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Abstract

The problem of generating a checking experiment from a non-deterministic finite state machine has been
represented in terms of state counting. However, test techniques that use state counting traditionally produce preset
test suites. This paper extends the notion of state counting in order to allow the input/output sequences observed
in testing to be utilized: adaptive state counting is introduced. The main benefit of the proposed approach is that it
may result in a reduction in the size of the test suite used. An additional benefit is that where a failure is observed
it is possible to terminate test generation at this point.
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. INTRODUCTION

ANY systems have some internal state that affects and is affected by operations of the system. Such
systems, which include communications protocols and embedded control systems, are typically
specified using state based languages such as Statecharts [6] and SDL [9]. Systems specified using the:
languages may be tested by applying methods basdihibe state machines (FSMsA special type of
FSM is adeterministic finite state machine (DFSM)hese test techniques are usually applied after the
specification has been converted into an FSM by either expanding out the data (possibly after putting
bounds on the types) or by applying some abstraction (see, for example, [10]).

The widespread use of state based systems, and the importance of their correctness, has led to muc
interest in testing from FSMs (see, for example, [1]-[3], [5], [7], [10]-[13], [16], [18]). Non-determinism
in the specification is not unusual. Typically this comes either from some abstraction that has been applied
or there being a number of acceptable output sequences in response to some input sequence. Howeve
most work has focused on testing from DFSMs.

When testing from an FSM it is important to decide what is meant by correctness. This paper assumes
that the implementation under test (IUT) is correct if and only if it is a reduction of the specification:
every input/output sequence that is possible in the IUT is also present in the specification. This is an
appropriate notion of correctness when the non-determinism in the specification is due to there being a
set of alternative output sequences that are valid responses to some input sequence and the IUT ma
choose from these. An alternative is to test for equivalence: the IUT is deemed to be correct if and
only if it is equivalent to the specification. Equivalence is the appropriate notion of correctness if all
of the input/output sequences in the specification must be present in the IUT. Naturally these different
notions of correctness lead to different test generation techniques but coincide where the specification is
deterministic.

When testing from an FSM/ it is normal to make certain assumptions and a checking experiment is
a, typically preset, test suite that is guaranteed to determine correctness under these assumptions. Mo
approaches for generating a checking experiment from a non-deterministic FSM are based on the notion
of state counting [12], [13], [18].
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This paper introduces an (iterative) adaptive test generation algorithm: at each stage the algorithm
produces the input sequences or adaptive test cases to be applied on the basis of the input/output sequenc
that have previously been observed. State counting is extended, to adaptive state counting, to allow
observed input/output sequences to be utilized. This may reduce the size of the test suite used and the
proposed test generation algorithm produces a test suite that determines whether the IUT is a reduction of
the specification under the standard assumptions. The paper also formalizes the use of adaptive test case
[1], [16], which will be defined in Section IV, in conjunction with adaptive state counting. An additional
benefit of adaptive state counting is that testing may be terminated if a failure is observed: where a preset
test suite is used, the entire test suite is generated before testing proceeds. However, adaptive testing doe
require the use of a more sophisticated test environment.

This paper’s main contributions are as follows. First, it explores properties of adaptive test cases. Second,
it adapts the product machine of [13] to non-deterministic IUTs. It explores conditions under which the
states of the IUT can be distinguished during testing. The paper then introduces adaptive state counting.
An adaptive algorithm is given and we prove that this algorithm is correct. Finally, we prove that the test
suite produced using the proposed algorithm is guaranteed to be contained within the test suite producec
using state counting.

The paper is structured as follows. Section Il introduces FSMs and Section Il describes state counting.
Section IV defines adaptive test cases and proves a number of properties of these. Section V adapts th
product machine, that has been used in reasoning about testing a deterministic IUT against an FSM [13],
to the case where the IUT may be non-deterministic. Section VI describes how states of the IUT may be
distinguished during testing. This is followed, in Section VII, by a definition of adaptive state counting
and an adaptive test generation algorithm. This algorithm is described in terms of the product machine.
The proposed approach is evaluated in Section VIII and finally, in Section IX, conclusions are drawn.

[I. BACKGROUND

The testing of a state-based system using a preset test suite typically proceeds through the applicatior
of input sequences and the observation of the resultant output sequences. Skippesetes the set of
inputs andY denotes the set of outputs. Anput sequencés a sequences,...,x; of inputs and an
input/output sequends a sequence; /y., x2/ys, - - ., Tr /Yy, for somezy, ...,z € X andyy,...,yx € Y.
A test sequences an input/output sequeneg /yi, x2/ya, - . ., /Yy IN Which yy, ...,y is the specified

response tay,...,z,. A test suiteis a finite set of input sequences.
For convenience, an input/output sequence 1 /y1, x2/ys, - - ., 2 /y, Will sometimes be writterx /g
wherez = x1,...,x is theinput portionof a andy = v, ..., y. is theoutput portionof a. Throughout

this paper, any variable representing a sequence or tree will have a bar over its name.

An FSM M is defined by a tuplésS, s;, X, Y, h) in which S is a finite set of states; € S is the initial
state, X is the finite input alphabet,” is the finite output alphabet, aridis the transition relation. The
relation’ has typeS x X «— S x Y. Given states and inputz, (', y) € h(s,x) if and only if the input of
x when M is in states may result inA/ moving to states’ and outputtingy. The tuple(s, ', z/y) defines
a transition of M. The relationh may be extended to take input sequences. Consider, for example, the
FSM M, described in Figure 1. Herk(s1,a) = {(s2,0), (s4,1)} andh(sy,bb) = {(s1,10)}.

It is possible to define projections and h? of i such thath! gives the states reached from a state,
given an input, anch? defines the input/output pairs from a state. These projections are defined by:
h(s,z) ={s' € S|Fy € Y.(s',y) € h(s,x)} andh*(s,z) = {y € Y|Is' € S.(s',y) € h(s,x)}. h! and h?
may be extended to take input sequencesMin h'(sy, bb) = {s1} andh?(sy, bb) = {10}.

The FSMM = (5,s1,X,Y,h) defines a languagé (M) which contains the input/output sequences
allowed by M. More formally, L(M) = {z/yj|z € X* Ay € h*(s1,7)}. Similarly, the states of M has
an associated languagk;,(s) = {z/y|z € X* Ay € h?(s,z)}. Clearly L(M) = Ly(s1).

An FSM M is completely specifiedf for all s € S,z € X, |h(s,z)| > 1. If M is not completely
specified it may be transformed to form a completely specified FSM. Three standard approaches for doing



Fig. 1. The Non-deterministic Finite State Machihg,

this are by adding an error state, a trap state, or self-loops with null outpus. initially connectedif
every state is reachable from the initial stateMdf Vs € S.3z € X*.s € h!(sy,z). If M is not initially
connected it may be rewritten to form an initially connected FSM by removing the unreachable states.
M hasreset capabilityif it has a reset operation: some inputhat takes every state to the initial state.
The IUT has areliable resetif it has a resetr that is known to have been implemented correctly. A
reliable reset, that might be implemented through the system being switched off and then on again, may
be used to separate input sequences. It will be assumed that any FSM considered is initially connected
and completely specified and that the IUT has a reliable reset. The reliable reset will be represented by
r and will not be included in the input alphab&t (it is treated differently in testing).

