
1UIO Sequence Based Checking Sequences for Distributed Test Architectures

R. M. Hierons1 and H. Ural2
1 Department of Information Systems and Computing, Brunel University, Middlesex, UB8 3PH, United Kingdom
2 School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada

Abstract
This study addresses the construction of a preset checking sequence that will not pose controllability
(synchronization) and observability (undetectable output shift) problems when applied in a distributed test
architectures that utilize remote testers. The controllability problem manifests itself when a tester is required to send
the current input and because it did not send the previous input nor did it receive the previous output it cannot
determine when to send the input. The observability problem manifests itself when a tester is expecting an output in
response to either the previous input or the current input and because it is not the one to send the current input, it
cannot determine when to start and stop waiting for the output. Based on UIO sequences, a checking sequence
construction method is proposed to yield a sequence that is free from controllability and observability problems.

Keywords

Distributed testing, Controllability, Observability, Test coordination, UIO sequences, Checking sequences

1 INTRODUCTION

Determining, under certain assumptions, whether a given "black box" implementation N of a
Finite State Machine (FSM) M is functioning correctly is referred to as a fault detection
(checking) experiment. Foundations of fault detection experiments can be found in the sequential
circuit testing literature [GI 62, HE 64]. This experiment is based on an input sequence called a
checking sequence constructed from a given deterministic and minimal FSM M with a
designated initial state that determines whether a given FSM N is a correct implementation of M.
The construction of a checking sequence must deal with the "black box" nature of a given
implementation N of M which allows only limited controllability and observability of N. The
limited controllability refers to not being able to directly transfer N to a designated state and the
limited observability refers to not being able to directly recognize the current state of N. In order
to overcome the restrictions imposed by the limited controllability and observability, some
special input sequences must be utilized in the construction of a checking sequence such that the
output sequences produced by N in response to these input sequences provide sufficient
information to deduce that every state transition of M is implemented correctly by N.

In order to verify the state transition from state a to b under input x, 1) before the application
of x, N must be transferred to the state recognized as a, 2) the output produced by N in response
to the application of x must be as specified in M, and 3) the state reached by N after the
application of x must be recognized as b. Hence, a crucial part of testing the correct
implementation of each transition is recognizing the starting and terminating states of the
transition. The recognition of a state of an FSM M can be achieved by a distinguishing sequence
[HE 64], a characterization set [HE 64] or a unique input-output (UIO) sequence [SD 88]. It is
known that UIO sequences may not exist for every state of every minimal FSM [SD 88] and
determining the existence of a UIO sequence for a state of an FSM is PSPACE-complete [LY
94]. Nevertheless, based on UIO sequences, various methods have been proposed in the literature
to test FSMs [SD 88, AA 88, CV 89, DS 90, HI 97]. Some of these methods have been used to
construct fault detection experiments to test the conformance of various protocol

1 This is a preliminary version of the following paper: R.M. Hierons and H. Ural, 2003, UIO Sequence Based
Checking Sequences for Distributed Test Architectures, Information and Software Technology, 45 12, pp. 793-803.

 2

implementations to their specifications given as FSMs [CV 89].

Testing an implementation N of an FSM M can be carried out as a fault detection experiment
in some specific test architectures. One such architecture is the distributed test architecture
shown in Figure 1 [II 95] where the lower interface and the upper interface of the
implementation N may be controlled and observed indirectly by the lower tester (L) and directly
by the upper tester (U), respectively.

Lower Tester

Upper Tester

L

U

Implementation
N

Figure 1 A Distributed Test Architecture

In this architecture, U and L are two remote testers that are required to coordinate the application
of a preset checking sequence through their interactions with N. However, this requirement may
lead to controllability and observability problems, in addition to those that stem from the black
box nature of N. The controllability (synchronization) problem manifests itself when L (or U) is
expected to send an input to N after N responds to an input from U (or L) with an output to U (or
L), but L (or U) is unable to determine whether N sent that output. It is therefore important to
construct a synchronizable checking sequence that causes no controllability problem during its
application in the distributed test architecture.

During the application of even a synchronizable checking sequence in a distributed test
architecture, the observability problem manifests itself when L (or U) is expected to receive an
output from N in response to either the previous input or the current input and because L (or U) is
not the one to send the current input, L (or U) is unable to determine when to start and stop
waiting. Such observability problems hamper the detectability of output shift faults in N i.e., an
output associated with the current input is generated by N in response to either the previous input
or the next input. To ensure the detectability of output shift faults in N the checking sequence
needs to be augmented by additional input subsequences.

