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Abstract

The problem of generating a checking experiment from a non-deterministic finite state machine has been
represented in terms of state counting. However, test techniques that use state counting traditionally produce preset
test suites. This paper extends the notion of state counting in order to allow the input/output sequences observed
in testing to be utilized: adaptive state counting is introduced. The main benefit of the proposed approach is that it
may result in a reduction in the size of the test suite used. An additional benefit is that where a failure is observed
it is possible to terminate test generation at this point.
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I. I NTRODUCTION

M ANY systems have some internal state that affects and is affected by operations of the system. Such
systems, which include communications protocols and embedded control systems, are typically

specified using state based languages such as Statecharts [6] and SDL [9]. Systems specified using these
languages may be tested by applying methods based onfinite state machines (FSMs). A special type of
FSM is adeterministic finite state machine (DFSM). These test techniques are usually applied after the
specification has been converted into an FSM by either expanding out the data (possibly after putting
bounds on the types) or by applying some abstraction (see, for example, [10]).

The widespread use of state based systems, and the importance of their correctness, has led to much
interest in testing from FSMs (see, for example, [1]–[3], [5], [7], [10]–[13], [16], [18]). Non-determinism
in the specification is not unusual. Typically this comes either from some abstraction that has been applied
or there being a number of acceptable output sequences in response to some input sequence. However,
most work has focused on testing from DFSMs.

When testing from an FSM it is important to decide what is meant by correctness. This paper assumes
that the implementation under test (IUT) is correct if and only if it is a reduction of the specification:
every input/output sequence that is possible in the IUT is also present in the specification. This is an
appropriate notion of correctness when the non-determinism in the specification is due to there being a
set of alternative output sequences that are valid responses to some input sequence and the IUT may
choose from these. An alternative is to test for equivalence: the IUT is deemed to be correct if and
only if it is equivalent to the specification. Equivalence is the appropriate notion of correctness if all
of the input/output sequences in the specification must be present in the IUT. Naturally these different
notions of correctness lead to different test generation techniques but coincide where the specification is
deterministic.

When testing from an FSMM it is normal to make certain assumptions and a checking experiment is
a, typically preset, test suite that is guaranteed to determine correctness under these assumptions. Most
approaches for generating a checking experiment from a non-deterministic FSM are based on the notion
of state counting [12], [13], [18].
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This paper introduces an (iterative) adaptive test generation algorithm: at each stage the algorithm
produces the input sequences or adaptive test cases to be applied on the basis of the input/output sequences
that have previously been observed. State counting is extended, to adaptive state counting, to allow
observed input/output sequences to be utilized. This may reduce the size of the test suite used and the
proposed test generation algorithm produces a test suite that determines whether the IUT is a reduction of
the specification under the standard assumptions. The paper also formalizes the use of adaptive test cases
[1], [16], which will be defined in Section IV, in conjunction with adaptive state counting. An additional
benefit of adaptive state counting is that testing may be terminated if a failure is observed: where a preset
test suite is used, the entire test suite is generated before testing proceeds. However, adaptive testing does
require the use of a more sophisticated test environment.

This paper’s main contributions are as follows. First, it explores properties of adaptive test cases. Second,
it adapts the product machine of [13] to non-deterministic IUTs. It explores conditions under which the
states of the IUT can be distinguished during testing. The paper then introduces adaptive state counting.
An adaptive algorithm is given and we prove that this algorithm is correct. Finally, we prove that the test
suite produced using the proposed algorithm is guaranteed to be contained within the test suite produced
using state counting.

The paper is structured as follows. Section II introduces FSMs and Section III describes state counting.
Section IV defines adaptive test cases and proves a number of properties of these. Section V adapts the
product machine, that has been used in reasoning about testing a deterministic IUT against an FSM [13],
to the case where the IUT may be non-deterministic. Section VI describes how states of the IUT may be
distinguished during testing. This is followed, in Section VII, by a definition of adaptive state counting
and an adaptive test generation algorithm. This algorithm is described in terms of the product machine.
The proposed approach is evaluated in Section VIII and finally, in Section IX, conclusions are drawn.

II. BACKGROUND

The testing of a state-based system using a preset test suite typically proceeds through the application
of input sequences and the observation of the resultant output sequences. SupposeX denotes the set of
inputs andY denotes the set of outputs. Aninput sequenceis a sequencex1, . . . , xk of inputs and an
input/output sequenceis a sequencex1/y1, x2/y2, . . . , xk/yk for somex1, . . . , xk ∈ X andy1, . . . , yk ∈ Y .
A test sequenceis an input/output sequencex1/y1, x2/y2, . . . , xk/yk in which y1, . . . , yk is the specified
response tox1, . . . , xk. A test suiteis a finite set of input sequences.

For convenience, an input/output sequenceā = x1/y1, x2/y2, . . . , xk/yk will sometimes be written̄x/ȳ
wherex̄ = x1, . . . , xk is the input portionof ā and ȳ = y1, . . . , yk is theoutput portionof ā. Throughout
this paper, any variable representing a sequence or tree will have a bar over its name.

An FSM M is defined by a tuple(S, s1, X, Y, h) in which S is a finite set of states,s1 ∈ S is the initial
state,X is the finite input alphabet,Y is the finite output alphabet, andh is the transition relation. The
relationh has typeS×X ↔ S×Y . Given states and inputx, (s′, y) ∈ h(s, x) if and only if the input of
x whenM is in states may result inM moving to states′ and outputtingy. The tuple(s, s′, x/y) defines
a transition of M . The relationh may be extended to take input sequences. Consider, for example, the
FSM M0 described in Figure 1. Hereh(s1, a) = {(s2, 0), (s4, 1)} andh(s1, bb) = {(s1, 10)}.

It is possible to define projectionsh1 and h2 of h such thath1 gives the states reached from a state,
given an input, andh2 defines the input/output pairs from a state. These projections are defined by:
h1(s, x) = {s′ ∈ S|∃y ∈ Y.(s′, y) ∈ h(s, x)} andh2(s, x) = {y ∈ Y |∃s′ ∈ S.(s′, y) ∈ h(s, x)}. h1 andh2

may be extended to take input sequences. InM0, h1(s1, bb) = {s1} andh2(s1, bb) = {10}.
The FSMM = (S, s1, X, Y, h) defines a languageL(M) which contains the input/output sequences

allowed byM . More formally,L(M) = {x̄/ȳ|x̄ ∈ X∗ ∧ ȳ ∈ h2(s1, x̄)}. Similarly, the states of M has
an associated language:LM(s) = {x̄/ȳ|x̄ ∈ X∗ ∧ ȳ ∈ h2(s, x̄)}. Clearly L(M) = LM(s1).

An FSM M is completely specifiedif for all s ∈ S, x ∈ X, |h(s, x)| ≥ 1. If M is not completely
specified it may be transformed to form a completely specified FSM. Three standard approaches for doing
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Fig. 1. The Non-deterministic Finite State MachineM0

this are by adding an error state, a trap state, or self-loops with null output.M is initially connectedif
every state is reachable from the initial state ofM : ∀s ∈ S.∃x̄ ∈ X∗.s ∈ h1(s1, x̄). If M is not initially
connected it may be rewritten to form an initially connected FSM by removing the unreachable states.
M hasreset capabilityif it has a reset operation: some inputr that takes every state to the initial state.
The IUT has areliable resetif it has a resetr that is known to have been implemented correctly. A
reliable reset, that might be implemented through the system being switched off and then on again, may
be used to separate input sequences. It will be assumed that any FSM considered is initially connected
and completely specified and that the IUT has a reliable reset. The reliable reset will be represented by
r and will not be included in the input alphabetX (it is treated differently in testing).

Two FSMsM1 andM2 areequivalentif and only if L(M1) = L(M2). Two statess ands′ of FSM M
are equivalentif and only if LM(s) = LM(s′). An FSM M is deterministicif for every input sequence
x̄ ∈ X∗ there is at most one output sequenceȳ ∈ Y ∗ such thatx̄/ȳ ∈ L(M). Note that in general it is
not possible to convert an FSM into an equivalent DFSM. To see this, considerM0. Here the input ofa
whenM0 is in states1 may lead to output0 or 1 and soM0 is not equivalent to a DFSM.

FSM M is said to beobservable[14] if for every states, input x, and outputy, M has at most one
transition leavings with input x and outputy. Every FSM is equivalent to an observable FSM [14].
It will thus be assumed that any FSM considered is observable. Given output sequenceȳ, hȳ(s, x̄) will
denote the state that is reached froms with input sequencēx and output sequencēy: {hȳ(s, x̄)} = {s′ ∈
S|(s′, ȳ) ∈ h(s, x̄)}. If ȳ ∈ h2(s, x̄) then the set{s′ ∈ S|(s′, ȳ) ∈ h(s, x̄)} is guaranteed to be a singleton
becauseM is observable.