Two FSMs M, and M, areequivalentif and only if L(M;) = L(M,). Two statess ands’ of FSM M
are equivalentif and only if Ly/(s) = Ly(s"). An FSM M is deterministicif for every input sequence
z € X* there is at most one output sequence Y* such thatt/y € L(M). Note that in general it is
not possible to convert an FSM into an equivalent DFSM. To see this, conklglerlere the input of
when M, is in states; may lead to outpu® or 1 and soM, is not equivalent to a DFSM.

FSM M is said to beobservable[14] if for every states, input x, and outputy, M has at most one
transition leavings with input x and outputy. Every FSM is equivalent to an observable FSM [14].
It will thus be assumed that any FSM considered is observable. Given output seguérice, z) will
denote the state that is reached frerwith input sequence and output sequenag {h¥(s,z)} = {s' €
S|(s',y) € h(s,z)}. If § € h?(s, ) then the sefs’ € S|(s',y) € h(s,z)} is guaranteed to be a singleton
because\/ is observable.

Recall that it is assumed that any FSM considered is completely specified. \ES! a reduction of
FSM M if and only if M’ has the same input alphabet &6 and every input/output sequence that is
possible inM’ is allowed byM. More formally, an FSMM’ is areductionof FSM M if and only if M
and M’ have the same input alphabets aiid\/’) C L(M). This is denotedV/” < M. Similarly, states’
of FSM M’ is areductionof states of FSM M if and only if M and M’ have the same input alphabets
and Ly (s") € Ly (s). This is denoteds’ < s. This is similar to the notion of trace inclusion found in
the labelled transition systems literature (see, for example, [15]).

In this paper we will assume that the IUT behaves like some unknown B&MThe notion of
correctness used is that the IUT is correct if and only/if is a reduction of the specification FSM.
This corresponds to the case in which, if the specification gives alternative output sequences in response tc
some input sequence these output sequences are acceptable alternatives. By contrast, where correctness
is equivalence, if the specification gives alternative output sequences in response to some input sequenc:
z, a correct IUT must be capable of producing all of these alternatives.

The above notions may be generalized in the following way. Staté M’ is a reduction of state
of M on test suiteD if and only if M and M’ have the same input alphabets and every input/output
sequence produced frogh with an input sequence i is allowed froms. More formally, states’ of M’



is a reduction of state of M on test suiteD if and only if M and M’ have the same input alphabets
and{z/y € Lyp(s')|z € D} C {z/y € Ly(s)|z € D}. This is denoted’ < s and otherwises’ £p s.
Supposes; is the initial state ofd/ ands] is the initial state ofA/’. Then M’ is a reduction ofA/ on D

if and only if s} <p s;. This is denoted/’ <p M and otherwisell’ Ap M.

When testing from an FSM it is usual to assume that the IUT behaves likes some unknown element
of a fault domain: the se¥’}; of completely specified observable FSMs with the same input and output
alphabetsas M and at mostn states (some predetermined. A test suite is called ahecking experiment
if and only if for everyM’ € U7, that is not a reduction af/, the test suite shows that’ is erroneou$
More formally, D is a checking experiment and only if for all M’" € U7, M’ < M < M' <p M.
Throughout this paper it will be assumed that the IUT behaves like some unknown observable FSM
M;=(T,t1,X,Y, hy) € Uy,

When testing a non-deterministic implementation it is normal to make a fairness assumption, sometimes
called thecomplete testing assumptidhat there is some knownsuch that if an input sequence is applied
k times then all possible responses are observed (see, for example, [11]). This paper will assume that
such a fairness assumption can be made. Naturally, this assumption holds immediately in the important
case where the implementation is known to be deterministic.

I1l. APPLYING STATE COUNTING

This section will briefly review the literature on testing from FSMs, concentrating on the use of state
counting. It is organized as follows. Section IlI-A describes the notion of a deterministic state cover.
Section 1lI-B considers how states of an FSM may be distinguished. Section IlI-C then describes the
use of state counting in generating a checking experiment. When the implementation is known to be
deterministic, this knowledge may be used in testing [7], [13]. Future work will consider how the results
in this paper may be strengthened where it is known that the IUT is deterministic.

A. Reaching states of the specification

Input sequence € X* is said todeterministically-reach (d-reactstates if and only if h'(s, z) = {s}:

s is the only state reached hy s is then said to bel-reachable For example, inM, s4 is d-reached by
b and thus is d-reachable. By contrast,is not d-reachable.

If z d-reachess and M; is a reduction ofM then each state of/; that may be reached by input
sequencer must be a reduction of. A set V' of input sequences is deterministic state covelrf it
contains the empty sequeneand is a minimal set such that every d-reachable statle)! is d-reached
by some input sequence from [13]. Sy denotes the set of d-reachable stated/ofV = {e,b,ba} is a
deterministic state cover fat/,.

A test suite will be produced by extending sequences framwWhile IV need not reach all of the states
of either the specification or the IUT, reasoning based on adaptive state counting will be used in order to
determine when it is possible to stop extending the test suite.

B. Distinguishing states of the specification

When testing from an FSM/ it is useful to have sequences that distinguish state® ofn order for
an input sequence to distinguish two states and s’ of M it is sufficient that the corresponding sets of
output sequences do not intersect. More formally, this &2{f, z) N h?(s’,7) = 0 [14]. This notion of
distinguishing states may be extended in the following, intrinsically adaptive, way [1], [13].

Definition 1: Statess and s’ are r(1)-distinguishable if there is some inpue X such thath?(s, z) N
h%(s',x) = (). Statess ands’ are r{)-distinguishable X > 1) if either s ands’ are r(j)-distinguishable for

There may be outputs with the property that it appears to be feasible that the IUT can produce these even though the specification FSM
cannot. Where this is the case, we will assume thadias been extended to include these outputs.
2Checking experiments may be defined similarly for other fault domains [3].



TABLE |
THE POSSIBLE RESPONSES OFy TOW

State | Responses taa | Responses téa
s1 00, 10 10
S2 00 10
s3 10 00,01, 11
Sa 01 00, 01

somel < j < k or there is some input € X such that for ally € h2(s, z) N h?(s', ) the stated?(s, x)
andh¥(s', x) are r(j)-distinguishable for someé < j < k. Statess and s’ arer-distinguishableif there is
somek > 1 such thats and s’ are r¢)-distinguishable.

Given r-distinguishable states and s’ it is possible that there is no single input sequence that r-
distinguishes them. The notion of r-distinguishing states leads to the use of a set of input sequences
W (s, s'), called an r-distinguishing set [13], to r-distinguish stateends’. A setl¥’ of input sequences
r-distinguishesstatess and s’ if W’ contains some r-distinguishing set folands’. The seti (s, s’) can
be defined inductively [13].

Definition 2: A set W of input sequences is aeharacterizing setf it r-distinguishes each pair of
r-distinguishable states of/.

Proposition 1: Given statess and s’ of M, if Ly (s") C Ly(s) thens ands’ are not r-distinguishable

Now consider the examplé/,. By Proposition 1, sincd ;,(s2) C Ly, (s1) we know thats; and s,
are not r-distinguishable. Table | shows that thel$et= {aa, ba} r-distinguishes all other states and so
is a characterizing set.

C. State Counting

This section describes state counting and its use in generating a checking experiment from an FSM.
The problem is to determine, through black-box testing, whether the IUT may exhibit an input/output
sequence that is not in the languab@\/) defined by the specification.

