transition timing, stimuli were designed to 

proceed according to scanner synchronisation pulses. Each trial thus lasted 

for 1.8 seconds, with each stimulus appearing for 900 ms, followed by a blank 

screen for another 900 ms. The rapid disappearance of stimuli was to ensure 

that participants were alert to the rapid onset and offset of the words, and 

were not reading each word more than once.  

 

Figure 4-12 presents a schematic representation of the experimental design 

described herein. Participants were exposed to one language at a time. The 

order of language presentation was counterbalanced across participants. 

Written instructions indicated the onset of the experiment. These were written 

in the language that was to follow. Words and non-words were then presented 

in randomised order within 6 separate sub-blocks, each corresponding to a 

different lexical condition, containing 15 trials; these were (1) short high-

frequency words, (2) long high-frequency words, (3) short low-frequency 

words, (4) long low-frequency words, (5) short non-words and (6) long non-

words. These sub-blocks were presented in the same order across 
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participants, with the 2 baseline sub-blocks (15 short baseline cues and 15 

long baseline cues) presented between experimental sub-blocks 2 and 3, and 

between sub-blocks 4 and 5. This was to enable multi-subject data analysis in 

SPM (described below). At the end of the first language block written 

notification was given that the language was about to change. Upon the onset 

of the second language block a written sentence instructed participants to 

read the following words in the corresponding language. 
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Figure 4-12 Schematic representation of experimental design of Experiment 4 
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4.3.2.3 Functional data acquisition and analysis 

Functional images were acquired using a T2*-weighted gradient echo planar 

imaging (EPI) sequence (TR=1800 ms, TE=3000 ms; FOV=192 mm2; matrix 

size= 64x64; voxel size=3x3x3 mm). 255 volumes were acquired for bilinguals 

and 130 for monolinguals, comprising 27 axial slices. For each participant, a 

high-resolution anatomical image was acquired using a T1-weighted MPR 

sequence (TR=1830 ms, TE=4.43 ms; FOV 256 mm2; matrix size=256x256; 

voxel size=1x1x1 mm), over 176 sagittal slices. 

 

Data were analysed using SPM2 (Wellcome Department of Imaging 

Neuroscience; http://www.fil.ion.ucl.ac.uk/spm), implemented in MATLAB 

(version 6.5; Mathworks Inc), following a pre-processing procedure for each 

participant individually, as described in Experiment 3. Clusters of activated 

voxels were identified by the general linear model, and linear contrasts were 

established for each experimental block. Effects were considered as 

significant where more than 10 voxels were activated above the threshold of 

regional t values corresponding to p<0.001 (corrected for multiple 

comparisons).  

 

In the present experiment fixation blocks were submitted into the analysis as 

experimental blocks since short and long letter-strings were contrasted with a 

length-matched baseline.  

 

The analysis aimed to identify regions that were activated in the Reading  

Baseline condition, and then to specifically assess the effects of frequency, 
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length and lexicality within those regions. A three-stage approach was 

therefore used. In the first stage regions of interest (ROI) were defined 

functionally for each participant individually. The contrast used for ROI 

definition was Reading  Baseline for English monolinguals, while for bilingual 

participants these were Reading in each language (L1 or L2)  Baseline 

masked by overall Reading  Baseline. The masking procedure was employed 

in order to ensure that the chosen regions were related exclusively to reading 

and not other cognitive processes.  

 

Common regions of activation for all participants were then submitted into a 

group fixed-effects analysis. This was performed by entering the data of all 

participants linearly into a large design matrix in SPM. Regions activated in the 

group analysis are presented in Table 4-3 for the native languages and Table 

4-4 for ESL.  

 

In the third stage a post hoc ROI analysis using MarsBaR (Brett et al, 2002) 

was employed in order to assess the effects of frequency, length and lexicality 

within ROIs. This tool, implemented in SPM, enables the exclusive analysis of 

activation patterns within previously defined regions. The magnitude of the 

BOLD signal between the different conditions was quantified in terms of the 

weighted sum of the SPM „beta‟ parameters (referred to as „contrast value 

[CV]). Within each region of interest, an average CV of all voxels falling within 

the region was calculated and reported in Tables 4-5 and 4-6. Effects were 

regarded as statistically significant where CV yielded a regional t values 

corresponding to p values of <0.05.  
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In order to compare the patterns of activation between the native languages 

and ESL, direct comparisons were conducted within each bilingual group, 

using conjunction analysis, by entering the Reading  Baseline contrasts in the 

two languages, and masking them by overall Reading  Baseline. This type of 

analysis identified regions that were commonly activated in two languages, 

and enabled the measurement of BOLD signal intensity within those regions. 

 

4.3.3 Results 

4.3.3.1 Reading in the native languages 

  

 
Figure 4-13 Clusters of significant activation identified while reading in the native languages. 
Spanish is represented in red; Hebrew in green and English in blue; yellow and white clusters 
represent overlap between the three languages 
 

As can be seen in Figure 4-13, group data show large overlap between the 

three native languages within the left precentral and middle frontal gyri, as well 

as left inferior and middle occipital cortex. In addition, reading in all languages 

led to left posterior temporal activation, as well as medial frontal activation, 

shown in Table 4-3. Importantly, extensive activation was detected within the 

left inferior frontal gyrus in all languages, though as seen in the figure, these 

did not overlap; while Spanish was associated with activation in more posterior 

regions (pars opercularis) of the left IFG, Hebrew was associated primarily 
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with activation in the anterior portion of the gyrus (pars triangularis), and in 

English, activation was detected within both portions. Moreover, while Spanish 

and English activated the left inferior parietal cortex, no parietal activation was 

detected in Hebrew, and while Hebrew and English activated the right superior 

frontal gyrus and right middle frontal gyrus, no activation was detected in 

these regions in Spanish. What follows is a detailed description of activation 

patterns in each language. 
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Table 4-3 Regions of activation identified in the Reading L1 > Baseline condition 
 

Spanish-English Bilinguals Hebrew-English Bilinguals English Monolinguals 

Reading Spanish > baseline Reading Hebrew >  baseline Reading English > baseline 

Anatomical 
region 

Voxels t 
Coordinates Anatomical 

region 
Voxels t 

Coordinates Anatomical 
region 

Voxels t 
Coordinates 

x y z x y z x y z 

Frontal      Frontal       Frontal      
L PreCG 385 17.60 -51 -6 54             
L PreCG 385 10.58 -35 -12 59 L PreCG 257 11.89 -54 -6 48 L PrecG 272 8.96 -57 -3 33 
L MFG 385 12.45 -54 3 39 L MFG 257 9.78 -51 3 51 L MFG 272 10.21 -45 0 36 

      L MFG 257 5.57 -54 15 33 L MFG 272 7.51 -48 0 45 
L op IFG 10 6.40 -51 9 21       L op IFG 119 9.22 -57 6 9 

            L op IFG 119 8.22 -45 9 0 
            L op IFG 119 6.41 -51 6 21 
      L tri IFG 38 6.24 -48 30 3 L tri IFG 29 6.14 -45 24 6 
      L tri IFG 38 5.94 -57 30 9 L tri IFG 29 6.02 -51 24 0 
            L tri IFG 29 5.87 -54 33 0 
      L SFG 71 6.25 -9 45 36 L SFG 21 6.76 -15 63 18 
      L SFG 71 5.19 -12 54 39 L SFG 60 6.60 0 3 72 
      L CG 49 6.84 -15 24 42 L SFG 60 6.29 0 -3 66 

L Medial FG 66 9.88 -3 -3 60 L Medial FG 41 7.11 -3 -3 63 L Medial FG 60 6.74 -3 6 54 
                  

R IFG 12 6.28 62 6 20 R IFG 12 5.89 48 24 15       
            R SFG 19 6.90 30 54 -9 
            R SFG 13 5.55 9 39 51 
            R SFG 13 5.11 15 36 45 
      R CG 38 5.59 30 -12 36 R Medial FG 592 9.00 0 57 -6 
      R CG 38 5.31 21 5 39 R Medial FG 592 7.50 5 45 35 
      R CG 38 5.29 15 0 45 R Medial FG 592 5.93 9 50 18 
      RMFG 18 6.10 45 39 -6 R MFG 37 6.46 40 6 44 
      RMFG 18 5.77 39 39 -12 R MFG 37 6.06 42 6 54 
            R CN 102 8.94 12 9 9 
            R CN 102 6.64 21 9 0 

Abbreviations: L=left, R=right PreCG= pre-central gyrus PostCG=post-central gyrus IFG=inferior frontal gyrus tri IFG=triangular IFG op IFG=opercular IFG  
SFG= superior frontal gyrus MFG=middle frontal gyrus CG=cingulate gyrus CN=caudate nucleus 
 

Figures in bold represent regions that were identified as regions of interest  
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Table 4-3 Continued 
   

Spanish-English Bilinguals Hebrew -English Bilinguals English Monolinguals 

Reading Spanish > baseline Reading Hebrew >  baseline Reading English > baseline 

Region Voxels t x y z Region Voxels t x y z Region Voxels t x y z 

Parietal      Parietal      Parietal      
L IPL 53 9.63 -51 -36 60 - - - - - - L IPL 67 8.64 -36 -54 60 
L IPL 53 6.83 -39 -42 69       L IPL 67 5.95 -30 -51 48 

L PostCG 27 6.63 -36 -63 60             
                  

Temporal      Temporal      Temporal      
L ant STG 44 7.88 -54 12 -9             
L post STG 16 6.33 -60 -42 9 L post STG 14 5.70 -57 -48 12 L MTG 16 6.61 -63 -33 3 
L post STG 16 5.65 -55 -33 6 L post STG 14 4.87 -60 -39 6       

                  
Occipital      Occipital      Occipital      

L IOG 443 13.18 -42 -66 -15             

L IOG 443 11.94 -33 -93 -9             

L IOG 443 11.38 -35 -81 -12 L IOG 723 14.32 -42 -78 -9 L IOG 119 12.11 -42 -69 -9 
      L MOG 723 12.59 -45 -55 -12 L MOG 61 8.46 -39 -84 3 
      L fusiform 723 12.55 -51 -75 0 L MOG 61 7.53 -48 -81 0 
            L MOG 18 8.10 -36 -93 15 
                  

R IOG 13 7.15 42 -84 -9 R IOG 191 13.29 45 -81 0       

      R IOG 191 7.10 45 -55 -15       

      R IOG 191 6.35 35 -53 -15       

            R MOG 29 6.90 45 -84 0 
            R MOG 29 4.92 42 -72 -9 
                  

 
Abbreviations: L=left, R=right, ant=anterior, post=posterior, IPL=inferior parietal lobule PostCG=post-central gyrus MTG=middle temporal gyrus  
STG=superior temporal gyrus IOG=inferior occipital gyrus MOG=middle occipital gyrus 
 
Figures in bold represent regions that were identified as regions of interest 
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4.3.3.1.1 Reading in Spanish 

 

Figure 4-14 Clusters of significant activation identified while reading in Spanish  Baseline, 

masked by overall Reading  Baseline 

 

As shown in Figure 4-14, reading in Spanish relative to baseline led to 

predominantly left-lateralised activation. A major cluster was identified within 

the left precentral gyrus, extending ventrally to encompass the middle frontal 

gyrus. A second major cluster was identified in the left inferior occipital gyrus 

extending to the middle occipital gyrus, and encompassing the left fusiform 

gyrus. In addition, smaller independent clusters were identified in the left 

opercular inferior frontal gyrus, left anterior and posterior superior temporal 

gyri, left medial frontal gyrus, left inferior parietal lobule, left postcentral gyrus, 

and right inferior occipital gyrus.  
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4.3.3.1.2 Reading in Hebrew 

 Figure 4-15 Clusters of significant activation identified while reading in Hebrew  Baseline, 

masked by overall Reading  Baseline 

 

Reading in Hebrew relative to baseline led to predominantly left activation, 

though as seen in Figure 4-15, some contralateral activation was observed in 

the frontal and occipital cortex. Frontal activation included an extensive cluster 

within the left precentral gyrus, extending ventrally and anteriorly to 

encompass the middle frontal gyrus, and smaller clusters within the left inferior 

frontal gyrus (pars triangularis), right inferior frontal gyrus, and superior frontal 

gyrus bilaterally. In addition, numerous midline clusters were detected, 

encompassing bilateral medial frontal and cingulate gyri. In the occipital cortex 

extensive activation was identified bilaterally, with a large left cluster, 
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encompassing the inferior and middle occipital gyri, extending anteriorly to the 

left fusiform gyrus, and a somewhat smaller contralateral cluster, 

encompassing mainly the inferior occipital gyrus. Temporal activation in 

Hebrew was exclusively left-lateralised with a small cluster identified in the 

posterior superior temporal gyrus.  

4.3.3.1.3 Reading in English as a native language 

 Figure 4-16 Clusters of significant activation identified while reading in English  Baseline, 

masked by overall Reading  Baseline 
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As shown in Figure 4-16, reading in English relative to baseline led to 

predominantly left lateralised activation, with an extensive cluster identified in 

the left precentral gyrus, extending ventrally to encompass the middle frontal 

gyrus. Considerably wide-spread activation was detected within the medial 

frontal gyrus bilaterally. Additional frontal activation included a large cluster in 

the opercular inferior frontal gyrus, a smaller cluster in the triangular portion of 

the gyrus, and 4 small clusters in the superior frontal gyrus bilaterally. A small 

cluster was identified in the left middle temporal gyrus, and as in Spanish, a 

large cluster was identified in the inferior parietal lobule. Occipital activation 

included 3 independent clusters in the left hemisphere; as shown in Figure 4-

16, the largest was located within the inferior occipital gyrus extending to 

fusiform gyrus, bordering the posterior inferior temporal gyrus. The second 

cluster was located within the posterior portion of the middle occipital gyrus, 

and the smallest cluster was located within the superior portion of the middle 

occipital gyrus, bordering the inferior parietal cortex. In addition, a relatively 

large cluster was identified in the right hemisphere. Note the spatial extent of 

this cluster was larger than that seen in Spanish and smaller than that seen in 

Hebrew. 

 

4.3.3.2 Reading in ESL 

Figures 4-17 and 4-18 illustrate clusters of significant activation identified in 

the Reading ESL  Baseline condition, masked by overall Reading  Baseline 

by bilingual participants. As shown in the figures, large overlap was seen 

between each group‟s native language and ESL, with two marked differences. 
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For both groups ESL produced more extensive activation relative to the native 

language and temporal activation was exclusively right-lateralised.  

 

 
Figure 4-17 Clusters of significant activation identified while reading in Spanish and ESL by 
Spanish-English bilinguals; Spanish is represented in red and ESL in blue; purple clusters 
represent overlap between the languages 
 
 

 
Figure 4-18 Clusters of significant activation identified while reading in Hebrew and ESL by 
Hebrew-English bilinguals; Hebrew is represented in green and ESL in blue; light blue clusters 
represent overlap between the languages 

 

Figure 4-19 illustrates an overlay of the patterns of activation detected in the 

two bilingual groups while reading in ESL. As shown in the figure, both groups 

activated largely overlapping regions within the left hemisphere, though the 

Spanish bilinguals showed more spatially extensive activation in the left 

hemisphere relative to the Hebrew bilinguals. Specifically, a noticeable 

difference between the two groups was seen within the inferior frontal cortex; 

although some overlap was observed in this region, particularly within the 
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opercular IFG, the Spanish bilinguals activated more anterior portions of the 

cortex, while the Hebrew bilinguals activated more posterior regions. 

.  

 

Figure 4-19 Clusters of significant activation identified while bilinguals were reading in ESL; 
Spanish-English bilinguals are represented in red, Hebrew-English bilinguals are represented 
in green; yellow clusters represent overlap between the groups 

 
 
Table 4-4 below, summarises the regions of significant activation identified 

while reading in ESL by bilingual participants 
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Table 4-4 Regions of activation identified in the Reading ESL > Baseline condition by Spanish-English and Hebrew-English bilinguals 

Spanish-English Bilinguals Hebrew-English Bilinguals 

ESL ESL 

Anatomical region Voxels t 
Coordinates 

Anatomical region Voxels t 
Coordinates 

x y z x y z 

Frontal      Frontal       
Left precentral gyrus 657 13.54 -54 -6 51 Left precentral gyrus* 356 13.36 -57 -3 48 
Left precentral gyrus 657 11.98 -53 -3 27 Left precentral gyrus 356 9.28 -57 6 24 
Left middle frontal gyrus 657 13.51 -57 6 39 Left middle frontal gyrus 356 7.29 -39 -3 55 
Left inferior frontal gyrus 28 7.73 -42 27 -15 Left inferior frontal gyrus 124 7.87 -57 9 6 
      Left inferior frontal gyrus 124 7.11 -54 15 -3 
      Left inferior frontal gyrus* 124 5.85 -51 27 0 
Left superior frontal gyrus 105 5.72 -3 -6 72       
Left medial frontal gyrus* 105 9.26 -3 0 60 Left medial frontal gyrus 358 7.88 -3 51 -6 
Left medial frontal gyrus 105 8.24 -6 3 51 Left medial frontal gyrus* 358 7.72 -3 48 18 
Left medial frontal gyrus 41 6.59 -9 42 18 Left medial frontal gyrus 358 7.05 0 33 27 
Left superior frontal gyrus 41 6.58 -15 51 21 Left medial frontal gyrus* 154 8.55 -3 -3 60 
Left medial frontal gyrus 41 5.66 -5 51 21 Left cingulate gyrus 154 7.58 0 9 60 
Left cingulate gyrus 73 5.20 -6 6 30 Left cingulate gyrus 154 6.30 -3 12 45 
Left anterior cingulate gyrus 19 6.23 -15 48 0       
Left parahippocampal gyrus 39 7.86 -24 -24 -9       
Left caudate nucleus 134 5.99 -24 -39 9       
Left caudate nucleus 22 5.98 -9 18 12       
Left caudate nucleus 22 5.95 -12 9 12       

            
Right precentral gyrus 18 6.79 66 3 24 Right precentral gyrus 10 5.49 48 -54 57 
Right inferior frontal gyrus 53 9.25 33 9 -15 Right inferior frontal gyrus 72 5.91 51 27 15 
Right inferior frontal gyrus 53 9.15 27 3 -12 Right middle frontal gyrus 72 6.71 48 27 27 
Right inferior frontal gyrus 30 6.90 42 33 -15 Right insula 22 6.61 39 15 6 
Right inferior frontal gyrus 30 6.58 45 21 -15       
Right inferior frontal gyrus 30 5.35 51 21 -3       
Right medial frontal gyrus 94 10.48 0 57 -3       
Right medial frontal gyrus 94 8.70 9 60 -3 Right medial frontal gyrus 12 5.33 3 36 42 
Right superior frontal gyrus 94 8.95 18 51 -9 Right superior frontal gyrus 19 6.20 27 60 6 

Figures in bold represent regions that were identified as regions of interest 
Figures in italics represent a significant difference in signal intensity between L1 and ESL, with asterisk annotating significantly stronger 
activation for ESL relative to L1. 
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Table 4-4 Continued 
  

Spanish-English Bilinguals Hebrew -English Bilinguals 

ESL ESL 

Region Voxels t x y z Region Voxels t x y z 

Parietal      Parietal      
Left postcentral gyrus 132 9.02 -30 -57 54 Left postcentral gyrus 110 9.15 -24 -72 60 
Left postcentral gyrus 132 8.83 -33 -53 50 Left postcentral gyrus 110 8.21 -39 -57 57 
Left postcentral gyrus 132 7.45 -21 -59 57 Left postcentral gyrus 110 7.06 -27 -60 57 
      Left postcentral gyrus 18 8.09 -51 -42 57 
Left inferior parietal lobule 68 11.19 -36 -48 66       
Left inferior parietal lobule 68 8.81 -54 -36 48       
Left inferior parietal lobule 68 5.55 -54 -35 48       

            
Temporal      Temporal      

Right middle temporal gyrus 22 9.40 54 -36 -12 Right middle temporal gyrus 14 5.58 57 12 0 
Right middle temporal gyrus 12 6.00 39 -60 3       

            
Occipital      Occipital      

Left inferior occipital gyrus 889 15.10 -39 -87 -6       
Left middle occipital gyrus 889 11.07 -45 -66 -9 Left middle occipital gyrus 600 16.36 -36 -84 -6 
Left middle occipital gyrus 889 10.84 -36 -72 -6 Left middle occipital gyrus 600 13.39 -51 -69 -9 
      Left Fusiform gyrus 600 10.88 -48 -57 -18 
            
Right middle occipital gyrus 55 6.03 33 -84 9       
Right middle occipital gyrus 55 5.38 33 -75 3 Right middle occipital gyrus* 53 9.11 48 -78 0 
Right fusiform gyrus 154 8.06 45 -57 -18 Right fusiform gyrus 39 8.75 36 -66 -18 
      Right fusiform gyrus 39 5.11 36 -54 -12 
Right cuneus 55 5.44 21 -84 15 Right lingual gyrus 37 7.37 0 -72 -6 

      Right lingual gyrus 37 5.27 9 -72 -9 
            

Figures in bold represent regions that were identified as regions of interest 
Figures in italics represent a significant difference in signal intensity between L1 and ESL, with asterisk annotating significantly stronger 
activation for English relative to L1. 
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4.3.3.2.1 Spanish-English bilinguals 

Reading in ESL by the native Spanish bilinguals led to extensive left 

lateralised activation. As illustrated in Figure 4-20, very large clusters were 

detected within the left inferior occipital gyrus, extending anteriorly to 

encompass the middle occipital gyrus and fusiform gyrus, and within the left 

precentral gyrus, extending ventrally to encompass the middle frontal gyrus, 

and inferior frontal gyrus. In the parietal cortex, large clusters were detected 

within the inferior lobule and postcentral gyrus. In addition, extensive midline 

activation was detected within the medial frontal gyrus and superior frontal 

gyrus bilaterally, as well as left cingulate and anterior cingulate gyri. Unlike in 

Spanish, right activation was prominent, with clusters identified in the inferior 

frontal gyrus, the precentral gyrus, the middle occipital gyrus, and middle 

temporal gyrus. In addition, an independent cluster was identified within the 

right fusiform gyrus. 

 

The direct comparison between Spanish and ESL gave rise to 5 regions, 

commonly activated in both languages; these were the left precentral gyrus 

(284 voxels; x=-54, y=-6, z=51; t(1904)=13.54), left inferior parietal lobule (21 

voxels; x=-54, y=-36, z=57; t(1904)=8.00), left postcentral gyrus (25 voxels; x=-

36, y=-48, z=66; t(1904)=6.63), left inferior occipital gyrus, extending to the 

middle occipital gyrus and encompassing the fusiform gyrus (380 voxels; x=-

45, y=-66, z=-9; t(1904)=10.64) and the posterior part of the left medial frontal 

gyrus (45 voxels; x=-3, y=0, z=60; t(1904)=9.26). 
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Figure 4-20 Clusters of significant activation identified while reading in ESL  Baseline, 

masked by overall Reading  Baseline by Spanish-English bilinguals 

 

As shown in Table 4-5, reading in Spanish led to significantly stronger 

activation relative to ESL in the left precentral gyrus, CV=26.00; T=16.91, 

p(corrected)<0.001, left postcentral gyrus, CV=18.95; T=6.24, p(corrected)<0.001, 

and left middle occipital gyrus CV=20.06; T=11.97, p(corrected)<0.001. The left 
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inferior parietal lobule also showed greater activation in Spanish relative to 

ESL, though this difference did not reach statistical significance under the 

corrected threshold (CV=5.72; T=2.05, p(uncorrected)=0.02, p(corrected)=0.09). In 

contrast, reading in ESL led to significantly stronger activation in the medial 

frontal gyrus, CV=28.26; T=8.94, p(corrected)<0.001. 

 

4.3.3.2.2 Hebrew-English bilinguals 

As shown in Table 4-4 and illustrated in Figure 4-21, reading in ESL  

Baseline by the native Hebrew speakers gave rise to large clusters of 

activation predominantly in the left hemisphere, though considerably extensive 

activation was also detected in the contralateral hemisphere. As in the other 

languages, a large cluster was detected in the left precentral gyrus, extending 

ventrally to include the middle frontal gyrus. Another large cluster was 

detected in the left inferior frontal gyrus, encompassing both triangular and 

opercular portions. In addition, 2 large midline clusters were identified in the 

left medial frontal gyrus and left cingulate gyrus. In the right frontal cortex 

smaller clusters were detected within the superior, middle and inferior frontal 

gyri, as well as precentral gyrus, medial frontal gyrus and insula. In the 

occipital cortex, a very large cluster was detected within the left middle 

occipital gyrus including fusiform gyrus, and 3 independent small clusters were 

detected in the homologous regions on the right. As can be seen form Figure 

4-18, large overlap was observed between Hebrew and ESL within the left 

precentral gyrus and bilateral occipital cortex. The most prominent differences 

found in ESL reading were parietal and opercular frontal activation, which 

were not present in Hebrew. In addition, while Hebrew reading gave rise to 
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activation in the left posterior part of the superior temporal gyrus, reading in 

ESL was associated with activation in the homologous region in the right 

hemisphere.  

 
 

 
Figure 4-21 Clusters of significant activation identified while reading in ESL by Hebrew-
English bilinguals 
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The direct comparison between Hebrew and ESL revealed 7 common regions 

of activation to both languages; these were left precentral gyrus extending 

ventrally to the middle frontal gyrus (196 voxels; x=-57, y=-3, z=48; 

t(1904)=11.47), left inferior frontal gyrus (14 voxels; x=-51, y=27, z=0; 

t(1904)=6.03), left middle occipital gyrus including fusiform gyrus(523 voxels; x=-

51, y=-69, z=-9; t(1904)=14.29), 2 clusters in the medial frontal gyrus (posterior 

medial frontal gyrus; 35 voxels; x=-3, y=-3, z=63; t(1904)=9.11; and anterior 

medial frontal gyrus; 10 voxels; x=-3, y=48, z=18; t(1904)=5.59), and 2 clusters 

in the right middle occipital gyrus (posterior middle occipital gyrus; 52 voxels; 

x=48, y=-78, z=0; t(1904)=9.11; and fusiform gyrus; 13 voxels; x=36, y=-66, z=-

18; t(1904)=6.35).  

 

Table 4-7 shows that reading in Hebrew led to significantly stronger activation 

in the left middle occipital gyrus, CV=4.33; T=3.62, p(corrected)<0.001, and the 

right fusiform gyrus, CV=21.45; T=9.81, p(corrected)<0.001, whereas reading in 

ESL led to significantly stronger activation in the left precentral gyrus, 

CV=3.89; T=2.68, p(corrected)<0.03, the left inferior frontal gyrus, CV=5.29; 

T=2.54, p(corrected)<0.04, the left medial frontal gyrus; posterior CV=19.05; 

T=7.56, p(corrected)<0.001, and anterior CV=42.67; T=14.47, p(corrected)<0.001, 

and in the posterior right middle occipital gyrus, CV=12.90; T=4.87, 

p(corrected)<0.001.  