Recall that it is assumed that any FSM considered is completely specified. FSMM ′ is a reductionof
FSM M if and only if M ′ has the same input alphabet asM and every input/output sequence that is
possible inM ′ is allowed byM . More formally, an FSMM ′ is a reductionof FSM M if and only if M
andM ′ have the same input alphabets andL(M ′) ⊆ L(M). This is denotedM ′ ¹ M . Similarly, states′

of FSM M ′ is a reductionof states of FSM M if and only if M andM ′ have the same input alphabets
and LM ′(s′) ⊆ LM(s). This is denoteds′ ¹ s. This is similar to the notion of trace inclusion found in
the labelled transition systems literature (see, for example, [15]).

In this paper we will assume that the IUT behaves like some unknown FSMMI . The notion of
correctness used is that the IUT is correct if and only ifMI is a reduction of the specification FSMM .
This corresponds to the case in which, if the specification gives alternative output sequences in response to
some input sequencēx, these output sequences are acceptable alternatives. By contrast, where correctness
is equivalence, if the specification gives alternative output sequences in response to some input sequence
x̄, a correct IUT must be capable of producing all of these alternatives.

The above notions may be generalized in the following way. States′ of M ′ is a reduction of states
of M on test suiteD if and only if M and M ′ have the same input alphabets and every input/output
sequence produced froms′ with an input sequence inD is allowed froms. More formally, states′ of M ′
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is a reduction of states of M on test suiteD if and only if M and M ′ have the same input alphabets
and{x̄/ȳ ∈ LM ′(s′)|x̄ ∈ D} ⊆ {x̄/ȳ ∈ LM(s)|x̄ ∈ D}. This is denoteds′ ¹D s and otherwises′ 6¹D s.
Supposes1 is the initial state ofM ands′1 is the initial state ofM ′. ThenM ′ is a reduction ofM on D
if and only if s′1 ¹D s1. This is denotedM ′ ¹D M and otherwiseM ′ 6¹D M .

When testing from an FSM it is usual to assume that the IUT behaves likes some unknown element
of a fault domain: the setΨm

M of completely specified observable FSMs with the same input and output
alphabets1 asM and at mostm states (some predeterminedm). A test suite is called achecking experiment
if and only if for everyM ′ ∈ Ψm

M , that is not a reduction ofM , the test suite shows thatM ′ is erroneous2.
More formally, D is a checking experimentif and only if for all M ′ ∈ Ψm

M , M ′ ¹ M ⇔ M ′ ¹D M .
Throughout this paper it will be assumed that the IUT behaves like some unknown observable FSM
MI = (T, t1, X, Y, hI) ∈ Ψm

M .
When testing a non-deterministic implementation it is normal to make a fairness assumption, sometimes

called thecomplete testing assumption, that there is some knownk such that if an input sequence is applied
k times then all possible responses are observed (see, for example, [11]). This paper will assume that
such a fairness assumption can be made. Naturally, this assumption holds immediately in the important
case where the implementation is known to be deterministic.

III. A PPLYING STATE COUNTING

This section will briefly review the literature on testing from FSMs, concentrating on the use of state
counting. It is organized as follows. Section III-A describes the notion of a deterministic state cover.
Section III-B considers how states of an FSM may be distinguished. Section III-C then describes the
use of state counting in generating a checking experiment. When the implementation is known to be
deterministic, this knowledge may be used in testing [7], [13]. Future work will consider how the results
in this paper may be strengthened where it is known that the IUT is deterministic.

A. Reaching states of the specification

Input sequencēx ∈ X∗ is said todeterministically-reach (d-reach)states if and only if h1(s1, x̄) = {s}:
s is the only state reached bȳx. s is then said to bed-reachable. For example, inM0 s4 is d-reached by
b and thus is d-reachable. By contrast,s2 is not d-reachable.

If x̄ d-reachess and MI is a reduction ofM then each state ofMI that may be reached by input
sequencēx must be a reduction ofs. A set V of input sequences is adeterministic state coverif it
contains the empty sequenceε and is a minimal set such that every d-reachable states of M is d-reached
by some input sequence fromV [13]. SV denotes the set of d-reachable states ofM . V = {ε, b, ba} is a
deterministic state cover forM0.

A test suite will be produced by extending sequences fromV . While V need not reach all of the states
of either the specification or the IUT, reasoning based on adaptive state counting will be used in order to
determine when it is possible to stop extending the test suite.

B. Distinguishing states of the specification

When testing from an FSMM it is useful to have sequences that distinguish states ofM . In order for
an input sequencēx to distinguish two statess ands′ of M it is sufficient that the corresponding sets of
output sequences do not intersect. More formally, this is ifh2(s, x̄) ∩ h2(s′, x̄) = ∅ [14]. This notion of
distinguishing states may be extended in the following, intrinsically adaptive, way [1], [13].

Definition 1: Statess ands′ are r(1)-distinguishable if there is some inputx ∈ X such thath2(s, x)∩
h2(s′, x) = ∅. Statess ands′ are r(k)-distinguishable (k > 1) if either s ands′ are r(j)-distinguishable for

1There may be outputs with the property that it appears to be feasible that the IUT can produce these even though the specification FSM
cannot. Where this is the case, we will assume thatY has been extended to include these outputs.

2Checking experiments may be defined similarly for other fault domains [3].



5

TABLE I

THE POSSIBLE RESPONSES OFM0 TO W

State Responses toaa Responses toba
s1 00, 10 10
s2 00 10
s3 10 00, 01, 11
s4 01 00, 01

some1 ≤ j < k or there is some inputx ∈ X such that for ally ∈ h2(s, x)∩ h2(s′, x) the stateshy(s, x)
andhy(s′, x) are r(j)-distinguishable for some1 ≤ j < k. Statess ands′ are r-distinguishableif there is
somek ≥ 1 such thats ands′ are r(k)-distinguishable.

Given r-distinguishable statess and s′ it is possible that there is no single input sequence that r-
distinguishes them. The notion of r-distinguishing states leads to the use of a set of input sequences
W (s, s′), called an r-distinguishing set [13], to r-distinguish statess ands′. A setW ′ of input sequences
r-distinguishesstatess ands′ if W ′ contains some r-distinguishing set fors ands′. The setW (s, s′) can
be defined inductively [13].

Definition 2: A set W of input sequences is acharacterizing setif it r-distinguishes each pair of
r-distinguishable states ofM .

Proposition 1: Given statess ands′ of M , if LM(s′) ⊆ LM(s) thens ands′ are not r-distinguishable
Now consider the exampleM0. By Proposition 1, sinceLM0(s2) ⊆ LM0(s1) we know thats1 and s2

are not r-distinguishable. Table I shows that the setW = {aa, ba} r-distinguishes all other states and so
is a characterizing set.

C. State Counting

This section describes state counting and its use in generating a checking experiment from an FSM.
The problem is to determine, through black-box testing, whether the IUT may exhibit an input/output
sequence that is not in the languageL(M) defined by the specification.

The test suite will be developed using a breadth-first search through input sequences. In order to apply
a search it is necessary to have some termination criterion that decides whether an input sequence needs to
be extended. Recall thatI behaves like some unknownMI = (T, t1, X, Y, hI) ∈ Ψm

M . Given an observed
input/output sequence inL(M), we may consider the current (unknown) statet of MI and the current
states of M . A failure occurs in response to the next input if and only if the input/output exhibited from
t is not allowed froms. Thus a failure is associated with a pair(s, t) ∈ S × T of states.

A termination criterion for the search will be based on the observation that if a state pair(s, t) ∈
S × T , from which a failure may be exhibited, is reachable then it is reachable by someminimal length
input/output sequencēx/ȳ. If a prefix x̄1/ȳ1 of x̄/ȳ reaches state pair(s′, t′) then x̄1/ȳ1 must define a
minimal sequence to(s′, t′). Thus, if it is possible to demonstrate that a sequence reaches some such
pair of states that has already been met then this input/output sequence need not be extended since it
cannot form the prefix of a minimal sequence to a failure. State counting is used to demonstrate this: the
reasoning used is based on placing a lower bound on the number of separate states ofMI that must have
been visited if there has been no repetition in the pairs of states met. SinceMI has at mostm states,
once this lower bound exceedsm the sequence must have repeated a pair of states and so the sequence
need not be extended. When all output sequences observed in response to an input sequencex̄ have this
property,x̄ need not be extended further.