The test suite will be developed using a breadth-first search through input sequences. In order to apply
a search it is necessary to have some termination criterion that decides whether an input sequence needs
be extended. Recall thdtbehaves like some unknowW; = (T,t1, X, Y, h;) € U7, Given an observed
input/output sequence ih(M), we may consider the current (unknown) statef A/, and the current
states of M. A failure occurs in response to the next input if and only if the input/output exhibited from
t is not allowed froms. Thus a failure is associated with a péirt) € S x T of states.

A termination criterion for the search will be based on the observation that if a statespaire
S x T, from which a failure may be exhibited, is reachable then it is reachable by somal length
input/output sequence/y. If a prefix z,/y; of z/y reaches state pais’,t') thenz;/y; must define a
minimal sequence tds’,¢'). Thus, if it is possible to demonstrate that a sequence reaches some such
pair of states that has already been met then this input/output sequence need not be extended since
cannot form the prefix of a minimal sequence to a failure. State counting is used to demonstrate this: the
reasoning used is based on placing a lower bound on the number of separate stdjebatf must have
been visited if there has been no repetition in the pairs of states met. Sipdeas at mostn states,
once this lower bound exceeds the sequence must have repeated a pair of states and so the sequence
need not be extended. When all output sequences observed in response to an input sebaeadais
property,z need not be extended further.

We will briefly describe test generation based on state couhtired S;, ..., S, denote maximal sets of
r:distinguishable states dff. Given S’ C S, S’ will denote the set of states frosi that are d-reachable:

S’ = 5"nSy. W will denote the characterizing set used. Given a d-reachable statgy, a set7r(s)
(called a traversal set in [12]) is constructed in the following way:

S8Adaptive state counting, which is based on related observations, will be described in depth in Section VII.



Fig. 2. The tree representing;

Fig. 3. The tree representing

. On the basis of the successor tree, generate &.s€t L, (s) of input/output sequences such that:
for each input/output sequenag'y € F; there is someS;, 1 < i < z, such thatz/y visits states
from S; exactlym — \S*Z-| + 1 times when followed froms and this condition does not hold for any
proper prefix ofz/y.
. Tr(s) is the set of input sequences such that there is some corresponding input/output sequence in
Fo:Tr(s)={z € X*|3g € Y*.2/y € F}.
Given a setd C X*, let 7 (v;, A) denote the set of input sequences formed by followindpy each
prefix of a sequence id. More formally, 7 (v;, A) is the set{v;} Pre(A), where Pre(A) denotes the set
of prefixes of sequences from (i.e. Pre(A) = Uzeapre(a) wWherepre(a) = {a;|3aq.a = aias2}). The
following test suite is produced [11]:

E= ] T(u,Tr(s))W

$;i €Sy

Now consider the application of state counting to the example B&Mwith m = n = 4. Here the
deterministic state covel’ reaches states,, ss;, and sy. Further, the characterizing s&t = {aa, ba}
distinguishes all of the states exceptands,. There are thus two maximal sets of r-distinguishable states:
SO = {81733,84} and S| = {82,83,84}. HereSO = S() and thUS|S()| =3.5 = {83,84} and SO|Sl| = 2.
Thus, a node in the successor tree is a leaf if one of the following holds:

« After the root, on the path to the leaf there are at least two nodes that represent staté§.from

« After the root, on the path to the leaf there are at least three nodes that represent statgés from

This leads to the setB;, F3, and F,; represented by the trees in Figures 2, 3, and 4 respectively.
Recall, that the sef;; defines the set of input sequences produced by taking the prefixes of the set of
paths from the root to a leaf. Sind& = {aa, ba}, the treeF leads to the following test suite:

{€,a,b,aa,ab, ba, bb, aaa, aab, aba, abb}{aa, ba}



Fig. 4. The tree representing;

The treeF; leads to the test suite:

{ba}{e, a, b, aa, ab, ba, bb, baa, bab, baaa, baab}{aa, ba}
The treeF, leads to the test suite:

{b}{e,a, b, aa, ab, ba, bb, baa, bab, baaa, baab}{aa, ba}

The complete test suite is produced by taking the union of these three sets. The following result is
from Luo et al. [11].

Theorem 2:The setE of input sequences is a checking experiment.

We will now introduce new notation that will be used to rephrase state counting. This will make it
easier to compare the test suites produced by state counting and adaptive state counting.

Given input sequence € X* there may be a number of alternative output sequences that may be
produced in response toand some of these might satisfy the termination criterion while others do not.
Thus, it is possible for there to be two input sequence§ifs) such that one is a proper prefix of
the other. An input sequencein T'r(s) is a maximal element of'r(s) if for every output sequence
y € h*(s,z), some prefix ofz/y is in F,. The notion of an input sequence being a maximal element of
Tr(s) will be represented in terms diB;.(s, S1, Z).

LB(s, 81, %) = mingerz(s 0 |{Z' /5 € pre(@/y) \ {e}|h” (s,7') € Si}| + |9]

{z' )y € pre(z/y) \ {e}|h¥ (s,7') € S,}| is the number of times/y visits states fromS;, when
followed from s. Thus, LB,.(s, S1,z) counts the number of times states frégmare visited byz/y and
V for eachoutput sequencg € h?(s,z) and takes theninimumof these values. If this reaches + 1
then the input sequenceneed not be further extended: for every h2(s,z), some prefix ofz/y is in
Tr(s). Thusz is a maximal input sequence fifr(s).

Proposition 3: An input sequence is a maximal input sequence ifir(s) if and only if there exists
a setS; of r-distinguishable states af/ such thatLB;.(s,S;,zZ) = m + 1 and for every setS] of
r-distinguishable states df/, LB;.(s, S}, z) < m + 1.

Proposition 4: Suppose);, v, € V are prefixes of that reach states ands; respectivelyz = v;z;, and
z = v,;z;. Let S; denote some set of r-distinguishable states; I6 a prefix ofv; then LB, (s;, S1,7;) >
LBSC(Sj, Sl, Zf'j).

Test generation using state counting may thus be rephrased in the following way.

Algorithm 1: 1) Set7 =V and7s = V.

2) While 7¢ # ()

3) For every input sequence< 7., do the following:



Fig. 5. An adaptive test case

a) Find the maximal element of V' that is a prefix ofz.

b) Find ' and s such thatz = vz’ andv d-reaches.

¢) Removet from 7¢ if there is some sef; of r-distinguishable states éff with LB;.(s, S1,7") >
m.

4) SetTec =Tc X \7 and7 =T U7X

5) endwhile

6) Output the test suitd V.

In the algorithm the sef is the set of input sequences currently being considered in the search and
7 is the set of input sequences considered to date. If input sequercé. satisfies the termination
criterion it is removed fron. in step 3. Otherwise is extended in step 4. When is extended, it is
sufficient to consider extensions fothat have yet to be considered (which is why theBas removed
from 7o X when extending/:).

This algorithm extends input sequences until they satisfy the termination criterion. One possible ter-
mination criterion is to insist that for eaah that is a prefix ofz, it is not necessary to extendwhen
considering the corresponding. However, according to Proposition 4, it is sufficient to consider only
the maximal prefix ofr that is contained irl/ and this is the approach used in Algorithm 1.

When all the states af/ are d-reachable and r-distinguishable, the test suite reduces to thi¢.set
{e)™ "W = V({e}UXU.. . UX™ )W, This is equivalent to the test produced, using the W-method
[4], [17], when testing from a DFSM. Where these conditions do not hold, a larger test suite is required.

The use of state counting when testing a deterministic IUT against an FSM has been described in
terms of the product machine [13]. Section V will adapt the product machine to the case where the
implementation may be non-deterministic. Before this, adaptive test cases will be explored.