 

4.3.3.3 Effects of frequency, length and lexicality in the native languages 

Common regions in the three languages giving rise to reliable effects of 

frequency, length and lexicality were the left precentral gyrus, left inferior 
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frontal gyrus (pars opercularis in Spanish, pars triangularis in Hebrew, and 

both sub-regions in English), and left inferior occipital gyrus including fusiform 

gyrus. In addition, Spanish and English were found to show reliable effects 

within the left inferior parietal lobule (not activated in Hebrew). Moreover, the 

left anterior superior temporal gyrus and left postcentral gyrus, exclusively 

activated in Spanish were also found to show reliable patterns of effects. 

Table 4-5 summarises the observed effects of frequency, length and lexicality 

found within these ROIs. Two additional regions commonly activated in the 

three languages did not show reliable effects of frequency length and lexicality 

in all languages; these were the medial frontal gyrus and the right inferior / 

middle occipital gyrus. In addition, left posterior superior temporal gyrus, 

commonly activated in Spanish and Hebrew, and the posterior middle 

temporal gyrus, specifically activated in English showed somewhat 

inconsistent patterns of effects. The difference in signal intensity between the 

different conditions in these regions are nonetheless reported, since previous 

studies have highlighted their role in visual word recognition.
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Table 4-5 Effects of frequency, length and lexicality found within ROIs in the native languages 

 Spanish Hebrew English (ENL) 

 CV t p (uncorr) p (corr) CV t p (uncor) p (corr) CV t p (uncor) p (corr) 

Left precentral gyrus 

Frequency effects 
(low – high) 

Short words 2.78 5.33 <0.001 <0.001 0.72 1.54 0.06 0.32 1.46 3.19 <0.001 0.007 

Long words 4.43 8.52 <0.001 <0.001 -0.14 -0.30 0.62 0.99 2.59 5.68 <0.001 <0.001 

Length effects 
(long – short) 

High-frequency words 1.48 2.84 0.003 <0.001 0.38 0.8 0.22 0.89 0.56 1.23 0.11 0.64 

Low-frequency words 3.13 6.11 <0.001 <0.001 -0.48 -1.04 0.14 0.59 1.69 3.73 <0.001 <0.001 

Non-words 3.14 6.12 <0.001 <0.001 -0.54 -1.17 0.89 1.00 -0.53 -1.2 0.87 1.00 

Lexicality effects 
(nw – wrds) 

Short letter-strings 4.86 5.38 <0.001 <0.001 4.18 5.17 <0.001 <0.001 3.56 4.50 <0.001 <0.001 

Long letter-strings 6.53 7.24 <0.001 <0.001 3.21 3.96 <0.001 <0.001 0.25 0.32 0.38 0.99 

Left triangular inferior frontal gyrus 

Frequency effects 
(low – high) 

Short words - - - - 2.58 4.16 <0.001 <0.001 1.41 1.75 0.04 0.31 
Long words - - - - 1.96 3.15 <0.001 0.004 2.01 2.50 0.006 0.06 

Length effects 
(long – short) 

High-frequency words - - - - 0.33 0.52 0.30 0.88 2.51 3.12 0.001 0.006 
Low-frequency words - - - - -0.3 -0.48 0.68 0.89 3.11 3.90 <0.001 <0.001 

Non-words - - - - 1.48 2.35 0.01 0.04 2.10 2.61 0.005 0.03 

Lexicality effects 
(nw – wrds) 

Short letter-strings - - - - 4.92 4.57 <0.001 <0.001 5.63 4.05 <0.001 <0.001 
Long letter-strings - - - - 7.84 7.27 <0.001 <0.001 4.22 3.03 0.001 0.01 

Left opercular inferior frontal gyrus 

Frequency effects 
(low – high) 

Short words 0.37 0.45 0.33 0.94 - - - - 1.41 2.34 0.01 0.09 
Long words 1.34 1.63 0.05 0.31 - - - - 1.86 3.09 0.001 0.009 

Length effects 
(long – short) 

High-frequency words 1.44 1.78 0.04 0.23 - - - - 1.66 2.76 0.002 0.01 
Low-frequency words 2.41 2.98 0.002 0.01 - - - - 2.12 3.54 <0.001 0.002 

Non-words 3.44 4.22 <0.001 <0.001 - - - - 2.36 3.90 <0.001 <0.001 

Lexicality effects 
(nw – wrds) 

Short letter-strings 2.62 1.83 0.03 0.21 - - - - 2.61 2.50 0.006 0.06 
Long letter-strings 5.63 3.95 <0.001 <0.001 - - - - 3.55 3.39 <0.001 0.003 

Left inferior parietal lobule 

Frequency effects 
(low – high) 

Short words 5.21 5.38 <0.001 <0.001 - - - - 6.65 6.66 <0.001 <0.001 
Long words 8.17 8.43 <0.001 <0.001 - - - - 9.88 9.90 <0.001 <0.001 

Length effects 
(long – short) 

High-frequency words 0.91 0.92 0.18 0.69 - - - - -1.42 -1.40 0.90 1.00 
Low-frequency words 3.87 4.05 <0.001 <0.001 - - - - 1.81 1.83 0.03 0.25 

Non-words 4.10 4.31 <0.001 0.004 - - - - -3.24 -3.30 0.99 1.00 

Lexicality effects 
(nw – wrds) 

Short letter-strings 10.98 6.54 <0.001 <0.001 - - - - 17.34 10.03 <0.001 <0.001 
Long letter-strings 14.41 8.59 <0.001 <0.001 - - - - 10.47 6.04 <0.001 <0.001 

Figures in bold highlight statistically significant effects 
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Table 4-5 continued    

 Spanish Hebrew English (ENL) 

 CV t p (uncorr) p (corr) CV t p (uncor) p (corr) CV t p (uncor) p (corr) 

Left postcentral gyrus 

Frequency effects 
(low – high) 

Short words 5.06 5.01 <0.001 <0.001 - - - - - - - - 
Long words 7.12 7.04 <0.001 <0.001 - - - - - - - - 

Length effects 
(long – short) 

High-frequency words 1.72 1.68 0.05 0.26 - - - - - - - - 
Low-frequency words 3.77 3.78 <0.001 <0.001 - - - - - - - - 

Non-words 6.10 6.11 <0.001 <0.001 - - - - - - - - 

Lexicality effects 
(nw – wrds) 

Short letter-strings 13.12 7.48 <0.001 <0.001 - - - - - - - - 
Long letter-strings 19.82 11.32 <0.001 <0.001 - - - - - - - - 

Left anterior superior temporal gyrus 

Frequency effects 
(low – high) 

Short words 1.16 1.57 0.06 0.30 - - - - - - - - 
Long words 0.83 1.13 0.13 0.56 - - - - - - - - 

Length effects 
(long – short) 

High-frequency words 1.03 1.43 0.08 0.45 - - - - - - - - 
Low-frequency words 0.70 1.00 0.14 0.59 - - - - - - - - 

Non-words 1.26 1.78 0.04 0.20 - - - - - - - - 

Lexicality effects 
(nw – wrds) 

Short letter-strings 3.92 3.07 0.001 0.006 - - - - - - - - 
Long letter-strings 4.71 3.70 <0.001 <0.001 - - - - - - - - 

Left middle /  inferior occipital gyrus / fusiform gyrus 

Frequency effects 
(low – high) 

Short words 6.44 11.40 <0.001 <0.001 1.62 4.26 <0.001 <0.001 3.56 5.83 <0.001 <0.001 
Long words 6.48 11.46 <0.001 <0.001 1.67 4.41 <0.001 <0.001 4.08 6.68 <0.001 <0.001 

Length effects 
(long – short) 

High-frequency words 0.69 1.20 0.11 0.57 1.49 3.93 <0.001 0.003 0.55 0.89 0.19 0.72 
Low-frequency words 0.71 1.35 0.09 0.56 1.55 4.10 <0.001 <0.001 1.07 1.76 0.04 0.31 

Non-words 1.07 2.05 0.02 0.16 -0.33 -0.89 0.81 0.99 2.02 3.27 <0.001 0.004 

Lexicality effects 
(nw – wrds) 

Short letter-strings 11.49 11.71 <0.001 <0.001 5.88 8.96 <0.001 <0.001 9.49 8.97 <0.001 <0.001 
Long letter-strings 12.23 12.50 <0.001 <0.001 2.19 3.32 <0.001 0.002 11.91 11.22 <0.001 <0.001 

Figures in bold highlight statistically significant effects 
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4.3.3.3.1 Spanish (Fig. 4-22) 

As shown in Table 4-5, strong effects of frequency were found in the left 

hemisphere, within the precentral gyrus, inferior occipital gyrus, inferior 

parietal lobule and postcentral gyrus. In all those regions the effect was 

greater for long, relative to short words (though this difference was not 

significant in the left inferior occipital gyrus). Length effects were found within 

the precentral gyrus, opercular inferior frontal gyrus inferior parietal lobule and 

postcentral gyrus, and the increase in signal intensity within these regions was 

greater for low-frequency words relative to high-frequency words, and for non-

words relative to real words. Lexicality effects were observed in all 6 regions of 

interest, all of which showed a greater difference for long, relative to short 

letter-strings.  

 

These findings indicate that within the left precentral gyrus, opercular inferior 

frontal gyrus, inferior parietal lobule, and postcentral gyrus, the effects of 

frequency were modulated by string length and within these, as well as the 

anterior portion of the left superior temporal gyrus, length effects were 

modulated by lexicality, as observed in the behavioural data in Experiment 1.  
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 Figure 4-22 Schematic representation of effects found within ROIs in Spanish; 
continuous line represents short letter-strings; dotted line represents long letter-strings; y-axis denotes contrast values 
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4.3.3.3.2 Hebrew (Fig. 4-23) 

Significant effects of frequency in Hebrew were found in the left inferior frontal 

gyrus and left inferior occipital gyrus. A significant length effect for words was 

detected only in the latter, though no difference was observed in the 

magnitude of this effect between high and low-frequency words, suggesting 

that frequency effects were not modulated by string length. Lexicality effects 

were statistically significant in all ROIs, though the patterns of interactions 

between lexicality and length were somewhat different. Specifically, within the 

left inferior frontal gyrus, lexicality effects were stronger for long relative to 

short letter-strings. As can be seen in Table 4-5, the length effect for non-

words in this region was statistically significant. In contrast, in the left 

precentral gyrus and left inferior occipital gyrus negative length effects were 

found for non-words, and the magnitude of lexicality effects was larger for 

short, relative to long letter-strings. These patterns are reminiscent of the 

behavioural results in Experiment 1. 
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 Figure 4-23 Schematic representation of effects found within ROIs in Hebrew; 
continuous line represents short letter-strings; dotted line represents long letter-strings; y-axis denotes contrast values 
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4.3.3.3.3 ENL (Fig. 4-24) 

As shown in Table 4-5, effects of frequency were detected in all English ROIs, 

though the effects observed in the triangular left inferior frontal gyrus were 

only significant under the uncorrected threshold for short words, and 

approached significance under the corrected threshold for long words. The 

opercular IFG, the precentral gyrus and the inferior occipital gyrus produced 

frequency effects which were stronger for long, relative to short words, 

indicating a modulation of frequency effects by word-length. Word-length 

effects were detected within the left precentral gyrus and both opercular and 

triangular portions of the left IFG. As with frequency effects, the direction of 

length effects was parallel to the behavioural data, with stronger effects 

observed for low, relative to high-frequency words. In contrast, non-word 

length effect was only significant in the left IFG, and in the inferior occipital 

gyrus. Interestingly, the precentral gyrus and inferior parietal lobule were 

found to be more activated while participants were reading short non-words, 

relative to long non-words, while this negative non-word length effect was not 

statistically significant in the precentral gyrus (CV=0.53; t=1.17, 

p(corrected)=0.54), it was strongly significant in the left inferior parietal lobule: CV 

=3.24; t=3.30, p(corrected)<0.003. Lexicality effects were found in all ROIs, 

though the direction of effects was varied. Specifically, in the left precentral 

gyrus lexicality effects were only significant for short letter-strings, and similar 

to the pattern seen in Hebrew, stronger activation was found for short non-

words, relative to long non-words in this region. Unlike Hebrew however, long 

non-words produced less activation than long low-frequency words in this 

region. Similarly, in the left inferior parietal lobule, though effects were 
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significant for both short and long letter-strings, the lexicality effect was 

stronger for short letter-strings, since stronger activation was produced during 

short non-word reading, relative to long non-words. As shown in Figure 4-24, 

negative activation was detected in this region for short and long high-

frequency words, thus producing strong frequency and lexicality effects, 

despite the fact that little difference was seen between long low-frequency 

words and long non-words. Within the left inferior frontal gyrus, stronger 

lexicality effects for long letter-strings were found in the opercular portion, with 

a marginally significant effect for short letter-strings. Within the triangular 

portion the effect for short letter-strings was somewhat stronger, though as 

seen in the figure, the pattern of increase in activation was similar to that 

observed in the opercular portion. Similarly, within the left inferior occipital 

gyrus a stronger lexicality effect was found for long, relative to short letter-

strings, indicating a modulation of length effect by lexicality in this region.  
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Figure 4-24 Schematic representation of effects found within ROIs in English; 
continuous line represents short letter-strings; dotted line represents long letter-strings; y-axis denotes contrast values 
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4.3.3.3.4 Additional regions 

The right inferior occipital gyrus was commonly activated in all native 

languages, though as reported above, a reliable pattern of effects was not 

found in all three languages. As shown in the top panel of Figure 4-25, reading 

in Spanish led to a moderate and steady increase in activation between high-

frequency words, low-frequency words and non-words, with a consistently 

stronger activation seen for long letter strings relative to short letter-strings. 

Although none of these effects reached statistical significance (all t values < 

1.34, all corrected p values  0.05), these trends suggest that contralateral 

cortical resources were recruited for visual analysis of written stimuli in 

Spanish, slightly more so for long letter-strings. The steady increase in signal 

intensity between the different conditions suggests that word frequency and 

lexicality may have influenced the activation patterns seen in this region in 

Spanish. Similarly in Hebrew, a moderate and steady increase was seen in 

signal intensity for short letter-strings between high-frequency words, low-

frequency words (t=1.7, p(corrected)=0.24) and non-words; t=3.6 , 

p(corrected)<0.001, while for long letter-strings the increase, which was 

statistically significant, was observed between high and low-frequency words 

only; t=2.45, p(corrected)<0.04, with a slight decrease seen between low-

frequency words and non-words (t=1.59, p(corrected)=0.29). This pattern is 

markedly similar to that seen in the left inferior occipital gyrus in Hebrew, 

suggesting that similar to Spanish, additional contralateral resources were 

recruited for the visual analysis of written stimuli, and word frequency and 

lexicality may have played a role in the observed pattern of increase in signal 

strength. In contrast while reading in English as a native language, a 
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systematic and significant increase was observed in signal intensity between 

long high-frequency words and long low-frequency words; t=3.3.23, 

p(corrected)<0.005, as well as between long words and long non-words; t=11.20, 

p(corrected)<0.001, though for short letter-strings signal intensity decreased in an 

analogous fashion (t values < 1.24, corrected p values  0.05, parallel to the 

chronological progression of the experiment, rather than parallel to the 

behavioural data. 

 

As shown in the middle panel of Figure 4-25, in the posterior superior temporal 

gyrus, reading in Spanish led to a slight increase between long high-frequency 

words, long low-frequency words (t=0.99, p(corrected)=0.80) and a weak yet 

significant increase for long non-words; t=2.71, p(corrected)=0.03, though for 

short letter-strings, there was a drop in activation intensity between high and 

low-frequency words (t=1.95, p(corrected)=0.21), and an increase between low-

frequency words and non-words; t=2.90, p(corrected)<0.02. In contrast, reading in 

Hebrew produced an activation pattern which indicates that within this region 

frequency and lexicality might have played a role in the increase seen 

between the conditions, with stronger activation seen for long, relative to short 

words, and an increase in signal intensity between high and low-frequency 

words, and between low-frequency words and non-words, which was stronger 

for short, relative to long letter-strings, though these differences were not 

statistically significant (t values < 2.01, corrected p values  0.05).  

 

In the superior middle temporal gyrus, exclusively activated in English, 

exposure to short high-frequency words led to negative activation, with a 
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considerable increase in activation for short low-frequency words; t=7.17, 

p(corrected)<0.001, and a slight decrease for short non-words (t=1.13, 

p(corrected)=0.71). Long letter-strings led to a similar, though more moderate 

pattern, whereby strong activation was observed for high-frequency words, 

with a significant increase for low-frequency words; t=2.16, p(corrected)<0.007, 

and a moderate decrease in signal intensity for long non-words (t=0.26, 

p(corrected)=0.98).  

 

Perhaps the most interesting pattern of non-reliable effects was found in the 

medial frontal gyrus. As shown in the bottom panel of Figure 4-25, reading in 

Spanish yielded a pattern of change in signal intensity which was entirely 

consistent with the chronological progression of the experiment, and entirely 

inconsistent with the behavioural data. Specifically, strong activation was 

found in this region while participants were reading short high-frequency 

words, a steep drop in signal intensity was found for short low-frequency 

words; t=6.02, p(corrected)<0.001, and a further moderate drop was seen for 

short non-words; t=2.71, p(corrected)<0.03. For long letter-strings the pattern was 

parallel, with somewhat weaker activation seen throughout, relative to short 

letter-strings. In contrast, reading in Hebrew led to a pattern of activation which 

was reminiscent of the behavioural data seen in Spanish, with little difference 

in signal intensity between short high and low-frequency words (t=0.12, 

p(corrected)=0.98), but a moderate increase between long high and low-

frequency words (t=0.07, p(corrected)=0.66), and a steep increase between low-

frequency words and non-words, more so for long letter-strings; t=4.37, 

p(corrected)<0.001, than for short ones; t=3.14, p(corrected)<0.005. As can be seen 
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in Figure 4-24, reading in English as a native language, similar to Spanish, led 

to strong activation during exposure to short high-frequency words, with a 

steep drop observed for short low-frequency words; t=9.9, p(corrected)<0.001. 

Activation in this region during exposure to long high-frequency words was 

weaker relative to short high-frequency words; t=5.66, p(corrected)<0.001, and 

dropped following exposure to low-frequency words; t=3.84, p(corrected)<0.001, 

to yield an identical signal to that seen for short low-frequency words. 

Interestingly, during exposure to non-words, activation strongly increased from 

low-frequency words, particularly for long; t=3.99, p(corrected)<0.001, relative to 

short non-words; t=2.60, p(corrected)<0.05, yielding a pattern similar to that seen 

in Hebrew within this region.  
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 Figure 4-25 Activation patterns found in the native languages within right inferior occipital 
gyrus (top panel), left posterior superior temporal gyrus (middle panel) and medial frontal 
gyrus (bottom panel) 
Continuous line represents short letter-strings; dotted line represents long letter-strings. 
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Abbreviations: HF=high-frequency words; LF=low-frequency words; NW=non-words 

 

4.3.3.4 Effects of frequency, length and lexicality in ESL 

Reliable effects of frequency, length and lexicality for both bilingual groups 

were found in 8 regions; these were the left precentral gyrus, left opercular 

inferior frontal gyrus, left inferior parietal lobule, left postcentral gyrus, left 

inferior occipital gyrus, right posterior middle temporal gyrus, right middle 

occipital gyrus, and right fusiform gyrus. The patterns of effects of frequency, 

length and lexicality within these regions are summarised in Table 4-6, 

illustrated in Figure 4-26 and described below. 

4.3.3.4.1 Precentral and inferior frontal gyri 

The left precentral gyrus was more strongly activated in Spanish than in ESL 

by the Spanish-English bilinguals, and in turn, more strongly activated in ESL 

than in Hebrew by Hebrew-English bilinguals. Interestingly, in the Spanish 

bilinguals, reading in ESL led to significant effects of frequency, length and 

lexicality, though very little difference was seen in the magnitude of length 

effects between high-frequency words, low-frequency words and non-words. 

In this region therefore, frequency effect was not modulated by length, and the 

latter was not modulated by lexicality. In contrast, the Hebrew bilinguals 

showed no frequency effects for short words in this region, and strong 

lexicality effects for short letter-strings, while an opposite pattern was seen for 

long letter-strings, with a strong frequency effect and a non-significant 

lexicality effect. Concordantly, the length effect was strong for high-frequency 

words and stronger yet for low-frequency words, but absent for non-words. In 
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this group therefore, frequency effect was strongly modulated by length, but 

the latter was not modulated by lexicality.  
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Table 4-6 Effects of frequency, length and lexicality found within ROIs in ESL by bilinguals  
 Spanish-English bilinguals Hebrew-English bilinguals 

 CV t p (uncorrected) p (corrected) CV t p (uncorrected) p (corrected) 

Left precentral gyrus 

Frequency effects 
(low – high) 

Short words 1.50 3.94 <0.001 <0.001 -0.13 -0.29 0.61 0.99 
Long words 0.98 2.58 0.005 0.04 1.34 2.96 0.001 0.01 

Length effects 
(long – short) 

High-frequency words 1.62 4.24 <0.001 <0.001 1.73 3.80 <0.001 <0.001 
Low-frequency words 1.10 2.89 0.002 0.02 3.20 7.07 <0.001 <0.001 

Non-words 1.34 3.54 <0.001 0.002 0.16 0.34 0.38 0.99 

Lexicality effects 
(nw – wrds) 

Short letter-strings 3.58 5.41 <0.001 <0.001 5.28 6.72 <0.001 <0.001 
Long letter-strings 3.55 5.37 <0.001 <0.001 0.69 0.88 0.19 0.81 

Left inferior frontal gyrus         

Frequency effects 
(low – high) 

Short words 4.31 5.80 <0.001 <0.001 2.14 3.34 <0.001 <0.001 
Long words 2.24 3.01 0.001 0.01 0.49 0.76 0.22 0.87 

Length effects 
(long – short) 

High-frequency words 4.00 5.40 <0.001 <0.001 5.09 7.96 <0.001 <0.001 
Low-frequency words 1.94 2.62 0.004 0.03 3.44 5.39 <0.001 <0.001 

Non-words 3.61 4.88 <0.001 <0.001 2.30 3.56 <0.001 0.001 

Lexicality effects 
(nw – wrds) 

Short letter-strings 10.93 8.50 <0.001 <0.001 4.69 4.23 <0.001 <0.001 
Long letter-strings 12.22 9.51 <0.001 <0.001 0.75 0.67 0.25 0.90 

Left inferior parietal lobule 

Frequency effects 
(low – high) 

Short words 3.98 5.09 <0.001 <0.001 4.91 4.73 <0.001 <0.001 

Long words 6.42 8.19 <0.001 <0.001 2.2 2.12 0.02 0.13 

Length effects 
(long – short) 

High-frequency words 3.24 4.13 <0.001 <0.001 3.4 3.27 0.001 0.004 
Low-frequency words 5.66 7.27 <0.001 <0.001 0.69 0.66 0.25 0.82 
Non-words 2.88 3.68 <0.001 <0.001 -2.75 -2.66 0.99 1.00 

Lexicality effects 
(nw – wrds) 

Short letter-strings 12.51 9.21 <0.001 <0.001 14.08 7.83 <0.001 <0.001 

Long letter-strings 9.36 6.90 <0.001 <0.001 4.5 2.5 0.006 0.05 
Left postcentral gyrus 

Frequency effects 
(low – high) 

Short words 3.00 3.23 <0.001 0.006 -0.03 -0.03 0.49 0.99 
Long words 4.91 5.29 <0.001 <0.001 2.54 2.68 0.003 0.03 

Length effects 
(long – short) 

High-frequency words 2.32 2.49 0.006 0.06 3.56 3.76 <0.001 0.001 
Low-frequency words 4.23 4.58 <0.001 <0.001 6.07 6.42 <0.001 <0.001 

Non-words 1.18 1.28 0.0 0.45 1.52 1.58 0.06 0.29 

Lexicality effects 
(nw – wrds) 

Short letter-strings 11.35 7.05 <0.001 <0.001 12.85 7.83 <0.001 <0.001 

Long letter-strings 7.16 4.45 <0.001 <0.001 6.25 3.80 <0.001 <0.001 

Figures in bold highlight statistically significant effects 
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Table 4-6 continued         

 Spanish-English bilinguals Hebrew-English bilinguals 

 CV t P (uncorrected) p (corrected) CV t p (uncorrected) p (corrected) 

Left middle /  inferior occipital gyrus / fusiform gyrus 

Frequency effects 
(low – high) 

Short words 2.86 5.76 <0.001 <0.001 1.97 4.88 <0.001 <0.001 
Long words 4.07 8.19 <0.001 <0.001 1.90 4.71 <0.001 <0.001 

Length effects 
(long – short) 

High-frequency words 0.77 1.56 0.06 0.30 1.18 2.95 0.002 0.01 
Low-frequency words 1.98 4.01 <0.001 <0.001 1.12 2.78 0.002 0.01 

Non-words 0.67 1.36 0.09 0.48 0.06 0.12 0.42 0.99 

Lexicality effects 
(nw – wrds) 

Short letter-strings 9.41 10.93 <0.001 <0.001 7.02 10.05 <0.001 <0.001 
Long letter-strings 7.99 9.29 <0.001 <0.001 4.83 6.90 <0.001 <0.001 

Right middle occipital gyrus 

Frequency effects 
(low – high) 

Short words 1.39 1.91 0.03 0.23 1.53 2.00 0.02 0.17 
Long words 2.52 3.46 <0.001 0.003 3.27 4.29 <0.001 <0.001 

Length effects 
(long – short) 

High-frequency words 3.05 4.18 <0.001 <0.001 0.82 1.06 0.14 0.59 
Low-frequency words 4.18 5.75 <0.001 <0.001 2.56 3.37 <0.001 0.003 

Non-words 0.47 0.65 0.27 0.85 0.05 0.04 0.51 0.99 

Lexicality effects 
(nw – wrds) 

Short letter-strings 9.46 7.47 <0.001 <0.001 10.73 8.12 <0.001 <0.001 
Long letter-strings 3.17 2.51 0.006 0.05 7.45 5.62 <0.001 <0.001 

Right fusiform gyrus 

Frequency effects 
(low – high) 

Short words 1.67 2.60 0.005 0.04 -0.78 -1.05 0.85 1.00 
Long words 2.92 4.54 <0.001 <0.001 1.64 2.20 0.01 0.12 

Length effects 
(long – short) 

High-frequency words 3.31 5.16 <0.001 <0.001 3.02 4.05 <0.001 <0.001 
Low-frequency words 4.55 7.13 <0.001 <0.001 5.44 7.32 <0.001 <0.001 

Non-words 1.55 2.42 0.008 0.05 5.12 6.85 <0.001 <0.001 

Lexicality effects 
(nw – wrds) 

Short letter-strings 9.94 8.92 <0.001 <0.001 4.05 3.14 <0.001 0.007 
Long letter-strings 5.17 4.65 <0.001 <0.001 5.83 4.51 <0.001 <0.001 

Right posterior middle temporal gyrus 

Frequency effects 
(low – high) 

Short words 3.01 2.53 0.006 0.05 -0.33 -0.40 0.65 0.99 
Long words 2.42 2.04 0.02 0.17 0.56 0.68 0.25 0.89 

Length effects 
(long – short) 

High-frequency words 7.17 6.03 <0.001 <0.001 3.16 3.78 <0.001 0.001 
Low-frequency words 6.58 5.57 <0.001 <0.001 4.06 4.88 <0.001 <0.001 
Non-words 4.32 3.64 <0.001 <0.001 3.17 3.78 <0.001 0.001 

Lexicality effects 
(nw – wrds) 

Short letter-strings 18.10 8.78 <0.001 <0.001 4.48 3.10 0.001 0.008 
Long letter-strings 13.01 6.32 <0.001 <0.001 3.60 2.48 0.007 0.05 

Figures in bold highlight statistically significant effects 
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In the left opercular inferior frontal gyrus, Spanish-English bilinguals showed 

greater activation in the native language, relative to ESL. In this group, 

negative activation was found for high-frequency short words, which resulted 

in a strong length effect for high-frequency words. This effect diminished 

considerably for low-frequency words, and increased for non-words. In this 

group therefore, the frequency by length interaction was negative, whereas 

the length by lexicality interaction was positive. In contrast, the Hebrew-

English bilinguals, who showed greater activation in ESL relative to their 

native language, showed strong frequency and lexicality effects for short 

letter-stings, and an almost flat pattern for long letter-strings, resulting in 

strong length effect for high-frequency words, a somewhat weaker effect for 

low-frequency words, and weaker yet for non-words. These findings indicate 

that this region was strongly activated during exposure to long letter-strings, 

irrespective of frequency and lexicality, whereas during exposure to short 

letter-strings activation was considerably weaker, though it increased 

systematically as frequency decreased. 