We will briefly describe test generation based on state counting3. Let S1, . . . , Sz denote maximal sets of
r-distinguishable states ofM . GivenS ′ ⊆ S, Ŝ ′ will denote the set of states fromS ′ that are d-reachable:
Ŝ ′ = S ′ ∩ SV . W will denote the characterizing set used. Given a d-reachable states ∈ SV , a setTr(s)
(called a traversal set in [12]) is constructed in the following way:

3Adaptive state counting, which is based on related observations, will be described in depth in Section VII.
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• On the basis of the successor tree, generate a setFs ⊆ LM(s) of input/output sequences such that:
for each input/output sequencēx/ȳ ∈ Fs there is someSi, 1 ≤ i ≤ z, such thatx̄/ȳ visits states
from Si exactlym− |Ŝi|+ 1 times when followed froms and this condition does not hold for any
proper prefix ofx̄/ȳ.

• Tr(s) is the set of input sequences such that there is some corresponding input/output sequence in
Fs: Tr(s) = {x̄ ∈ X∗|∃ȳ ∈ Y ∗.x̄/ȳ ∈ Fs}.

Given a setA ⊆ X∗, let T (v̄i, A) denote the set of input sequences formed by followingv̄i by each
prefix of a sequence inA. More formally,T (v̄i, A) is the set{v̄i}Pre(A), wherePre(A) denotes the set
of prefixes of sequences fromA (i.e. Pre(A) = ∪ā∈Apre(ā) wherepre(ā) = {ā1|∃ā2.ā = ā1ā2}). The
following test suite is produced [11]:

E =
⋃

si∈SV

T (vi, T r(si))W

Now consider the application of state counting to the example FSMM0 with m = n = 4. Here the
deterministic state coverV reaches statess1, s3, and s4. Further, the characterizing setW = {aa, ba}
distinguishes all of the states excepts1 ands2. There are thus two maximal sets of r-distinguishable states:
S0 = {s1, s3, s4} andS1 = {s2, s3, s4}. Here Ŝ0 = S0 and thus|Ŝ0| = 3. Ŝ1 = {s3, s4} and so|Ŝ1| = 2.
Thus, a node in the successor tree is a leaf if one of the following holds:

• After the root, on the path to the leaf there are at least two nodes that represent states fromS0.
• After the root, on the path to the leaf there are at least three nodes that represent states fromS1.
This leads to the setsF1, F3, andF4 represented by the trees in Figures 2, 3, and 4 respectively.
Recall, that the setFi defines the set of input sequences produced by taking the prefixes of the set of

paths from the root to a leaf. SinceW = {aa, ba}, the treeF1 leads to the following test suite:

{ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb}{aa, ba}
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The treeF3 leads to the test suite:

{ba}{ε, a, b, aa, ab, ba, bb, baa, bab, baaa, baab}{aa, ba}
The treeF4 leads to the test suite:

{b}{ε, a, b, aa, ab, ba, bb, baa, bab, baaa, baab}{aa, ba}
The complete test suite is produced by taking the union of these three sets. The following result is

from Luo et al. [11].
Theorem 2:The setE of input sequences is a checking experiment.
We will now introduce new notation that will be used to rephrase state counting. This will make it

easier to compare the test suites produced by state counting and adaptive state counting.
Given input sequencēx ∈ X∗ there may be a number of alternative output sequences that may be

produced in response tōx and some of these might satisfy the termination criterion while others do not.
Thus, it is possible for there to be two input sequences inTr(s) such that one is a proper prefix of
the other. An input sequencēx in Tr(s) is a maximal element ofTr(s) if for every output sequence
ȳ ∈ h2(s, x̄), some prefix of̄x/ȳ is in Fs. The notion of an input sequence being a maximal element of
Tr(s) will be represented in terms ofLBsc(s, S1, x̄).

LBsc(s, S1, x̄) = minȳ∈h2(s,x̄)|{x̄′/ȳ′ ∈ pre(x̄/ȳ) \ {ε}|hȳ′(s, x̄′) ∈ S1}|+ |Ŝ1|
|{x̄′/ȳ′ ∈ pre(x̄/ȳ) \ {ε}|hȳ′(s, x̄′) ∈ S1}| is the number of times̄x/ȳ visits states fromS1, when

followed from s. Thus,LBsc(s, S1, x̄) counts the number of times states fromS1 are visited byx̄/ȳ and
V for eachoutput sequencēy ∈ h2(s, x̄) and takes theminimumof these values. If this reachesm + 1
then the input sequencēx need not be further extended: for everyȳ ∈ h2(s, x̄), some prefix of̄x/ȳ is in
Tr(s). Thus x̄ is a maximal input sequence inTr(s).

Proposition 3: An input sequencēx is a maximal input sequence inTr(s) if and only if there exists
a setS1 of r-distinguishable states ofM such thatLBsc(s, S1, x̄) = m + 1 and for every setS ′1 of
r-distinguishable states ofM , LBsc(s, S

′
1, x̄) ≤ m + 1.

Proposition 4: Supposēvi, v̄j ∈ V are prefixes of̄x that reach statessi andsj respectively,̄x = v̄ix̄i, and
x̄ = v̄jx̄j. Let S1 denote some set of r-distinguishable states. Ifv̄i is a prefix ofv̄j thenLBsc(si, S1, x̄i) ≥
LBsc(sj, S1, x̄j).

Test generation using state counting may thus be rephrased in the following way.
Algorithm 1: 1) SetT = V andTC = V .
2) While TC 6= ∅
3) For every input sequencēx ∈ TC , do the following:
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a) Find the maximal element̄v of V that is a prefix ofx̄.
b) Find x̄′ ands such thatx̄ = v̄x̄′ and v̄ d-reachess.
c) Removēx from TC if there is some setS1 of r-distinguishable states ofM with LBsc(s, S1, x̄

′) >
m.

4) SetTC = TCX \ T andT = T ∪ TCX
5) endwhile
6) Output the test suiteTW .
In the algorithm the setTC is the set of input sequences currently being considered in the search and

T is the set of input sequences considered to date. If input sequencex̄ ∈ TC satisfies the termination
criterion it is removed fromTC in step 3. Otherwisēx is extended in step 4. When̄x is extended, it is
sufficient to consider extensions tōx that have yet to be considered (which is why the setT is removed
from TCX when extendingTC).

This algorithm extends input sequences until they satisfy the termination criterion. One possible ter-
mination criterion is to insist that for each̄vi that is a prefix ofx̄, it is not necessary to extend̄x when
considering the correspondingFj. However, according to Proposition 4, it is sufficient to consider only
the maximal prefix of̄x that is contained inV and this is the approach used in Algorithm 1.

When all the states ofM are d-reachable and r-distinguishable, the test suite reduces to the setV (X ∪
{ε})m−n+1W = V ({ε}∪X∪. . .∪Xm−n+1)W . This is equivalent to the test produced, using the W-method
[4], [17], when testing from a DFSM. Where these conditions do not hold, a larger test suite is required.

The use of state counting when testing a deterministic IUT against an FSM has been described in
terms of the product machine [13]. Section V will adapt the product machine to the case where the
implementation may be non-deterministic. Before this, adaptive test cases will be explored.

IV. A DAPTIVE TEST CASES

This section introduces the notion of an adaptive test case. It then formalizes this idea and proves results
that will be used later. Informally an adaptive test case is a rooted tree with directed edges. In this tree,
each leaf represents the adaptive test case terminating and every other node has an associated input. The
edges represent outputs and there cannot be more than one edge with outputy leaving a noden. Figure
5 represents an adaptive test case in whicha, b, andc are inputs and0 and1 are outputs.

An adaptive test case is applied in the following manner. We start at the root. Suppose we have reached
noden. If n is a leaf we stop. Otherwise, ifn has inputx then we applyx and observe the outputy
produced. If there is no edge fromn with output y, we terminate; otherwise we move to the noden′

reached by the edge fromn with label y. For example, in applying the adaptive test case in Figure 5, we
first input a. If 0 is output we then inputc. We then terminate, irrespective of the next output produced.

It is natural to define trees recursively. In doing so, a noden can have one of two forms: it can be a
leaf (represented bynull) or it has two components: an inputx and a set of pointers to nodes (roots of
subtrees), one pointer for each edge fromn. This set of pointers, to nodes, can be represented by a partial
function f : if there is an edge, with outputy, from n to some noden′ thenf(y) is the adaptive test case
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represented byn′. The setΥ of all adaptive test cases, with input alphabetX and output alphabetY ,
may be defined recursively [8].