IV. ADAPTIVE TEST CASES

This section introduces the notion of an adaptive test case. It then formalizes this idea and proves results
that will be used later. Informally an adaptive test case is a rooted tree with directed edges. In this tree,
each leaf represents the adaptive test case terminating and every other node has an associated input. Tl
edges represent outputs and there cannot be more than one edge withydetprihg a node:. Figure
5 represents an adaptive test case in which, andc are inputs and and1 are outputs.

An adaptive test case is applied in the following manner. We start at the root. Suppose we have reached
noden. If n is a leaf we stop. Otherwise, #f has inputz then we applyx and observe the output
produced. If there is no edge from with outputy, we terminate; otherwise we move to the nade
reached by the edge fromwith labely. For example, in applying the adaptive test case in Figure 5, we
first inputa. If 0 is output we then input. We then terminate, irrespective of the next output produced.

It is natural to define trees recursively. In doing so, a nadmn have one of two forms: it can be a
leaf (represented bywll) or it has two components: an inputand a set of pointers to nodes (roots of
subtrees), one pointer for each edge frenThis set of pointers, to nodes, can be represented by a partial
function f: if there is an edge, with output from n to some node’ then f(y) is the adaptive test case



represented by’. The setYT of all adaptive test cases, with input alphabétand output alphabet’,
may be defined recursively [8].

Definition 3: T is the set of adaptive test cases, where an adaptive testcasg is one of:

o null

. a pair(x, f) in which z is an input andf is a partial function from output values to adaptive test

cases. Thusf is a partial function fromy” to Y.

An adaptive test case € T is applied in the following manner. B = null then the adaptive test case
ends. Ifé = (z, f) then the inputz is applied and some outpytis observed. Iff is not defined ory
we terminate and otherwise we apply the adaptive test ¢égpe It will be assumed that any adaptive
test case considered is finite: its application must always terminate. The furfctgopartial in order to
allow a more concise description of adaptive test cases in which, at some nodes, certain output values are
known to indicate a failure and thus to lead to no further input.

Consider the adaptive test case in Figure 5. Here the root no@e f§) for a function f; in which
f1(0) is the node(c, f>) and f1(1) = (b, f3). The functionf, is defined byf,(0) = null and f(1) = null
while the functionf; is defined byf;(1) = (¢, f1). Finally, f4(0) = null and f,(1) = null.

An input sequence may be seen as an adaptive test case in which the functions represent constants
the next input applied is the same irrespective of the output. Thus the results that will be developed for
adaptive test cases apply when using input sequences. Given input seguamdedaptive test case
it is possible to followz by &: we simply apply the input sequengeto the IUT, observe the resultant
output sequence and then apply the adaptive test&ase

Given adaptive test casg the length ofz is the length of the longest input/output sequence that may
result from the application of.

Definition 4: The lengthof an adaptive test casg length(a), is [8]:

o 0if 0 =null

o 1+ max{length(f(y))|y € dom f ANy e Y} if o= (z,f)
wheredom f denotes the elements &f on which f is defined.

Consider, for example, the adaptive test case Figure 5. Herdength(a) = 1+max{length((c, f2)
length((b, f3))}. length((c, fa)) = 1 + max{length(null),length(null)} = 1. length((b, f3)) = 1
max{length(null),length((c, f1))} but sincelength((c, f1)) = 1+ maz{length(null), length(null)}
1, length((b, f3)) = 2. Thus,length(a) = 1 + max{1,2} = 3.

AboEIFotoh et al. [1] discuss the use of adaptive test cases to distinguish states. A similar notion is
described by Tripathy and Naik [16]. AboEIFotoh et al. give algorithms for generating adaptive test cases
that distinguish states. The notions that lie behind the use of adaptive test cases will now be formalized.

Given adaptive test case and stateu of FSM N = (U, uy, X, Y, hy), IOx(u,a) will denote the set
of input/output sequences that may be observed by applyittgN when N is in stateu. IOy (u, o) is:

),
_l’_

{e} if 6 =null
( U {z/y}) U( U {z/y}ON(hy(u, ), f(y))) if 7 = (z, f)
yeh%\,(u,a:)/\ygdomf th?\,(u,x)/\yEdomf

The first rule states that if the adaptive test caseusl then, since no input is applied, the empty
sequence is observed. The second rule is recursive, stating that if the inpumaly lead to output
y (y € h3(u,z)) theng may lead to an input/output sequence in the formegf followed by either
termination (ify € dom f and sof does not define a next input) or some input/output sequence formed by
applying f(y) in the stateh¥; (u, z) reached fromu by =/y. Each input/output sequence iy (u,d) is a
possible respons® ¢ when N is in stateu and /Oy (u, o) is theset of responsesf NV to & when in state
u. Consider the exampl&/, and the adaptive test casein Figure 6. ThenW O, (s1,1) = {aa/00,a/1}
and [OMO(Sg, 5’1) = {a/l}

This notation may be extended to sets of adaptive test cases. Givehdfehdaptive test cases and
stateu of FSM N = (U, uy, X, Y, hy), ION(u, X)) is defined by the following.
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Fig. 6. The adaptive test casés anda-

I0n(u, %) = | IOx(u,5)

oey

The notion of an adaptive test cage f) r-distinguishing two states and s’ of M is quite natural:
the possible responses {o, f) in statess and s’ should be disjoint. This is the case if and only if,
wheres and s’ may both lead to some outpytin response ta: (y € h%(s,z) N h?(s’,z)), the remaining
adaptive test case must be guaranteed to r-distinguish the states reachedafridei by = /y. Clearly, if
h*(s,z) N h*(s',z) = () then (z, f) r-distinguishess and s’ for any choice off.

Definition 5: An adaptive test case = (z, f) r-distinguishesstatess ands’ of M if and only if for all
y € h?(s,x)Nh%*(s', z), we have thay € dom f and f(y) r-distinguishes the statéd (s, z) andh?(s’, z).

Consider the examplé/,. Here the se{aa, ba} is a characterizing set. However,d# is input and the
first output is1 then the second output does not help distinguish the states. Similarly, when considering
ba, if the response té is 0 then there is no need to apply Thus the r-distinguishable states iof, are
r-distinguished by the adaptive test cagsesand g, shown in Figure 6.

The following result relates the approaches of using an adaptive test case to r-distinguish two states
and the corresponding sets of input/output sequences.

Lemma 5: Adaptive test casé € T r-distinguishes states and s’ of M if and only if 1Oy, (s,5) N
IOM<S/,5') = Q)

Proof: Case 1:=-. Proof by induction on the length of. The base case, with length 0, follows
immediately. Inductive hypothesis: for every adaptive test ¢dse T of length less tham, p > 0, if
o’ r-distinguishes states and s’ of M thenIO(s,d’) N 10y (s',0") = 0. Supposer = (z, f) € T has
lengthp and r-distinguishes and s'.

Proof by contradiction: suppos€O,(s,a) N 10y (s',5) # 0. Let xz,/yy, be some element of
I0(s,6) N 10y (s',5) (x € X andy € Y). Thusy € h*(s,z) N h*(s',z). Let s = h¥(s,z) and s, =
h¥(s',z). By the definition of/O,, and the observability oM, z, /91 € 10 (s0, f(y)) N IO sy, f(y)).

By definition, sinceg r-distinguishess and s’, we know thaty € dom f and f(y) r-distinguishes
sp and s). Further, f(y) has length at most — 1. Thus, by the inductive hypothesisQ(so, f(y)) N
IOy (sg, f(y)) = 0. This provides a contradiction as required.