 

4.3.3.4.2 Parietal regions 

In the parietal cortex, Spanish-English bilinguals showed similar patterns in 

both ROIs, both of which were more strongly activated while reading in 

Spanish relative to ESL. In both IPL and postcentral gyrus, these readers 

showed little or no activation for short high-frequency words, a strong increase 

in activation for low-frequency words, more so for long words i.e. positive 

frequency by length interaction, and strong lexicality effects, particularly for 

short letter-strings, i.e. a negative length by lexicality interaction. In contrast, 
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the Hebrew-English bilinguals, who did not activate the parietal cortex in their 

native language, showed a systematic increase in signal intensity during 

exposure to long letter-strings in ESL in both parietal regions, but the patterns 

elicited during exposure to short letter-strings were markedly different. In the 

postcentral gyrus very little activation occurred during high and low-frequency 

word reading, with no difference in signal intensity between the two word-

types, whereas short non-word reading led to a strong increase in activation. 

Length effects in this region were therefore strong for high-frequency words, 

stronger yet for low-frequency words, but considerably weaker for non-words. 

In contrast, in the inferior parietal lobule a linear increase in signal intensity 

was observed between high-frequency words, low-frequency words and non-

words, resulting in a blunt negative frequency by length interaction, and a 

negative length effect for non-words. 

 

4.3.3.4.3 Occipto-temporal regions 

Both bilingual groups showed stronger activation in their native languages 

relative to ESL in the left occipito-temporal cortex. Within this region strong 

effects of frequency and lexicality were found for both groups, though while 

Hebrew-English bilinguals showed no difference in magnitude of frequency 

effect between short and long words, the Spanish-English bilinguals showed 

stronger frequency effect for long, relative to short words, indicating a positive 

frequency by length interaction in this group. In contrast, both bilingual groups 

showed stronger lexicality effects for short, relative to long letter-strings, 

resulting in a negative interaction between lexicality and length, and a non-

significant length effect for non-words. 
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 In the right occipito-temporal cortex, the Spanish-English bilinguals showed 

similar patterns of effects in both regions; moderate frequency effects and 

strong lexicality effects for short letter-strings, with little or no activation for 

short high-frequency words, a moderate increase for short low-frequency 

words and a considerable increase for short non-words. Concurrently, for long 

letter-strings a strong frequency effect and a moderate lexicality effect were 

observed, with strong activation for long high-frequency words, a considerable 

increase for long low-frequency words, and a moderate increase for long non-

words. Word-length effects in both occipital regions were considerably strong, 

whereas non-word length effects were relatively weak.  

 

The Hebrew-English bilinguals showed different activation patterns in the two 

occipital regions. In the right middle occipital gyrus, which was more strongly 

activated in ESL relative to Hebrew, the pattern was similar to that observed in 

the Spanish-English bilinguals, with moderate frequency effect for short words 

and strong lexicality effect for short letter-strings. At the same time, for long 

letter-strings frequency effect was also considerably strong, indicating a 

positive frequency by length interaction and a negative length by lexicality 

interaction. In contrast, within the right fusiform gyrus, which was more 

strongly activated in the native language, relative to ESL, a negative frequency 

effect was seen for short words, and a positive, though non-significant effect 

was seen for long words. Length effects were considerably strong, particularly 

for low-frequency words, thus producing a positive frequency by length 

interaction. Similarly, lexicality effects in this region were somewhat stronger 

for long, relative to short letter-strings, though the magnitude of increase in 
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signal intensity between short low-frequency words and short non-words did 

not differ from that seen between long low-frequency and long non-words, due 

to the negative frequency effect seen in short words. 

 

4.3.3.4.4 Right middle temporal gyrus 

The right middle temporal gyrus was activated in both bilingual groups 

exclusively while reading in ESL. Within this region, Hebrew-English bilinguals 

showed an identical pattern to that observed within the right fusiform gyrus, 

whereas the Spanish-English bilinguals showed a somewhat different pattern, 

whereby signal intensity increased systematically between high-frequency 

words, low-frequency words and non-words, more so for short, relative to long 

letter-strings. Despite a negative activation for short high-frequency words, 

and null activation for short low-frequency words, frequency effect for short 

words was statistically significant, whereas that for long words did not reach 

statistical significance under the corrected threshold. Similarly, length effects 

were stronger for high-frequency words relative to low-frequency words, and 

lexicality effects were stronger for short letter-strings, relative to long letter-

strings.  
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 Figure 4-26 Schematic representation of effects found within ROIs in ESL by 
Spanish-English (represented in red) and Hebrew-English (represented in green) bilinguals; 
continuous line represents short letter-strings; dotted line represents long letter-strings; y-axis denotes contrast values 
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4.3.3.4.5 Medial frontal gyrus  

An additional region, commonly activated by the two groups while reading in 

ESL was the posterior medial frontal gyrus. This region did not give rise to 

reliable frequency, length and lexicality effects in either group of bilinguals, 

though as noted earlier, significantly stronger activation was found in this region 

in ESL relative to both native languages. As shown in Figure 4-27, both groups 

showed a similar trend in the direction of change in signal intensity, which was 

consistent with the chronological progression of the experiment. Spanish-

English bilinguals showed strong activation for high-frequency words, which 

gradually decreased as the experiment progressed. For short words the 

decrease was relatively moderate and was not statistically significant (t=1.40, 

p(corrected)=0.53), whereas for long words the decrease was steep; t=4.10, 

p(corrected)<0.001, and stronger yet for non-words, more so for long; t=7.46 

p(corrected)<0.001 than for short letter-strings; t=5.51, p(corrected)<0.001. The 

Hebrew-English bilinguals however, showed overall weaker activation in the 

posterior medial frontal gyrus, and concordantly a moderate decrease between 

the first and last experimental blocks (t values < 0.76, corrected p values  

0.05). Interestingly, greater activation was found for long, relative to short high-

frequency words; t=2.43, p(corrected)<0.04, a difference which decreased as the 

experiment progressed. 
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Figure 4-27 Activation patterns found in the medial frontal gyrus while reading ESL by Spanish-
English (red) and Hebrew-English (green) bilinguals;  
Continuous line represents short letter-strings; dotted line represents long letter-strings 

 

4.3.4 Discussion 

The present experiment visualised the neural correlates of processing 

strategies employed for reading Spanish, English and Hebrew as native 

languages, as well as those employed for reading in ESL by bilinguals of 

Spanish and English, and Hebrew and English. The results will be discussed in 

several sections. First, the observed patterns of activation in the native 

languages are discussed by initially focussing on the anatomical regions found 

to be activated in response to reading in each language, followed by an 

interpretation of the observed effects of frequency, length and lexicality within 

regions of interest. Then, the discussion turns to the patterns of activation 

observed while bilinguals were reading in ESL. Within this section differences 

between reading in ESL and each native language are highlighted in terms of 

language proficiency effects and orthographic transparency effects, leading to a 

discussion of the differences and similarities between the two bilingual groups. 
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4.3.4.1 Reading in the native languages 

As outlined in the Literature Review, behavioural and neuroimaging studies 

examining the processes involved in reading have highlighted a distinction 

between orthographic, sublexical / phonological and lexical / semantic 

processing (e.g. Coltheart & Rastle, 1994; Seidenberg & McClelland, 1989), 

and have shown some distinction within the neural substrates mediating these 

processes (Pugh et al, 1996; Fiez et al, 1999; McDermott et al, 2003; Wydell et 

al, 2003; Joubert et al, 2004; Booth et al, 2006; Bick et al, 2008). Moreover, 

cross-language studies have indicated that reading in different languages 

involves different levels of reliance on lexical and sublexical processing, 

influenced by their orthographic properties (e.g. Frost, Katz & Bentin, 1987), 

which may yield different patterns of neural activation (e.g. Paulesu et al, 2000). 

Accordingly, the behavioural experiments described in the previous chapter 

showed that reading in Spanish, English and Hebrew entailed different reading 

strategies, in keeping with their graded levels of orthographic transparency.  

 

Results of the present fMRI experiment confirmed this assertion by showing that 

while all three native languages activated largely overlapping regions within left 

precentral and middle frontal gyri, bilateral inferior and middle extrastriate 

occipital and occipito-temporal cortex, as well as medial frontal gyrus, some 

preferential activation was detected within areas associated with distinct types 

of processing. Specifically, reading in Hebrew was associated with activation 

within the anterior (triangular) portion of the inferior frontal gyrus, whereas 

reading in Spanish led to activation within more posterior (opercular) regions, 

and reading in English as a native language activated both areas within the 
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gyrus. Previous monolingual studies have shown that while the anterior portion 

of the IFG was associated primarily with lexical / semantic processing, 

activation in more posterior areas of the gyrus reflected sublexical / 

phonological processing (Fiez et al, 1999; Poldrack et al, 1999; McDermott et 

al, 2003; Joubert et al, 2004; Booth et al, 2006; Bick et al, 2008). In addition, 

reading in Spanish was exclusively associated with activation in the postcentral 

gyrus, previously implicated in phonological processing (McDermott et al, 2003; 

Booth et al, 2006). Furthermore, as observed in Experiment 3, Spanish and 

English were associated with activation in the left inferior parietal lobule, while 

no activation was detected in this region in Hebrew. Given that this region has 

been previously associated with processes reflecting grapheme-to-phoneme 

conversion (Poldrack et al, 1999; McDermott et al, 2003; Joubert et al, 2004; 

Booth et al, 2006), this finding indicates that readers of Spanish and English 

were prone to rely on this strategy, particularly when presented with low-

frequency words and non-words, as seen by the systematic increase in BOLD 

signal intensity between high-frequency words, low-frequency words and non-

words. In contrast, readers of Hebrew showed no activation within this region, 

since grapheme-to-phoneme conversion would not be beneficial to reading in 

this language due to the absence of written vowels. Moreover, English and 

Hebrew were associated with activation in the right superior and middle frontal 

gyrus, which have been previously implicated in complex orthographic 

processing of logographic scripts (e.g. Liu & Perfetti, 2003; Valaki et al, 2004; 

Nakamura, Oga, Okada et al, 2005), as well as contributing to semantic 

processing in English (e.g. Poldrack et al, 1999; Strange et al, 2000). Finally, 

bilateral activation within the extrastriate occipital and occipito-temporal cortex 
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was observed in all three native languages, all of which showed stronger and 

more extensive activation in the left relative to the right hemisphere. However, 

the extent to which the right occipito-temporal cortex was activated varied 

between the languages, with spatially extensive activation seen in Hebrew, 

moderate activation seen in English, and very little activation seen in Spanish. 

In alphabetic languages, activation within homologous language processing 

regions in the right hemisphere has been previously associated with coarse 

semantic coding (e.g. Chiarello et al, 1990; Lavidor & Ellis, 2002), therefore the 

gradual manner in which the extent of right occipital cortex activation varied in 

the different languages could be viewed as parallel to their position along the 

orthographic transparency continuum.  

 

These observations therefore indicate that reading in Spanish was associated 

with some preferential activation in regions reflecting predominant reliance on 

phonological assembly, reading in Hebrew yielded activation in regions 

predominantly associated with lexical and semantic processing, whereas 

reading in English led to activation within regions associated with both types of 

processing. Importantly, visualising the effects of frequency, length and 

lexicality within regions of interest provided further support for this view. The 

following three subsections discuss the observations of effects within these 

regions.  
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4.3.4.1.1 Effects of frequency, length and lexicality within frontal and 
parietal regions 

As expected, Spanish readers showed consistent and robust length effects in 

frontal and parietal ROIs as well as positive interactions between frequency and 

length, and lexicality and length. Native English readers showed overall weaker 

effects of word length, and weak interactions between frequency and length 

effects, observed only within the precentral gyrus and inferior parietal lobule. In 

the inferior frontal cortex length effects were prominent, though these did not 

modulate the effects of frequency and were not modulated by lexicality. By 

contrast, Hebrew readers exhibited no word-length effects in frontal ROIs, 

though frequency and lexicality effects were weak, but significant, particularly 

within the triangular IFG. Interestingly, a weak length effect was detected in this 

region while Hebrew readers were exposed to non-words. This may reflect 

traces of an attempt to sequentially assemble these letter-strings, since long 

Hebrew words may sometimes convey some phonemic information due to the 

presence of mothers of reading.  

 

A region which was not expected to yield reliable effects but nevertheless 

showed an interesting pattern of change in signal intensity was the medial 

frontal gyrus. This region has been repeatedly shown to be implicated in 

processes of working memory and attention (reviewed by Price, 2000; 

Fernandez-Duque & Posner, 2001). In the native Spanish speakers, the 

systematic decrease in signal intensity, parallel to the progression of the 

experiment suggests that these readers were recruiting attentional resources at 

the early stages of the experiment, which gradually diminished with habituation 

to the environment and task (Henson, Shallice & Dolan, 2000, Pilgrim, Fadili, 
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Fletcher & Tyler, 2002). In contrast, the Hebrew readers showed a systematic 

increase in signal intensity throughout the experiment, suggesting that in this 

language, more attentional resources were required for processing written 

stimuli of increasing difficulty. Interestingly, the native English speakers showed 

a decrease in activation between exposure to high-frequency words and low-

frequency words, and an increase during exposure to non-words, suggesting 

that while habituation occurred for word stimuli, the transition to non-words 

exerted a greater demand on attentional processing. Therefore, the differences 

in the patterns of activation in the medial frontal gyrus between the three 

languages can also be placed in parallel to the position of these languages 

along the orthographic transparency continuum. 

 

4.3.4.1.2 Temporal regions 

Some controversy exists in the current literature with regards to the role of the 

posterior superior temporal cortex in visual word recognition. Given that this 

region was repeatedly shown to mediate spoken language comprehension, its 

role in reading has often been associated with phonological processing (e.g. 

Fiez et al, 1999; Joubert et al, 2004), and indeed, several studies have 

observed stronger activation in this region during exposure to transparent 

languages such as Italian (Paulesu et al, 2000), Dutch (Vingerhoets et al, 2003) 

and Spanish (Meschyan & Hernandez, 2005). However, others have provided 

evidence suggesting that this region may be involved in semantic processing 

(e.g. McDermott, et al, 2003, Bick et al, 2008). In their MEG study with Finnish 

monolinguals, Wydell et al (2003) suggested that the left superior temporal 

cortex may in fact mediate both types of processing, since a combined length 
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and lexicality effect was detected in this region during a relatively late course of 

activation.  

 

In the present experiment, activation in the left posterior STG was observed in 

Spanish and Hebrew, but the patterns of frequency, length and lexicality effects 

were not entirely consistent, and therefore difficult to interpret. In Hebrew this 

region may have been involved in phonological processing, as seen by the 

moderate and steady increase in activation between high-frequency words, low-

frequency words and non-words, coupled by somewhat stronger activation 

associated with long letter-strings. In Spanish the pattern may reflect a 

combination of linguistic effects coupled by task effects, whereby upon initial 

exposure to short high-frequency words this area was engaged, possibly in 

phonological analysis, followed by temporary habituation, similar to that 

observed in the medial frontal cortex, since short low-frequency words may not 

require a great deal of phonological analysis (as seen in the RT pattern in 

Experiment 1). However, subsequent exposure to long low-frequency words 

may have re-engaged this region, leading to a systematic increase in activation 

as a function of frequency and length.  

 

Interestingly, reading in English was not associated with activation in the 

posterior STG; instead, the middle temporal gyrus was activated specifically in 

English, though unlike in Experiment 3, this pattern was observed exclusively in 

ENL. The discrepancy between the two experiments may have stemmed as a 

result of individual differences, whereby the two bilinguals in Experiment 3 

showed activation within this region while reading in ESL, whereas the majority 
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of bilinguals in the present experiment did not. This highlights the importance of 

the use of multiple subjects in neuroimaging experiments, where due to 

practical constraints, many studies, particularly those recruiting multilinguals, 

have relied on relatively small sample sizes (6 participants or less; e.g. Yetkin et 

al, 1996; Hernandez et al 2001; Briellmann et al, 2004; see Thirion, Pinel, 

Mériaux, Roche, Dehaene & Poline, 2007 for a discussion). In the present 

experiment, the observed patterns of signal change in the different ENL 

conditions indicates that this region was engaged during exposure to long high-

frequency words, but not short high-frequency words. Similarly, exposure to 

low-frequency words led to an increase in activation in this region regardless of 

length, whereas processing resources for non-words may have been diverted 

elsewhere, e.g. medial and lateral frontal regions. These observations are in 

keeping with previous findings implicating the middle temporal gyrus in 

semantic processing specifically in English (Pugh et al, 1996; Paulesu et al, 

2000; McDermott et al, 2003).  

 

An additional temporal region found to be activated in the present experiment 

was the anterior portion of the left STG. This region was specifically activated in 

Spanish, and the observed pattern of frequency, length and lexicality effects 

were also suggestive of semantic processing, as evidenced by a systematic 

increase in activation between high-frequency words, low-frequency words and 

non-words, with minimal length effects. Indeed, this region has been previously 

associated with semantic processing. For example, in a PET study investigating 

the neural correlates of semantic priming using a lexical decision task, 

Mummery, Shallice and Price (1999) found that relative to letter decision 
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(baseline task), the lexical decision task elicited activation within the left anterior 

temporal lobe. Across scans, the proportion of related prime-target pairs varied 

between 0 to 100%. Interestingly, activation in this region systematically 

decreased as the proportion of semantically related targets increased, except 

for the highest proportion of priming, where activation increased. This U-shaped 

function was explained in terms of automatic priming leading to a decrease in 

activation with task progression, which attenuates and reverses as strategic 

priming mechanisms18 become involved with the increase of the proportion of 

semantically related targets. The authors thus concluded that whether 

automatic or strategic, the left anterior temporal cortex was sensitive to lexico-

semantic processing. Similarly, Price and colleagues (Price, Gomo-Tempini, 

Graham, Biggio et al, 2003) have noted that a patient with surface dyslexia 

exhibited reduced activation in the left anterior superior temporal cortex 

compared to control subjects, implicating this region in semantic processing in 

regular readers. In the present experiment therefore, while activation patterns in 

Spanish were predominantly associated with phonological processing, there 

was clear evidence for some semantic processing occurring in this transparent 

language. These observations are consistent with observed cases of surface 

dyslexia in transparent languages such as Spanish (e.g. Ruiz, Ansaldo & 

Lecours, 1994; Iribarren et al, 2001), and with studies showing lexical / 

semantic processing in languages such as Persian (Baluch & Besner, 1991) 

and Italian (Tabossi & Laghi, 1992). A possible explanation for the absence of 

activation within this region in Hebrew and English could be related to 

methodological constraints stemming from whole-brain analysis. Note that ROI 

                                                 
18

 The terms „automatic‟ and  „strategic‟ priming mechanism refer to the cognitive processes that 
lead to priming effects, whereby activation of the semantic system can occur automatically, or 
through strategic attentional processes (see Henson, 2003 for a review). 
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analysis was utilised in order to circumvent this problem, and thus detect a 

reliable pattern of activation in each condition within said regions. However, 

recall that the initial identification of ROIs was carried out by selecting regions 

that were activated in the Reading  Baseline condition using a whole-brain 

analysis. Since extensive activation related to semantic processing was reliably 

detected in these languages within the inferior frontal cortex, it is plausible that 

any activation which may have occurred within the anterior temporal cortex was 

relatively weak, and therefore may have gone undetected. Indeed, this still 

constitutes one of the strong limitations of fMRI, and is the focus of a large body 

of studies aimed at optimising the reliability and accuracy of hemodynamic 

neuroimaging methods (e.g. Erberich, Specht, Willmes, Kemeny & Reith, 2000; 

Swallow, Braver, Snyder, Speer & Zecks, 2003; Seghier, Friston & Price, 2007). 

 

4.3.4.1.3 Occipito-temporal regions 

In Spanish and English robust effects of frequency and lexicality were detected 

in the left inferior and middle occipital cortex, while length effects were virtually 

absent. Activation in the occipital cortex has been previously associated with 

low-level visual analysis upon initial exposure to printed material (Pugh et al, 

1996; Wydell et al, 2003), though in the present experiment, the absence of 

length effects suggests that the subtraction of activation related to the reading 

conditions from that related to the control condition yielded mainly activation 

associated with linguistic processing. This finding is in keeping with previous 

observations attesting that regions within the left inferior occipito-temporal 

cortex, particularly the fusiform gyrus may be specifically involved in visual 

processing of word forms (Cohen et al, 2002). Concordantly, the left inferior 
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occipito-temporal cortex has also been shown to be sensitive to frequency and 

lexicality effects (Fiez et al, 1999; Paulesu et al, 2000; Proverbio et al, 2008). 

Therefore the presently observed pattern of effects in the left occipito-temporal 

cortex in Spanish and English suggests that at early stages of visual word 

recognition, namely orthographic processing, some lexical lookup process may 

have been taking place, leading to a systematic increase in cerebral blood flow 

as a function of word-frequency. Subsequently, parietal regions were engaged 

in associative processes of grapheme-to-phoneme conversion of low-frequency 

words and non-words, giving rise to length effects in both languages, and 

particularly in Spanish. At the same time, the temporal cortex (middle temporal 

gyrus in English and anterior superior temporal gyrus in Spanish) may have 

been involved in lexical / semantic processing, followed by later phonological 

assembly and articulatory programming in the frontal cortex, in both languages.  

 

The role of the right occipital cortex in this process was somewhat difficult to 

interpret since the pattern of effects was not entirely reliable. It is plausible that 

activation in this region in Spanish may reflect some residual low-level visual 

analysis despite the subtraction from the baseline condition, while in English, 

the reliable pattern of effects observed for long letter-strings suggests that the 

right middle occipital cortex was recruited in the early stages of word 

identification for orthographic processing coupled by some lexical lookup (e.g. 

Chiarello et al, 1990; Tan et al, 2001; Simon et al, 2006) 

In Hebrew the observed patterns were rather different; in addition to frequency 

and lexicality effects, reading long words of high and low frequency induced a 

higher intensity of activation in the occipito-temporal cortex bilaterally, relative to 
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short words, whereas reading non-words did not elicit any length effects in 

these regions. These observations can account for the increased length effect 

seen in the Hebrew naming latency data in Experiment 1, suggestive of a 

strategic dilemma faced by Hebrew readers, whereby upon initial exposure to 

printed letter-strings, participants attempted sequential orthographic assembly 

before resorting to lexical lookup. At the same time, for non-words, the 

increased difficulty in articulating consonant strings which have no lexical 

representation led to slower orthographic processing, evidenced as 

considerably slow RT in the behavioural experiment, which at the cortical level 

was manifested within the left IFG as a length effect for non-words. Importantly, 

in Experiment 1, where words and non-words were presented in a mixed 

randomised fashion, evidence for the strategic dilemma was robust. It is 

therefore plausible that had the present experiment been designed in an event-

related manner, whereby randomised presentation of stimuli had been possible, 

the word-length effects seen in the occipital cortex would have been 

considerably stronger. This is an important consideration for future studies 

involving Hebrew. 

 

Taken together, the observed patterns of activation and effects of frequency, 

length and lexicality suggest that reading in the three native languages was 

achieved via a network of shared cortical regions, while the extent to which 

phonological and semantic processes were engaged varied between the 

languages, in keeping with their position along the orthographic transparency 

continuum. These findings corroborate the assertion that the neural substrates 

involved in reading different languages are constrained by culture-specific 
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mappings of orthography-to-phonology (Paulesu et al, 2000; Meschyan & 

Hernandez, 2005; Simon et al, 2006), and are in line with the currently accepted 

version of the Orthographic Depth Hypothesis (Katz & Frost, 1992). 

 
 

4.3.4.2 Reading in ESL 

Much debate exists in the literature focussed on multiple-language processing, 

regarding the effects of language proficiency and orthographic properties of 

different languages on reading strategies in the native, relative to less dominant 

languages. As outlined in Chapter 2, early observations of differentially 

manifested symptoms of aphasia in different languages had given rise to the 

notion that different languages may be represented by separate neural 

substrates (Paradis, 1977; Potzl, 1983; Kauders, 1983; Fabbro & Gran, 1997; 

reviewed by Fabbro, 2001), while more recent experimental studies using 

behavioural methods have indicated that multiple-language processing may be 

mediated largely by common mechanisms (e.g. Beauvillain & Grainger, 1987; 

Van Heuven, Dijkstra & Grainger, 1998; Jared & Kroll, 2001; Gollan, Forster & 

Frost, 1997; Lemhoefer, Dijkstra & Michel, 2004). Moreover, neuroimaging 

studies aimed at examining multiple-language representation have shown that 

differences between cortical regions associated with processing of different 

languages may arise due to inferior levels of proficiency in less dominant 

languages (e.g. Klein et al, 1994; Wattendorf et al, 2001; Pillai et al, 2003; 

Vingerhoets et al, 2003; Halsband, 2006).  

 

In keeping with this view, the behavioural results reported in Experiment 1 

showed slower naming and lower levels of accuracy in ESL relative to the 
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native languages. Concordantly, the results of the present experiment showed 

marked overlap in regions activated in ESL by both bilingual groups, with ESL 

relative to the native languages, associated with stronger activation within the 

medial frontal cortex, as well as significant activation within the right precentral, 

inferior frontal and middle temporal gyrus, not present in Spanish and Hebrew, 

or indeed in English as a native language. As outlined in the Literature Review, 

some authors have shown that L2 may be associated with stronger right 

hemisphere activation, particularly in late bilinguals (Dehaene et al, 1997; 

Proverbio et al, 2002; Pillai et al, 2003). Since the native English monolinguals 

in the present experiment did not show activation in right precentral, inferior 

frontal or temporal regions, it is plausible that these regions were recruited while 

reading in ESL for additional linguistic processing resources. In addition, 

reading in ESL relative to Hebrew was associated with stronger activation in the 

right middle occipital gyrus, a region which was also activated in ESL by 

Spanish bilinguals, but not in Spanish, suggesting that additional processing 

resources for reading in the less dominant language were also recruited within 

this region. However, recall that reading in ENL and in Hebrew were also 

associated with activation within this region, and importantly, Hebrew readers 

showed stronger and more extensive activation than native English readers, 

suggesting that the right middle occipital gyrus may also be sensitive to 

orthographic transparency. 

