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ABSTRACT. Fatigue strength conditions presented in terms of normalized equivalent 

stress functionals defined on loading processes are used to unite the stages of material 

damage with fatigue crack initiation and multiple crack propagation under arbitrary 

loading history. Examples of employing the local form of the functionals associated with 

the Palmgren-Miner linear damage accumulation rule and the power-type S–N diagram 

to a periodic crack system are given and shortcomings of the local approach are 

pointed out. A non-local approach free from the shortcomings is described. Equations 

for curvilinear crack growth rate vectors taking into account the whole damage history 

ahead of the crack are presented for multiple cracks under mixed-mode loading. 

 

 

INTRODUCTION 

 

A common practice of a cyclic fatigue life local analysis includes usually two steps. 

First, a crack initiation cycle number *n  is determined from a fatigue strength 

condition expressed in terms of a damage measure based on a cycle stress range. A 

crack of a length 0a  is supposed to appear at a point *y  in a body where and when the 

fatigue strength condition is violated. Then the Paris type equation is used for prediction 

of the crack propagation from the initial value 0a  to separation of the body into pieces 

or to unstable crack growth. However the value 0a  being a key issue for the fatigue 

crack propagation prediction is often not clearly fixed and the material parameters of the 

strength condition of the first step seem to be completely unrelated to the Paris law 

parameters. On the other hand, by using the Paris type equation, one can describe 

neither the scale effect for short cracks nor the influence of the fatigue damage during 

the previous cycles on the crack propagation rate.  

Trying to overcome the shortcomings, a local united approach based on an extension 

of the fatigue strength conditions under homogeneous stress to the crack propagation 

stage was employed in [1], its limitations were outlined on an example of a single 

fatigue crack initiation and propagation. To avoid those drawbacks, a non-local 

modification merging a special form of the static non-local approach [2] with the 

functional description of brittle cyclic strength similar to [3-4] was then employed in 

[1]. This allowed to analyze strength and durability under oscillating in time 
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homogeneous and highly inhomogeneous stress fields and to predict both the crack 

initiation and its propagation through the damaged material as a united process.  

In this paper, we apply the local and non-local approaches to initiation and 

propagation a periodic system of multiple fatigue cracks. Note that some other 

particular non-local approaches were used for predicting fatigue life in [5-9].  

 

 

1. LOCAL BRITTLE STRENGTH AND DURABILITY CONDITIONS 

 

Let us consider a cyclic process in a body  represented as a cycle sequence 

...2,1
),(

m

c

ij xm  of connected closed but generally non-coinciding loops (cycles) 

]);,([),( 1 mmij

c

ij xxm  in the stress space, ),(),( 1mijmij xx , where 

m=1,2,... is the cycle number, x . Then the cyclic fatigue can be described in terms of 

the cycle number n (instant n) as a discrete or continuous time-like parameter.  

To describe fatigue crack initiation and propagation, we will analyse the brittle 

strength, that is strength at a particular point y along a particular infinitesimal plane with 

a normal vector 


 at that point. The local fatigue brittle strength condition for a plane 


 at a point y  can be taken in the form [4], 1),,)};,(({


ynyc . Here 

),,)};,(({


ynyc  is a local brittle Cyclic Normalized Equivalent Stress Functional 

(CNESF) defined on sequences 
...2,1

),(
m

c

ij xm and is positively homogeneous in }{ c

ij  

and non-decreasing in n . It is considered as a material characteristic.  

For example, the CNESF associated with the power S-N diagram 
b

Rn )/(* *

1  and the Palmgren-Miner linear accumulation rule has form [1,4], 
bn

b

R

c dmymyny
/1

0*

1

)],,([
1

),,)};,(({


                              (1) 

where ),,(


ym  is the normal stress range on the plane 


 at the point y during the 

cycle m; b is a non-negative material constant and 
*

1R  is a material parameter 

depending only on the asymmetry ratio ),,(/),,(),( maxmin


ymymyR . 