Case 2:«<. Proof by induction on the length af. The base case, with length O, follows immediately.
Inductive hypothesis: for every’ € T of length less tham, p > 0, if 10y,(s,6")N 10y (s',") = (0 then
o’ r-distinguishess and s’. Supposer = (z, f) € T has lengttp and 70, (s,5) N IOy (', 5) = .

It is sufficient to prove that for aly € h?(s,z) N h?(s',z), we have thaty € dom f and f(y) r-
distinguishes states?(s,z) and h¥(s’, z). Supposey € h*(s,z) N h%*(s’,x) and lets, = h¥(s,z) and
sy = h¥(s';x). As 10y (s,0) N IOy (s',5) = () we must have thay € dom f. Observe that since
IOy (s,0) N ION(s',7) =0, IONx(s0, f(y)) N ION(sg, f(y)) = 0. Further,length(f(y)) < p. Thus, by
the inductive hypothesisf(y) r-distinguishess, and s;. The result thus follows. [ |

It is now possible to introduce notation regarding the use of adaptive test cases to r-distinguish states.

Definition 6: Given adaptive test cagec T, a set> of adaptive test cases, completely specified FSM
M = (S,s1,X,Y,h), and completely specified FSM/; = (T, t1, X, Y, h;):
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. Statet of )M is a reduction of state of M on & if and only if 1Oy, (t,5) C IOy (s,a). This is
denotedt <; s.

« Statet of M; is a reduction of state of M on X if and only if ¢ is a reduction of state on every
element ofX. This is denoted <y s.

« Mj is a reduction ofM on g if and only if t; <5 s;. This is writtenM; <5 M.

o M; is a reduction ofM on X if and only if ¢; <y, s;. This is writtenM; <x, M.

The following definition extends the notion of a characterizing set to adaptive test cases.

Definition 7: A set() of adaptive test cases is adlaptive characterizing sdor M if and only if for

all s,s' € S, if s ands’ are r-distinguishable then they are r-distinguished by some elemént of

V. THE PRODUCT MACHINE

The problem of testing a deterministic implementation against an FSM has been described in terms
of the product machine [13]. The state of the product machine is either a speciaF'stater a pair
(s,t) € S x T of states that represent the statesiéfand M; € U7, given the input/output sequence
observed. The product machine behaves like where this is consistent with/ and otherwise moves
to the stateF'ail. Naturally, sinceM; is unknown before testing the product machine is also unknown.
However, testing may be seen as trying to decide whether thefstat®f the (unknown) product machine
is reachable and this observation helps when reasoning about the effectiveness of a test suite.
This section adapts the definition of the product machine to the case where the implementation may be
non-deterministic. Given observable FSM = (S, s1, X, Y, h) and observable FSM/; = (T',t,, X, Y, h;)
that models the IUT, the product machifteM, M;) = (S x TU{Fail}, (s1,t1), X, Y U{ fail}, h,) where
for all z € X, h,(Fail,x) = {(Fail, fail)} and for allz € X, (s,t) € Sx T, andy € Y
1) If (t',y) € hi(t,xz) and(s',y) € h(s,x) then((s',t'),y) € hp((s,t),z).
2) If (t',y) € hi(t,z) andy & h*(s,z) then (Fail,y) € hp((s,t), ).
Lemma 6: P(M, M) is observable.
Proof. This is an immediate consequence of the fact thatind M/; are observable. [ |
Note that, if incorrect output can be produced by the IUT in response to an input sequence then the
‘first incorrect output’ of the IUT is produced by the product machine (from the corresponding state).
Only after this is ‘fail’ produced. This differs slightly from the previous definition [13] in which this ‘first
incorrect output’ is not produced by the product machine. The following results show that the problem
of deciding whether the IUT is correct is equivalent to deciding whefhei is reachable.
Lemma 7:Let z/y denote an input/output sequenaed X*,y € Y*). Then Fail = h%((s1,t1), ) if
and only if there exists some prefix/y’ of z/y with z'/y" € L(M;) \ L(M).
Proof: Case 1<=. Proof by contradiction: suppos¢/y’ € L(M;)\L(M) andFail # h'%((s1,t1), Z).
Then Fail # h%((sl,tl),f’). Let (s,t) = h%((sl,tl),f’). Clearly 4/ does not contain the elemelfitiil.
By the definition of the product machine, sing&/y’ reaches statés,t) # Fail, s € h? (s,7'). This
contradictsz’ /¢y’ ¢ L(M) as required.
Case 2:=. SupposeFail = h'((s1,t1),Z). Let #'/y denote some minimal prefix af/7 that reaches
Fail. By the definition of the product maching;/y’ € L(M;). Thus it is sufficient to prove thay ¢
hQ(Sl,Lf/). i’//g/ = i’ll’g/glyg for somez; € X*, U € Y™, LEQfE X, andy2 cY.
Since, by Lemma 6, the product machine is observailds:,?), ;) is defined. By the minimality
of z'/y', z1/y, reaches some stafe,t) = h' ((s1,t1),71) other thanFail of P(M, M;). Observe now
that Fail = h'%((s,t), z2). Thus, by the definition of the product maching, & h*(s, z2). Since M is
observables is the only state of\/ reached by input/output sequeneg/y,. Thusy,ys & h?(sy, T179)
and soy’ & h*(sy,7') as required. n
Theorem 8:Suppose that the IUT, that behaves like an unknown elemédt € U7, is being tested
against the FSMV/. Then M; is a reduction ofM if and only if the stateF'ail of P(M, M) is not
reachable from the initial state d?(M, M;).
Proof. This follows immediately from Lemma 7. [ |
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Deciding correctness is now expressed in terms of deciding reachability for the (unknown) product
machine. Section VII will define adaptive state counting and explain how it may be used to construct a
test suite that determines this reachability. Adaptive state counting will rely on distinguishing states of
the IUT during testing and this will be described in Section VI.

VI. DISTINGUISHING STATES OF THE IMPLEMENTATION

Each adaptive test case will be repeated a sufficient number of times for us to assume, under fairness
that all possible responses 6f; have been observed. Thasdistinguishes two statesandt’ of M;
if the set of possible input/output sequences observed by appyingt andt’ differ. This observation
motivates the following definition of what it means to distinguish two states of the IUT.

Definition 8: An adaptive test case € Y distinguishestates andt’ of M, if and only if IO, (t,5) #
10, (t',a). If some adaptive test case fromdistinguishes andt’ we say that: distinguishes and¢'.

The notion of distinguishing states of the implementation in this manner will prove to be useful when
applying adaptive testing. The following shows that if a Sebf adaptive test cases r-distinguishes states
s ands’ of M and states,t’ of M; satisfyt <y s andt’ <y, s’ thenX distinguishes and'.

Theorem 9:Suppose that: C T r-distinguishes states and s’ of M and stateg, ¢ of M; satisfy
t <y s andt’ <y s’. ThenX distinguisheg andt'.

Proof. SinceX r-distinguishess ands’, there exists some adaptive test case X, 6 # null, that r-
distinguishes; ands’. By Lemma 5,/0,,(s,5)N10y(s',5) = 0. Sincet <y s andt’ <x. &', IO, (t,7) C
[O]\/[(S, 5’) and[OM/I(t,, 5’) - IOM<S/, 5). ThUS[O]V[I(t, 5’) OIOMI(t’, 5’) - [O]V[(S, 5) ﬂIOM(s’, 5) = ().
Since M is completely specified an@ # null, 10y, (t,5) # 0. Thus,I0,,,(t,5) # [0y, (', ) and the
result follows. [ |

VIl. ADAPTIVE STATE COUNTING

Throughout this sectiof will denote the adaptive characterizing set used. Since a characterizing set
defines an adaptive characterizing set, the results and techniques in this section extend immediately to the
use of a characterizing set to r-distinguish states.