 

These findings therefore corroborate the assertion that reading in two 

languages largely entails a common neural network, while some differences 

between L1 and L2 may arise either as a result of inferior L2 proficiency, or may 
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be related to orthographic transparency. Indeed, recent observations of 

differentially manifested symptoms of dyslexia in bilingual individuals have 

raised this notion (e.g. Wydell & Butterworth, 1999; Beland & Mimouni, 2001). 

Concurrently, neuroimaging studies with bilinguals have shown some distinct 

patterns of activation associated with reading in languages of contrasting levels 

of orthographic transparency (e.g. Nakada et al, 2001; Tan et al, 2001; Liu & 

Perfetti, 2003; Valaki et al, 2003; Ding et al, 2003; Lee, et al, 2004, Siok et al, 

2006; Meschyan & Hernandez, 2005; Simon et al, 2006).  

 

The present neuroimaging data showed that reading in Spanish relative to ESL 

led to stronger activation within regions implicated in phonological processing, 

namely left precentral gyrus, left postcentral gyrus and left inferior parietal 

lobule. These findings are in keeping with Meschayn and Hernandez (2005), 

who showed that the orthographically transparent Spanish was associated with 

activation in regions implicated in phonological processing to a greater extent 

than English. At the same time, being a less dominant language, Spanish led to 

stronger activation within the medial frontal cortex relative to the dominant 

language, English. 

 

In the present study, the Hebrew-English bilinguals showed a similar pattern, 

whereby reading ESL, in this case the relatively more transparent language, 

was associated with activation within the postcentral gyrus and inferior parietal 

lobule, not present in Hebrew, and stronger activation relative to Hebrew, within 

the left precentral gyrus and inferior frontal gyrus. In contrast, reading in Hebrew 

led to stronger activation in the right fusiform gyrus. Interestingly, this region has 
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often been referred to as the fusiform face area (FFA; Kanwisher, McDermott & 

Chun, 1997), since in contrast to its homologue, the visual word form area 

(Cohen et al 2002), this region has been repeatedly associated with object 

recognition, particularly faces and other objects of expertise (e.g. Gauthier & 

Tarr, 2002; see Palmeri & Gauthier, 2004 for a review). However, several 

studies focussed in visual word recognition have also observed activation in this 

region (e.g. Fiez et al, 1999; McDermott et al, 2003; Vingerhoets et al, 2003; 

Booth et al, 2006), though its role in reading has seldom been addressed. 

Importantly, in the present study, the same region was found to be more 

strongly activated in ESL by Spanish bilinguals, relative to Spanish, suggesting 

that it may be sensitive to orthographic transparency.  

 

Within this framework of investigation a widely controversial issue is whether 

reading strategies acquired in bilinguals‟ native language might be transferred 

to reading in their second language. While some recent findings, relying on 

extreme ends of the orthographic transparency continuum, such as Chinese 

and Japanese Kanji have argued for this effect (e.g. Muljani, Koda & Moates, 

1998; Wang, Koda & Perfetti, 2003), others have suggested the contrary (e.g. 

Akamatsu, 2002). Most recently, Lemhöfer and colleagues (Lemhöfer, Dijkstra, 

Schriefers, Baayen, Grainger & Switserlood, 2008) have shown that in 

bilinguals, native speakers of western European languages of somewhat varied 

levels of orthographic transparency (German, Dutch or French as L1) and 

English (L2), word recognition in L2 was primarily determined by within-

language factors, while cross-language transference of strategy was limited. 
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In Experiment 1 observed patterns of naming latency indicated that the 

strategies employed by bilinguals of Spanish and English, and Hebrew and 

English for reading in their second language were not transferred from the their 

native languages. In fact, while the Spanish-English bilinguals showed an 

efficient adaptation of the reading strategy to the less transparent English, the 

Hebrew-English bilinguals showed a pattern which was suggestive of an 

exaggerated reliance on phonological recoding for reading in this relatively 

more transparent language. Indeed, the overlaid anatomical pattern of 

activation observed in each group in the present experiment showed that the 

Spanish bilinguals activated more anterior portions of the left inferior frontal 

cortex, while the Hebrew bilinguals activated more posterior portions. Moreover, 

the observed patterns of effects of frequency, length and lexicality and 

interactions within some of the commonly activated regions by the two groups 

further support this view. 

  

Within the posterior medial frontal gyrus, the pattern of change in signal 

strength was in the same direction in both bilingual groups; consistent with the 

chronological progression of the experiment rather than with the naming latency 

data. However, while the Spanish bilinguals showed a pattern similar to that 

observed in their native language, indicating that attentional resources were 

most strongly engaged at the beginning of the experiment and gradually 

decreased with habituation, the observed trends in the Hebrew bilinguals were 

somewhat different. During exposure to short letter-strings no change was seen 

in signal strength between high- and low-frequency words, whereas upon 

exposure to non-words a weak decrease was observed, suggesting a moderate 
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habituation. In contrast, for long letter-strings initial exposure may have required 

greater attentional demands as evidenced by a significant difference in signal 

intensity between short and long high-frequency words, which decreased with 

the progression of the experiment. Recall that this trend was reversed while 

these participants were reading in their native language, since reading in 

Hebrew became more laborious as frequency of items decreased. The 

differences between the two bilingual groups in ESL however, suggest that for 

the Hebrew readers, processing long letter-strings exerted a greater attentional 

demand relative to short letter-strings, which may account for the slower naming 

observed in the behavioural data. 

 

In the opercular inferior frontal gyrus, while Spanish bilinguals showed robust 

frequency and lexicality effects, Hebrew bilinguals showed almost no change in 

the magnitude of activation between high-frequency words, low-frequency 

words and non-words. Instead, length effects in this region were rather robust. 

Since strong length effects are suggestive of phonological processing (Wydell et 

al, 2003), whereas a strong frequency and lexicality effects, with minimal 

modulation by consistency (or in this case, string-length) are suggestive of 

lexical processing (Fiez et al, 1999; Paulesu et al, 2000), the strong effects of 

frequency and lexicality in the Spanish bilinguals relative to the Hebrew 

bilinguals could point towards a greater reliance on lexical / semantic 

processing in the former group, relative to the Hebrew group. In turn, the latter 

group exhibited strong length effects in this region albeit moderate frequency 

and lexicality effects, which may point towards stronger reliance on 

phonological processing strategies for reading in ESL. 
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Similarly, within the right middle temporal gyrus, the Spanish bilinguals 

exhibited robust lexicality effects for short letter strings, and strong frequency 

and lexicality effects for long letter-strings, while in the Hebrew bilinguals these 

effects were moderate. Since this region was exclusively activated in ESL in 

both groups, a plausible interpretation of the pattern seen presently is that this 

region was recruited as an additional processing resource for reading in L2, 

particularly low-frequency long words and long non-words, and as in the left 

IFG, the Hebrew bilinguals may have relied on phonological processing within 

this region, to a greater extent than the Spanish bilinguals.  

 

Finally, within the right fusiform gyrus, both bilingual groups showed a positive 

interaction between frequency and length for real words, whereas a negative 

lexicality by length interaction was seen in the native Spanish bilinguals. This 

was due to a relatively stronger lexicality effect for short, relative to long non-

words in this group. In contrast, although no interaction between lexicality and 

length was seen for the Hebrew bilinguals, the length effect for non-words was 

markedly stronger relative to the Spanish bilinguals, suggesting that within this 

region as well, the Hebrew-English bilinguals may have relied on assembled 

phonology for reading in ESL to a greater extent than the Spanish-English 

bilinguals.  

 

However, the patterns observed in other regions did not appear to point towards 

the same trend. In the left precentral gyrus, the reversed patterns of interactions 

between frequency and length effects between the two groups suggest that 

Hebrew bilinguals were relying on phonological recoding strategies for real-
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word reading to a greater extent than the Spanish bilinguals within this region. 

At the same time, the lexicality effects seen in this region were stronger in the 

Hebrew bilinguals, particularly for short letter-strings relative to their Spanish 

counterparts, resulting in a null length effect for non-words. In contrast, the 

Spanish bilinguals showed no difference in lexicality effects between short and 

long letter-strings, and a significant effect of length for non-words. These 

patterns suggest that sub-articulatory processes for long non-words required 

more neural resources for the Spanish bilinguals relative to the Hebrew 

bilinguals, indicating that in the case of non-words, the Spanish bilinguals were 

relying on phonological processing strategies to a greater extent than the 

Hebrew bilinguals. 

 

In the left inferior parietal lobule the pattern of frequency and lexicality effects 

for short letter-strings were almost identical between the two groups. For long 

letter-strings however, while the native Spanish speakers showed a marked 

increase in activation throughout all types of stimuli, in the native Hebrew 

speakers the observed increase was moderate, suggesting that in this group, 

phonological processing resources for long letter-strings may have been 

diverted elsewhere, perhaps to the postcentral gyrus, where activation for long 

letter-strings was strong and increased markedly as a function of frequency in 

both groups. In these regions therefore, there was also evidence for a grater 

reliance on phonological processing by Spanish bilinguals relative to Hebrew 

bilinguals. 
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The left inferior occipital gyrus was more strongly activated in each group‟s 

native language relative to ESL. Within this region, both groups showed a 

similar negative interaction between lexicality and length, suggesting that more 

processing resources were required for identifying short relative to long non-

words. This pattern was similar in Hebrew, but reversed in Spanish, and indeed 

in English as a native language, indicating an effect of orthographic 

transparency on non-word processing. For real words however, while the 

Spanish bilinguals showed a positive frequency by length interaction, the 

Hebrew bilinguals showed no interaction between these effects, suggesting that 

the Spanish bilinguals were resorting to sequential orthographic assembly in 

ESL to a greater extent than the Hebrew bilinguals. Similarly, in the right middle 

occipital gyrus, both groups showed similar patterns of interactions, though 

Spanish bilinguals showed stronger length effects for real words relative to the 

Hebrew bilinguals, suggesting that in this region too, Spanish bilinguals were 

relying on sequential orthographic assembly to a greater extent than the 

Hebrew bilinguals. Interestingly, this region was more strongly activated in ESL 

relative to Hebrew, and specifically activated in ESL relative to Spanish, 

indicating that this region is sensitive to language dominance to a greater extent 

than to orthographic transparency.  

 

Taken together, the observed pattern of activation in ESL differed from those 

seen in the native language, with respect to attentional and linguistic demands 

associated with reading in a less dominant language, and in terms of strategic 

demands associated with reliance upon lexical and sublexical processing, in 

keeping with the level of orthographic transparency of English, relative to the 
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native languages. At the same time, the group differences observed in the 

patterns of frequency, length and lexicality effects within regions commonly 

activated in ESL were somewhat conflicting. While the patterns observed in the 

left precentral gyrus, left parietal cortex and bilateral occipital cortex were 

suggestive of a transfer of strategy from the native languages to reading in ESL, 

the observed patterns within the left inferior frontal gyrus, right middle temporal 

gyrus and right fusiform gyrus indicated that within these regions the 

adaptations employed by bilinguals for reading in their less dominant language 

were in keeping with the level of orthographic transparency of English, relative 

to the native languages, although there was also some evidence to suggest an 

exaggerated reliance on phonological recoding strategies by the Hebrew 

bilinguals, relative to their Spanish counterparts. Therefore specific patterns of 

regional activation related to reading in a second language may partly 

corroborate the proposed transfer of reading strategy from the native language 

(Muljani et al, 1998; Wang et al, 2003), although the patterns that ultimately 

emerged in the behavioural data19 seem to point towards an efficient adaptation 

by the native Spanish bilinguals, and a somewhat less efficient adaptation by 

the native Hebrew bilinguals, whereby the availability of phonetic information in 

the form of written vowels in English, which does not exist in Hebrew, has led to 

an increased reliance on this information for the identification of words and non-

words in ESL. 

 

                                                 
19

 Recall that in Experiment 1, the relatively high proportion of word substitution errors made by 
Hebrew bilinguals in ESL hinted towards some transfer of the native strategy, which may be 
reflected by the activation patterns observed in the precentral gyrus, IPL and occipital cortex. 
This will be addressed in the discussion of Experiment 5 
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4.3 General discussion 

The two fMRI experiments reported in this chapter aimed to visualise the neural 

correlates of reading in Spanish, English and Hebrew, assess the extent to 

which the graded levels of orthographic transparency of these three languages 

influenced the reading strategies employed by native readers, and examine the 

type of adaptation employed for reading in English as the midpoint of the 

orthographic transparency continuum, by bilinguals, native speakers of the two 

extremities of the continuum; Spanish and Hebrew, respectively. 

 

Consistent with previous monolingual, bilingual and multilingual neuroimaging 

studies, reading in the three languages was associated with a largely shared 

network of widely distributed, predominantly left-lateralised cortical regions, also 

involved in spoken and heard language processing (Pugh et al, 1996; Fiez et al, 

1999; Wydell et al, 2003; McDermott et al, 2003; Joubert et al, 2004; Klein et al, 

1994; D‟esposito & Alexander, 1995; Kim et al, 1997; Deahaene et al, 1997; 

Yetkin et al, 1996; Chee et al, 1999; Pu et al, 2001; Hernandez et al, 2000; 

Paulesu et a, 2000; Hernandez et al, 2001; Vingerhoets et al, 2003; Briellmann 

et al, 2004; Meschyan & Hernandez, 2005; Halsband, 2006). Concurrently, 

reading in each language was related to some preferential activation within 

regions associated with lexical / semantic and sublexical / phonological 

processing, respectively, in keeping with the graded levels of orthographic 

transparency of these languages. Moreover, in conjunction with the anatomical 

data, the observed effects of frequency length and lexicality within regions of 

interest support the behavioural naming patterns observed in Experiment 1, 

indicating that reading in the transparent Spanish entailed predominant (but not 
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exclusive) reliance on phonological processing, reading in the opaque Hebrew 

entailed predominantly (but not exclusively) lexical / semantic processing while 

reading in English as a native language involved both types of strategy to a 

similar extent, thus corroborating previous findings demonstrating some distinct 

patterns of activation associated with reading in languages with varied 

orthographic characteristics (Paulesu et al 2000; Nakada et al, 2001; Tan et al, 

2001; Liu & Perfetti, 2003; Valaki et al, 2003; Ding et al, 2003; Lee, et al, 2004; 

Meschyan & Hernandez, 2005; Siok et al, 2006; Simon et al, 2006), and the 

weak version of the Orthographic Depth Hypothesis (Katz & Frost, 1992).   

 

As outlined in the introduction to this chapter, visualising the effects of 

frequency, length and lexicality within regions of interest was expected to shed 

light on some unresolved issues that emerged from the behavioural data in 

Experiment 1. One of these issues related to the unusually strong length effect 

observed in Hebrew high-frequency words, which decreased systematically as 

the frequency of items decreased, giving rise to the negative interaction 

between frequency and length and between length and lexicality. Results of 

Experiment 2 confirmed that this effect was of linguistic nature and was 

attributed to a strategic dilemma faced by readers of opaque orthographies, 

particularly in the presence of non-words, whereby upon initial exposure the 

cognitive system attempted a sequential assembly of written material, which 

was promptly aborted in favour of addressed lexical / semantic processing due 

to the inefficiency of sequential assembly in the absence of written vowels. 

Importantly, the results of Experiment 4, evidenced traces of this dilemma 

reflected by significant Hebrew word-length effects in the extrastriate occipito-
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temporal cortex, bilaterally, despite the blocked presentation of experimental 

stimuli and the isolation of non-words to the final two blocks, as well as the 

stringent subtraction approach and masking procedure, which yielded 

principally linguistic-related activation (confirmed by the absence of word-length 

effects in the occipital cortex in Spanish and English). This important finding 

therefore points towards the notion that the strategic dilemma in readers of an 

opaque orthography occurred even before exposure to non-words, thus 

corroborating previous behavioural data showing that the cognitive system‟s 

„default‟ reading strategy regardless of orthographic transparency is assembled, 

rather than addressed phonology (i.e. Phonological Hypothesis; c.f. Frost, 1994; 

1995). 

 

Another issue which required clarification was related to reading in ESL. While 

both bilingual groups showed similar patterns of naming accuracy in their 

second language, the observed naming latency patterns were suggestive of an 

exaggerated reliance on phonological recoding by the Hebrew bilinguals relative 

to their Spanish counterparts. This was reflected as slower naming of long low-

frequency words and non-words by Hebrew bilinguals relative to Spanish 

bilinguals.  

 

The anatomical data reported in both fMRI experiments were in keeping with 

previous bilingual studies assessing the effects of language proficiency on 

patterns of neural activation, showing that reading in a second language 

entailed some overlapping but more extensive activation within left-lateralised 

regions, mostly those involved in sublexical / phonological processing, within 
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medial frontal regions implicated in working memory and attentional processes 

(Perani et al, 1996; Dehaene et al, 1997; Kim et al, 1997; Hernandez et al, 

2001; Wattendorf et al, 2001; Watenburger et al, 2003), as well as some distinct 

activation within frontal and temporal homologous language processing regions 

in the right hemisphere (Dehaene et al, 1997; Proverbio et al, 2002; Pillai et al, 

2003). At the same time, the differences between the activation patterns seen in 

each native language and ESL were in line with studies suggesting that even in 

a second language, the level of orthographic transparency may affect the types 

of processing strategies and thus lead to some preferential activation within 

certain cortical regions (Nakada et al, 2001; Tan et al, 2001; Liu & Perfetti, 

2003; Valaki et al, 2003; Ding et al, 2003; Lee, et al, 2004, Siok et al, 2006; 

Meschayn & Hernandez, 2005; Simon et al, 2006). Indeed, both bilingual 

groups showed marked overlap between regions commonly activated in ESL in 

both experiments, suggesting that each group had similarly adapted the reading 

strategies to their second language. Nevertheless, the observed patterns of 

frequency, length and lexicality effects in Experiment 4 suggested that some 

transfer of processing strategies employed preferentially in the native languages 

may have taken place, in keeping with findings of Muljani et al (1998) and Wang 

et al (2003) examining the differences in reading strategies employed for 

English by readers of Chinese and Indonesian or Korean, respectively. 

However, unlike in those studies, this transfer did not emerge clearly in the 

behavioural data of the present study. In fact, the present fMRI data provided 

some supporting evidence for the proposed exaggerated use of phonological 

processing by Hebrew bilinguals. This evidence emerged in Experiment 3 while 

bilinguals were reading low-frequency words in ESL, where the Spanish 
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bilinguals showed activation only within the left inferior parietal lobule, whereas 

the Hebrew bilinguals showed overall more extensive activation, including left 

inferior parietal lobule as well as the posterior superior temporal gyrus and 

inferior frontal gyrus. In Experiment 4 this was most clearly seen by the 

anatomical pattern of activation within the inferior frontal cortex, where the 

Spanish bilinguals showed preferential activation within anterior portions, while 

the Hebrew bilinguals activated more posterior regions of the cortex.  

 

A more detailed examination of this issue could be conducted in future studies, 

as suggested by Meschyan and Hernandez (2005). In their discussion, these 

authors proposed a future study comparing the processes involved in reading 

with Spanish-English bilinguals who were more proficient in their native 

language relative to English, as was done presently, as well as examining the 

alternative situation, whereby native English speakers with Spanish as their 

second language would show reversed patterns of activation relating to 

language proficiency but similar patterns related to orthographic transparency. 

In the present investigative framework comprising three languages, an efficient 

way to examine the influence of language proficiency, orthographic 

transparency and the proposed exaggerated reliance on phonological 

processing by Hebrew readers would be to test trilinguals. This was the aim of 

the final experiment of the present study, reported in the next chapter. 
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Chapter 5 

Completing the Picture:  
Reading in Three languages; a Trilingual Comparison 

 

5.1 Introduction 

So far, the experiments reported in the present study have focussed on the 

reading strategies employed by bilinguals for reading in Spanish, Hebrew and 

English as a second language. The present findings have so far been largely 

consistent with previous bilingual studies, demonstrating that language 

proficiency and levels of orthographic transparency play important roles in the 

strategies employed by bilinguals for reading in their two languages (e.g. de 

Groot et al, 2002; Lemhöfer et al, 2008; Meschyan & Hernandez, 2005; Simon 

et al, 2006). Moreover, while the findings in Experiments 1, 3 and 4 showed 

that reading in each native language replicated and extended previous results 

supporting the currently accepted version of the Orthographic Depth 

Hypothesis (Katz & Frost, 1992), reading in ESL by native Spanish bilinguals 

and native Hebrew bilinguals gave rise to somewhat different patterns, which 

were not entirely in keeping with previous bilingual studies, suggesting that the 

predominant strategy used  for reading in the native language may be 

transferred to the second language (e.g. Muljani et al, 1998; Wang et al, 2003).  

 

Rather, while the native Spanish bilinguals showed an efficient adaptation to 

the less transparent English, the native Hebrew bilinguals appeared to show an 

exaggerated reliance on phonological assembly for reading in the relatively 

more transparent language. The possibility of a „compensatory mechanism‟ 
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was therefore put forward, whereby these participants, forced to use lexical 

knowledge to great extent in their native language, seized the presence of 

vowels as an opportunity to phonologically assemble words, at the expense of 

considerably delaying reaction time. As argued in Chapters 3 and 4, this notion 

is in line with previous findings of heavy reliance on phonological assembly in 

vowelised Hebrew (Frost, 1994, 1995).  

 

Since bilingualism is the simplest form of multilingualism and a reliable 

methodological tool for comparison, it is not surprising that the majority of 

studies focussed on multiple language processing have relied on bilinguals as 

experimental participants. Within the current framework of investigation, 

whereby the comparative component is of three languages, conducting a 

trilingual study was deemed crucial in order to complete the picture. 

 

Previous trilingual studies, aimed at extending current knowledge on 

bilingualism have relied on western European languages with common scripts 

and relatively similar levels of orthographic transparency (e.g. Lemhöfer et al, 

2004, for German, Dutch, and English; Van Hell & Dijkstra, 2002; Vingerhoets 

et al, 2003, for Dutch, French and English; Wattendorf et al, 2001; 2003, for 

German, French and English). As outlined in Chapter 2, these have 

corroborated the view that multiple languages are subserved by common 

processing mechanisms, represented in largely overlapping neural substrates, 

with differences emerging as a result of language proficiency, whereby 

processing of less dominant languages requires additional cognitive demand, 

relative to the native language. To date, to my knowledge, no trilingual study 
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has compared the strategies involved in reading alphabetic languages which 

can be viewed as extremities of the orthographic transparency continuum. 

Indeed, the only trilingual study to have included Hebrew (Abu-Rabia & Siegel, 

2003), focussed on examining reading skills of native Arabic children, with 

Hebrew and English as additional languages.  

 

The present experiment was aimed at extending the present findings by 

behaviourally examining the extent to which lexical / semantic and sub-lexical / 

phonological processing may be associated with reading in Spanish, English 

and Hebrew, in trilinguals.  

 

5.2 Experiment 5:  
Naming words and non-words in trilinguals 

5.2.1 Introduction 

Although trilingualism is a widely common phenomenon, the particular 

combination of languages presently investigated does not exist in any official 

form. The most likely place to find trilinguals of Spanish, English and Hebrew 

was therefore Israel; a country based on immigration, with Hebrew and Arabic 

as the official languages, English as the most widely used foreign language 

(Amara, 2006), and a myriad of cultural and national minority populations who 

have retained their native languages. Among these is Spanish (Hadas, 1992). 

In 2005 it was estimated that 20% of Israel‟s population was Spanish-speaking 

(Ariza, 2005). The present experiment therefore consisted of two groups of 

trilingual participants, residing in Israel; native Spanish speakers and native 

Hebrew speakers. 
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The underlying premise of this trilingual comparison was examining the naming 

patterns in all three languages within the same set of participants, which would 

strengthen the notion of the use of a compensatory mechanism in native 

Hebrew readers, who provide a reliable 3-point comparison of the three 

languages. In addition, examining the reading patterns in Hebrew by native 

Spanish trilinguals would provide important insight on the strategies used to 

cope with the extremely opaque orthography of Hebrew as a non-native 

language compared to ESL, since relatively few studies have addressed this 

issue (e.g. Shimron & Sivan, 1994; Gollan, Forster & Frost, 1997; Abu-Rabia & 

Siegel, 2003; Benuck & Peverly, 2004). 

 

To my knowledge, an experiment of this nature examining the differences in 

reading strategies between Hebrew, English and Spanish, or indeed between 

Hebrew and Spanish, has not been reported previously. It was therefore hoped 

that findings from the present experiment would fill this gap in the literature and 

complete the picture of reading in three languages of contrasting levels of 

orthographic transparency.  

 

5.2.2 Method 

5.2.2.1 Participants 

Forty trilinguals20 (23 female, 17 male), aged between 19 and 65 (mean age 39 

years ±13; median=37) were recruited by word of mouth for participation in the 

                                                 
20

 The original sample comprised 44 participants, 4 of which were eventually excluded from the 
analysis. 
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present experiment21. All had received between 12 and 26 years of formal 

education (mean 17 years ±3), and had no history of learning disability or 

reading impairment. Twenty participants (10 female, and 10 male) had been 

raised in a Spanish-speaking country (Chile, Argentina, Mexico, Peru and 

Uruguay) and had received Hebrew and English tuition since primary school. 

These participants had immigrated to Israel between the age of 10 and 18, and 

received subsequent formal education in Hebrew. Seven participants from this 

group had also lived in an English-speaking country for an average of 2.6 years 

(±1.5), and/or had attended an English-speaking school or university for an 

average of 1.6 years (±0.5). These are referred to henceforth as native Spanish 

trilinguals. The remaining 20 participants (13 female, 7 male) had been raised in 

Israel by Spanish-speaking immigrant parents who spoke Spanish at home, 

and/or had lived in a Spanish speaking country for a minimum of 1 year. 

Seventeen participants had also lived in an English-speaking country for an 

average of 3 years (±2), and/or had attended an English-speaking school or 

university for an average of 5 years (±3). Participants from this group are 

therefore referred to as native Hebrew trilinguals. Demographic details of 

trilingual participants are summarised in Table 5-1. 

                                                 
21

 Note that the considerably large range of ages was due to the native Spanish participants 
being on average significantly older than native Hebrew participants, as can be seen in Table 5-
1. To anticipate, the statistical analysis reported below accounted for the group age difference 
by including “age” as a covariate. 
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Table 5-1 Trilingual participants’ demographic details 

 
Spanish Trilinguals 

(N=20) 
Hebrew Trilinguals (N=20) 

 Range Mean (SD) Range Mean (SD) 

Age (years) 19-65 48 (12) 19-57 31 (8) 

Formal education (years) 

 Overall 12-26 18 (3) 12-23 17 (3) 

 Spanish 2-21 13 (4.5) 1-8 3 (2) 

 Hebrew  1-13 5 (3.5) 8-18 12 (3) 

 English 0-3 0.5 (0.8) 0-12 3 (3) 

Age of acquisition (AoA, years)* 

 Spanish Native 0-31 8 (9.5) 

 Hebrew 0-33 11.5 (8.8) Native 

 English 6-28 12.3 (5) 3-13 8.5 (2.6) 

Length of residence (LoR, years) 

 Spanish-speaking country 7-33 21 (7) 0-14 5 (4) 

 Israel (Hebrew-speaking) 3-40 24 (10)  13-47 23 (9) 

 English-speaking country 0-5 0.6 (1) 0-8 1.5 (2) 

Language exposure (hours per week)     

 Spanish 1-60 18 (17.6) 1-60 10.6 (17.5) 

 Hebrew 50-70 68 (5) 10-90 63 (26) 

 English 1-70 18.7 (16.5) 3-70 36.5 (27) 

Figures in bold indicate a statistically significant difference between the two trilingual 
groups, as revealed by a one-way ANOVA: 
Age; F(1,39)=26.99, p<0.001  
Formal education in Spanish; F(1,39)=84.36, p<0.001 
Formal education in Hebrew; F(1,39)=44.87, p<0.001 
Formal education in English; F(1,39)=12.33, p<0.001 
AoA English; F(1,39)=8.59, p<0.006 
LoR Spanish; F(1,39)=72.81, p<0.001 
Hours of exposure to English F(1,39)=6.24, p<0.02 
* Note that for participants who considered themselves as native speakers of the group’s less 
dominant language, AoA was annotated as 0. 