Let a an open domain (n) occupied by the body at an instant n has a boundary 

)(n  consisting of an initial body boundary (0) and of a new crack surface )(* nY  

occurring and growing during the cyclic process. Then we have the following 

conditions for the fatigue crack initiation and propagation,  

     ,1),,)};),(;(({


ynyc           )(ny      


,                              (2) 

   ,1))(,,)};),(;(({ * yynyc


          )(* nYy                                         (3) 

       ,0)()),(;( * yynn jij           )(* nYy                                         (4) 

where )(* y


 is the vector normal to the crack surface )(* nY . 
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Assuming a smooth dependence of ),,)};),(;(({


ynyc  on 


 and using Eqs 

(2)-(3), the fracture plane unit normal )(* y


 can be determined from the equations  

,0
),,)};),(;(({

)(* yj

c yny





      ,1)(* y


     )(* nYy                   (5) 

If the direction of crack growth is a priori known, e.g. from symmetry, then there is no 

need to determine *


. 

If there is an analytical or numerical method of the stress field calculation for any 

crack set Y*, relations (2)-(5) allow to describe crack propagation and particularly crack 

path for single as well as multiple cracks under mixed loading.  

 

 

2. LOCAL DURABILITY ANALYSIS FOR A PERIODIC SYSTEM OF 

CRACKS 

 

2.1 Symmetric Plane Problem for Periodic Fatigue Crack Initiation and Propagation.  

Analysis of a 2D body with one edge crack of a length a(m) or one central crack of a 

length )(2 ma  or two symmetric edge cracks of a length )(ma  was reduced in [1] to 

solution of one linear integral Volterra equation. In this paper, we extend the analysis to 

a 2l-periodic 2D-problem for a system of collinear straight cracks of a length 2a(m) 

each, already existing or appearing during the fatigue process, symmetrically posed in a 

symmetrically loaded infinite strip (or plane) with periodic (particularly straight) 

boundary, Fig.1. Here 2l is the distance between the crack centers. Thus the geometry is 

also described by only one parameter )(ma , i.e. (m)= ( )(ma ), and the fatigue crack 

propagation path is straight with a normal vector *


={0,1}. 
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                     Figure 1.                  Figure 2.  

 

Let the origin of the Cartesian coordinate system },{ 21 xx  coincides with the center 

of a crack. Let an external multi-axial self-similar cyclic loading be represented in the 

form |)(ˆ|)(),( 10 xqmqxmq , where )(0 mq  is a scalar function and )(ˆ 1xq  is a 2l-

periodic and symmetric vector. Assuming the crack growth per cycle is small, we can 

neglect the distortion of the stress cycle shape during one cycle and write 
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|)),((ˆ|)(),( 0 ymamqym ijij . The stress field )),((ˆ ymaij  induced by the 

loading )(ˆ 1xq  is supposed to be available analytically or numerically. 

Let us take CNESF in the form (1), then the equation for the crack initiation moment 
*

0n  according to Eq. (3) is 

,)(),(ˆ *

1

0

0

*

022

*
0

b

R

n
bb

dmmqya             (6) 

where 00a  if there is no crack initially in the body, 
*y  is the tip of an already 

existing crack or the stress concentration point where the crack will initiate. If there 

exists an initial crack system with 0)0( 0aa , then Eq. (6) implies 0*

0n  due to the 

stress singularity at the crack tip, ),(ˆ
0022 aa , i.e. the cracks start to propagate 

without any delay after the load application. 

Let the origin of the coordinate system be in the middle of a crack. Then the 

coordinate of the crack tip is )(*

1 nay  and the dependence a(n) for the developing 

crack length is to be obtained from (3), which is reduced to the following non-linear 

Volterra integral equation of the first kind for lna )( ,  

mdmqnaadmmqnama

n
bbb

R

n

n

bb

*
0

*
0

0

0022

*

1022 )())(,(ˆ)())(),((ˆ .      (7) 

We can change variables in (7) similar to Zobnin and Rabotnov (see [10] where a 

solution of a corresponding creep crack problem is presented for b=1) and arrive at the 

following non-convolution linear Volterra equation of the first kind to be solved for 

,/)(/))(()( *

10 daadmamqag b

R  

)(

0022

022

22

0
),(ˆ

))(,(ˆ
1)())(,(ˆ

na
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b

b

b

aa

naa
daagnaa ,   lnaa )(0 .   (8) 