Adaptive state counting will proceed in a manner similar to state counting: we start/vatid keep on
extending input sequences (followed QY until a termination criterion is satisfied. Given an input/output
sequencer/y, the termination criterion will be based on finding some numpsuch that ifz/y does
not repeat a state of the product machine tliép must have at least states. The contribution dR
is that it distinguishes some states &f; and, in particular, ift < s andt’ < s (t,t' € T, s,s' € S)
and ) r-distinguishess and s’ then Q2 must distinguisht and¢’. An input sequence does not have to be
extended if; > m for every output sequence, since it cannot be a prefix of some minimal sequence to
a failure. The key difference is that, since the algorithm is adaptive, in calculatmg have additional
information: observed input/output sequences.

We get a number of benefits from adaptivity. Recall that in calculaliBg.(s, S, z), in order to decide
whether a sequence must be extended, we taken@inimumover all j € h?(s, 7). If certain input/output
sequences that are contained in the specification are not contained in the IUT then we do not need to
consider these sequences in deciding whethgnould be extended. This may lead to earlier termination.
Further,©2 might distinguish two states of the IUT reached by certain input/output sequences éven if
does not distinguish the corresponding states of the specification. Both of these advantages can be used i
calculating; and thus lead to a reduction in the size of the test suite used. Finally, if a failure is observed
we can terminate without creating the rest of the test suite.

Sufficient repetitions will be used so that it can be assumed, under fairness, that all possible responses
have been observed. Section VIII will briefly discuss how the fairness assumption may be extended to the
use of adaptive test cases. Before describing adaptive state counting, a number of terms will be defined.
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A. Characterizing the states reached by a sequence

Given input/output sequence/y observed in testingBq(z/y) will denote the set of all input/output
sequences that may be producedMy if we apply elements of2 in the state ofM; reached byz/y.
Thus Bqo(z/y) = 10y, (t,S2) wheret = hY(t,, ) is the state ofA/; reached byz/y. By fairness, all of
these input/output sequences will be observed in testirgzfis followed by (. Thus if two input/output
sequences lead to states/df; that are distinguished b§2 then they lead talifferent states of)/;.

Proposition 10: If Bo(z/ij) # Bao(%' /7)) thenhl(ty, &) # hY (t,, 7).

Suppose that /7" is an input/output sequence 6f; that may be observed in response to same V.

It will be useful to consider the states 8f; that may be reached using prefixes of some sequefpige
following ©/7¢’. Note that)/; and M may allow more than one response #cand these input/output
sequences may reach different states\ff even though they reach the same staté/of

Givens' € S, if vz /v’y is an input/output sequence that can be produced by hodnd M; (vz/v'y €
L(M;)NL(M)), R(s',v/v',z/y) will denote prefixes obz /v’y that reachs’ (in M) and that extena /v’

R(s',0/0,%/7) = {o% /07 |T' |7 € pre(z/7) \ {e} As' = h"7 (s1,57)}

When considering an input/output sequenegv’y € L(M) N L(My), if this does not repeat states of
the product machine then its prefixes that areRify’, v/v',z/y) must reach|R(s',v/v’, z/y)| different
states ofM; since each of the input/output sequences reaches the same shdte of

Proposition 11: Suppose € V, vz/v'y € L(M)NL(M;), s' € S, and no state of the product machine
has been repeated when (in testing)’ is followed byz /3. Then the states af/; reached by input/output
sequences iR(s',v/v', z/y) are distinct.

Given set7 of input sequenced3,(7) denotes the set of responses(tdhat may be observed from
states of the IUT reached l¥:

Bo(T) = {Ba(z/y)lz € T AN2/y € L(M)}

Each element 0B (7) is a distinct set of input/output sequences produced in resporideatm must
representat leastone state ofi/;.

B. A lower bound

This section will introduce a lower bound that may be placed on the number of stafés ibfthere
has been no repetition in states of the product machine for a given input/output sequence. This will drive
adaptive state counting: whenever this lower bound exceedsr every observed response to an input
sequencer, we know that it is not necessary to extendgincez cannot be a prefix of a minimal input
sequence that can lead to failure.

Before defining the lower bound, we will consider the stated/gfreached by sequences from Let
V = {vy,...,0,}. For eachy; € V, the setV; will denote the set of possible responses of the IUT;to

V! = h3(t1,v;). Each element; € V/ may correspond to a different state &af;: the stateh? (t1,v;). The

lower bound will consider the sét’, defined below)’ represents the set of possible ways of choosing
individual elements from each.

V' = {01/}, 02/, ..., 0:/0;, ... 0, /U, } V1 < j < p0) €V}

Note that sincel” must containe, each element of/’ containse/e. In testing, every input sequence
in the deterministic state covar will be followed by the adaptive characterizing set. This motivates
the introduction of new notation. Givel” € V', R*(s',v/v',z/y,V") is formed by taking the set
R(s',u/v',z/y) (of input/output sequences of the form’/v'y’ that are prefixes ofz/v'y and reachs’
in M) and adding the input/output sequence frbih that reaches’ in M, if there is such a sequence.

Supposes, s’ € S, s = h?'(s1,0), andV” € V'. ThenR*(s', /v, 2/, V") is defined by the following.
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1) If s’ is d-reached by someg € V andv, /0] € V” then
RY(s',0/0",2/y,V") = R(s',0/v',2/5) U {01 /0 }

2) Otherwise
R (s',0/v,2/y,V") = R(s', vV, % /7)

All the input/output sequences iRt (s',0/v',z/y, V") reachs’ in M. Thus, if no state of the product
machine is repeated, the states\éf reached by the input/output sequence®in(s’,v/v', z/y, V") must
be distinct.

We now have the components that will contribute to adaptive state counting. Suppose &hat,
vz /v'y € L(M) N L(Mj), S; € S, Q is the adaptive characterizing set uséd, € V', andov/v' € V".
Further, suppos& denotes the set of input sequences that have been followedibyesting. In Lemma
12, we will prove a property of the terthB(v/v',z/y,T,S1,L, V"), defined below, that will be used in
adaptive state counting. This term is defined by the sum of two parts which will now be explained.

1) The first part is)_ o |R7(s,0/0,2/5, V") = > s, |R(s',0/0,2/7)| + 15,|. Each of the
sequences IR*(s',v/v',z/y, V") reaches the same stat€)(of M and thus, if no state of the
product machine is repeated then the input/output sequenc8&s (s, v/v’, z/y, V") must reach
different states of)M/;.

Suppose that for alk, s’ € S; such thats # s’, we have that distinguishes every state dff;
reached by an input/output sequenceiin(s,v/v’,z/y, V") from every state of\/; reached by an
input/output sequence iR (s',v/v',z/y, V"). Note that this condition is automatic if the states in
S, are r-distinguished by? and no failures are observed. If this condition holds, the set of states
of M; reached by input/output sequenceshn(s,v/v’,z/y, V") is disjoint from the set of states

of M; reached by input/output sequenceshn(s’,v/v',z/y, V").