 

5.2.2.2 Experimental procedure 

Inclusion criteria, stimuli and apparatus used in the trilingual experiment were 

as described in Chapter 3. Experimental procedure was identical to that used 

Experiment 1, with the exception of the number of language blocks comprising 

each test. In the present experiment both trilingual groups were presented with 

the 3 language blocks, in a counterbalanced order.  



 245 

5.2.3 Results 

5.2.3.1 Naming Latency 

Naming latencies for correct responses were averaged across participants for 

each language and each condition. Within each participant, response latencies 

in each condition falling outside the range of 2.5 standard deviations from the 

respective mean were discarded, and the mean was recalculated. Outliers 

accounted for less than 2% of all trials. Other discarded trials were those where 

the voice-key had been triggered by environmental noise or where participant 

response was not recorded due to voice-key insensitivity. These trials 

accounted for less than 4% of all trials. Table 5-2 shows the mean latencies of 

correct responses, for each experimental condition, obtained by the two 

trilingual groups in the three languages. 

 

Regression analysis revealed no effect of gender or level of formal education on 

overall naming latency (please see Appendix 9). The statistical significance of 

naming latency patterns in the three languages across the two trilingual groups 

was therefore assessed using repeated-measures analysis of variance 

(ANOVA) across subjects (F1) and across items (F2). However, as seen in 

Table 5-1, the Spanish trilinguals were significantly older than the Hebrew 

trilinguals, and regression analysis revealed a significant effect of age on 

naming latency in Hebrew and English. Consequently, the naming patterns in 

Hebrew and English were re-analysed using repeated measures analysis of co-

variance (ANCOVA) with age as a covariate, across subjects only. Table 5-3 

shows the adjusted mean response latencies for Hebrew and English. The 
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effects of word-frequency, string-length and lexicality on naming latency are 

summarised in Table 5-4, and adjusted effects in Table 5-5.  

 

As seen in Table 5-3, each trilingual group exhibited overall faster naming in the 

respective native language, i.e. native Spanish speakers were overall faster in 

Spanish naming relative to the native Hebrew speakers, who in turn were 

overall faster in Hebrew naming relative to the native Spanish speakers. In 

addition, English naming was slightly faster by participants from the native 

Hebrew group relative to the native Spanish speakers. Both trilingual groups, 

however, showed a similar naming pattern in all languages, whereby high-

frequency words were named faster than low-frequency words, short words 

were named faster than long words, and real words were named faster than 

non-words. Below is a detailed description of the between-group comparison of 

naming performance in each language.  
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Table 5-2 Mean naming latency in milliseconds (ms), achieved by each trilingual group in each language (figures in 
brackets represent standard deviations from the mean)  

 Spanish Trilinguals Hebrew Trilinguals 

 Spanish Hebrew English Spanish Hebrew English 

High-frequency short words 787 (114) 914 (163) 823 (159) 800 (93) 711 (88) 733 (82) 

High-frequency long words 810 (128) 1073 (207) 843 (125) 899 (123) 801 (89) 785 (105) 

Low-frequency short words 836 (146) 1072 (234) 903 (180) 876 (136) 780 (103) 793 (118) 

Low-frequency long words 909 (144) 1247 (288) 981 (213) 1088 (187) 861 (130) 870 (167) 

Overall word naming latency 835 (127) 1077 (216) 888 (162) 916 (126) 788 (96) 795 (113) 

Short non-words 940 (168) 1465 (375) 1012 (332) 980 (168) 1063 (327) 842 (149) 

Long non-words 1058 (231) 1583 (375) 1095 (325) 1145 (215) 1083 (286) 977 (213) 

Overall non-word naming latency 999 (193) 1524 (380) 1054 (325) 1062 (186) 1073 (301) 910 (178) 

 
 
Table 5-3 Age-adjusted means of naming latency in Hebrew and English (values for Spanish are as above) in 
milliseconds (ms; figures in brackets represent standard deviation for Spanish and standard errors for Hebrew and 
English) 

 Spanish Trilinguals Hebrew Trilinguals 

 Spanish Hebrew English Spanish Hebrew English 

High-frequency short words 787 (114) 894 (34) 805 (33) 800 (93) 732 (34) 751 (33) 

High-frequency long words 810 (128) 1043 (41) 821 (30) 899 (123) 831 (41) 806 (30) 

Low-frequency short words 836 (146) 1048 (47) 874 (39) 876 (136) 804 (47) 823 (39) 

Low-frequency long words 909 (144) 1214 (58) 931 (48) 1088 (187) 894 (58) 921 (48) 

Overall word naming latency 835 (127) 1050 (43) 858 (36) 916 (126) 815 (43) 825 (36) 

Short non-words 940 (168) 1392 (93) 975 (67) 980 (168) 1135 (93) 880 (67) 

Long non-words 1058 (231) 1499 (84) 1044 (71) 1145 (215) 1167 (83) 1029 (71) 

Overall non-word naming latency 999 (193) 1446 (87) 1009 (68) 1062 (186) 1151 (87) 954 (68) 
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Table 5-4 Effects of word-frequency, string-length and lexicality on naming latency in the two trilingual groups (ms and % effect) 

 

Spanish Trilinguals Hebrew Trilinguals 

Spanish Hebrew English Spanish Hebrew English 

ms % ms % ms % ms % ms % ms % 

Frequency 
effects 

(low – high) 

Short words 48 5 157 14 80 8 75 8 69 7 60 7 

Long words 98 10.5 174 13 138 13 188 16 59 6 84 9 

Overall 73 8 165 13 109 11 132 13 64 6.5 72 8 

Length 
effects 

(long – short) 

High-frequency words 23 2 159 14 19 2.5 98 11 90 11 52 6 

Low-frequency words 73 8 175 13.5 78 7 212 19 80 8.7 76 8 

Overall words 48 5 167 14 48 5 155 15 85 10 64 7 

Non-words 118 10 118 8 82 7.5 164 14 20 2 135 13 

Lexicality 
effects 

(nw – words) 

Short letter-strings 128 13 471 30 149 12 141 14 317 26 78 8.5 

Long letter-strings 198 18 422 25 183 14 150 12 251 20 149 13 

Overall 163 16 447 27.5 166 13 146 13 284 23 114 11.5 

 
Table 5-5 Age-adjusted effects of word-frequency, string-length and lexicality on naming latency in Hebrew and English (ms and % effect) 
(Values in Spanish are as above) Spanish Trilinguals Hebrew Trilinguals 

 Spanish Hebrew English Spanish Hebrew English 

 ms % ms % ms % ms % ms % ms % 

Frequency 
effects 

(low – high) 

Short words 48 5 154 15 69 8 75 8 72 9 72 9 

Long words 98 10.5 171 14 110 12 188 16 63 7 115 12 

Overall 73 8 162 14 89 10 132 13 67 8 93 11 

Length 
effects 

(long – short) 

High-frequency words 23 2 149 14 16 2 98 11 99 12 55 7 

Low-frequency words 73 8 166 14 57 6 212 19 90 10 98 11 

Overall words 48 5 157 14 36 4 155 15 94 11 76 9 

Non-words 118 10 107 7 69 7 164 14 32 3 149 14 

Lexicality 
effects 

(nw – words) 

Short letter-strings 128 13 421 30 135 14 141 14 367 32 93 10 

Long letter-strings 198 18 370 25 168 16 150 12 304 26 165 16 

Overall 163 16 396 27.5 152 15 146 13 336 29 129 13.5 
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Figure 5-1 Naming latency in Spanish (standard means), English and Hebrew (age-adjusted 
means) by: a. Native Spanish trilinguals; b. Native Hebrew trilinguals 
For clarity, error bars are not included in the figure, but can be viewed in Table 5-3 
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5.2.3.1.1 Naming in Spanish 

As shown in Figure 5-1a, the Spanish trilinguals exhibited a naming pattern in their 

native language, which was identical to that observed for the native Spanish 

bilinguals in Experiment 1, i.e. an increase in response latencies between high-

frequency words (798 ms), low-frequency words (872 ms) and non-words (999 

ms), a systematic increase in frequency effect as a function of length (5% increase 

for short words and 11% increase for long words) and a systematic increase in 

length effect as a function of lexicality (5% increase for words and 10% increase for 

non-words). The Hebrew trilinguals (Fig. 5-1b) exhibited slower naming and 

stronger effects of frequency and length in Spanish (shown in Table 5-5) and a 

similar pattern to their native Spanish counterparts for real words, with an average 

RT of 849 ms for high-frequency words and 982 ms for low-frequency words, and 

an 8% increase in frequency effect for short words and 16% increase for long 

words. However, the proportional difference in reaction time between long words 

and long non-words (12%) was smaller than the difference between short words 

and short non-words (14%) in this group22. In keeping with these observations, the 

3X2 ANOVA revealed significant main effects of frequency: F1 (2,76) = 131.19, p< 

0.0001; F2 (1,56)= 100.81, p<0.0001 and length: F1 (1,38) = 117.75, p<0.0001; F2 

(1,28)= 120.02, p<0.0001. The main effect of group was significant in the item 

analysis, F2 (1,28)= 53.82, p<0.0001, but not in the subject analysis (F1 (1,38) = 2.62, 

p=0.11). A close examination of the data revealed that this discrepancy between 

                                                 
22

 A subjective review conducted at the end of the experimental session revealed that some low-
frequency words were novel for Hebrew trilinguals e.g. fosa, puya, zuro, boñiga, marjal, pábulo and 
rebujo. Therefore the weaker length effect for non-words relative to low-frequency words was 
attributed to inferior Spanish proficiency by this group of trilinguals, which resulted in slower naming 
of long low-frequency words.  
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the subject and item analyses stemmed from the fact that on average, 43 out of 45 

long items and 35 out of 45 short items were named faster by the native Spanish 

speakers, although not all participants from this group produced faster naming 

latencies than all native Hebrew participants, on all conditions. In fact, as seen in 

Figure 5-1, on average, participants from both groups exhibited similar naming 

latencies for short letter-strings in Spanish, with large group differences observed 

for long letter-strings. Pairwise comparisons with Bonferroni correction revealed 

that Hebrew trilinguals were significantly slower than Spanish trilinguals while 

naming high-frequency long words: 89 ms difference, p<0.03, and low-frequency 

long words: 179 ms difference, p<0.002. Concordantly, Hebrew trilinguals exhibited 

a significantly stronger effect of frequency for long words: 6% difference, p<0.02, 

as well as significantly stronger length effects for high-frequency words: 8% 

difference, p<0.001, and low-frequency words: 11% difference, p<0.001. The 

interaction between group and length was thus significant, F1 (1,38) = 16.78, 

p<0.0001; F2 (1,28)= 16.94, p<0.001, while the interaction between group and 

frequency was not (F1 (2,76) =2.95 ,p=0.77; F2 (2,56)= 1.96, p=0.17), since the native 

Spanish speakers showed only marginally weaker effects of frequency relative to 

the Hebrew speakers (Table 5-5).  

 

Importantly, the significant frequency by length interaction: F1 (2,76) =16.74, 

p<0.0001; F2 (2,56)=4.82, p<0.01 indicates that the length effect was strongly 

modulated by frequency in Spanish. As seen in Figure 5-1, in the native Spanish 

group length effect systematically increased between high-frequency words (2%) 

low-frequency words (8%) and non-words (10%), as was also observed in 
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Experiment 1. In the native Hebrew group this increase was seen for real words, 

with a considerable increase of length effect between high-frequency (11%) and 

low-frequency words (15%). In keeping with these observations, the 3-way 

interaction (frequency x length x group) was not significant (F1 (2,76) =4.29, p=0.25; 

F2 (2,56)=1.12, p=0.33), suggesting that the modulation of frequency effects by 

word-length was similar in both groups. 

 

The 2X2 ANOVA for lexicality effects produced similar effects to the 3x2 

comparison of frequency and length effects, whereby main effects of lexicality and 

length were strongly significant: F1 (1,38) =147.53, p<0.0001; F2 (1,28)=119.4, 

p<0.0001, and F1 (1,38) =104.95, p<0.0001; F2 (1,28)=126.11, p<0.0001, respectively, 

and main effect of group was significant across items, F2 (1,28)=37.79, p<0.0001, 

but not across subjects (F1 (1,38) =2.11, p=0.15). The interaction between lexicality 

and group was not significant (F1 (1,38) =0.46, p=0.5; F2 (1,28)=0.37, p=0.55), 

indicating that the magnitude of lexicality effects in Spanish was similar between 

the two groups, although the interaction between group and length was strong: F1 

(1,38) =10.43, p<0.003; F2 (1,28)=12.48, p<0.001, since native Hebrew speakers 

showed stronger length effects than their native Spanish counterparts. The 

lexicality by length interaction was significant in the subject analysis: F1 (1,38) =5.80, 

p<0.02, but not significant in the item analysis (F2 (1,28)= 2.09, p=0.16), suggesting 

that lexicality modulated length effects in Spanish, though as shown in Table 5-5, 

this was seen only in the native Spanish group, who showed a 5% increase in 

lexicality effect between short and long letter-strings, while the native Hebrew 

group showed a 2% decrease, since length effect for non-words in this group 
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(14%) was weaker than for low-frequency words (19%). The pairwise comparison 

revealed that the magnitude of lexicality effect was significantly stronger in the 

native Spanish speakers for long letter-strings: 6% difference, p<0.02, though the 

overall lexicality effect was not significantly different between the two groups (3% 

difference, p=0.14), and therefore the 3-way interaction (lexicality x length x group) 

was not significant in either subject or item analysis (F1 (1,38) =3.45, p=0.07; F2 

(1,28)= 1.04, p=0.32).  

 

5.2.3.1.2 Naming in Hebrew  

As shown in Figure 5-1b, Hebrew trilinguals showed naming patterns in their native 

language which were identical to those observed in Experiment 1, whereby a 

strong length effect was seen for high-frequency words (12%), which 

systematically diminished as frequency decreased (10% for low-frequency words 

and 3% for non-words), and a considerable lexicality effect, which was stronger for 

short (32%) relative to long letter-strings (26%). As shown in Table 5-3, the 

Spanish trilinguals showed significantly slower naming latencies relative to Hebrew 

trilinguals in all 6 conditions: p values  0.001, as well as stronger effects, with 

significant differences observed for the magnitude of frequency effect for short: 5% 

difference, p<0.006, and long words: 7% difference, p<0.02, as well as length 

effect for low-frequency words: 5% difference, p<0.04. The naming patterns, 

however, were similar to those observed for the Hebrew trilinguals, with a strong 

length effect for high (14%) as well as low-frequency words (14%), and a 

considerably weaker effect for non-words (7%). In addition, stronger lexicality effect 

was observed for short (30%) relative to long letter-strings (25%).  



 254 

Correlation analysis between participants‟ demographic data and naming latency 

revealed significant relationship between formal education in Hebrew and overall 

naming latency in the native Spanish trilinguals: r=0.5, p<0.04, indicating that those 

participants who had spent more time receiving formal education in Hebrew tended 

to show overall faster naming in this language. In addition, significant relationships 

were found between formal education and naming latency of short high-frequency 

words: r=0.48, p<0.03, short low-frequency words: r=0.47, p<0.04, and particularly 

long low-frequency words: r=0.51, p<0.02.  

 

The 3X2 ANCOVA, therefore revealed a main effect of frequency: F(2,74)=97.45, 

p<0.001, a main effect of length: F(1,37)=113.88, p<0.001, and a main effect of 

group: F(1,37)=26.86, p<0.001. Since age was treated as a covariate in this analysis, 

the main effect of age was not significant (F(1,37)=2.50, p=0.12), and neither were 

any interactions with age (all F values < 2.53, all p values  0.23). The interactions 

between group and frequency, and between group and length were significant: 

F(2,74)=5.80, p<0.005, and F(1,37)=18.83, p<0.001, respectively, since native Hebrew 

speakers exhibited overall weaker effects of frequency and length in their native 

language, relative to the native Spanish speakers (Table 5-5) 

 

The interaction between frequency and length was significant in Hebrew: 

F(2,74)=4.43, p<0.02, indicating that frequency effects were modulated by word 

length, though as can be seen in Figure 5-1a and b, the direction of the interaction 

was in the opposite direction to that seen in Spanish. The native Hebrew speakers 

showed a 2% decrease in length effect between high (12% length effect) and low-



 255 

frequency words (10% length effect) and an 8% decrease in length effect between 

words (11% length effect) and non-words (3% length effect). The native Spanish 

speakers showed a somewhat different trend, with 0% difference observed in the 

magnitude of length effect between high- and low frequency words23 but a 7% 

decrease in length effect between words and non-words. The 3-way interaction 

(frequency x length x group) was therefore not significant (F(2,74)=0.27, p=0.76). 

 

The 2X2 ANCOVA for lexicality effects revealed a main effect of lexicality: 

F(1,37)=99.58, p<0.001, a main effect of length: F(1,37)==66.47, p<0.001, and a main 

effect of group: F(1,37)=24.32, p<0.001. As in the 3X2 ANCOVA, the main effect of 

age was not significant (F(1,37)=2.77, p=0.10) and neither were any interactions with 

age (F values < 2.78, p values  0.11). Significant interactions were found between 

lexicality and group: F(1,37)=4.93, p<0.03, and between length and group: 

F(1,37)=14.08, p<0.001, since the Spanish trilinguals showed larger differences in 

RT between short and long words and non-words, relative to native Hebrew 

speakers. Importantly, the interaction between lexicality and length: F(1,37)=6.29, 

p<0.02 indicates a modulation of length effects by lexicality, though as described 

above, this interaction was in the opposite direction to that seen in Spanish, i.e. the 

difference in naming latency between short words and non-words was larger than 

the difference between long words and non-words. This was the case in both 

groups, thus resulting in a non-significant 3-way interaction (F(1,37)=0.13, p=0.72). It 

                                                 
23

 A subjective review conducted at the end of the experimental session revealed that some low-
frequency words were novel for most Spanish trilinguals e.g. . Therefore the 
0% difference in length effect between high and low-frequency words was attributed to inferior 
Hebrew proficiency in this group of trilinguals, which resulted in slower naming of long low-
frequency words, as was seen in Spanish naming by Hebrew trilinguals.  
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is important to note that the ANOVA for these data produced identical main effects 

and interactions to those reported above. 

 

5.2.3.1.3 Naming in English 

As shown in Figure 5-1b, the English naming patterns seen by the native Hebrew 

trilinguals are reminiscent of those seen by the native Hebrew bilinguals in 

Experiment 1, whereas the patterns seen by the native Spanish trilinguals (Fig. 5-

1a) resemble those seen in Spanish in both Experiment 1 and the present 

experiment. Specifically, these participants showed very little difference in naming 

latency between short and long high-frequency words (2% length effect for high-

frequency words), and a systematic increase in this difference as frequency 

decreased (6% for low-frequency words and 7% for non-words). While the trend 

was similar for the Hebrew trilinguals, the differences between short and long 

letter-strings were larger (7% for high-frequency words, 11% for low frequency 

words and 14% for non-words).  

 

As can be seen in Table 5-3, Hebrew trilinguals were overall faster than Spanish 

trilinguals in English, particularly while naming short words and non-words. 

Pairwise comparisons therefore revealed significant group differences for high-

frequency short words: 90 ms difference, p<0.03, low-frequency short words: 110 

ms difference, p<0.03, and short non-words: 170 ms difference, p<0.04. 

 

Correlation analysis between participants‟ demographic data and naming latency in 

English revealed a significant relationship between formal education in English and 
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naming latency for English short low-frequency words in the native Hebrew 

trilinguals: r=0.46, p<0.04.  

 

The 3x2 ANCOVA revealed main effects of frequency: F(2,74)=42.19, p<0.001 and 

length: F(1,37)=76.85, p<0.001. The main effect of group approached significance 

(F(1,37)=3.93, p=0.06) in this analysis, though when age was not treated as a 

covariate the main effect of group was significant in the item analysis, F2 (1,28)= 

84.4, p<0.0001, since all 90 English items were named faster by the native Hebrew 

speakers, relative to the native Spanish speakers. However, the interaction 

between frequency and group and between length and group were not significant 

in the ANCOVA (F(2,74)=1.51, p=0.23 and F(1,37)=2.70, p=0.12, respectively) nor in 

the AVOVA (F1 (1,38) = 2.93, p=0.06; F2 (2,56)= 2.93, p=0.06, F1 (1,38) =2.55, p=0.12; 

F2 (1,28)= 1.54, p=0.23, respectively) indicating that despite the overall faster 

naming by Hebrew trilinguals, naming patterns in English were similar between the 

two groups. Similarly, the main effect of age, and the interactions between age and 

other factors were not significant (F values < 3.20, p values  0.08). As in Spanish 

and Hebrew, a significant interaction was revealed between frequency and length: 

F(2,74)=10.44, p<0.001, and as can be seen in Figure 5-3, this interaction was 

similar to that seen for Spanish, and in the opposite direction of that seen in 

Hebrew, i.e. the effect of frequency was modulated by word-length such that the 

effect increased as frequency decreased. Since this modulation was similar for 

both trilingual groups, the 3-way interaction (frequency x length x group) was not 

significant (F(2,74)=1.45, p=0.24).  
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The 2x2 ANCOVA for lexicality and length effects revealed main effects of 

lexicality: F(1,37)=77.69, p<0.001, and length: F(1,37)=37.65, p<0.001 since both 

trilingual groups exhibited faster naming for words, relative to non-words, and for 

short, relative to long letter-strings. As in the analysis of frequency and length 

effects, the main effect of group approached significance (F(1,37)=3.67, p=0.06) in 

the ANCOVA, and was significant in the item analysis of the AVOVA: F2 

(1,28)=66.81, p<0.0001. Similarly, the main effect of age and all interactions with this 

factor were not significant (F values < 2.69, p values  0.11). In addition, there 

were no interactions between group and lexicality (F(1,37)=3.27, p=0.08) or between 

group and length (F(1,37)=1.29, p=0.26). The lexicality by length interaction was 

significant: F(1,37)=12.03, p<0.001, indicating that length effect was modulated by 

lexicality in English, similar to Spanish. As shown in Table 5-5, this modulation was 

stronger for the native Hebrew speakers, who showed a 5% increase in lexicality 

effect between short and long letter-strings, relative to only 2% increase seen in 

native Spanish speakers, although the 3-way interaction was not significant 

(F(1,37)=1.51, p=0.23).  

 

5.2.3.1.4 Post-hoc assessment of between-language effects 

As shown in Table 5-5, the native Spanish trilinguals exhibited weaker effects of 

frequency for short and long words, as well as length effects for high-frequency 

words in their native language relative to Hebrew and English, while length effects 

for low-frequency words were weaker in English, but stronger in Hebrew, and for 

non-words length effect was strongest in Spanish. Similarly, while lexicality effects 

for short letter-strings were weaker in Spanish than in the other two languages, for 
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long letter-strings weaker effects were found in English. Importantly, lexicality 

effects were consistently and considerably stronger in Hebrew than in the other two 

languages. Pairwise comparisons with Bonferroni correction revealed significant 

differences between Spanish and Hebrew, and between English and Hebrew, but 

no significant differences were found between Spanish and English in this group. 

Specifically, the frequency effect for short words was significantly stronger in 

Hebrew than Spanish and English: p<0.001, and p<0.04, respectively. Similarly, 

length effect for high-frequency words was significantly stronger in Hebrew than 

Spanish and English: p values <0.001, though for low-frequency words the length 

effect was moderately stronger in Hebrew than in Spanish (p=0.06), but 

significantly stronger in English than in Hebrew: p<0.03, due to the inverse 

interaction between frequency and length in Hebrew. Lexicality effects for short 

letter-strings were markedly stronger in Hebrew than in Spanish and English: p 

values <0.001, while for long letter-strings the differences were somewhat smaller 

due to the inverse interaction between length and lexicality in this language, though 

still significant: p<0.04 for Spanish, and p<0.001 for English. 

 

For the native Hebrew speakers, frequency effects for short words were almost 

identical in the three languages. As illustrated in Figure 5-1b, naming latencies for 

short high and low-frequency words were remarkably similar in the three 

languages, with differences emerging for long words, as well as short and long 

non-words. Frequency effects for long words were therefore weaker in the native 

language relative to Spanish and English. In contrast, length effects for high-

frequency words were stronger in the native language relative to the other two 
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languages, whereas for low-frequency words and non-words length effects were 

weaker in Hebrew. Importantly, as in the native Spanish trilinguals, lexicality effects 

in Hebrew were consistently and considerably stronger than in Spanish and 

English. The statistical analysis revealed that frequency effects for long words were 

significantly stronger in Spanish than Hebrew: p<0.001 and English: p<0.001, 

though the stronger effect in English relative to Hebrew did not reach statistical 

significance (p=0.82). In contrast, the length effect for high frequency words was 

significantly stronger in Hebrew than in English: p<0.007, as well as significantly 

stronger in Spanish than in English: p<0.02. The length effects for low-frequency 

words were significantly stronger in Spanish than both Hebrew and English: p 

values <0.001. Since length effect for non-words was practically absent in Hebrew, 

these effects in the other languages were significantly stronger: p values <0.001. 

Lexicality effects were significantly stronger in Hebrew than in English and Spanish 

for short letter-strings: p values <0.001, whereas for long letter-strings the 

difference between Spanish and Hebrew was significant: p<0.03, while the 

difference between English and Hebrew was not (p=0.14). 