Definition 3: Υ is the set of adaptive test cases, where an adaptive test caseσ̄ ∈ Υ is one of:
• null
• a pair (x, f) in which x is an input andf is a partial function from output values to adaptive test

cases. Thus,f is a partial function fromY to Υ.
An adaptive test casēσ ∈ Υ is applied in the following manner. If̄σ = null then the adaptive test case

ends. If σ̄ = (x, f) then the inputx is applied and some outputy is observed. Iff is not defined ony
we terminate and otherwise we apply the adaptive test casef(y). It will be assumed that any adaptive
test case considered is finite: its application must always terminate. The functionf is partial in order to
allow a more concise description of adaptive test cases in which, at some nodes, certain output values are
known to indicate a failure and thus to lead to no further input.

Consider the adaptive test case in Figure 5. Here the root node is(a, f1) for a functionf1 in which
f1(0) is the node(c, f2) andf1(1) = (b, f3). The functionf2 is defined byf2(0) = null andf2(1) = null
while the functionf3 is defined byf3(1) = (c, f4). Finally, f4(0) = null andf4(1) = null.

An input sequence may be seen as an adaptive test case in which the functions represent constants:
the next input applied is the same irrespective of the output. Thus the results that will be developed for
adaptive test cases apply when using input sequences. Given input sequencex̄ and adaptive test casēσ,
it is possible to followx̄ by σ̄: we simply apply the input sequencēx to the IUT, observe the resultant
output sequence and then apply the adaptive test caseσ̄.

Given adaptive test casēσ, the length ofσ̄ is the length of the longest input/output sequence that may
result from the application of̄σ.

Definition 4: The lengthof an adaptive test casēσ, length(σ̄), is [8]:
• 0 if σ̄ = null
• 1 + max{length(f(y))|y ∈ dom f ∧ y ∈ Y } if σ̄ = (x, f)

wheredom f denotes the elements ofY on whichf is defined.
Consider, for example, the adaptive test caseσ̄ in Figure 5. Herelength(σ̄) = 1+max{length((c, f2)),

length((b, f3))}. length((c, f2)) = 1 + max{length(null), length(null)} = 1. length((b, f3)) = 1 +
max{length(null), length((c, f4))} but sincelength((c, f4)) = 1 + max{length(null), length(null)} =
1, length((b, f3)) = 2. Thus,length(σ̄) = 1 + max{1, 2} = 3.

AboElFotoh et al. [1] discuss the use of adaptive test cases to distinguish states. A similar notion is
described by Tripathy and Naik [16]. AboElFotoh et al. give algorithms for generating adaptive test cases
that distinguish states. The notions that lie behind the use of adaptive test cases will now be formalized.

Given adaptive test casēσ and stateu of FSM N = (U, u1, X, Y, hN), ION(u, σ̄) will denote the set
of input/output sequences that may be observed by applyingσ̄ to N whenN is in stateu. ION(u, σ̄) is:

{ε} if σ̄ = null

(
⋃

y∈h2
N (u,x)∧y 6∈dom f

{x/y}) ∪ (
⋃

y∈h2
N (u,x)∧y∈dom f

{x/y}ION(hy
N(u, x), f(y))) if σ̄ = (x, f)

The first rule states that if the adaptive test case isnull then, since no input is applied, the empty
sequence is observed. The second rule is recursive, stating that if the input ofx may lead to output
y (y ∈ h2

N(u, x)) then σ̄ may lead to an input/output sequence in the form ofx/y followed by either
termination (ify 6∈ domf and sof does not define a next input) or some input/output sequence formed by
applyingf(y) in the statehy

N(u, x) reached fromu by x/y. Each input/output sequence inION(u, σ̄) is a
possible responseto σ̄ whenN is in stateu andION(u, σ̄) is theset of responsesof N to σ̄ when in state
u. Consider the exampleM0 and the adaptive test caseσ̄1 in Figure 6. ThenIOM0(s1, σ̄1) = {aa/00, a/1}
andIOM0(s3, σ̄1) = {a/1}.

This notation may be extended to sets of adaptive test cases. Given setΣ of adaptive test cases and
stateu of FSM N = (U, u1, X, Y, hN), ION(u, Σ) is defined by the following.
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Fig. 6. The adaptive test casesσ̄1 and σ̄2

ION(u, Σ) =
⋃
σ̄∈Σ

ION(u, σ̄)

The notion of an adaptive test case(x, f) r-distinguishing two statess and s′ of M is quite natural:
the possible responses to(x, f) in statess and s′ should be disjoint. This is the case if and only if,
wheres ands′ may both lead to some outputy in response tox (y ∈ h2(s, x)∩ h2(s′, x)), the remaining
adaptive test case must be guaranteed to r-distinguish the states reached froms ands′ by x/y. Clearly, if
h2(s, x) ∩ h2(s′, x) = ∅ then (x, f) r-distinguishess ands′ for any choice off .

Definition 5: An adaptive test casēσ = (x, f) r-distinguishesstatess ands′ of M if and only if for all
y ∈ h2(s, x)∩h2(s′, x), we have thaty ∈ domf andf(y) r-distinguishes the stateshy(s, x) andhy(s′, x).

Consider the exampleM0. Here the set{aa, ba} is a characterizing set. However, ifaa is input and the
first output is1 then the second output does not help distinguish the states. Similarly, when considering
ba, if the response tob is 0 then there is no need to applya. Thus the r-distinguishable states ofM0 are
r-distinguished by the adaptive test casesσ̄1 and σ̄2 shown in Figure 6.

The following result relates the approaches of using an adaptive test case to r-distinguish two states
and the corresponding sets of input/output sequences.

Lemma 5:Adaptive test casēσ ∈ Υ r-distinguishes statess and s′ of M if and only if IOM(s, σ̄) ∩
IOM(s′, σ̄) = ∅.

Proof: Case 1:⇒. Proof by induction on the length of̄σ. The base case, with length 0, follows
immediately. Inductive hypothesis: for every adaptive test caseσ̄′ ∈ Υ of length less thanp, p > 0, if
σ̄′ r-distinguishes statess ands′ of M then IOM(s, σ̄′) ∩ IOM(s′, σ̄′) = ∅. Supposēσ = (x, f) ∈ Υ has
lengthp and r-distinguishess ands′.

Proof by contradiction: supposeIOM(s, σ̄) ∩ IOM(s′, σ̄) 6= ∅. Let xx̄1/yȳ1 be some element of
IOM(s, σ̄) ∩ IOM(s′, σ̄) (x ∈ X and y ∈ Y ). Thusy ∈ h2(s, x) ∩ h2(s′, x). Let s0 = hy(s, x) and s′0 =
hy(s′, x). By the definition ofIOM and the observability ofM , x̄1/ȳ1 ∈ IOM(s0, f(y))∩ IOM(s′0, f(y)).

By definition, sinceσ̄ r-distinguishess and s′, we know thaty ∈ dom f and f(y) r-distinguishes
s0 and s′0. Further,f(y) has length at mostp − 1. Thus, by the inductive hypothesis,IOM(s0, f(y)) ∩
IOM(s′0, f(y)) = ∅. This provides a contradiction as required.

Case 2:⇐. Proof by induction on the length of̄σ. The base case, with length 0, follows immediately.
Inductive hypothesis: for everȳσ′ ∈ Υ of length less thanp, p > 0, if IOM(s, σ̄′)∩ IOM(s′, σ̄′) = ∅ then
σ̄′ r-distinguishess ands′. Supposēσ = (x, f) ∈ Υ has lengthp andIOM(s, σ̄) ∩ IOM(s′, σ̄) = ∅.

It is sufficient to prove that for ally ∈ h2(s, x) ∩ h2(s′, x), we have thaty ∈ dom f and f(y) r-
distinguishes stateshy(s, x) and hy(s′, x). Supposey ∈ h2(s, x) ∩ h2(s′, x) and let s0 = hy(s, x) and
s′0 = hy(s′, x). As IOM(s, σ̄) ∩ IOM(s′, σ̄) = ∅ we must have thaty ∈ dom f . Observe that since
IOM(s, σ) ∩ IOM(s′, σ̄) = ∅, IOM(s0, f(y)) ∩ IOM(s′0, f(y)) = ∅. Further,length(f(y)) < p. Thus, by
the inductive hypothesis,f(y) r-distinguishess0 ands′0. The result thus follows.