Under these conditions, by Proposition 11, the input/output sequences Rirthe v/v', z /5, V")
meet) . g [R7(s',0/v',2/y,V")| distinct states of\/;.

2) The second part if3o(7) \ (Uses, 21 /g crt(s/,5/5,z/5,v)Ba(T1/71))]. This is the number of sets of
responses t@ that have been observed from statesMdf and that have not been observed from
states considered in the previous term. By Proposition 10, each of these sets of responses must
correspond to an additional state bf;.

The termLB(v/v', 2 /y, T, 5,Q, V") is defined by:
LB(v/v ., 2/y, T, S, Q. V") =Y |R(s,0/v,2/7)| + S|+

s'eSy

[Ba(T)\ ( U Bq(#1/i1))|

s'€S1,71/g1ERT(s',0/0",2/5,V")

The third term in this expression denotes the number of additional sets of input/output sequences
observed in response fo. Each of these must correspond to a state of the IUT.

Lemma 12:Suppose that

1) veV,vz/v'y e L(M)N L(M;), andv /v’ is the maximal length prefix ofz /v’y in V.

2) 7 denotes the total set of input sequences that have been follow€edimyesting and there have
been sufficient repetitions so that under fairness we can assume that all possible responses have
been observed.

3) 7 contains every sequence ¥n and every sequence of the form’ for a prefixz’ of z.

4) S; C S has the property that for all;, s, € S1, s1 # so, 2 distinguishes every state df/;
reached by an input/output sequenceHn(s;,v/v’,z/y, V") from every state of\/; reached by
an input/output sequence R (s,, /7', %/y,V").

5) No failures are observed.
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If no state(s, t) of the product machine reached by a sequenggv'y, (Zo/7o is @ non-empty prefix of
z/y) is reached by somez’ /v’y for a prefixz’'/y' # To/yo Of Z/y or by some input/output sequence in
V"’ then M; must have at least B(v/v', z/y,7T,5:,Q, V") states.
Proof: First observe that givesi, s; € Sy, s; # s;, each state reached by a sequenci(ify, v/v’, z/y)

is distinguished by(2 from each state reached by a sequenc&(r;,v/v’,z/y). Further, since no state
of the product machine is repeated alongy from v/v’, by Proposition 11 the sequences in some
R(s', /v, z/y) (s € S1) must reach different states 8f;. Thus, the sequences Wy s, R(s', /7', Z/y)
must reach different states dff;. The sequences in eadR(s’,v/v',z/y) (s € S;) must also reach
states that are not reached by sequencés’inThus the sequences (W, s, R(s',v/0",7/y)) UV" reach
> oves, |R(s,0/0,2/y)| + |5 | different states of\/;.

By Proposition 10, every set of responsestXanust indicate a state af/;. Thus, M; must have at
least|Ba(7T) \ (Uyes, 21 /mert (s'.0/.2/5.vn Ba(0/0,Z1/71))| additional states. The result thus foII:ws.

This result will drive adaptive state counting. Given input sequencesed in testing, we extenar
if it might form the prefix of a minimal sequence to a failure. For this to be the case we must have some
response’y to vz such thatz /v’y that does not repeat a state of the product machine. This corresponds
to the last part of the statement of Lemma 12. By choosing appropsiaend V", we can ensure that
the other conditions of Lemma 12 hold and thuspif/vy does not repeat any state of the product
machine thenl/; must haveat leastLB(v/v',z/y, T, 51,2, V") states. This provides a contradiction if
LB(v/v',z2/y,T,51,Q,V") > m, in which casevz /v’y must repeat a state of the product machine and
thus need not be extended.

C. Adaptive state counting: an algorithm

The following is a test generation algorithm based on adaptive state counting. In this alg@rithm
denotes the set of input sequences that have been followé&dibyesting.7. denotes the set of current
elements of7 : those that are being considered in the search through the state space of the product machine.
The elements irY are the maximal sequences considered that do not meet the termination criterion. On
each iteration, elements @f are either removed frorfi- or extended.

Algorithm 2: 1) Set7 =V and7o = V.

2) While 7¢ # ()

3) Test the IUT a sufficient number of times, in order to be able to apply the fairness assumption,
with each element of -2 and record the set of input/output sequences observed in response to the
input sequences i and the corresponding set of response8 tdf a failure is observed, output
the set of input/output sequences that have been observed and terminate.

4) For each input sequenag € 7., removez, from 7. if for every response, to z; observed there
existsS; C S andV” € V' such that the following hold:

a) 71/y, = vz /v'y, wherev/v'" is the maximal element of” that is a prefix ofz; /y1;

b) For all s1, s, € S; with s; # s5,  distinguishes every state af/; reached by an input/output
sequence fromR*(sy,v/v',z/y, V") from every state ofM; reached by an input/output
sequence fronR* (sy, v/v',z/y, V"); and

c) LB(v/v,z/y,T,S,, V") >m.

5) Set7- =TcX \ T and7 =7 U7:-X.

6) endwhile

7) Output the set of input/output sequences that have been observed and the fact that the IUT passec
the test suite applied.

In deciding whether the termination condition holds, in principle all subsets ahd all elements of

V'’ must be considered. Naturally this may not be practical. One way of chodsiigyto start with the
maximal sets of r-distinguishable states/df and extend these. It will transpire that even if we restrict
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ourselves to the maximal sets of r-distinguishable state® pthen forany choice ofVV” € V' the lower
bound produced here is no less than that produced with state counting and may be larger.

Theorem 13:Suppose the IUT/ behaves like an observable FSM with the same input and output
alphabets ag/ and with at mostn states. Algorithm 2 states thatpasses the test suite applied if and
only if I is a reduction of)M.

Proof: Case 1:=-. This follows from Lemma 12 and the fact that the input sequences followed by
() are extended until the termination criterion is satisfied.

Case 2:«. This follows from I being equivalent to somé&/; € ¥}, and from the definition of\/;

being a reduction of\/. [ |

VIIl. EVALUATION

This section will evaluate adaptive state counting by comparing it to state counting. First, the fairness
assumption is discussed. Section VIII-B contains a proof that the test suite produced using adaptive state
counting is contained within that produced using state counting and contains further general observations.
Finally, in Section VIII-C, adaptive state counting is applied to the example.

A. The fairness assumption

Where the IUT is known to be deterministic, the fairness assumption automatically holds. Further, if a
characterizing set, rather than an adaptive characterizing set, is used in adaptive state counting then th
normal fairness assumption can be made. This section will now briefly consider how a fairness assumption
might be applied when using an adaptive characterizing set. A fuller analysis of this issue will be left to
future work.

Given adaptive test case let I; denote the set of maximal input sequences that may result from the
application ofz. These are the maximal input sequences that label paths from the root to some leaf of
the tree corresponding t®. For example, in the adaptive test casén Figure 5 ,1W; = {ac, abc}.

Theorem 14:If, under fairness, it is sufficient to apply any input sequentdsmes then it is also
sufficient to apply each adaptive test casames.

Proof: Consider some adaptive test casand the corresponding s&t; = {z;,...,Z,}. Suppose
z/y is a possible response of the IUT 4o Thenz is a prefix ofz; for somel < i < p.

Under fairness, if we apply; £ times, we are guaranteed to see every possible response of the IUT to
Z;. Supposey; is one of these possible responses such ghata prefix ofy;. We may now observe that
if in an execution the IUT responds t to producey; then it would have produced/y in response to
a. Thus, if we applyg k times we are guaranteed to obsefvg. From this we may conclude that by
applyinga k times we are guaranteed to observe all possible responses to [ |

B. General Results

This section explores properties of adaptive state counting. First, we show that the test suite produced
by adaptive state counting is contained within that produced by state counting. The following shows that
adaptive state counting terminates the extension of input sequences no later than state counting.