 

5.2.3.2 Naming accuracy  

The number of errors made in each condition of each language are summarised in 

Table 5-6 and illustrated in Figure 5-4. Table 5-7 shows the values for the 

statistical analysis of effects of frequency, length and lexicality on naming 

accuracy. The types of errors made in each language are presented in Table 5-8 

and can be visualised in Figure 5-5. 
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Table 5-6 Incorrect responses [mean (SD)] made by each trilingual group in each language  
 Spanish Trilinguals Hebrew Trilinguals 

 Spanish Hebrew English Spanish Hebrew English 

Overall naming errors 3.15 (3.2) 6.6 (3.8) 6.1 (3.1) 9.7 (4.5) 1.3 (1.4) 5.0 (2.9) 

High-frequency short words 0.05 (0.2) 0.2 (0.4) 0.05 (0.2) 0.25 (0.6) 0 0.05 (0.2) 

High-frequency long words 0.05 (0.2) 0.15 (0.4) 0.2 (0.5) 0.2 (0.4) 0 0.2 (0.4) 

Low-frequency short words 0.45 (0.6) 1.7 (1.5) 1.2 (1.4) 0.95 (0.9) 0.4 (0.7) 0.3 (0.5) 

Low-frequency long words 0.3 (0.7) 2.9 (1.9) 3.25 (0.8) 2.8 (1.6) 0.6 (0.9) 3.0 (1.3) 

Short non-words 0.65 (0.9) 0.7 (0.7) 0.9 (0.9) 2.05 (1.8) 0.1 (0.3) 0.65 (0.9) 

Long non-words 1.65 (1.8) 0.95 (0.9) 0.55 (0.7) 3.45 (1.5) 0.2 (0.4) 0.8 (1.2) 

 

As seen in Table 5-6, similar to the naming latency data, each trilingual group 

exhibited the highest level of accuracy in the respective native language. The 

native Spanish speakers named 96.5% of Spanish words and non-words correctly, 

relative to only 92.6% and 93.2% in Hebrew and English, respectively. Within-

group comparison (related samples Wilcoxon Signed Ranks test) revealed that the 

mean number of incorrect responses in Spanish was significantly lower than that of 

Hebrew and English in this group: z=-2.81, p<0.005 and z=-2.68, p<0.007, 

respectively, while the latter two did not differ (z=-0.48 p=0.63). Similarly, the native 

Hebrew speakers named 98.5% of Hebrew words and non-words correctly, relative 

to only 89.2% in Spanish and 94.4% in English. The statistical analysis for this 

group revealed that the differences between all three languages were significant; 

i.e. native Hebrew speakers made significantly more errors in Spanish than in 

Hebrew: z=-3.92, p<0.0001, significantly more errors in English than in Hebrew: 

z=-3.63, p<0.0001, as well as significantly more errors in Spanish than in English: 

z=-3.31, p<0.001. Between-group comparison (independent samples Wilcoxon 

Signed Ranks test) revealed that the mean number of errors in Spanish was 

significantly lower for the native Spanish speakers relative to the native Hebrew 

speakers: W=258.5, z=-4.14, p<0.0001, who in turn, exhibited a significantly lower 
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mean number of errors in Hebrew: W=243, z=-4.56, p<0.0001. The error rate seen 

in English, although lower for the native Hebrew speakers than for native Spanish 

speakers, was not significantly different between the two groups (W=369.5 z=-1.12 

p=0.28).  

 

Correlation analyses showed that for native Spanish speakers, overall accuracy in 

Hebrew was related to the proportional length of residence in Israel: r=0.51, 

p<0.02, the number of years of formal education received in Hebrew: r=0.53, 

p<0.02, and age of acquisition of Hebrew: r=-0.54, p<0.01. Therefore, those 

participants who had been exposed to Hebrew for a longer period of time tended to 

make fewer errors than those who had had less exposure. No significant 

relationships were found between demographic factors and naming accuracy in 

English or Spanish in this group. 

 

For native Hebrew speakers, overall accuracy in Spanish was related to the 

proportional length of residence in a Spanish speaking country: r=0.51, p<0.02. In 

addition, for this group, overall English accuracy correlated with the proportional 

length of residence in an English speaking country: r=0.44, p<0.05, and the 

number of years of formal education received in English: r=0.52, p<0.02. No 

significant relationships were found between demographic factors and naming 

accuracy in Hebrew for this group. 
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5.2.3.2.1 Effects of word-frequency, string-length and lexicality on naming 
accuracy  

 

Table 5-7 Statistical values for effects of word-frequency, length and lexicality on naming accuracy 
– within-group comparison – related samples Wilcoxon signed ranks test 

 Spanish Trilinguals Hebrew Trilinguals 

 Spanish Hebrew English Spanish Hebrew English 

Frequency effect on naming 
accuracy of short words 

z=-2.53 
p<0.01 

Z=-3.2 
p<0.001 

z=-3.15 
p<0.002 

z=-2.70 
p<0.007 

z=-2.27 
p<0.02 

z=-1.89 
p=0.06 

Frequency effect on naming 
accuracy of long words  

z=-1.89 
p=0.06 

Z=-3.55 
p<0.0001 

z=-3.97 
p<0.0001 

z=-3.75 
p<0.0001 

z=-2.59 
p<0.01 

z=-3.86 
p<0.0001 

Length effect on naming 
accuracy  of high-freq words  

- 
Z=-0.58 
p=0.56 

z=-1.73 
p=0.08 

z=-0.38 
p=0.71 

- 
z=-1.73 
p=0.08 

Length effect on naming 
accuracy of low-freq words 

z=-0.92 
p=0.36 

Z=-3.4 
p<0.001 

z=-3.65 
p<0.0001 

z=-3.55 
p<0.0001 

z=-0.95 
p=0.34 

z=-3.68 
p<0.0001 

Length effect on naming 
accuracy of  non-words 

z=-2.59 
p<0.01 

Z=-1.17 
p=0.24 

z=-0.72 
p=0.47 

z=-2.27 
p<0.02 

z=-0.82 
p=0.41 

Z=-0.5 
p=0.62 

Lexicality effect on naming 
accuracy of short letter-strings 

z=-0.50 
p=0.61 

z=2.64 
p<0.008 

z=1.44 
p=0.15 

z=-2.17 
p<0.03 

z=1.61 
p=0.11 

z=1.51 
p=0.13 

Lexicality effect on naming 
accuracy of long letter-strings 

z=-2.89 
p<0.004 

z=3.19 
p<0.001 

z=3.96 
p<0.001 

z=-0.82 
p=0.42 

z=1.93 
p<0.05 

z=3.64 
p<0.001 

Figures in bold highlight statistical significance 

 

As shown in Table 5-7, since both trilingual groups tended to make more errors 

when naming low-frequency words relative to high-frequency words in all three 

languages, all within-group comparisons revealed significant or nearly significant 

frequency effects on accuracy. In contrast, string-length did not significantly affect 

word naming accuracy in each group‟s respective native language. However, in the 

less dominant languages participants tended to respond incorrectly significantly 

more often when naming long, relative to short low-frequency words, and in 

Spanish, both groups tended to make significantly more errors while naming long 

non-words relative to short non-words. The pattern of lexicality effects on naming 

accuracy was somewhat different. Although the overall lexicality effects on naming 

accuracy were statistically significant in all languages for both trilingual groups, it is 

important to note that only in Spanish did participants make more errors in non-

word, relative to word naming. In this language, similar to the RT data, the Spanish 
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trilinguals tended to make significantly more errors in long, relative to short non-

words, thus showing a significant lexicality effect for long letter-strings. In contrast, 

the native Hebrew speakers showed the opposite pattern, with a significant 

lexicality effect for short letter-strings and a non-significant effect for long letter-

strings, despite the fact that these participants had also made more errors while 

naming long non-words relative to short non-words, however, since a relatively 

large number of errors was made while naming long low-frequency words, the 

difference between the latter and long non-words was not significant.  

 

In Hebrew and English the mean number of errors made in word trials exceeded 

that made in non-word trials. These differences were statistically significant for long 

letter-strings in both groups, since in these languages, long low-frequency words 

were named incorrectly significantly more often than long non-words. The native 

Spanish trilinguals also showed a significant lexicality effect for short letter-strings 

in Hebrew, since a large proportion of errors was made in short low-frequency 

words as well as long ones in this group. 
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a. Naming errors in Spanish
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b. Naming errors in Hebrew
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 Figure 5-2 Naming errors in a. Spanish, b. Hebrew, c. English (continued below)  
Error bars represent standard deviations from the mean, as indicated in Table 5-6  
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c. Naming errors in English
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Figure 5-2 continued 
 
 

 
5.2.3.2.2 Types of errors made in each language 
 
 
Table 5-8 Types of errors made by each trilingual group in each language [mean errors (SD)] 

 Spanish Trilinguals Hebrew Trilinguals 

 Spanish Hebrew English Spanish Hebrew English 

Stress Assignment 1.65 (2.1) 0.75 (0.7) 0.2 (0.4) 5.75 (3.2) 0.05 (0.2) 0.15 (0.4) 

Phonological errors 0.8 (0.7) 4.2 (3.1) 5.35 (2.8) 1.25 (1.6) 0.8 (1.2) 3.35 (1.6) 

Lexicalisation 0.35 (0.7) 0.9 (0.9) 0.45 (0.7) 0.3 (0.7) 0.05 (0.2) 0.45 (0.9) 

Word Substitution 0.35 (0.9) 0.75 (1.2) 0.1 (0.4) 2.4 (3.1) 0.4 (0.6) 1.05 (1.3) 

Types of errors were categorised as:  

 Stress assignment; referring to incorrect assignment of stress of polysyllabic words 

 Phonological errors; referring to violation of correct phonemic pronunciation of words. In Spanish, 
these errors could be pronouncing a silent H. In English, these errors can be made 
predominantly in irregular words e.g. ‘gauge’, while in Hebrew these errors can be made by 
assigning an incorrect vowel to a consonant string, e.g. the string GMD , which should be 
pronounced as ‘gamad’ to mean dwarf, could be mistakenly pronounced ‘gemed’, which has no 
meaning 

 Lexicalisation; pronouncing non-words as though they were real words, e.g. ‘grink’ as drink 

 Word substitution; errors stemming from swapping the position of letters within words, such as 
‘beard’ and ‘bread’. 

 

The patterns of error-type made by trilinguals in the native languages and in 

English were identical to those observed by bilinguals in Experiment 1. As seen in 

Table 5-8 and Figure 5-5, the majority of stress assignment errors were made in 
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Spanish, with a very small proportion of this type of mispronunciation seen in 

Hebrew and English. Concordantly, there was a statistically significant association 

between this type of errors and language in both groups: χ2
(2)=22.58, p<0.001 for 

Spanish trilinguals; χ2
(2)=24.87, p<0.001 for Hebrew trilinguals. In contrast, 

phonological errors were most prevalent in English and Hebrew: χ2
(2)=21.27, 

p<0.001 for Spanish trilinguals; χ2
(2)=26.00, p<0.001 for Hebrew trilinguals. In 

addition, the proportion of lexicalisation errors was consistently small in all 

languages (χ2
(2)=4.61, p=0.10 for Spanish trilinguals; χ2

(2)=1.15, p=0.56 for Hebrew 

trilinguals). Interestingly, the native Hebrew speakers tended to make a relatively 

large proportion of word substitution errors in all three languages, with the largest 

proportion found in Hebrew, though no significant association was found between 

this type of error and language in this group (χ2
(2)=3.63, p=0.16). Similarly, the 

native Spanish speakers showed the highest proportion of word substitutions in 

Hebrew, with a somewhat smaller proportion in Spanish, and nearly none in 

English, though the effect was not significant (χ2
(2)=3.95, p=0.14).  
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Figure 5-3 Types of naming errors; a. Spanish, b. Hebrew, c. English (continued below) 



 268 

 

b. Types of erros in Hebrew 
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c. Types of errors in English 
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Figure 5-3 continued 
 

 

5.2.4 Discussion 

The present experiment assessed the reading strategies employed by two groups 

of Spanish, English and Hebrew trilinguals; native speakers of Spanish and 

Hebrew, respectively, using a word / non-word naming task in the three languages. 
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The experiment was aimed at extending the findings of Experiments 1 and 4, which 

indicated that reading strategies employed by bilinguals of Spanish and English, 

and of Hebrew and English, were largely shaped by the varying levels of 

orthographic transparency in these languages. 

 

The present results showed that each trilingual group exhibited optimal naming 

performance in the respective native language, while showing similar naming 

latency trends in all languages, whereby high-frequency words were named faster 

than low-frequency words, short letter-strings were named faster than long letter-

strings and real words were named faster than non-words. All main effects of 

frequency, length and lexicality were thus statistically significant. The main effects 

of group, however, were significant only in Hebrew, since native Hebrew trilinguals 

were consistently faster at naming words and non-words in their native language, 

relative to the native Spanish trilinguals.  

 

The differences observed in the patterns of interactions between frequency, length 

and lexicality were in keeping with the levels of orthographic transparency of each 

native language, and replicated the findings of Experiment 1. Specifically, the 

native Spanish trilinguals showed a strong modulation of frequency effects by 

string-length in Spanish, which in turn were strongly modulated by lexicality, as 

seen by a systematic increase in naming latency between short and long high-

frequency words, low-frequency words and non-words. This trend was in the 

opposite direction in Hebrew, whereby the native readers showed a systematic 

decrease in length effect between high-frequency words, low-frequency words and 



 270 

non-words. Similarly, in keeping with previous findings (Ellis & Hooper, 2001; Ellis 

et al, 2004), naming accuracy patterns reflected the orthographic properties of 

each native language, whereby the highest proportion of errors made in Spanish 

were related to incorrect stress assignment, while the majority of Hebrew errors 

were related to phonological mispronunciations, with a somewhat higher proportion 

of word substitutions, relative to the other languages. In addition, while patterns of 

frequency, length and lexicality effects on Spanish accuracy mirrored the RT data, 

Hebrew patterns did not. The majority of errors in Hebrew were made while naming 

low-frequency words, with very little difference between short and long words. 

Word-frequency, therefore significantly affected naming accuracy, whereas word-

length did not. In addition, lexicality effects on naming accuracy in Hebrew were 

significant, though this effect was in the opposite direction to that seen in Spanish, 

since the number of errors made in Hebrew words exceeded that made for non-

words. This was due to the absence of written vowels, which permits any 

combination of spoken vowels to be assigned to a consonant string comprising 

non-words.  

 

Importantly, Hebrew trilinguals showed a strong length effect for high-frequency 

words, which gradually diminished as frequency decreased, as also seen by their 

bilingual counterparts in Experiment 1. This observation lends further support for 

the „strategic dilemma‟ proposed in Experiment 2, whereby upon initial exposure to 

the experimental materials, the cognitive system‟s default strategy; phonological 

assembly (c.f. Phonological Hypothesis; Frost, 1994; 1995), interfered with fast 

lexical retrieval, particularly manifested in Hebrew high-frequency words. 
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The present patterns observed in English; the midpoint in the orthographic 

transparency continuum, also corroborated those observed in ESL for the bilingual 

participants in Experiment 1. Specifically, the native Spanish trilinguals showed a 

moderate modulation of frequency effects on naming latency by word-length, which 

in turn was modulated by lexicality, relative to their native, more transparent 

language. The native Hebrew trilinguals, although overall faster than the native 

Spanish trilinguals, showed stronger effects of length, particularly for low-frequency 

words and non-words, indicating a stronger modulation of frequency effects by 

length, as well as a stronger modulation of length effects by lexicality in English by 

this group of trilinguals, relative to the native Spanish group. As discussed earlier, 

these modulations were in the opposite direction to those seen in the 

orthographically opaque Hebrew.  

 

Naming accuracy patterns in English were largely similar for both trilingual groups, 

whereby errors were mostly related to phonological mispronunciations, and the 

majority were made while naming long low-frequency words. The observed effects 

of frequency and length on real word naming accuracy mirrored the RT data, 

whereas the effects of lexicality did not. In this case, unlike in Hebrew, the 

presence of written vowels in English, which permits the correct assembly of any 

letter-string even in the absence of meaning, led to considerably less errors in non-

word trials.  

 

Importantly, the present findings strengthen the argument that the putative 

„compensatory mechanism‟ adopted by Hebrew readers for ESL in Experiments 1 
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and 4 was not related to inferior language proficiency. While the demographic data 

of participants from Experiment 1 (and 4) suggested that native Spanish bilinguals 

may have been more proficient in English than native Hebrew bilinguals, 

demographic details and naming performance in the present experiment showed 

that native Hebrew trilinguals were more proficient in English than native Spanish 

trilinguals. However, the differences in the magnitude of interactions between 

frequency, length and lexicality were replicated in the present experiment.  

 

Admittedly, these differences could have risen as a result of the different scripts, 

i.e. Spanish readers could have exhibited weaker modulation of frequency effects 

by length, and of length effects by lexicality than Hebrew readers because Spanish 

and English carry the same script, which is fundamentally different from Hebrew. 

However Table 5-2 and 5-3 clearly show that for the native Hebrew trilinguals, 

naming latencies in Hebrew and English (and indeed in Spanish) were overall very 

similar, despite the script difference. It is therefore plausible that the Hebrew 

readers were employing a „compensatory mechanism‟ for reading in English, 

whereby in keeping with Frost‟s findings (1994; 1995), these participants seized 

the opportunity to phonologically assemble words when vowels were available, 

leading to increased length effects for lower-frequency words, in spite of this being 

an inefficient way to read in English, which may be more transparent than Hebrew, 

but by all accounts is still a very opaque orthography.  

 

At the same time, Hebrew trilinguals showed a trend towards word substitution 

errors in English to a greater extent than the Spanish trilinguals, which was also 
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observed by bilinguals in Experiment 1. This trend may point towards some 

transfer of the strategy employed in the native language to a less dominant 

language, as seen in the activation patterns produced within certain cortical 

regions in Experiment 4. Indeed, in the present experiment, a relatively high 

proportion of word substitutions was also observed while Hebrew trilinguals were 

reading in Spanish, though this also, was not statistically significant.  

 

The main strength of the present experiment was the ability to compare naming 

patterns in the three languages, and particularly the two extremities of the 

orthographic transparency continuum within the same set of participants. While 

reading in Spanish and Hebrew, both groups showed overall similar patterns of 

effects of frequency, length and lexicality, in keeping with the level of orthographic 

transparency of each language. However, some differences emerged between the 

two groups, which merit particular attention.  

 

First, the demographic details and circumstances of the native Spanish trilinguals 

suggested that these participants may have been more proficient in Hebrew than in 

English, since age of acquisition of Hebrew was earlier than that of English, and 

language exposure through formal education and in daily life was higher in Hebrew 

than in English. Indeed, at the time of testing, most Spanish trilinguals had been 

living in Israel for longer than they had in their native, Spanish-speaking countries. 

Nevertheless, naming performance in this group was superior in English than in 

Hebrew, and thus seemed to indicate that in fact, Hebrew proficiency was inferior 

to English in this group. The discrepancy between the demographic data and 
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naming performance in the Spanish trilinguals may be attributed to a greater effort 

required by these participants to read in the extremely opaque Hebrew, relative to 

the more transparent English, despite the higher levels of exposure to Hebrew. 

This notion is in keeping with the findings of Benuck and Peverly (2004), which 

showed that native English bilinguals exhibited a greater reliance on semantic 

context when reading sentences in Hebrew relative to English. Moreover, these 

authors showed that reliance on context was increased when Hebrew words were 

more ambiguous. Another study that examined reading in Hebrew by non-native 

English-Hebrew bilinguals was conducted by Gollan, Forster and Frost (1997). 

Their study assessed the effects of repetition priming within each language, and 

translation priming across the two languages, using a lexical decision task. Results 

indicated that in English (L1) – Hebrew (L2) bilinguals and Hebrew (L1) – English 

(L2) bilinguals alike, repetition priming effects in Hebrew were weaker than in 

English, which was attributed to the high level of phonetic ambiguity of Hebrew. 

Moreover, when assessing cross-language translation priming effects with native 

language primes and second language targets, native Hebrew bilinguals (who 

were presented with Hebrew primes and English targets) showed moderately 

enhanced translation priming effect for cognates (53 ms) relative to non-cognates 

(36 ms), while the native English bilinguals showed a markedly strong enhanced 

effect in the same direction (142 ms effect for cognates and 52 ms for non-

cognates). This “exaggerated” enhanced priming effect (p.1129) was attributed to 

inferior Hebrew proficiency of native English bilinguals relative to English 

proficiency of native Hebrew bilinguals. However, when prime-target language was 

reversed, native Hebrew bilinguals (presented with English primes and Hebrew 
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targets) showed no difference in translation priming effect between cognates and 

non-cognates (9 ms for both), while English bilinguals (presented with Hebrew 

primes and English targets) showed a trend for an enhanced effect for cognates (4 

ms), and an inhibitory effect for non-cognates (-4 ms), which was even greater in a 

post-hoc analysis with only proficient bilinguals (-12 ms), indicating that non-

cognate primes in Hebrew were interfering with lexical decision, rather than 

facilitating it. It is therefore likely that the high level of orthographic opacity of 

Hebrew may have contributed to this interference to a greater extent than language 

proficiency. However, it is important to note that both studies descried above 

demonstrated significant effects of language exposure on performance. Benuck 

and Peverly (2004) showed that participants regarded as the less advanced 

readers relied on semantic context in Hebrew to a greater extent than the more 

advanced readers. Similarly, Gollan et al (1997) showed that lexical decisions in 

Hebrew non-word trials were considerably slower for bilinguals tested in the USA, 

relative to bilinguals tested in Israel. These findings emphasise the important role 

of language exposure in fluent reading, in addition to level of orthographic 

transparency. In the present study, correlation analysis showed significant 

relationships between language exposure in Spanish trilinguals and naming 

performance in Hebrew, suggesting that inferior proficiency also contributed to 

slower naming in Hebrew.  

 

For the native Hebrew trilinguals, demographic details showed that these 

participants had lived in Spanish-speaking countries longer than in English-

speaking countries, while age of acquisition and formal education in Spanish and 
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English were similar. However, subjective rating of language exposure in daily life 

was greater in English than in Spanish and indeed, in this group of participants 

naming performance in English exceeded that observed in Spanish. Moreover, 

naming accuracy in both languages was significantly related to length of residence 

in Spanish and English-speaking countries, respectively, while English accuracy 

level was higher. In this case, the higher performance in English relative to Spanish 

is likely to be related mainly to language exposure. This may be surprising, 

particularly to advocates of script effects, since high proficiency in English is also 

likely to be manifested in faster reading of Spanish words and non-words, given its 

high level of orthographic transparency.  

 

Second, a point which transpires from the arguments above is the similarity in 

Spanish naming latencies for short words and non-words between the two groups. 

As illustrated in Figure 5-1, the differences between the groups emerged in long 

letter-strings, whereby the native Hebrew readers were considerably slower. 

Indeed, a close examination of the data revealed that among the items that elicited 

the slowest RTs were the words acanto, genoma, hocico, secuaz, and the non-

words dopite, obchol, gepilo and ñarpil, for which correct pronunciation requires 

knowledge of the stress assignment rules. Interestingly, 6 of these items also 

elicited slower RTs in the native Spanish group. However, other words, such as 

bípedo and pábulo, for which the accent mark was present, indicating to the reader 

the syllable to be stressed, also elicited slower RTs in the Hebrew group. Therefore 

in the case of Hebrew trilinguals reading in Spanish, it is not possible to rule out the 

suggestion that slower naming was related to inferior language proficiency, 
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however, it is also plausible that given the opportunity to phonologically assemble 

words with the aid of written vowels, these readers resorted to the „compensatory 

mechanism‟, which was manifested in this transparent language to a greater extent 

than in the „quasi transparent‟ English. Examining this issue in a group of highly 

proficient Hebrew-Spanish bilinguals in a future experiment would help support this 

assertion further.  

  

Third, in Hebrew trilinguals, length and lexicality effects on naming latency of 

Spanish non-words were stronger for short relative to long items. This was also 

seen in the naming accuracy data, and was attributed to a large proportion of low-

frequency words being perceived as non-words in Spanish. Similarly, the slower 

naming of Hebrew long low-frequency words by Spanish trilinguals was attributed 

to the perception of a large proportion of low-frequency words as non-words, 

stemming from lower Hebrew proficiency, as suggested by the significant 

correlation between naming latency of these words and formal education in 

Hebrew. In both cases, the slower naming of long low-frequency words resulted in 

group differences in the patterns of interaction between frequency and length in 

Hebrew, and length and lexicality in Spanish. Perhaps a more pragmatic approach 

would have been to expose participants to the experimental stimuli prior to the 

experiment and alert them to the presence of non-words. This was not done due to 

concerns of significantly reducing frequency and lexicality effects through prior 

exposure to the items, however, this consideration might be useful for future 

experiments, based on the findings of the present study. 
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Taken together, the present experiment exemplified the complexity involved in the 

interpretation of data obtained from multilinguals, due to the varying levels of 

language exposure and context of language-use (Grosjean, 1989). However, 

despite the differences observed between the two trilingual groups, the overall 

trends in the three languages were similar, whereby both groups showed strong 

modulation of frequency effects by length in Spanish, moderate modulation in 

English, and an inverse modulation in Hebrew, in keeping with the graded levels of 

orthographic transparency of these languages. In addition, both groups showed 

similar patterns of naming accuracy, whereby the majority of errors made in 

Spanish were related to incorrect stress assignment, whereas the majority of errors 

made in English and Hebrew were related to phonological mispronunciations of 

real words. Importantly, while there was a trend, hinting towards a certain degree 

of transfer of the native strategy to the less dominant languages in Hebrew 

readers, the combined findings of the present experiment lend further support to 

the proposed „compensatory mechanism‟ employed by these readers when faced 

with a relatively more transparent orthography than their native language, 

particularly in English. In the case of Spanish, the present data may point towards 

a stronger compensatory mechanism relative to English, though the effects of 

language proficiency cannot be ruled out in the present experimental sample. 

Further research is thus required in order to strengthen this novel finding. The final 

chapter of the thesis outlines discusses the implications of the present study, its 

limitations and suggestions for future research. 
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Chapter 6 

Conclusion and Implications 
 

The present study examined the cognitive processes and neural correlates of 

reading strategies employed by bilingual and trilingual readers of three languages, 

whose writing-systems can be viewed as placed along a continuum of orthographic 

transparency, with Spanish at the transparent extreme, Hebrew at the opaque 

extreme and English as the midpoint. This is the first study to combine behavioural 

measures and neuroimaging to address the combined effects of orthographic 

transparency and language proficiency in these three languages. 

 

Since the early 20th century, studying the cognitive processes underlying literacy 

and multilingualism has been the goal of several disciplines, aiming to understand 

the cerebral architecture of multiple-language processing, to develop teaching 

methods and remedial interventions for dealing with reading impairment in different 

languages, or to satisfy some of humanity‟s best traits; curiosity and aspiration for 

knowledge. The findings of the five experiments reported in the present study carry 

implications pertaining to all of the above. This final chapter summarises the main 

findings of the present study, outlines its limitations and scope for future research 

and ponders upon its implications in light of the questions put forward in Chapter 1. 
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6.1 The effects of the graded levels of orthographic transparency 
of Spanish, English and Hebrew on reading strategies employed 
by native readers 

 

Experiment 1 assessed the effects of word-frequency, length and lexicality on 

naming latency and accuracy in the three languages, in bilinguals of Spanish and 

English, and Hebrew and English, as compared to English monolinguals. Naming 

accuracy results reflected the orthographic properties of each language, whereby 

Spanish errors were primarily related to incorrect stress-assignment, occurring 

most often while naming long non-words, whereas English and Hebrew were 

associated primarily with phonological mispronunciations of real words, made 

mostly during low-frequency word naming. These findings are in keeping with 

previous studies assessing the effects of orthographic transparency on naming 

performance (Ellis and Hooper, 2001; Ellis et al, 2004). Concurrently, the strong 

effects of frequency, length and lexicality on naming latency in the native 

languages were indicative of reliance on lexical / semantic processing as well as 

sublexical / phonological processing in all three languages, though the observed 

patterns of interactions between these effects demonstrated that the interplay 

between the types of processing varied in accordance with the orthographic 

properties of each language, and in keeping with the weak version of the 

Orthographic Depth Hypothesis (Katz & Frost, 1992). Specifically, frequency and 

lexicality effects were strongly modulated by string-length in Spanish, somewhat 

less so in English, and inversely modulated in Hebrew. Moreover, in the latter, the 

absence of written vowels led to robust lexicality effects and minute length effects 

for non-words. Interestingly, the inverse interactions between frequency, lexicality 
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and length stemmed from an unusually strong length effect for high-frequency 

words, which gradually diminished as frequency of items decreased. Experiment 2 

conducted in Hebrew only, confirmed that this effect was related to slower 

processing of long letter-strings in these readers. This observation was therefore 

best accounted for within a Dual-Route framework, whereby upon initial exposure, 

readers attempted sequential assembly of experimental stimuli, which conflicted 

with the optimal strategy for this opaque orthography; fast lexical retrieval. This 

finding lends support to the Phonological Hypothesis (c.f. Frost, 1994; 1995), 

suggesting that the default strategy of the cognitive system is sequential assembly 

of written material, giving way to lexical processing when this constitutes a more 

efficient way for visual word recognition. The conflict between sequential assembly 

and lexical retrieval seen in these readers was therefore referred to as a „strategic 

dilemma‟. Interestingly, in Experiment 1, while the effects of this dilemma were 

most evident in Hebrew, they were somewhat less evident in English, and not at all 

in Spanish, where the high level of orthographic transparency of this language 

permits correct sequential assembly of words and non-words, thereby reducing the 

conflict between lexical and sublexical routes.  