 

2.2 Periodic Collinear Cracks in an Infinite Plane Under Uniform Loading 

Consider now a more particular example for 2l - periodic collinear straight cracks with a 

length 2a(m) in an infinite plate. Let a uniform cyclic traction with a range 

)(),( 0 mqxmq  be applied at infinity normal to the crack line, Fig.2. For an elastic 

body, the normal stress range ),( 122 xm  ahead of the crack has the form [11],  

,

)
2

)(
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2
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2
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where 1K  is the mode 1 stress intensity factor range. At l , Eq. (9) gives the 

stress distribution in the corresponding problem with a single crack.  

Let us suppose periodic cyclic traction, constqmq 0)( . Then Eq. (6) implies 

the fracture cycle number for an infinite plane without crack is bqn )/( 0

*

1

*  under 

the considered loading. As was mentioned above, 0*

0n  if there exists an initial crack. 

Let 
*/~ nnn  be the normalized cycle number. After substituting stress range (9) into 

Eq. (7) and a change of variables, the latter equation can be solved by the Laplace 

transform under the assumption b<2, giving  
2/1

02

2

0

4

1

4

1

2

0

2

1 1

2
cos

2

)~(
cos

)(

))~((

)2/sin(

))~((
~

)~(

b

l

a
l

na

aK

naK

bq

naK

nd

nda
, lnaa )(0 .            (10) 

The results are presented on Figs 3 and 2 for b = 1.5 and different values of l. As one 

can see from Eq. (10) and the graphs, the solution degenerates into the solution [1] of 

the corresponding problem with a single crack when l . 
)/ln( 0aa                                                            naad ~/)/(ln 0
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Figure 3. Length of fatigue 2l-periodic 

crack vs. cycle number for different l 

(local approach) 

Figure 4. Fatigue 2l-periodic crack 

growth rate vs. stress intensity factor 

range for different l (local approach). 

 

The crack growth rate given by Eq. (10) looks like the Paris type law, whose 

parameters, however, are not the material constants but depend on l, a0 and 0q  (see 

also [1]). 

    The obtained solution is valid only for 2b  and blows up (predicting instant 

unstable crack propagation) when 2b , that is, it is not able to describe the fatigue 

crack propagation for common structural materials with experimentally determined 

values of S-N diagram constant b (usually 4b ). The local approach does not also 

predict the fatigue crack start delay observed experimentally. A way to overcome those 

shortcomings is an application of a non-local approach. 
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3. NON-LOCAL BRITTLE STRENGTH CONDITIONS 

 

3.1 General Description 

    We will suppose that strength at a point y  on a plane 


 depends not only on the 

stress history at that point, 
...2,1

),(
m

c

ij ym  but also on the stress history in its 

neighborhood and generally, in the whole of the body, 
...2,1

),(
m

c

ij xm , x . A non-

local brittle cyclic normalized equivalent stress functional ),,,};({


ync , which 

is positively homogeneous in  and non-decreasing in n, can be introduced [1,4]. It is 

considered as a material characteristics implicitly reflecting influence of material 

microstructure. Then the non-local strength condition for a plane


 at a point y  

takes the form 1),,,};({


ync . 

The simplest examples of the non-local brittle CNESFs and strength conditions are 

obtained by replacing the local stress ),( xij  by its non-local counterpart 

),,;(


yij
 in the corresponding local brittle CNESFs described in Section 1,  

 ).,,,)};,),(,(({),,,};({


ynyyn cc                                    (11) 

The non-local stress ),),(;(


yij
 can be taken particularly as a weighted average 

of ),( xij (see [12] and also [1-2, 4-5],  

dxxxywy kl
y

ijklij );();,,(),),(;(
);,(


                                (12) 

where the weight function w and the non-locality zone  (some neighborhood of y) 

are characteristics of material point y, plane


 and generally of the body shape , such 

as jlik
y

ijkl xyw );,,(
);,(


 .  