Theorem 15:Suppose that’” € V', v/v' € V", vz /v'y € L(M) N L(M;), and7 denotes the set of
input sequences followed by in Algorithm 2. Supposes; is some set of r-distinguishable statesdf
and Algorithm 2 does not observe any failures. THeB(v/v', z/y, T, 51, Q, V") > LB;.(s, S, T).

Proof: Recall that

LBy.(s,51,%) = mingepzsm {7 /7 € pre(z/7) \ {}|h¥ (5,7) € Si}| + |Si]

LB(v/v,z/y, T, S, Q. V") > > |R(s,0/v,2/7)| +|S]

s'€Sy
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Observe that

Y IR(s 0/ 2 /y)| = {7 /5 € pre(z/9) \ {}|h7 (5,7) € Si}|

s'esSy

The result now follows. [ |

By considering the example, it will be demonstrated that(v/v',z/y,7,S1,Q, V") may be strictly
greater than.B,.(s, S1, ).

Theorem 16:The test suite applied using adaptive state counting is contained in that produced using
state counting.

Proof: First note that if a failure is observed in adaptive state counting then Algorithm 2 terminates.
By contrast, state counting produces a preset test suite. Thus, it is sufficient to consider the case where
no failures are observed during the application of Algorithm 2.

Suppose adaptive characterizing $etis being used,S; is a set of r-distinguishable states of,
s1,89 € S1, 81 # sg, for statest; andt, of M; we havet; <q s; andt, <o s, and no failures are
observed in the application of Algorithm 2. By Theorem:Qandt, are distinguished by). Thus when
the setS; may be used in state counting in order to show that a sequence need not be ex$eried,
also be used in adaptive state counting. The result now follows from Theorem 15. [ |

The following gives a condition under which the test suite generated using adaptive state counting and
characterizing sell’ is guaranteed to be contained within that produced if the W-method is applied.

Proposition 17: Suppose thaf\/ hasn states, the IUT behaves like some FSW, € ¥%, and the
deterministic state covar reaches each state &f. Suppose that for every paif, z, of input sequences,
with (¢, 4;) € hy(t1,z;) and s’ = h¥(sy,z;) (@ € {1,2}), if s' # s* thent! and¢* are distinguished by
W. Then the test suite produced using adaptive state counting is contained in theXsefe})™ " +1IV.

Proof: Observe that, under the conditions, if two input/output sequences fi{dify) reach different
states of M then the corresponding states &f; are distinguished by¥. Thus, in calculating the
lower bound it is possible to choosg = S. Given this choice ofS;, LB(v/v',z/y,T,5,,Q, V") >
Sues |R(s,0/0,2/9)| + S| = |2/9] + n. Thus, LB(v/v',2/5,T,S,Q, V") >m if |2/§] > m —n + 1.
The result thus follows. ]

Now consider the expected reduction in the size of the test suite. In the worst case, the test suite will be
the same as that produced using state counting: observing the response of the IUT provides no additiona
useful information. Suppose a state of the implementation, not reach&d,by distinguished from those
met by V”. Then, for some sequences this will increase the last termhBtw/v', 2/, 7T, S1,Q, V"), by
one. This will lead to a number of sequences terminating one step earlier and thus may lead to a reduction
of the order of| X| in the size of the test suite. Thus, wherextra states are found, the size of the test
suite may be reduced by the order|af|’. Naturally, the actual reduction will depend upon a number of
properties of the specification and implementation.

C. Applying adaptive state counting to the example

In order to illustrate the potential savings, suppose that the IUT behaves like theVESiM Figure 7,
M, is the specification, and characterizing €et {aa, ba} is used (instead of an adaptive characterizing
set). The first iteration of the algorithm uses the test suife= {e¢, b, ba}{aa, ba}. This identifies three
responses t€) and thus three separate states\fif. None of the sequences used satisfies the termination
criterion and thus all are extended.

The second iteration uses the test sWit& 2 = {¢, b, ba}{a,b}{aa,ba}. We observe a fourth response
to Q: that of the state reached hy0. Thus, 4 separate states/df have been found. All of the sequences,
that do not pass through this state, have the third term in the lower bound taking on thd .vBased
on this, it is straightforward to show that all of the sequences exegpt} = {a} are leaves as they
give a lower bound ob using S; = S (]S\ = 3). We now need only extend the sequencéo get
{aa,ab}{aa,ba}: the two nodes reached are leaves. Thus the following test suite was used:
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Fig. 7. The FSMM;}

{€,a,b,aa, ab, ba, bb, baa, bab}{aa, ba}

Suppose each input has cdsand each input sequence ends with a reset with toshe test suite
has cosB6. This contrasts with the test suite produced using state counting which hasi2oblote that
the above test suite may be further reduced by observing in advance that th& @emust be used and
thus by removing every sequencelif? U VV X that is a prefix of some other sequencd/ift UV X2.

In this case, the sequencesiff) are all prefixes of sequences nX). Further, the sequencésaa
andbaba from V X2 are prefixes of other sequences fréfk ). This observation leads to the test suite
being reduced to one with total lengtB. In contrast, once prefixes are removed, state counting leads to
a test suite with cos201. This gives a 69% reduction.

Interestingly, this illustrates a potential weakness of applying an adaptive test generation algorithm: it
is not always possible to remove an input sequendkat is a prefix of another input sequencefrom
the test suite since when is input it may not be known that’ will be used. This happened in the
above case: the input sequenaes andaba in VX are prefixes of sequences {n} X . Future work
will consider heuristics that might maximize the potential of saving through the removal of prefixes. One
simple heuristic operates as follows. First generate test Suitgsing state counting. In adaptive state
counting, when considering input sequencapply some maximal input sequengefrom 7; such that
7 is a prefix ofz’. This increases the potential for savings through prefix removal and guarantees that the
test suite is contained within that produced by state counting.

In this case the test suite may be further reduced by using an adaptive characterizing set. When applying
aa, if the first output is1 then the second input need not be applied. This occurs fpm@nd in one
response ta from s;. When applyingba, if the first output isO the second input need not be applied.

While adaptive state counting may lead to significantly smaller test suites, there are other aspects to
the costs of testing. In particular, adaptive testing requires a more complex test environment.

IX. CONCLUSION

This paper has considered the problem of utilizing adaptivity when testing against a non-deterministic
finite state machine (FSM). Two forms of adaptivity have been considered: the use of (preset) adaptive
test cases to distinguish states and the use of information derived during testing to drive the generation
of a test suite. The latter leads to an adaptive algorithm, in which input sequences are applied and then
further input sequences are generated on the basis of the input/output sequences that have been observe

It has been shown that testing may be based around adaptive state counting which is an extension of
the notion of state counting [12], [13], [18]. It has been proved that the use of adaptive state counting
is guaranteed to produce a test suite that is contained within that produced by state counting. Further
reductions may result from using adaptive test cases, to distinguish states, rather than input sequences.
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By contrast with state counting, adaptive state counting allows properties of the IUT discovered during
testing to be utilized. It has been shown that this is capable of leading to a significant reduction in the
size of the test suite.

Future work will consider how, when using adaptive state counting, the test suite may be further reduced
where the implementation is known to be deterministic. It will also consider how the assumptions, about
the specification, may be relaxed.
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