 

Taken together, the findings of the first two experiments replicated and extended 

the findings from the initial cross-language study conducted by Frost, Katz and 

Bentin (1987), and thus demonstrated that reading strategies employed by native 

readers were largely constrained by the level of orthographic transparency of their 

native languages, in keeping with subsequent findings (Paulesu et al, 2000) and 
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observations of differentially manifested symptoms of dyslexia in different 

languages (e.g. Wydell & Butterworth, 1999; Beland & Mimouni, 2001).  

 

6.2 Visualising the different types of strategies involved in reading 
Spanish, English and Hebrew at the cortical level 

 

The first fMRI experiment (Experiment 3), albeit a preliminary experiment, 

conducted with three participants; one from each target population, confirmed the 

suitability of the chosen experimental design  for a bilingual comparison of reading 

strategies in Spanish, English and Hebrew. The second fMRI experiment 

(Experiment 4), therefore set out to visualise the neural correlates of the effects 

observed in Experiment 1, and clarify the outstanding issues which arose in the 

latter. Results showed that reading in all three languages was mediated by a 

distributed network of largely overlapping regions, also involved in spoken 

language processing, in accordance with previous neuroimaging studies (Pugh et 

al, 1996; Fiez et al, 1999; Wydell et al, 2003; McDermott et al, 2003; Joubert et al, 

2004; Klein et al, 1994; D‟esposito & Alexander, 1995; Kim et al, 1997; Deahaene 

et al, 1997; Yetkin et al, 1996; Chee et al, 1999; Pu et al, 2001; Hernandez et al, 

2000; Paulesu et al, 2000; Hernandez et al, 2001; Vingerhoets et al, 2003; 

Briellmann et al, 2004; Meschyan & Hernandez, 2005; Halsband, 2006), while 

reading in each language was also associated with some preferential patterns of 

activation, which were in keeping with their graded levels of orthographic 

transparency. Specifically, reading in Hebrew was associated with activation within 

the triangular part of the left inferior frontal gyrus, whereas reading in Spanish was 

associated with activation in the opercular portion, while reading in English was 
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associated with activation within both portions of the gyrus. Similarly, reading in 

Spanish led to activation within the left postcentral gyrus, not seen in the other 

native languages. In addition, Spanish and English, but not Hebrew, were 

associated with activation in the left inferior parietal lobule, whereas Hebrew and 

English, but not Spanish, were associated with activation within the left middle 

frontal gyrus. Moreover, the spatial extent of activation within the right occipital 

cortex varied systematically between the languages, in keeping with their positions 

along the orthographic transparency continuum. These observations corroborate 

previous findings demonstrating the effects of orthographic transparency of 

different languages on the patterns of cortical activation (Paulesu et al, 2000; 

Meschyan & Hernandez, 2005; Simon et al; 2006; Mechelli & Price, 2005; Balota & 

Yap, 2006).  

 

Further support for this assertion stemmed from the patterns of effects of 

frequency, length and lexicality and interactions between them, observed within 

regions of interest. The robust length effects in Spanish within all ROIs were 

indicative of strong reliance on phonological processing, whereas the absence of 

these effects in Hebrew, coupled by significant frequency and lexicality effects 

were taken as evidence for predominant reliance on lexical processing in this 

language. Moderate length effects in English and significant frequency and 

lexicality effects suggested a more balanced interplay between the different types 

of processing. In addition, observed length effects in the occipito-temporal cortex in 

Hebrew were taken as further evidence for the strategic dilemma faced by these 

readers while reading in their native language. Interestingly, the patterns of signal 
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change between the different conditions within the medial frontal gyrus, implicated 

in attentional, rather than linguistic processing (Price, 2000; Fernandez-Duque & 

Posner, 2001), exemplified the acute complexity of reading in Hebrew, the relative 

simplicity of reading in Spanish and the intermediate position of English in the 

continuum. The patterns of cortical activation in the native languages thus 

supported the behavioural results of Experiment 1.  

 

In addition, the findings of the fMRI experiments strengthened the functional 

distinction between the opercular and triangular portions of the left inferior frontal 

gyrus, lent further support to the implication of the inferior parietal cortex in 

phonological processing and demonstrated that the left fusiform gyrus, previously 

shown to be involved in the processing of visual word forms, was also sensitive to 

effects of word-frequency and length. Moreover, the present results suggested that 

the homologous fusiform gyrus, typically referred to as the fusiform face area, also 

plays a role in reading, and furthermore, it is sensitive to orthographic 

transparency. Since the role of this region in language processing has been rather 

overlooked, this latter finding emphasises the importance of paying particular 

attention to this region in future studies, and considering its role in the 

manifestation and recovery patterns of acquired reading disorders. This point will 

be expanded on in section 6.6. 
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6.3 The effects of the orthographic properties of the native 
language on the reading strategies employed in a second and 
third language 

 
The question of the effects of the orthographic properties of the native languages 

on the strategies employed by readers in their second and third languages was 

fuelled by suggestions of transfer of strategy from the native language to less 

dominant languages (Muljani et al, 1998; Wang et al, 2003), which although 

intuitively logical, has been somewhat controversial (Akamatsu, 2002; Lemhöfer et 

al, 2008). In Experiment 1, while both groups of bilinguals showed the expected 

effects of language proficiency with slower naming and lower accuracy level 

relative to their native language, there was little, if any evidence for a transfer of 

strategy from the native languages to ESL. In fact, both groups exhibited an 

adaptation of the reading strategy to the level of orthographic transparency of 

English. The observed patterns of interactions between frequency, lexicality and 

length in the native Spanish readers suggested a reliance on lexical processing to 

a greater extent in the less transparent language, while the patterns observed in 

the native Hebrew readers suggested a greater reliance on phonological 

processing in this, more transparent language. Interestingly, the reliance on 

phonological processing in ESL by the native Hebrew readers appeared to be 

greater than that seen for their native Spanish counterparts, and was proposed to 

occur as a result of an exaggerated reliance on phonological assembly, whereby, 

faced with a relatively more transparent language, these readers seized the 

presence of written vowels as an opportunity to rely on sequential assembly of 

written material, at the expense of naming speed. This proposal is in keeping with 
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the findings of Frost (1994; 1995), who compared the extent to which Hebrew 

readers relied on phonological processing when presented with vowelised Hebrew 

words. However, as a novel observation, the data obtained from Experiment 1 was 

necessary, but not sufficient to validate this theory.  

 

Parallel to the slower naming and lower level of accuracy in ESL observed in 

Experiment 1, results of both fMRI experiments demonstrated language proficiency 

effects, reflected in the spatial extent and intensity of activation, particularly within 

the medial frontal cortex, as well as in specific activation within the right precentral, 

inferior frontal and middle temporal gyrus. These observations are in keeping with 

previous bilingual and multilingual studies demonstrating increased cognitive 

demand for the processing of a second language (Perani et al, 1996; Dehaene et 

al, 1997; Kim et al, 1997; Hernandez et al, 2001; Wattendorf et al, 2001; Proverbio 

et al, 2002; Watenburger et al, 2003; Vingerhoets et al, 2003; Pillai et al, 2003). 

 

Importantly, both bilingual groups showed activation within largely overlapping 

regions within the left hemisphere, with marked differences between ESL and each 

native language, indicating that native Spanish and native Hebrew readers alike 

had adapted their reading strategies to the level of orthographic transparency of 

English. At the same time, Experiment 4 showed subtle differences between the 

groups in the anatomical patterns of activation, whereby more anterior regions of 

the left IFG were activated by the native Spanish bilinguals, whereas activation in 

more posterior regions of the inferior frontal cortex was detected in the native 

Hebrew bilinguals. This observation suggests that the Hebrew bilinguals relied on 
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phonological processing while reading in ESL to a greater extent than their native 

Spanish counterparts, and further strengthens the notion of an exaggerated 

reliance on phonological assembly by these readers. This was corroborated by the 

patterns of effects of frequency, length and lexicality observed within the medial 

frontal gyrus, left inferior frontal gyrus, right middle temporal gyrus and right 

fusiform gyrus. However, the effects observed within the other ROIs, namely left 

precentral gyrus, left inferior parietal lobule, left postcentral gyrus and bilateral 

occipital cortex were indicative of the opposite pattern, whereby the Spanish 

readers were relying on phonological processing to a greater extent than their 

native Hebrew counterparts. This latter finding suggests that some degree of 

transfer of the native strategy to reading in ESL may have also taken place, as 

suggested by Muljani et al (1998) and Wang et al (2003), though in the present 

study, the adaptation to the level of orthographic transparency of English was more 

robust, and ultimately most apparent in the behavioural data.  

 

Taken together, the observed patterns of behavioural naming performance and 

cortical activation in ESL indicated that while language proficiency had a significant 

effect on the recruitment of attentional processing, its effect on linguistic processing 

was less robust, in keeping with recent findings reported by Meschyan and 

Hernandez (2005). Notably, the proposed exaggerated reliance upon phonological 

processing by Hebrew bilinguals was strengthened by the observed patterns of 

cortical activation. Nevertheless, being a 3-point comparison, the present findings 

called for a trilingual experiment in order to complete the picture. Experiment 5 was 

therefore conducted in Israel, with two trilingual groups, native speakers of the two 
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extremities of the orthographic transparency continuum; Spanish and Hebrew, 

respectively, with English as a common additional language. 

  

Results of the final experiment replicated those obtained in Experiment 1 for each 

group‟s native language, as well as English as a non-native language, and once 

again, showed that while native Spanish readers efficiently adapted their reading 

strategy to the lower level of orthographic transparency of English, the native 

Hebrew readers resorted to an exaggerated reliance on phonological processing 

for reading in English, which is more transparent than their native language.  

 

The most interesting findings of the final experiment were the observed naming 

patterns in the two extremities of the orthographic transparency continuum by non-

native readers. While reading in Hebrew, the native Spanish trilinguals were forced 

to adapt their strategy to the extreme opacity of Hebrew, which came at a 

considerable cost to reaction time. This finding was in keeping with previous 

studies assessing reading in Hebrew as a non-native language (Gollan et al, 1997; 

Benuck & Peverly, 2004), and exemplified the complexity involved in reading in a 

language which carries no written vowels. Interestingly, while reading in Spanish, 

the native Hebrew trilinguals showed an adaptation to the high level of 

transparency of Spanish, though the exaggerated reliance on phonological 

assembly, which was expected to emerge in Spanish to a greater extent than 

English was not clearly dissociable from the effects of language proficiency in the 

present experimental sample. As mentioned in Chapter 5 and discussed in section 
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6.6, future experiments are required in order to strengthen this observation in 

Spanish. 

 

6.4 Accounting for existing theories for reading in languages with 
different orthographic properties 

 

Throughout the thesis the most prevalent theoretical framework has been the weak 

version of the Orthographic Depth Hypothesis (Katz & Frost, 1992), derived from 

its predecessor, the strong version (Frost, Katz & Bentin, 1987), which in turn, was 

based on the Dual-Route model for reading (Coltheart & Rastle, 1994; Rastle & 

Coltheart, 1998). As outlined in Chapter 2, this model postulates the existence of 

two primary mechanisms for reading; the sublexical / phonological route and the 

lexical / semantic route, which operate in a parallel and competitive fashion to 

generate pronunciation of printed material. Indeed, the current findings have been 

discussed within a framework of reliance on phonological assembly, and / or lexical 

retrieval via access to semantics, whereby reading in Spanish was shown to be 

achieved primarily (though not exclusively) via phonological assembly, whereas 

reading in Hebrew was shown to be achieved primarily (but not exclusively) via 

lexical processing through access to semantics, while reading in English was 

shown to involve a rather balanced interplay between the two routes. Similarly, the 

strategic dilemma seen primarily in Hebrew was described as an initial activation of 

the phonological route, which interfered with the more efficient means for reading 

in Hebrew; the lexical route, particularly while reading high-frequency words. This 

observation also lent support to the Phonological Hypothesis (Frost, 1994; 1995), 

suggesting that the default strategy of the cognitive system, regardless of 
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orthographic transparency, is initial phonological assembly. At the same time, the 

Dual-Route model implies that reliance on the lexical route tends to increase with 

reading experience, whereby a larger proportion of words may be perceived as 

frequently encountered. Experienced readers may thus resort to the faster lexical 

route even in transparent orthographies such as Spanish, and therefore language 

proficiency effects seen in the present study were attributed to greater reliance on 

the phonological route, particularly during exposure to low-frequency words and 

non-words, more so when they were long than short. Consequently, the 

exaggerated use of phonological processing in ESL seen in Hebrew bilinguals and 

trilinguals were initially plausibly attributed to inferior language proficiency of these 

readers. However, having ruled out this possibility, this observation was attributed 

to a „compensatory mechanism‟ employed by these readers, whereby an 

exaggerated reliance on the phonological route stemmed from the relative ease 

with which reliance on written vowels can aid pronunciation of less frequently 

encountered words, relative to the complexity of directly retrieving the 

representation of this type of words from the mental lexicon with little or no 

phonological information, as is the case in Hebrew. Not surprisingly therefore, this 

compensation was manifested to a greater extent for long letter-strings relative to 

short ones.  

 

It therefore seems that the present findings can be comfortably accounted for in 

light of a Dual-Route framework, though some observations in the present study 

could also be explained in light of alternative models. For example, the Parallel 

Distributed Connectionist reading model, which postulates a single mechanism for 
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reading all types of words, based entirely on reading experience (Seidenberg & 

McClelland, 1989; Plaut et al, 1996; Plaut & Kello, 1998), could account for the 

effects of orthographic transparency on naming performance in terms of strength of 

weighted connections between orthography and semantics in Hebrew, as opposed 

to stronger connections between orthography and phonology in Spanish. Similarly, 

this model could account well for the language proficiency effects. However, the 

strategic dilemma and exaggerated reliance on phonological assembly have been 

proposed to arise through a conflict between the most efficient reading strategy 

and the more comfortable one, which could only be accounted for by the existence 

of two parallel mechanisms. 

 

An alternative theory which could better account for the present findings is a 

relatively recent theory, proposed as an improved and modern alternative to the 

Orthographic Depth Hypothesis (Frost, 2006); the Psycholinguistic Grain Size 

Theory (PGST; Ziegler & Goswami, 2005), derived from the Hypothesis of 

Granularity and Transparency (Wydell & Butterworth, 1999). „Grain size‟ refers to 

the size of linguistic units that constitute a building block of a word. The smallest 

grain unit in alphabetic languages is the grapheme, though the average grain size 

in a given language increases as its level of orthographic transparency decreases. 

Based on this concept, reading in transparent languages such as Spanish may 

involve the processing of small grain units at the graphemic level; reading in 

opaque languages such as English may involve small, as well as larger grain units, 

such as grapheme clusters and morphemes, while reading in Hebrew involves 

predominantly large grain units, namely at the morphemic level. The PGST 
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therefore provides a continuous measure of linguistic units, rather than the 

dichotomous concept of lexical or sublexical routes. Within this framework, 

interactions between frequency and length may therefore arise as a result of the 

processing of low-frequency words via reliance on smaller grain units, whose 

number inevitably increases in longer letter-strings, giving rise to length effects. 

Similarly, the „compensatory mechanism‟ seen by Hebrew readers in ESL could 

arise from the preference of these readers to rely on smaller linguistic units, which 

is not permissible in Hebrew. Moreover, the slower naming in Spanish long letter-

strings seen by Hebrew trilinguals can therefore be explained by the smaller grain 

units relied upon in Spanish relative to English, and can thus point towards a 

stronger „compensatory mechanism‟ in the most transparent language of the 

continuum. A proposal for a future project could be to create a database of words 

with average grain size units, similar to already collected measures of frequency of 

occurrence, neighbourhood size and imageability. At present however, the PGST 

is used primarily to account for trends in reading acquisition and incidence of 

developmental reading disorders (e.g. Ziegler & Goswami, 2005; 2006; Goswami, 

Ziegler & Richardson, 2005; Katz, Lee, Tabor, Frost et al, 2005; Nikolopolous, 

Goulandris, Hulme & Snowling, 2006; Martens & De Jong, 2006; Burani, Marcolini, 

De Luca & Zoccolotti, 2008; Sun-Alperin & Wang, in press), some of which will be 

discussed in section 6.7.  
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6.5 Limitations of the present study  

 

As with any multilingual study, the key limitation in the present study stemmed from 

the difficulty in gathering a group of participants who would be identically matched 

for language proficiency. As can be noted in the demographic details of bilingual 

and trilingual participants, age of acquisition, length of residence, time of formal 

education and subjective rating of exposure to each language varied considerably. 

Indeed, in the trilingual sample there were significant group age differences, which 

needed to be minimised with statistical manipulation. Unbalanced multilingualism is 

likely to have contributed to the difficulty in dissociating between the effects of 

language proficiency and orthographic transparency.  

 

This problem may have been circumvented with the inclusion of explicit proficiency 

measures such as standardised language proficiency tests, which could have 

provided a more stringent measure of language proficiency than the naming 

accuracy data. These were not used in the present study due to two major 

concerns. First, the heterogeneity of standard proficiency tests in each of the three 

languages examined in the study would have posed a difficulty in determining 

assessment criteria which would be equivalent for each language. Second, 

requesting participants to complete a language proficiency test would have 

rendered the experimental procedure extremely lengthy, particularly for trilingual 

participants, and might have discouraged participation and compromised 

performance. 
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Another limitation of the present study concerns the choice of words for 

experimental trials. While these were carefully selected to be matched for 

frequency, length and initial phonemes, other factors, such as imageability and 

subjective familiarity might have influenced reaction time and thus might have 

contributed to the variability in the spread of the data. Collecting words from 

various databases and matching them for the various linguistic factors, particularly 

in several languages yields a very limited list of words. Indeed, in the present study 

a relatively large proportion of trials were discarded due to considerably slow 

reaction times and inaccuracy. At the time the experiments were being constructed 

the availability of databases in Spanish and Hebrew was poor, and none included 

factors other than frequency of use. In recent years however, the availability and 

scope of word databases in different languages have improved considerably, which 

will, no doubt prove beneficial for future studies. 

 

In that vein, an additional limitation, relevant specifically to the Spanish experiment, 

relates to the fact that participants were nationals of several Spanish-speaking 

countries. Though care was taken to include words which were universal to the 

Spanish-speaking population, the Spanish spoken in Spain varies considerably 

from that spoken in Latin America, and within the latter large variations exist as 

well. It is therefore plausible that some low-frequency words may have been 

perceived as non-words by some participants, which might also contributed to the 

variability in the data. While most bilingual and multilingual studies have included 

participants from homogeneous nationalities, this was not feasible in the present 

study, due to the difficulty in recruiting participants who were proficient in the three 
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languages under investigation, particularly trilinguals residing in Israel. 

Nonetheless, the patterns of frequency, length and lexicality effects observed in the 

behavioural data, and the patterns of activation observed in the neuroimaging 

experiments were robust and strongly suggestive of assembled phonology as the 

prevalent strategy for visual word recognition in Spanish, relative to English and 

Hebrew. 

 

6.6 Scope for future research 

 Further experiments which could strengthen the present findings may utilise more 

specific tasks than the straightforward naming employed presently. For example, 

the semantic priming experiment conducted by Frost, Katz and Bentin (1987) could 

be replicated with bilinguals of Spanish and English and Hebrew and English, and / 

or trilinguals. As described in Chapter 2, these authors had found strong semantic 

priming effects in Hebrew, moderate effects in English and no effects in Serbo-

Croatian. In bilinguals, stronger semantic priming effects in ESL by Spanish 

readers and weaker effects by Hebrew readers would provide evidence for an 

exaggerated reliance on phonological processing by the latter group. Importantly, 

conducting this type of experiment using fMRI could support the behavioural 

patterns, replicate the present observations in the right fusiform gyrus and shed 

light on its role in reading, as well as clarify the issues regarding the involvement of 

specific regions within the right temporal and frontal cortex in second and third 

language processing. An experiment of this sort has been designed and data 

collection had commenced, though not completed for inclusion in this thesis.  
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Additional experimental paradigms could also include a phonological task such as 

masked phonological cognate priming, similar to that used in Gollan et al‟s (1997) 

study. In this case, the compensatory mechanism in ESL would be evidenced by 

stronger cognate effects in native Hebrew bilinguals relative to Spanish bilinguals. 

Furthermore, the present study could be replicated with native speakers of other 

languages whose levels orthographic transparency can be viewed as placed along 

a continuum, such as Finnish or Italian at the transparent extreme, Arabic, 

Japanese Kanji or Chinese at the opaque extreme, and English as the midpoint. 

 

Another way to extend the present study could be the use of newly emerging MRI-

compatible EEG (Lemieux, Salek-Haddadi, Josephs et al, 2001; Mullinger, 

Brookes, Stevenson, Morgan, & Bowtell, 2008). Combining these two 

neuroimaging methods can be extremely beneficial as it enables the precise 

visualisation of neural correlates of cognitive processes as well as their time-

course simultaneously. For the extension of the present study, showing ERP 

amplitudes reflective of phonological processing in Hebrew bilinguals while reading 

in English to a greater extent than in Spanish bilinguals could, for example clearly 

demonstrate the exaggerated use of phonological recoding in these readers while 

reading in relatively transparent languages. 

 

Indeed there are several ways to replicate and extend the present study, and the 

more advances are made in neuroimaging technology, the more feasible it 

becomes to conduct more efficient experiments, to include larger experimental 



 297 

samples, to simplify processes of data analysis and obtain a more detailed picture 

of reading processes in multilinguals. 

 

6.7 Beyond the present study: thoughts on teaching methods and 
remedial interventions for developmental and acquired reading 
disorders 

 

It is well established in the literature that beginner readers of all languages tend to 

rely primarily on phonological recoding, which gradually gives way to lexical 

processing with increased reading experience (Wagner & Torgesen, 1987; Share, 

1995; Ellis et al, 2004; Ziegler & Goswami, 2005). It is therefore not surprising that 

as mentioned in Chapter 2, the rate of literacy development in different languages 

may vary in keeping with their level of orthographic transparency (Thorstad, 1991; 

Caravolas & Bruck, 1993; Goswami, Porpodas & Wheelwright, 1997; Goswami, 

Gombert & de Barrara, 1998; Frith, Wimmer & Landerl, 1998; Ellis & Hooper, 2001; 

Seymor, Aro & Erksine, 2003). Nevertheless, despite the slower rate of literacy 

acquisition in languages of opaque orthographies relative to transparent ones, it 

has also been shown that once literacy is established, regular readers of 

transparent and opaque orthographies alike achieve comparable fluency and 

accuracy levels (e.g. Seymor et al, 2003; Hanley, Masterson, Spencer & Evans, 

2004), and as seen in the present and previous studies, in adulthood, the 

differences in levels of orthographic transparency constrain the predominant 

strategy used by skilled readers (e.g. Frost, Katz & Bentin, 1987; Tabossi & Laghi, 

1992; Paulesu et al, 2000; Ziegler et al, 2001; de Groot et al, 2002; Meschyan & 

Hernandez, 2005; Simon et al, 2006). This knowledge bears particular importance 
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for the type of methods used for reading instruction in languages of opaque 

orthographies such as English and Hebrew. At present, the most widely used 

teaching approach is phonics training, which has recently been re-implemented 

following heated public debates in the mid 20th century, among educators, 

cognitive scientists and policy makers.  

 

6.7.1 The Reading War 

These debates received vast media coverage particularly in the USA, where a 

deep controversy, referred to as the “Reading War” (e.g. Rymes, 2003), raged 

between the proponents of two principal schools of thought. At one extreme lay the 

traditional approach, which emphasised the importance of phonemic decoding 

skills, based on direct instruction of the alphabetic code and phonetic translation of 

letters to their corresponding sounds. This phonetic approach attested that the 

basic components of a word, consonants and vowels, were the building blocks of 

written language and as such, teaching children to read must be based upon this 

principle. At the other extreme lay a modern school of thought; the “whole-

language” approach, derived from the progressive educational stream which 

soared in the USA in the 1960‟s and 70‟s. Propounders of the alternative view 

suggested that decomposing written language into its building blocks did not 

convey the true purpose of written language: meaning. The philosophy of this 

approach was based largely on the need to reform the traditional and dour 

education system of that period through an emphasis on children‟s rights, 

individual learning pace, motivation and self-esteem. This whole-language 

approach compared reading acquisition in young children to the natural and 
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instinctive way in which infants acquire verbal language. Therefore, the basic 

premise of the new approach predicted that given proper motivation, many 

opportunities to read, access to good literature, and focus on meaning, reading 

instruction could be more successful if strategies used meaning clues in the 

context of real text to help determine the pronunciation of unknown words. By the 

same token, difficulties in reading acquisition may stem from boredom or lack of 

motivation, rather than an underlying cognitive deficit, and therefore any 

attenuation in reading acquisition must be met with tolerance. 

 

Since the whole-language approach stands in stark contrast to the principle of 

focussing on individual grapheme-phoneme correspondence, the intense debates 

gave rise to a series of Congressionally-commissioned panels and government-

funded reviews of the state of reading instruction in the USA. The “Reading War” 

climaxed in the last decade of the 20th century, following the accumulation of 

evidence of severe failure in reading comprehension, particularly in states where 

education systems had ardently adhered to the whole-language approach. This led 

to the most comprehensive Congressionally-commissioned report compiled thus 

far, by a panel convened by the director of the National Institute of Child Health 

and Human Development (NICHD) in consultation with the Secretary of Education. 