For example, );,(


y  can be taken as a 2D disc of a diameter 2  in a 3D body 

(n) or as a 1D segment of a length 2  for a 2D body (n), in the plane 


 with the 

centre at y, where  is considered as a material parameter. Near the boundary (n), 

);,(


y  should be taken as an intersection of the disc/segment with (n). 

Using the introduced brittle non-local CNESF ),,,};({


ync , the fatigue 

fracture process (the fatigue crack initiation and its propagation through the damaged 

material) can be described as in Section 1 after replacement there the stress tensor  by 

its non-local counterpart .  

However it is sometimes more convenient to employ for that purpose an equation for 

the crack rate vector instead of Eqs (2)-(4). Let us consider a 2D case for homogeneous 

isotropic body under a cyclic process as an example. Suppose there exist k cracks with 

K moving tips *y  ( kKkK 2;1 ). We can take the total derivative of non-

local counterpart of Eq. (3) at a crack tip *y  with respect to n and arrive for CNESF 
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(1) after some manipulations using the non-local counterpart of expression (5), at the 

following crack growth rate equation,  
1

0
)(

*

*

*

),,()()()]),(,([
n

nyy

b

i

ij

bj
dmym

y
nnnyn

nd

yd 
  (13) 

Here is no sum in , and )(ni  is the outward unit vector tangent to the crack. The 

fracture plane is determined from the non-local counterpart of Eq. (5). Due to the 

integral term, Eq. (13) accounts all damage history at the point *y . Note that for an 

arbitrary CNESF, the crack growth rate equation is obtained after solving a system of K 

linear algebraic equation with respect to K scalar unknown values |)(*| ny , where 

|)(*|)(/)(* nyndnndy ii
 . 

 

3.2 Example of Non-Local Durability Analysis 

Let us consider the 2D problem from Section 2.1 using the non-local durability analysis 

with particular non-local CNESF (11), (12) where the crack propagation plane *


 is 

prescribed by the problem symmetry, );,(


y  is the interval 

))(),(( 1111 yyyy  for y ahead of the crack a(m), ))(,min()( 11 mayy  

),min()( 11 lyy  and  is a material constant. Let 
klijijkl xywxyw ),(),,(


, 

where w(y,x) is a bounded function, which is considered as a material characteristics to 

be identified. As possible approximations, one can choose e.g. w(y,x) constant w.r.t. 

x (y)  (thus arriving at the Neuber stress averaging, cf. [12]), a piece-wise linear or a 

more smooth hat-shaped dependence on x. 

Repeating the same reasoning as in Section 2 but now for the non-local stress 

),;( 1yamij , we arrive at the same Eqs (6)-(8) where ),(ˆ
122 ya must be replaced by 

1122

)(

)(
11122 ),(ˆ),(),(ˆ

11

11

dxyaxywya
yy

yy
. For a problem with initially existing crack, 

the crack propagation start instant *

0n  obtained from the non-local counterpart of (6) is 

non-zero since ),( 0022 aa  at the crack tip in spite of ),( 0022 aa . For 

example, the start delay for a constant loading 0q  is 
b

aann ),(ˆ
0022

**

0 . 

Differentiating the non-local counterpart of (7) w.r.t. a(n) (cf. Eq. (13)), we arrive at 

the following linear non-convolution Volterra equation of the second kind for the 

unknown function g(a), 

)),(()()),(())((
)(

0

nadaagananag
na

a
YK    ,)(0 lnaa       (15) 
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For the particular problem from Section 2.2, Eq. (15) can be solved numerically similar 

to [1], where it was done for l , corresponding to the case of one crack.  

 

CONCLUSIONS 

 

    A united description of fatigue crack initiation and propagation is principally possible 

using the local as well as the non-local approach, however the local approach in the 

considered examples can be applied only to a limited range of material fatigue 

parameters and cannot describe the crack start delay. The non-local approach is free of 

the drawbacks. When the stress fields are available analytically or numerically and the 

strength conditions are associated with the linear accumulation rule, the 2D problem in 

the both approaches can be reduced to non-linear Volterra equation(s) for the unknown 

crack geometry. For the crack under mixed-mode loading, equations for curvilinear 

crack growth rate and direction are presented taking into account the whole damage 

history ahead of the crack. 
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