It is now possible to introduce notation regarding the use of adaptive test cases to r-distinguish states.
Definition 6: Given adaptive test casēσ ∈ Υ, a setΣ of adaptive test cases, completely specified FSM

M = (S, s1, X, Y, h), and completely specified FSMMI = (T, t1, X, Y, hI):
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• Statet of MI is a reduction of states of M on σ̄ if and only if IOMI
(t, σ̄) ⊆ IOM(s, σ̄). This is

denotedt ¹σ̄ s.
• Statet of MI is a reduction of states of M on Σ if and only if t is a reduction of states on every

element ofΣ. This is denotedt ¹Σ s.
• MI is a reduction ofM on σ̄ if and only if t1 ¹σ̄ s1. This is writtenMI ¹σ̄ M .
• MI is a reduction ofM on Σ if and only if t1 ¹Σ s1. This is writtenMI ¹Σ M .
The following definition extends the notion of a characterizing set to adaptive test cases.
Definition 7: A set Ω of adaptive test cases is anadaptive characterizing setfor M if and only if for

all s, s′ ∈ S, if s ands′ are r-distinguishable then they are r-distinguished by some element ofΩ.

V. THE PRODUCT MACHINE

The problem of testing a deterministic implementation against an FSM has been described in terms
of the product machine [13]. The state of the product machine is either a special stateFail or a pair
(s, t) ∈ S × T of states that represent the states ofM and MI ∈ Ψm

M given the input/output sequence
observed. The product machine behaves likeMI where this is consistent withM and otherwise moves
to the stateFail. Naturally, sinceMI is unknown before testing the product machine is also unknown.
However, testing may be seen as trying to decide whether the stateFail of the (unknown) product machine
is reachable and this observation helps when reasoning about the effectiveness of a test suite.

This section adapts the definition of the product machine to the case where the implementation may be
non-deterministic. Given observable FSMM = (S, s1, X, Y, h) and observable FSMMI = (T, t1, X, Y, hI)
that models the IUT, the product machineP (M, MI) = (S×T ∪{Fail}, (s1, t1), X, Y ∪{fail}, hp) where
for all x ∈ X, hp(Fail, x) = {(Fail, fail)} and for allx ∈ X, (s, t) ∈ S × T , andy ∈ Y :

1) If (t′, y) ∈ hI(t, x) and (s′, y) ∈ h(s, x) then ((s′, t′), y) ∈ hP ((s, t), x).
2) If (t′, y) ∈ hI(t, x) andy 6∈ h2(s, x) then (Fail, y) ∈ hP ((s, t), x).
Lemma 6:P (M, MI) is observable.

Proof: This is an immediate consequence of the fact thatM andMI are observable.
Note that, if incorrect output can be produced by the IUT in response to an input sequence then the

‘first incorrect output’ of the IUT is produced by the product machine (from the corresponding state).
Only after this is ‘fail’ produced. This differs slightly from the previous definition [13] in which this ‘first
incorrect output’ is not produced by the product machine. The following results show that the problem
of deciding whether the IUT is correct is equivalent to deciding whetherFail is reachable.

Lemma 7:Let x̄/ȳ denote an input/output sequence (x̄ ∈ X∗, ȳ ∈ Y ∗). ThenFail = hȳ
P ((s1, t1), x̄) if

and only if there exists some prefix̄x′/ȳ′ of x̄/ȳ with x̄′/ȳ′ ∈ L(MI) \ L(M).
Proof: Case 1:⇐. Proof by contradiction: supposēx′/ȳ′ ∈ L(MI)\L(M) andFail 6= hȳ

P ((s1, t1), x̄).
Then Fail 6= hȳ′

P ((s1, t1), x̄
′). Let (s, t) = hȳ′

P ((s1, t1), x̄
′). Clearly ȳ′ does not contain the elementfail.

By the definition of the product machine, sincex̄′/ȳ′ reaches state(s, t) 6= Fail, s ∈ hȳ′(s1, x̄
′). This

contradictsx̄′/ȳ′ 6∈ L(M) as required.
Case 2:⇒. SupposeFail = hȳ

P ((s1, t1), x̄). Let x̄′/ȳ′ denote some minimal prefix of̄x/ȳ that reaches
Fail. By the definition of the product machine,x̄′/ȳ′ ∈ L(MI). Thus it is sufficient to prove that̄y′ 6∈
h2(s1, x̄

′). x̄′/ȳ′ = x̄1x2/ȳ1y2 for somex̄1 ∈ X∗, ȳ1 ∈ Y ∗, x2 ∈ X, andy2 ∈ Y .
Since, by Lemma 6, the product machine is observable,hȳ1

P ((s1, t1), x̄1) is defined. By the minimality
of x̄′/ȳ′, x̄1/ȳ1 reaches some state(s, t) = hȳ1

P ((s1, t1), x̄1) other thanFail of P (M, MI). Observe now
that Fail = hy2

P ((s, t), x2). Thus, by the definition of the product machine,y2 6∈ h2(s, x2). SinceM is
observable,s is the only state ofM reached by input/output sequencex̄1/ȳ1. Thus ȳ1y2 6∈ h2(s1, x̄1x2)
and soȳ′ 6∈ h2(s1, x̄

′) as required.
Theorem 8:Suppose that the IUTI, that behaves like an unknown elementMI ∈ Ψm

M , is being tested
against the FSMM . Then MI is a reduction ofM if and only if the stateFail of P (M, MI) is not
reachable from the initial state ofP (M, MI).

Proof: This follows immediately from Lemma 7.
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Deciding correctness is now expressed in terms of deciding reachability for the (unknown) product
machine. Section VII will define adaptive state counting and explain how it may be used to construct a
test suite that determines this reachability. Adaptive state counting will rely on distinguishing states of
the IUT during testing and this will be described in Section VI.

VI. D ISTINGUISHING STATES OF THE IMPLEMENTATION

Each adaptive test case will be repeated a sufficient number of times for us to assume, under fairness,
that all possible responses ofMI have been observed. Thus̄σ distinguishes two statest and t′ of MI

if the set of possible input/output sequences observed by applyingσ̄ in t and t′ differ. This observation
motivates the following definition of what it means to distinguish two states of the IUT.

Definition 8: An adaptive test casēσ ∈ Υ distinguishesstatest andt′ of MI if and only if IOMI
(t, σ̄) 6=

IOMI
(t′, σ̄). If some adaptive test case fromΣ distinguishest andt′ we say thatΣ distinguishest andt′.

The notion of distinguishing states of the implementation in this manner will prove to be useful when
applying adaptive testing. The following shows that if a setΣ of adaptive test cases r-distinguishes states
s ands′ of M and statest, t′ of MI satisfy t ¹Σ s and t′ ¹Σ s′ thenΣ distinguishest and t′.

Theorem 9:Suppose thatΣ ⊆ Υ r-distinguishes statess and s′ of M and statest, t′ of MI satisfy
t ¹Σ s and t′ ¹Σ s′. ThenΣ distinguishest and t′.

Proof: SinceΣ r-distinguishess ands′, there exists some adaptive test caseσ̄ ∈ Σ, σ̄ 6= null, that r-
distinguishess ands′. By Lemma 5,IOM(s, σ̄)∩IOM(s′, σ̄) = ∅. Sincet ¹Σ s andt′ ¹Σ s′, IOMI

(t, σ̄) ⊆
IOM(s, σ̄) andIOMI

(t′, σ̄) ⊆ IOM(s′, σ̄). ThusIOMI
(t, σ̄)∩IOMI

(t′, σ̄) ⊆ IOM(s, σ̄)∩IOM(s′, σ̄) = ∅.
SinceMI is completely specified and̄σ 6= null, IOMI

(t, σ̄) 6= ∅. Thus,IOMI
(t, σ̄) 6= IOMI

(t′, σ̄) and the
result follows.

VII. A DAPTIVE STATE COUNTING

Throughout this sectionΩ will denote the adaptive characterizing set used. Since a characterizing set
defines an adaptive characterizing set, the results and techniques in this section extend immediately to the
use of a characterizing set to r-distinguish states.

Adaptive state counting will proceed in a manner similar to state counting: we start withV and keep on
extending input sequences (followed byΩ) until a termination criterion is satisfied. Given an input/output
sequencēx/ȳ, the termination criterion will be based on finding some numberj such that ifx̄/ȳ does
not repeat a state of the product machine thenMI must have at leastj states. The contribution ofΩ
is that it distinguishes some states ofMI and, in particular, ift ¹ s and t′ ¹ s′ (t, t′ ∈ T , s, s′ ∈ S)
andΩ r-distinguishess and s′ thenΩ must distinguisht and t′. An input sequence does not have to be
extended ifj > m for every output sequence, since it cannot be a prefix of some minimal sequence to
a failure. The key difference is that, since the algorithm is adaptive, in calculatingj we have additional
information: observed input/output sequences.