The panel, comprised of 14 senior investigators in the field of literacy instruction 

reviewed a corpus of ca 100,000 publications of empirical studies, published their 

report in 2000. The results of the meta-analysis (Ehri, Nunes, Stahl & Willows, 

2001) indicated that several skills were required for successful reading acquisition, 

among which were phonics, fluency, vocabulary and comprehension. Moreover, 
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the report highlighted that reading was not a naturally occurring phenomenon as 

verbal language, but a function which requires purposeful and integrated teaching, 

and showed that 25%-30% of school-aged children in the USA encountered 

difficulties in its acquisition. According to the empirical literature, reading 

acquisition problems may stem to a great extent from poor understanding of the 

alphabetic code, problems in decoding skills and lack of phonological awareness, 

as well as poor knowledge of semantics, syntax and logic, and indeed lack of 

motivation in children, in addition to inadequate teacher training. The panel 

therefore concluded that phonics training, in particular phonological awareness, 

and systematic instruction of decoding skills and the alphabetic code could 

significantly improve reading acquisition and subsequently comprehension in 

children from kindergarten through to 6th grade. Moreover, the direct instruction of 

decoding skills may be particularly beneficial for children who encounter difficulties 

in learning to read. The conclusions of the panel thus ended the reading war in the 

USA, and led to an implementation of phonics as a fundamental aspect of any 

curriculum for reading instruction. 

 

In the UK, the polemical issue of whole-language versus phonics followed a 

parallel path over the same time-period, though this was less polarised and 

involved fewer empirical studies. In 1998, the introduction of the National Literacy 

Strategy in English primary schools marked the beginning of the return of phonics 

to the curriculum of reading instruction in the UK. A House of Commons Education 

and Skills Committee report published in 2005 indicated  that in 1997, 67% of 11 

year-old children exhibited the expected reading level for their age, a figure which 
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rose to 83% by 2004, thanks to the introduction of the scheme. In 2006, a 

systematic review of empirical literature on the use of phonics in the UK, 

commissioned by the department of Education and Skills (Torgerson, Brooks & 

Hall, 2006) showed that systematic phonics instruction within a broad literacy 

curriculum was associated with better progress in reading accuracy of children 

between the ages of 5 and 11 years. Moreover, there was no significant difference 

in reading accuracy levels between regular readers and those at risk of reading 

failure. The report thus concluded that “since there is evidence that systematic 

phonics teaching benefits children‟s reading accuracy, it should be a part of every 

literacy teacher‟s repertoire and a routine part of literacy teaching, in a judicious 

balance with other elements” (p. 49).  

 

A similar case was seen in the policy of reading instruction in Israel. In the early 

1980‟s the Ministry of Education adopted a policy of promoting whole-language as 

an efficient method for reading acquisition. In national surveys performed in the 

late 1990‟s for the Parliament Reading Committee Report (Shapira et al, 2001) it 

was revealed that 60% of primary school teachers had adopted this teaching 

strategy, and as a result, between 48.5% and 25% of year-4 children (aged around 

10 years), classified into the lowest and highest socioeconomic bands, 

respectively, had failed to reach minimal scores in reading comprehension. 

Following the Shapira Report, however, reforms have been made to encourage the 

return to phonics. Consequently, the recent Progress in International Reading and 
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Literacy Study (PIRLS) survey24 reported that among the Hebrew-speaking year-4 

pupils in Israel, the mean reading achievement scale score had increased from 538 

in 2001 to 548 in 2006; a 10-point increase which was reported as statistically 

significant (Israeli Ministry of Education: http://rama.education.gov.il). 

It is therefore now widely accepted that providing phonological decoding skills and 

training phonological awareness are key components in successful reading 

acquisition. In the UK at present, the National Literacy Strategy, which in 2003 

merged with the related numeracy strategy to become part of the Primary National 

Strategy (http://www.standards.dfes.gov.uk/primary/), focuses on promoting high 

standard of teaching through a rich and varied curriculum, based on the pedagogic 

principles of the propounders of the whole-language approach, and the 

methodological principles of the phonetic approach, supported by empirical 

research from linguistic and psycholinguistic studies.  

 

6.7.2 Developmental reading disorders 

Despite phonics being currently used as the preferred teaching method, reading 

disorders such as developmental dyslexia are still prevalent world-wide. Moreover, 

it has been noted that while showing similar phonological deficits in different 

countries, children with dyslexia exhibit different manifestations of the condition, 

depending on the orthographic transparency of the language being learned. In 

languages with transparent orthographies, reading disabilities become apparent 

with extremely slow and effortful phonological recoding, coupled by poor spelling. 

                                                 
24

 This survey, first conducted in 2001, and subsequently every 5 years, compares the reading 
attainment and attitudes to reading of 9 and 10 year old children in 41 countries. The PIRLS reading 
achievement scale was established to have a mean of 500 and a standard deviation of 100.  
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In languages with opaque orthographies it is mainly poor accuracy that helps 

diagnosis, in addition to slow reading and poor spelling (Ziegler & Goswami, 2005). 

An interesting study by Hanley et al (2004) followed up the results of a previous 

study showing that Welsh-speaking children aged between 5 and 7 years 

outperformed their English-speaking counterparts at reading words and non-words 

(Spencer & Hanley, 2003). The follow-up study showed that at age 11, both groups 

had attained comparable word and non-word reading skills. However, among poor 

readers, group differences remained as observed in the earlier study, whereby the 

poorest 25% of English readers continued to perform significantly worse on word 

and non-word accuracy than the lowest performing 25% of Welsh readers, who 

showed high accuracy level, albeit considerably slow reading. Therefore in the long 

term, the orthographic opacity of English was shown to be detrimental to poor 

readers, relative to the transparency of Welsh.  

 

What might be done in order to bridge the gaps between learners of opaque and 

transparent orthographies, and help poor readers catch up with their peers? Some 

have gone as far as calling for a spelling reform, in favour of a more transparent 

writing system (e.g. Abercrombie & Daniels, 2006). Such a drastic step is not 

unheard of. For example, in 1928, the government of the newly founded Republic 

of Turkey changed the Turkish writing system from Arabic script to Roman script. 

Similarly, in the 1950‟s and 60‟s, the Chinese government promoted the 

development of Pinyin; the simplified phonetic form of Chinese, officially 

implemented in 1979, and primarily used for early reading instruction (Neijt, 2006). 

Minor changes to English spelling have also been seen throughout history, mainly 
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in the form of regional variants to words such as programme / program, centre / 

center, and humour / humor, as well as the recent phenomenon of “keyboard 

phonetic shorthand” such as C U @ 4 (see you at four) and I’ll B L8 (I‟ll be late). 

However, officially „phoneticising‟ the English writing system carries concerns that 

such a reform would lead to the elimination of the etymological origin of the 

language and may render original literature inaccessible. Consider a famous 

passage, which often emerges in websites and other scriptures relating to English 

spelling reforms:  

 

A Plan for the improvement of English Spelling, by “Mark Twain”25:  

“For example, in Year 1 that useless letter "c" would be dropped to be replased 

either by "k" or "s," and likewise "x" would no longer be part of the alphabet. The 

only kase in which "c" would be retained would be the "ch" formation, which will be 

dealt with later. Year 2 might reform "w" spelling, so that "which" and "one" would 

take the same konsonant, wile Year 3 might well abolish "y" replasing it with "i" and 

Iear 4 might fiks the "g / j" anomali wonse and for all. Jenerally, then, the 

improvement would kontinue iear bai iear with Iear 5 doing awai with useless 

double konsonants, and Iears 6-12 or so modifaiing vowlz and the rimeining voist 

and unvoist konsonants. Bai Iear 15 or sou, it wud fainali bi posibl tu meik ius ov thi 

ridandant letez "c," "y," and "x" - bai now jast a memori in the maindz ov ould 

doderez - tu riplais "ch," "sh," and "th" rispektivli. Fainali, xen, aafte sam 20 iers ov 

                                                 
25

 Although this passage has been attributed to Mark Twain, the true origin is questionable, as no 
such quote has been found in any of Twain‟s works. In his book “Another Almanac of Words at 
Play”, author Willard R. Epsy (1980; pp. 79-80) notes that this passage was in fact written by a 
person called M.J. Shields, in a letter to the Economist.  
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orxogrefkl riform, wi wud hev a lojikl, kohirnt speling in ius xrewawt xe Ingliy-

spiking werld”. 

 

As a native Hebrew speaker, likely to resort to an exaggerated use of phonological 

assembly while reading English, I found this form of writing extremely difficult to 

read, and can therefore imagine that for a skilled native English reader this might 

be far from a logical or coherent piece of writing. Indeed, a spelling reform in favour 

of a more transparent English orthography might be more detrimental than 

beneficial, and so a focus on remedial intervention for reading difficulties may be 

more appropriate. An important aspect of these interventions must take into 

consideration not only the psycholinguistic component of reading but also the 

affective component. It is plausible that the “give-up” threshold of children with 

reading difficulties, learning to read an opaque orthography may be higher than 

that of children encountering difficulty in learning to read a transparent orthography 

(e.g. Paulesu, 2006). Therefore, development of teaching strategies must also 

focus on encouragement and motivation. In this respect, early learners of Hebrew 

may have an advantage over learners of English, since the vowelised form of 

Hebrew is entirely transparent, such that beginner readers learn initially by 

phonological assembly.  

 

The differences in reading attainment between different languages in regular 

readers and differential manifestations of reading disability may bear particular 

importance for bilingual and multilingual children at risk of developing reading 

disorders. A prevalent problem in the education system faced with bilingual 
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children is that attenuation of reading acquisition in L2 or L3 is often attributed to 

lower language proficiency (Cline & Frederickson, 1999; Geva, 2006; Uno, Wydell, 

Kato, Itoh & Yoshino, 2008). This assumption may mask an underlying deficit 

which could be overlooked. For example, Uno and colleagues (2008) presented 

the case of EM, a girl born in UK to Japanese parents. Her first language was 

Japanese, which was spoken at home, and her second language was English, 

which she began to learn at age four, upon entry to nursery school.  With time, 

English became her dominant language, though Japanese was spoken at home, in 

Saturday school and during annual family visits to Japan. At the age of 8/9 it 

became apparent that EM was having difficulties with reading and writing in both 

languages. Suspecting dyslexia, her parents sought advice from the school 

counsellor, who maintained that her problems stemmed from bilingualism and 

suggested that EM be encouraged to use English at home. Unable to provide an 

English-speaking environment at home, EM‟s parents sent her to a private 

boarding school at the age of 11, where problems in both languages persisted, 

despite extra-curricular tuition of English for speakers of other languages (ESOL). 

At 14, EM‟s parents insisted that she be assessed professionally, and indeed, upon 

assessment in both English and Japanese, it was concluded that EM‟s language 

difficulties were not due to dyslexia, but to specific language impairment (SLI)26. 

 

Another interesting example was the case of AS (Wydell & Butterworth, 1999), a 

Japanese-English bilingual whose phonological dyslexia was detected thanks to 

his bilingualism. AS was born in Japan to highly literate native English speaking 

                                                 
26

 Though some argue that SLI is a severe form of developmental dyslexia (see Bishop & Snowling, 
2004 for a comprehensive review) 
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parents, and showed normal reading acquisition and attainment in Japanese, but 

impaired reading in English. At age 13, AS was diagnosed with dyslexia and 

commenced intensive tuition of English reading and writing by a speech therapist. 

Despite his phonological deficit, AS was subsequently able to complete an 

academic degree in an English-speaking country thanks to relatively early 

intervention (Wydell & Kondo, 2003). Since AS displayed no signs of reading 

disability in Japanese, had he not been a fluent bilingual, there would have been 

little reason to suspect that his problems with reading in English were not simply 

related to inferior proficiency and his phonological deficit might have gone 

undetected for a long time.  

 

These two cases, reported in the UK, bring to mind concerns about several 

potential similar cases in other regions of the world where bilingualism is prevalent. 

Although the impairments of EM and AS were eventually diagnosed, several other 

children may not benefit from access to language-specialists and adequately 

trained educators. On the other hand, some bilingual or multilingual children (and 

adults) display attenuation in reading acquisition of L2 or L3, which may not 

necessarily stem from a reading disorder, but may in fact be related to the 

complexity of the writing system, as seen in the considerably slow Hebrew reading 

by native Spanish trilinguals in the present study. Moreover, in some cases 

knowledge of an additional language may be the source of poor reading 

performance. Such observations are generally attributed to cross-language transfer 

of skills (Cummins, 1979; Durgunoglu & Hancin, 1992; Wang et al, 2003). In these 

instances, multilingual individuals may be at risk of being wrongly or “over”-
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diagnosed with reading disorders (Geva, 2006). The present study showed that 

even in opaque orthographies such as Hebrew, the cognitive system „prefers‟ to 

rely on phonological processing whenever possible. Moreover, native Hebrew 

readers showed an exaggerated reliance on phonological processing, while 

reading in their second and third languages, as compensation for the inability to 

successfully use this strategy in their native language. Therefore, an observation 

which could be initially attributed to inferior language proficiency was shown to be 

related to a qualitatively different processing mechanism, influenced by the 

absence of phonemic information in the native language. 

 

A greater understanding of bilingual language processing and the influence that the 

native language may have on the processing of the second language, beyond a 

simple cross-language transfer of strategy is therefore paramount. Moreover, 

attention must be given to developing strategies which capitalise on the strengths 

of multilingualism in aiding struggling readers to achieve normative literacy skills in 

their different languages. 

 

6.7.3 Acquired reading disorders 

As outlined in Chapter 2, another gamut of reading disorders is related to aphasia, 

caused by neurological damage in patients who had normal literacy skills prior to 

their lesion(s). Although each aphasic patient presents with a unique pathological 

profile, the manifestation of symptoms can be grouped and classified under a few 

common categories, e.g. transcortical motor aphasia, transcortical sensory 

aphasia, conduction aphasia etc. (Dronkers, 1996; Gazzaniga, Ivry & Mangun, 
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1998; Price, 2000). Similarly, acquired dyslexia can be classified into 

“phonological”, “surface” or “deep”, according to the type of impairment associated 

with the damage (Marshall & Newcombe, 1973; see Chapter 2, section 2.3, To 

read and read not…). Neurological patients tend to show some degree of recovery 

due to neural plasticity, which enables the spared neural components to 

compensate for the lost function (Hinshelwood, 1902; Newcombe, Marshall, 

Carrivick & Hiorns; Paradis, 1977). Therapeutic intervention strategies are 

therefore typically directed at strengthening the preserved functions to encourage 

or accelerate recovery (reviewed by Springer, 2008). For example, impairments 

associated with acquired phonological dyslexia can be ameliorated by re-training 

grapheme-to-phoneme conversion. At the initial stages of re-training, single letters 

are matched to phonemes. This is followed by generation of words for each letter 

and segmenting out initial phonemes for each word. Once letter-sound 

correspondences are mastered, more complex grain units are gradually introduced 

until patients are able to phonologically assemble words. This type of intervention 

was shown to help a stroke patient with a left fronto-temporal lesion to divert 

resources to the spared lingual gyrus and achieve successful reading of regular 

non-words (Small, Flores & Noll, 1998).  

 

For acquired surface dyslexia, where the ability to phonologically assemble words 

is typically preserved, intervention is targeted specifically at improving visual word 

recognition. This can be efficiently accomplished via the use of mnemonic 

techniques, i.e. pairing orthographic word forms with matched objects or pictures 



 310 

and associating semantic, as well as phonological cues to written words (e.g. Byng 

& Coltheart, 1986; Weekes & Coltheart, 1996).  

 

Treatment for deep dyslexia requires a combination of grapheme-to-phoneme 

conversion training and re-establishing contextual criteria for pronunciation (de 

Partz, 1986; Mitchum & Berndt, 1991). Once grapheme-to-phoneme conversion 

rules are mastered, regularisation errors can be minimised using mnemonic 

techniques, followed by exercises of written reproduction and / or selective 

reminding (e.g. Berninger, Lester, Sohlberg & Mateer, 1991). The former is 

designed to strengthen the associations between words and their orthographic 

forms, while the latter serves to draw attention to and facilitate retrieval of spoken 

word codes from long-term memory, thus strengthening the association between 

orthographic forms and phonological codes. 

 

The examples described above were taken from reported cases of successful 

rehabilitation, with the exception of that reported by Mitchum and Berndt (1991). 

The patient studied by these authors was diagnosed with deep dyslexia following a 

stroke, which resulted in a large infarction in the left hemisphere encompassing 

frontal, temporal and parietal cortex. The patient was able to re-learn letter-to-

sound associations of simple regular graphemes, but was not able to learn the 

association between more ambiguous letter clusters, which are prevalent in 

English, and their phonology. Moreover, the patient was unable to grasp the 

contextual relationship between phonemes and words. The authors attributed this 

to a severe deficit in phonological short-term memory, and thus concluded that re-
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establishing grapheme-to-phoneme conversion would have little impact on 

functional reading unless the phonological short-term memory deficit could be 

improved as well. 

 

Efficient intervention requires a detailed assessment of the lost and the preserved 

functions, in order to ascertain whether the relatively spared components can be 

exploited to aid recovery, and whether a particular method is likely to benefit a 

patient exhibiting a particular impairment. The advent of non-invasive functional 

neuroimaging techniques in recent years has made this possible by enabling not 

only the association between behavioural manifestations of impairments and their 

underlying neural substrates, but also the visualisation of the functional role of 

specific regions in the lesioned brain. In this respect, much insight can be gained 

about remedial intervention to aid recovery by observing the neural architecture of 

language representation in normally functioning brains. For example, the present 

study revealed that the right fusiform gyrus was sensitive to word frequency and 

lexicality as well as to orthographic transparency. Increasing current knowledge 

about the role of this region in reading, which has not been thoroughly investigated 

so far, may help devise therapeutic strategies focussed on re-establishing 

orthographic processing in the left visual field. Similarly, observing that the right 

superior temporal gyrus may be involved specifically in second language 

processing could provide guidance towards devising methods geared at 

accelerating the recovery of non-native languages, in cases of language-selective 

impairments in multilingual patients. 
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6.8 Concluding thoughts  

As most research projects, the present findings constitute just the tip of the iceberg 

in the quest for understanding the remarkable versatility of the human brain. So 

long as curiosity and hunger for knowledge prevail, the light of language, the art of 

reading and the phenomenon of multilingualism continue to fuel new ingenious 

ways of answering questions and generating new ones.
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Appendix 1 
Participant questionnaire 

Name M/F 

    

Age Education  (place and years)                       Test  

    

    

Country of birth (years) Present country (years) 

Other countries     

Languages      (AoA) 

    

    

    

Best language for: Speaking   (Preferred language) 

 Reading    

 Writing    

Language (s) spoken at home    

In which language do you   read write 

  literature   

  newspapers   

  correspondence   

  professional   

  other   

listen to music  Estimate how many hours a week are you exposed to: 

watch TV  English  

listen to radio  Spanish  

other  Hebrew  

What language do you think in (internal monologue)  

Which language do you count in?  

Which language would you use in a strongly emotional situation?  

Do you confuse words between languages?  

Which to which?  

Comments:  
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Appendix 2 
Word and non-word stimuli used in experiments 1, 2, 4 and 5 

 

Spanish 

High-frequency words Low-frequency words Non-words 
Short Long Short Long Short Long 

Agua (water) Ámbito (field) Abad (priest) Acanto  (acanthus) Afur Ableta 

Aire (air) Bosque  (forest) Bazo (spleen) Bípedo (biped) Bapi Bafege 

Baño  (bath) Cadena (chain) Búho (owl) Boñiga  (cowpat) Bedó Bullán 

Boca (mouth) Diario (diary) Cuña (wedge) Dehesa (meadow) Dipu Dopite 

Café (coffee) Dinero (money) Domo (dome) Fogata (bonfire) Fipa Gépilo 

Cine (cinema) Envase (package) Faro (lighthouse) Genoma (genome) Jori Lertio 

Dama (lady) Figura (figure) Fosa (grave) Hocico  (muzzle) Letí méchin 

Flan (custard) Jardín (garden) Hada (fairy) Lápida (memorial stone) Mase Nerjón 

Gato (cat) Lluvia (rain) Iodo (iodine) Marjal  (moor) Mipu Ñarpil 

Hoja (leaf) Música (music) Maña (skill) Mármol (marble) Ocol obchol 

Mano (hand) Novela (novel) Obús (shell) Pábulo (nourishment) Pebo Patira 

Papá (father) Página (page) Puya (rod) Pelaje (fur) Pité Peteno 

Puré (mash) Piedra (stone) Rabo (tail) Rebujo (muffler) Rugá Retefa 

Sala (hall) Tetera (kettle) Tino (sense) Secuaz (friend) Sire Selual 

Taza (mug) Zapato (shoe) Zuro (no translation) Turrón (nougat) Tuja Vetino 



 XX 

 
English 

High-frequency words Low-frequency words Non-words 
Short Long Short Long Short Long 

Art Apple Ace Acorn Bam Brank 

Bar Digit Bay Beard Bez Cetin 

Bed Frame Bud Broom Cag Cland 

Cab Grass Cub Calyx Deg Dalft 

Car Lemon Den Crust Fud Durrp 

Dog Match Fox Brash Gop Elter 

Egg Mouse Gig Gauge Ige Grink 

Hat Office Gut Ladle Lud Lorge 

Job Peace Hob Marsh Mel Motch 

Man Pitch Lac Niece Nak Nirth 

Nut Plant Mod Pavid Oad Palth 

Pen River Pea Peach Ped Rople 

Sea Salad Ray Spoon Sab Shart 

Sun Table Spa Thorn Som Talsh 

Tax Thing Toy Voice Tob Vogre 



 XXI 

 
Hebrew 

High-frequency words Low-frequency words Non-words 
Short Long Short Long Short Long 

  eretz (country)    avtaxa (security)  atza (seaweed)  itliz (butcher)  bagash  bagusha 

 bait (house)  bdixa (joke)  berex (knee)  efroax (chick)  gamatz  aglaxa 

 balash (detective)  bakbook (bottle)  gamad (dwarf)  babu’a (reflection)  daga  ba’akol 

 gada (bank)  doogma (example)  dov (bear)  diglon  (flag)  vagak  deshixi 

 dagesh (accent)  xoveret (magazine)  dli (bucket)  dalfon (tramp)  dashas  zehixa 

 vetek (seniority)  xeshbon (bill)  zeev (wolf)  toozig (picnic)  xabaf  xeshtzon 

 zahav (gold)  koteret (title)  xerev (sword)  marva (sage)  ka’ar  ye’int 

 xol (sand)  kartis (ticket)  taxav (damp)  mashkof (doorframe)  lanar  legosa 

 kanaf (wing)  memshala (government)  leset (jaw)  nasiob (serum)  nitz  magfo 

 mada (science)  madpeset (printer)  meshi (silk)  avit (spasm)  seshel  nashtzoi 

 naxal (river)  masait (truck)  matza (matzoh)  ashashit (oil-lamp)  azag  polxi 

 neft (oil)  pkuda (command)  sadan (anvil)  pigion (dagger)  pelem  pe’iva 

 pri (fruit)  ramzor (trafficlight)  elem (lad)  psanter (piano)  renel  ratlosh 

 perax (flower)  tafrit (menu)  pe’a (wig)  shalgon (ice-lolly)  shasad  shdisan 

 petek (note)  taktziv (budget)  pexam (coal)  shmartaf (babysitter)  tadev  tfuma 
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Appendix 3 
Statistical values of regression analysis for demographic factors 

of Experiment 1 (bilingual standard naming) 
 
a. Effect of gender on overall naming latency 

 
 

Condition R
2
 df F beta t P 

L1 naming latency 0.026 1,89 2.39 -0.16 -1.55 0.13 

English naming latency 0 1,59 0.14 -0.02 -0.12 0.91 

 
 
  

b. Effect of age on overall naming latency  
 

Condition R
2
 df F beta t P 

L1 naming latency 0.01 1,89 0.14 0.12 0.12 0.91 

English naming latency 0.01 1,59 0.39 0.08 0.63 0.53 

 
c. Effect of formal education on overall naming latency  

 

Condition R
2
 df F beta t P 

L1 naming latency 0.01 1,89 1.09 -0.11 -1.05 0.29 

English naming latency 0.001 1,59 0.05 0.03 9.77 0.83 
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Appendix 4 
Functional MRI Information Sheet 
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Appendix 5 
 Initial Screening Form 
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Appendix 6  
Secondary Screening Form 
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Appendix 7  
Consent Form 
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Appendix 8 
Words used in Experiment 3 (fMRI pilot)  

 
 
 

Spanish English Hebrew 

High Low High Low High Low 

Casa  (house)  Abad   (priest) King Mire  kasda (helmet)  zavit (angle) 

Calle (street) Fosa (grave) Debt Sage  orez (rice)  piseax (limp) 

Meta (goal)  Prez (honour) Myth Mole  kvish (road)  shasaat (schizophrenia) 

Caja (box) Alelí (gillyflower) Bond Wilt  basis (base)  ksia (glove) 

Raza (race) Flan (custard) Robe Hive  booba (doll)  dardak (infant) 

Llama (flame) Feto (fetus) Rock Coil  mishkan (residence)  rotev (sauce) 

Baño (bath) Obús (shell) Scar Curb  gvul (border)  amla (commission) 

Puré (mash) Ñapa (no translation) Food Limb  meida (information)  shrir (muscle) 

Olor (smell) Faro (lighthouse) Deal Chess  karaxat (baldness)  topaz (topaz) 

Acto (act) Mirra (resin) Suit Dove  misrad (office)  ookaf (saddle) 

Vaso (glass) Cayo (islet) Film Heap  aviv (spring)  nexoshet (copper) 

Tela (fabric) Búho (owl) List Arid  matara (goal)  ti’a (plantation) 

Agua  (water) Ojal (buttonhole) Boot Welt  kadur (ball)  tatzref (puzzle) 

Lomo  (beef) Foro (court) Firm Reef  argaz (box)  hediot (layperson) 

Cama  (bed) Laca (lacquer) Sale Onyx  tapuz (orange)  toozig (picnic) 

Trigo  (wheat) Ñaco (no translation) Bank Soup  merkaz (centre)  avnet (belt) 

Trama (plot) Lama (mud) Wind Echo  ezor (area)  nasiob (serum) 

Borde (border) Jaca (pony) Shop Mint  atid (future)  ginzax (archive) 

Nariz  (nose) Iodo (iodine) Team Dole  meltzar (waiter)  tze’etza (offspring) 

Onda  (wave) Fósil  (fossil) Slum Brow  arnak (wallet)  izmel (chisel) 
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Appendix 9 
Statistical values of regression analysis for demographic 

factors of Experiment 5 (trilingual standard naming) 
 

 
i. Effect of gender on overall naming latency 

 

Condition R
2
 F(1,39) beta t p 

Spanish naming latency 0.002 0.09 0.05 0.29 0.77 

Hebrew naming latency 0.02 0.85 0.15 0.92 0.36 

English naming latency 0.001 0.03 -0.03 -0.19 0.85 

 
 

ii. Effect of age on overall naming latency  
 

Condition R
2
 F(1,39) beta t p 

Spanish naming latency 0.005 0.19 0.07 0.44 0.67 

Hebrew naming latency 0.31 17.21 0.56 4.15 <0.001 

English naming latency 0.14 5.98 0.37 2.44 0.02 

 
 

iii. Effect of formal education on overall naming latency  
 

Condition R
2
 F(1,39) beta t p 

Spanish naming latency 0.08 3.50 0.29 1.87 0.07 

Hebrew naming latency 0.08 3.25 0.28 1.80 0.08 

English naming latency 0.03 1.26 0.18 1.12 0.27 

 

 
 
 