We get a number of benefits from adaptivity. Recall that in calculatingLBsc(s, S1, x̄), in order to decide
whether a sequencēx must be extended, we take aminimumover all ȳ ∈ h2(s, x̄). If certain input/output
sequences that are contained in the specification are not contained in the IUT then we do not need to
consider these sequences in deciding whetherx̄ should be extended. This may lead to earlier termination.
Further,Ω might distinguish two states of the IUT reached by certain input/output sequences even ifΩ
does not distinguish the corresponding states of the specification. Both of these advantages can be used in
calculatingj and thus lead to a reduction in the size of the test suite used. Finally, if a failure is observed
we can terminate without creating the rest of the test suite.

Sufficient repetitions will be used so that it can be assumed, under fairness, that all possible responses
have been observed. Section VIII will briefly discuss how the fairness assumption may be extended to the
use of adaptive test cases. Before describing adaptive state counting, a number of terms will be defined.
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A. Characterizing the states reached by a sequence

Given input/output sequencēx/ȳ observed in testing,BΩ(x̄/ȳ) will denote the set of all input/output
sequences that may be produced byMI if we apply elements ofΩ in the state ofMI reached bȳx/ȳ.
ThusBΩ(x̄/ȳ) = IOMI

(t, Ω) wheret = hȳ
I(t1, x̄) is the state ofMI reached bȳx/ȳ. By fairness, all of

these input/output sequences will be observed in testing ifx̄/ȳ is followed byΩ. Thus if two input/output
sequences lead to states ofMI that are distinguished byΩ then they lead todifferent states ofMI .

Proposition 10: If BΩ(x̄/ȳ) 6= BΩ(x̄′/ȳ′) thenhȳ
I(t1, x̄) 6= hȳ′

I (t1, x̄
′).

Suppose that̄v/v̄′ is an input/output sequence ofMI that may be observed in response to somev̄ ∈ V .
It will be useful to consider the states ofMI that may be reached using prefixes of some sequencex̄/ȳ
following v̄/v̄′. Note thatMI and M may allow more than one response tov̄ and these input/output
sequences may reach different states ofMI even though they reach the same state ofM .

Givens′ ∈ S, if v̄x̄/v̄′ȳ is an input/output sequence that can be produced by bothM andMI (v̄x̄/v̄′ȳ ∈
L(MI)∩L(M)), R(s′, v̄/v̄′, x̄/ȳ) will denote prefixes of̄vx̄/v̄′ȳ that reachs′ (in M ) and that extend̄v/v̄′.

R(s′, v̄/v̄′, x̄/ȳ) = {v̄x̄′/v̄′ȳ′|x̄′/ȳ′ ∈ pre(x̄/ȳ) \ {ε} ∧ s′ = hv̄′ȳ′(s1, v̄x̄′)}
When considering an input/output sequencev̄x̄/v̄′ȳ ∈ L(M) ∩ L(MI), if this does not repeat states of

the product machine then its prefixes that are inR(s′, v̄/v̄′, x̄/ȳ) must reach|R(s′, v̄/v̄′, x̄/ȳ)| different
states ofMI since each of the input/output sequences reaches the same state ofM .

Proposition 11: Supposēv ∈ V , v̄x̄/v̄′ȳ ∈ L(M)∩L(MI), s′ ∈ S, and no state of the product machine
has been repeated when (in testing)v̄/v̄′ is followed byx̄/ȳ. Then the states ofMI reached by input/output
sequences inR(s′, v̄/v̄′, x̄/ȳ) are distinct.

Given setT of input sequences,BΩ(T ) denotes the set of responses toΩ that may be observed from
states of the IUT reached byT :

BΩ(T ) = {BΩ(x̄/ȳ)|x̄ ∈ T ∧ x̄/ȳ ∈ L(MI)}
.

Each element ofBΩ(T ) is a distinct set of input/output sequences produced in response toΩ and must
representat leastone state ofMI .

B. A lower bound

This section will introduce a lower bound that may be placed on the number of states ofMI if there
has been no repetition in states of the product machine for a given input/output sequence. This will drive
adaptive state counting: whenever this lower bound exceedsm for every observed response to an input
sequencēx, we know that it is not necessary to extendx̄ since x̄ cannot be a prefix of a minimal input
sequence that can lead to failure.

Before defining the lower bound, we will consider the states ofMI reached by sequences fromV . Let
V = {v̄1, . . . , v̄p}. For each̄vi ∈ V , the setV ′

i will denote the set of possible responses of the IUT tov̄i:
V ′

i = h2
I(t1, v̄i). Each element̄v′i ∈ V ′

i may correspond to a different state ofMI : the stateh
v̄′i
I (t1, v̄i). The

lower bound will consider the setV ′, defined below.V ′ represents the set of possible ways of choosing
individual elements from eachV ′

i .

V ′ = {{v̄1/v̄
′
1, v̄2/v̄

′
2, . . . , v̄i/v̄

′
i, . . . v̄p/v̄

′
p}|∀1 ≤ j ≤ p.v̄′j ∈ V ′

j }
Note that sinceV must containε, each element ofV ′ containsε/ε. In testing, every input sequence

in the deterministic state coverV will be followed by the adaptive characterizing set. This motivates
the introduction of new notation. GivenV ′′ ∈ V ′, R+(s′, v̄/v̄′, x̄/ȳ, V ′′) is formed by taking the set
R(s′, v̄/v̄′, x̄/ȳ) (of input/output sequences of the form̄vx̄′/v̄′ȳ′ that are prefixes of̄vx̄/v̄′ȳ and reachs′

in M ) and adding the input/output sequence fromV ′′ that reachess′ in M , if there is such a sequence.
Supposes, s′ ∈ S, s = hv̄′(s1, v̄), andV ′′ ∈ V ′. ThenR+(s′, v̄/v̄′, x̄/ȳ, V ′′) is defined by the following.



14

1) If s′ is d-reached by somēv1 ∈ V and v̄1/v̄
′
1 ∈ V ′′ then

R+(s′, v̄/v̄′, x̄/ȳ, V ′′) = R(s′, v̄/v̄′, x̄/ȳ) ∪ {v̄1/v̄
′
1}

2) Otherwise
R+(s′, v̄/v̄′, x̄/ȳ, V ′′) = R(s′, v̄/v̄′, x̄/ȳ)

All the input/output sequences inR+(s′, v̄/v̄′, x̄/ȳ, V ′′) reachs′ in M . Thus, if no state of the product
machine is repeated, the states ofMI reached by the input/output sequences inR+(s′, v̄/v̄′, x̄/ȳ, V ′′) must
be distinct.

We now have the components that will contribute to adaptive state counting. Suppose thatv̄ ∈ V ,
v̄x̄/v̄′ȳ ∈ L(M) ∩ L(MI), S1 ⊆ S, Ω is the adaptive characterizing set used,V ′′ ∈ V ′, and v̄/v̄′ ∈ V ′′.
Further, supposeT denotes the set of input sequences that have been followed byΩ in testing. In Lemma
12, we will prove a property of the termLB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′), defined below, that will be used in
adaptive state counting. This term is defined by the sum of two parts which will now be explained.

1) The first part is
∑

s′∈S1
|R+(s′, v̄/v̄′, x̄/ȳ, V ′′)| =

∑
s′∈S1

|R(s′, v̄/v̄′, x̄/ȳ)| + |Ŝ1|. Each of the
sequences inR+(s′, v̄/v̄′, x̄/ȳ, V ′′) reaches the same state (s′) of M and thus, if no state of the
product machine is repeated then the input/output sequences inR+(s′, v̄/v̄′, x̄/ȳ, V ′′) must reach
different states ofMI .
Suppose that for alls, s′ ∈ S1 such thats 6= s′, we have thatΩ distinguishes every state ofMI

reached by an input/output sequence inR+(s, v̄/v̄′, x̄/ȳ, V ′′) from every state ofMI reached by an
input/output sequence inR+(s′, v̄/v̄′, x̄/ȳ, V ′′). Note that this condition is automatic if the states in
S1 are r-distinguished byΩ and no failures are observed. If this condition holds, the set of states
of MI reached by input/output sequences inR+(s, v̄/v̄′, x̄/ȳ, V ′′) is disjoint from the set of states
of MI reached by input/output sequences inR+(s′, v̄/v̄′, x̄/ȳ, V ′′).
Under these conditions, by Proposition 11, the input/output sequences in theR+(s′, v̄/v̄′, x̄/ȳ, V ′′)
meet

∑
s′∈S1

|R+(s′, v̄/v̄′, x̄/ȳ, V ′′)| distinct states ofMI .
2) The second part is|BΩ(T )\ (∪s′∈S1,x̄1/ȳ1∈R+(s′,v̄/v̄′,x̄/ȳ,V ′′)BΩ(x̄1/ȳ1))|. This is the number of sets of

responses toΩ that have been observed from states ofMI and that have not been observed from
states considered in the previous term. By Proposition 10, each of these sets of responses must
correspond to an additional state ofMI .

The termLB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′) is defined by:

LB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′) =
∑

s′∈S1

|R(s′, v̄/v̄′, x̄/ȳ)|+ |Ŝ1|+

|BΩ(T ) \ (
⋃

s′∈S1,x̄1/ȳ1∈R+(s′,v̄/v̄′,x̄/ȳ,V ′′)

BΩ(x̄1/ȳ1))|

The third term in this expression denotes the number of additional sets of input/output sequences
observed in response toΩ. Each of these must correspond to a state of the IUT.

Lemma 12:Suppose that
1) v̄ ∈ V , v̄x̄/v̄′ȳ ∈ L(M) ∩ L(MI), and v̄/v̄′ is the maximal length prefix of̄vx̄/v̄′ȳ in V ′′.
2) T denotes the total set of input sequences that have been followed byΩ in testing and there have

been sufficient repetitions so that under fairness we can assume that all possible responses have
been observed.

3) T contains every sequence inV and every sequence of the form̄vx̄′ for a prefix x̄′ of x̄.
4) S1 ⊆ S has the property that for alls1, s2 ∈ S1, s1 6= s2, Ω distinguishes every state ofMI

reached by an input/output sequence inR+(s1, v̄/v̄′, x̄/ȳ, V ′′) from every state ofMI reached by
an input/output sequence inR+(s2, v̄/v̄′, x̄/ȳ, V ′′).

5) No failures are observed.
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If no state(s, t) of the product machine reached by a sequencev̄x̄0/v̄
′ȳ0 (x̄0/ȳ0 is a non-empty prefix of

x̄/ȳ) is reached by somēvx̄′/v̄′ȳ′ for a prefix x̄′/ȳ′ 6= x̄0/ȳ0 of x̄/ȳ or by some input/output sequence in
V ′′ thenMI must have at leastLB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′) states.

Proof: First observe that givensi, sj ∈ S1, si 6= sj, each state reached by a sequence inR(si, v̄/v̄′, x̄/ȳ)
is distinguished byΩ from each state reached by a sequence inR(sj, v̄/v̄′, x̄/ȳ). Further, since no state
of the product machine is repeated alongx̄/ȳ from v̄/v̄′, by Proposition 11 the sequences in some
R(s′, v̄/v̄′, x̄/ȳ) (s′ ∈ S1) must reach different states ofMI . Thus, the sequences in∪s′∈S1R(s′, v̄/v̄′, x̄/ȳ)
must reach different states ofMI . The sequences in eachR(s′, v̄/v̄′, x̄/ȳ) (s′ ∈ S1) must also reach
states that are not reached by sequences inV ′′. Thus the sequences in(∪s′∈S1R(s′, v̄/v̄′, x̄/ȳ))∪V ′′ reach∑

s′∈S1
|R(s′, v̄/v̄′, x̄/ȳ)|+ |Ŝ1| different states ofMI .

By Proposition 10, every set of responses toΩ must indicate a state ofMI . Thus,MI must have at
least |BΩ(T ) \ (

⋃
s′∈S1,x̄1/ȳ1∈R+(s′,v̄/v̄′,x̄/ȳ,V ′′) BΩ(v̄/v̄′, x̄1/ȳ1))| additional states. The result thus follows.

This result will drive adaptive state counting. Given input sequencev̄x̄ used in testing, we extend̄vx̄
if it might form the prefix of a minimal sequence to a failure. For this to be the case we must have some
responsēv′ȳ to v̄x̄ such that̄vx̄/v̄′ȳ that does not repeat a state of the product machine. This corresponds
to the last part of the statement of Lemma 12. By choosing appropriateS1 andV ′′, we can ensure that
the other conditions of Lemma 12 hold and thus, ifv̄x̄/v̄ȳ does not repeat any state of the product
machine thenMI must haveat leastLB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′) states. This provides a contradiction if
LB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′) > m, in which casēvx̄/v̄′ȳ must repeat a state of the product machine and
thus need not be extended.

C. Adaptive state counting: an algorithm

The following is a test generation algorithm based on adaptive state counting. In this algorithmT
denotes the set of input sequences that have been followed byΩ in testing.TC denotes the set of current
elements ofT : those that are being considered in the search through the state space of the product machine.
The elements inTC are the maximal sequences considered that do not meet the termination criterion. On
each iteration, elements ofTC are either removed fromTC or extended.

Algorithm 2: 1) SetT = V andTC = V .
2) While TC 6= ∅
3) Test the IUT a sufficient number of times, in order to be able to apply the fairness assumption,

with each element ofTCΩ and record the set of input/output sequences observed in response to the
input sequences inTC and the corresponding set of responses toΩ. If a failure is observed, output
the set of input/output sequences that have been observed and terminate.

4) For each input sequencēx1 ∈ TC , removex̄1 from TC if for every responsēy1 to x̄1 observed there
existsS1 ⊆ S andV ′′ ∈ V ′ such that the following hold:

a) x̄1/ȳ1 = v̄x̄/v̄′ȳ, wherev̄/v̄′ is the maximal element ofV ′′ that is a prefix ofx̄1/ȳ1;
b) For all s1, s2 ∈ S1 with s1 6= s2, Ω distinguishes every state ofMI reached by an input/output

sequence fromR+(s1, v̄/v̄′, x̄/ȳ, V ′′) from every state ofMI reached by an input/output
sequence fromR+(s2, v̄/v̄′, x̄/ȳ, V ′′); and

c) LB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′) > m.
5) SetTC = TCX \ T andT = T ∪ TCX.
6) endwhile
7) Output the set of input/output sequences that have been observed and the fact that the IUT passed

the test suite applied.
In deciding whether the termination condition holds, in principle all subsets ofS and all elements of

V ′ must be considered. Naturally this may not be practical. One way of choosingS1 is to start with the
maximal sets of r-distinguishable states ofM and extend these. It will transpire that even if we restrict
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ourselves to the maximal sets of r-distinguishable states ofM , then forany choice ofV ′′ ∈ V ′ the lower
bound produced here is no less than that produced with state counting and may be larger.

Theorem 13:Suppose the IUTI behaves like an observable FSM with the same input and output
alphabets asM and with at mostm states. Algorithm 2 states thatI passes the test suite applied if and
only if I is a reduction ofM .

Proof: Case 1:⇒. This follows from Lemma 12 and the fact that the input sequences followed by
Ω are extended until the termination criterion is satisfied.

Case 2:⇐. This follows from I being equivalent to someMI ∈ Ψm
M and from the definition ofMI

being a reduction ofM .

VIII. E VALUATION

This section will evaluate adaptive state counting by comparing it to state counting. First, the fairness
assumption is discussed. Section VIII-B contains a proof that the test suite produced using adaptive state
counting is contained within that produced using state counting and contains further general observations.
Finally, in Section VIII-C, adaptive state counting is applied to the example.

A. The fairness assumption

Where the IUT is known to be deterministic, the fairness assumption automatically holds. Further, if a
characterizing set, rather than an adaptive characterizing set, is used in adaptive state counting then the
normal fairness assumption can be made. This section will now briefly consider how a fairness assumption
might be applied when using an adaptive characterizing set. A fuller analysis of this issue will be left to
future work.

Given adaptive test casēσ, let Wσ̄ denote the set of maximal input sequences that may result from the
application ofσ̄. These are the maximal input sequences that label paths from the root to some leaf of
the tree corresponding tōσ. For example, in the adaptive test caseσ̄ in Figure 5 ,Wσ̄ = {ac, abc}.

Theorem 14:If, under fairness, it is sufficient to apply any input sequencesk times then it is also
sufficient to apply each adaptive test casek times.

Proof: Consider some adaptive test caseσ̄ and the corresponding setWσ̄ = {x̄1, . . . , x̄p}. Suppose
x̄/ȳ is a possible response of the IUT tōσ. Then x̄ is a prefix ofx̄i for some1 ≤ i ≤ p.

Under fairness, if we applȳxi k times, we are guaranteed to see every possible response of the IUT to
x̄i. Supposēyi is one of these possible responses such thatȳ is a prefix ofȳi. We may now observe that
if in an execution the IUT responds tōxi to produceȳi then it would have produced̄x/ȳ in response to
σ̄. Thus, if we applyσ̄ k times we are guaranteed to observex̄/ȳ. From this we may conclude that by
applying σ̄ k times we are guaranteed to observe all possible responses toσ̄.

B. General Results

This section explores properties of adaptive state counting. First, we show that the test suite produced
by adaptive state counting is contained within that produced by state counting. The following shows that
adaptive state counting terminates the extension of input sequences no later than state counting.

Theorem 15:Suppose thatV ′′ ∈ V ′, v̄/v̄′ ∈ V ′′, v̄x̄/v̄′ȳ ∈ L(M) ∩ L(MI), andT denotes the set of
input sequences followed byΩ in Algorithm 2. SupposeS1 is some set of r-distinguishable states ofM
and Algorithm 2 does not observe any failures. ThenLB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′) ≥ LBsc(s, S1, x̄).

Proof: Recall that

LBsc(s, S1, x̄) = minȳ∈h2(s,x̄)|{x̄′/ȳ′ ∈ pre(x̄/ȳ) \ {ε}|hȳ′(s, x̄′) ∈ S1}|+ |Ŝ1|

LB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′) ≥
∑

s′∈S1

|R(s′, v̄/v̄′, x̄/ȳ)|+ |Ŝ1|



17

Observe that
∑

s′∈S1

|R(s′, v̄/v̄′, x̄/ȳ)| = |{x̄′/ȳ′ ∈ pre(x̄/ȳ) \ {ε}|hȳ′(s, x̄′) ∈ S1}|

The result now follows.
By considering the example, it will be demonstrated thatLB(v/v′, x̄/ȳ, T , S1, Ω, V ′′) may be strictly

greater thanLBsc(s, S1, x̄).
Theorem 16:The test suite applied using adaptive state counting is contained in that produced using

state counting.
Proof: First note that if a failure is observed in adaptive state counting then Algorithm 2 terminates.

By contrast, state counting produces a preset test suite. Thus, it is sufficient to consider the case where
no failures are observed during the application of Algorithm 2.

Suppose adaptive characterizing setΩ is being used,S1 is a set of r-distinguishable states ofM ,
s1, s2 ∈ S1, s1 6= s2, for statest1 and t2 of MI we havet1 ¹Ω s1 and t2 ¹Ω s2, and no failures are
observed in the application of Algorithm 2. By Theorem 9,t1 and t2 are distinguished byΩ. Thus when
the setS1 may be used in state counting in order to show that a sequence need not be extended,S1 can
also be used in adaptive state counting. The result now follows from Theorem 15.

The following gives a condition under which the test suite generated using adaptive state counting and
characterizing setW is guaranteed to be contained within that produced if the W-method is applied.

Proposition 17: Suppose thatM hasn states, the IUT behaves like some FSMMI ∈ Ψm
M , and the

deterministic state coverV reaches each state ofM . Suppose that for every pair̄x1, x̄2 of input sequences,
with (ti, ȳi) ∈ hI(t1, x̄i) and si = hȳi(s1, x̄i) (i ∈ {1, 2}), if s1 6= s2 then t1 and t2 are distinguished by
W . Then the test suite produced using adaptive state counting is contained in the setV (X∪{ε})m−n+1W .

Proof: Observe that, under the conditions, if two input/output sequences fromL(MI) reach different
states ofM then the corresponding states ofMI are distinguished byW . Thus, in calculating the
lower bound it is possible to chooseS1 = S. Given this choice ofS1, LB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′) ≥∑

s′∈S |R(s′, v̄/v̄′, x̄/ȳ)|+ |Ŝ| = |x̄/ȳ|+ n. Thus,LB(v̄/v̄′, x̄/ȳ, T , S, Ω, V ′′) > m if |x̄/ȳ| ≥ m− n + 1.
The result thus follows.

Now consider the expected reduction in the size of the test suite. In the worst case, the test suite will be
the same as that produced using state counting: observing the response of the IUT provides no additional
useful information. Suppose a state of the implementation, not reached byV ′′, is distinguished from those
met byV ′′. Then, for some sequences this will increase the last term, inLB(v̄/v̄′, x̄/ȳ, T , S1, Ω, V ′′), by
one. This will lead to a number of sequences terminating one step earlier and thus may lead to a reduction
of the order of|X| in the size of the test suite. Thus, wherej extra states are found, the size of the test
suite may be reduced by the order of|X|j. Naturally, the actual reduction will depend upon a number of
properties of the specification and implementation.

C. Applying adaptive state counting to the example

In order to illustrate the potential savings, suppose that the IUT behaves like the FSMM1
I in Figure 7,

M0 is the specification, and characterizing setΩ = {aa, ba} is used (instead of an adaptive characterizing
set). The first iteration of the algorithm uses the test suiteV Ω = {ε, b, ba}{aa, ba}. This identifies three
responses toΩ and thus three separate states ofM1

I . None of the sequences used satisfies the termination
criterion and thus all are extended.

The second iteration uses the test suiteV XΩ = {ε, b, ba}{a, b}{aa, ba}. We observe a fourth response
to Ω: that of the state reached bya/0. Thus, 4 separate states ofM1

I have been found. All of the sequences,
that do not pass through this state, have the third term in the lower bound taking on the value1. Based
on this, it is straightforward to show that all of the sequences exceptv̄0{a} = {a} are leaves as they
give a lower bound of5 using S1 = S (|Ŝ| = 3). We now need only extend the sequencea to get
{aa, ab}{aa, ba}: the two nodes reached are leaves. Thus the following test suite was used:
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s1 s2

s4 s3

a/0 a/0

b/1

b/1 a/1b/0

a/0

a/1

b/1

Fig. 7. The FSMM1
I

{ε, a, b, aa, ab, ba, bb, baa, bab}{aa, ba}
Suppose each input has cost1 and each input sequence ends with a reset with cost1. The test suite

has cost86. This contrasts with the test suite produced using state counting which has cost342. Note that
the above test suite may be further reduced by observing in advance that the setV XΩ must be used and
thus by removing every sequence inV Ω∪ V XΩ that is a prefix of some other sequence inV Ω∪ V XΩ.
In this case, the sequences inV Ω are all prefixes of sequences inV XΩ. Further, the sequencesbaaa
andbaba from V XΩ are prefixes of other sequences fromV XΩ. This observation leads to the test suite
being reduced to one with total length62. In contrast, once prefixes are removed, state counting leads to
a test suite with cost201. This gives a 69% reduction.

Interestingly, this illustrates a potential weakness of applying an adaptive test generation algorithm: it
is not always possible to remove an input sequencex̄ that is a prefix of another input sequencex̄′ from
the test suite since when̄x is input it may not be known that̄x′ will be used. This happened in the
above case: the input sequencesaaa andaba in V XΩ are prefixes of sequences in{a}XΩ. Future work
will consider heuristics that might maximize the potential of saving through the removal of prefixes. One
simple heuristic operates as follows. First generate test suiteT1 using state counting. In adaptive state
counting, when considering input sequencex̄ apply some maximal input sequencex̄′ from T1 such that
x̄ is a prefix ofx̄′. This increases the potential for savings through prefix removal and guarantees that the
test suite is contained within that produced by state counting.

In this case the test suite may be further reduced by using an adaptive characterizing set. When applying
aa, if the first output is1 then the second input need not be applied. This occurs froms3 and in one
response toa from s1. When applyingba, if the first output is0 the second input need not be applied.

While adaptive state counting may lead to significantly smaller test suites, there are other aspects to
the costs of testing. In particular, adaptive testing requires a more complex test environment.

IX. CONCLUSION

This paper has considered the problem of utilizing adaptivity when testing against a non-deterministic
finite state machine (FSM). Two forms of adaptivity have been considered: the use of (preset) adaptive
test cases to distinguish states and the use of information derived during testing to drive the generation
of a test suite. The latter leads to an adaptive algorithm, in which input sequences are applied and then
further input sequences are generated on the basis of the input/output sequences that have been observed.

It has been shown that testing may be based around adaptive state counting which is an extension of
the notion of state counting [12], [13], [18]. It has been proved that the use of adaptive state counting
is guaranteed to produce a test suite that is contained within that produced by state counting. Further
reductions may result from using adaptive test cases, to distinguish states, rather than input sequences.
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By contrast with state counting, adaptive state counting allows properties of the IUT discovered during
testing to be utilized. It has been shown that this is capable of leading to a significant reduction in the
size of the test suite.

Future work will consider how, when using adaptive state counting, the test suite may be further reduced
where the implementation is known to be deterministic. It will also consider how the assumptions, about
the specification, may be relaxed.
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