Based on the work presented in [GU 95], this paper proposes a method for constructing a
checking sequence that does not pose controllability and observability problems during its
application in a distributed test architecture. Earlier work on the controllability problem [SB 84,
BU 91, UW 93, CU 95, TY 98] and that of on the observability problem [LB 94, YT 98, CR 99]
consider the construction of a test sequence rather than a checking sequence. It is well known
that the complete fault coverage of a checking sequence cannot be directly achieved by a test
sequence where transition verification is not necessarily based on state verification.

The rest of the paper is organized as follows: Related terminology is reviewed in Section 2.
In Section 3, the proposed method is presented and a proof for the resulting sequence to be a

 3

checking sequence is given. An illustrative example of the application of the proposed method is
provided in Section 4. In Section 5, some minimization techniques are proposed and concluding
remarks are given.
2 PRELIMINARIES

2.1 FSM and its Graphical Representation

A finite state machine, FSM, is a quintuple M = (S, X, Y, δ, λ), where S, X, Y are finite sets of
states, inputs, outputs, δ is a state transition function that maps S×X to S, and λ is an output
function that maps S×X to Y. State s1∈S is designated as the initial state of M, and |S| is n. Each
element y ∈ Y is in the form of one of the pairs (-, -), (oU, -), (-, oL), and (oU, oL) where - denotes
null output; and the first and second element in each pair is an output to U and L, respectively.
Functions δ and λ are extended to a sequence of inputs in the standard manner. An FSM M is
said to be minimal if ∀ (si, sj) ∈ S2, i ≠ j, ∃ I ∈ X*, such that λ(si, I) ≠ λ(sj, I). An FSM M is said
to be completely specified if ∀x ∈ X, ∀ s ∈ S, ∃ (s, δ(s, x); x/λ(s, x)) in M. An FSM M can be
represented by a directed graph (digraph) G = (V, E) where a set of vertices V = {1, 2,..., n}
represents the set S of states of M, and a set of directed edges E ⊆ {e | e = (vi, vj; x/y), vi, vj ∈ V}
represents the set of transitions of M. An edge e = (vi, vj; x/y)∈ E represents a specified transition
t = (si, sj; x/y) of M from state si to state sj with input x ∈ X and output y ∈ Y. Vertices vi and vj
which represent respectively state si and sj are called the head and the tail of e, denoted head(e)
and tail(e). The input/output pair (or io-pair, in short) x/y is called the label of the edge e (or
transition t), denoted label(e) (or label(t)).

A path P = (n1, n2; x1/y1)(n2, n3; x2/y2) ... (nk-1, nk; xk-1/yk-1), k > 1, in a digraph G = (V, E) is a
finite sequence of adjacent (not necessarily distinct) edges in G, where n1 and nk, are called the
head and the tail of P, denoted head(P) and tail(P), respectively, and (x1/y1)(x2/y2) ... (xk-1/yk-1), is
called the label of P, denoted label(P). For convenience, a path P = (n1, n2; x1/y1)(n2, n3; x2/y2) ...
(nk-1, nk; xk-1/yk-1) will be represented by (n1, nk; I/O) where label(P) = I/O is the input-output (or
in short, IO-) sequence (x1/y1)(x2/y2) ... (xk-1/yk-1), I = x1x2 ... xk-1 is the input portion of I/O, O =
y1y2 ... yk-1 is the output portion of I/O, respectively. A sequence (i1i2 ... ik) is a subsequence of
(x1x2 ... xm) if there exists a ∆, 0 ≤ ∆ ≤ m–k, such that for all j, 1 ≤ j ≤ k, ij = xj+∆. A sequence (i1i2

... ik) is a prefix of (x1x2 ... xm) if ∀ j, 1 ≤ j ≤ k, ij= xj.

A digraph G = (V, E) is strongly connected, if for every pair of vertices vj and vk, there exists
a path from vj to vk. An FSM M has the reset feature if there is an input r such that δ(si, r) = s1
and λ(si, r) = (-, -), for every state si of M. A transfer sequence T of an FSM M from state si to
state sj is the input portion of the label of a path from si to sj.

Let Φ(M) be the set of FSMs each of which has at most n states and the same input set as M.
Let N be in Φ(M). N conforms to M if there is a one-to-one and onto function f on the state sets
of M and N such that for any transition (i, j; x/y) of M, (f(i), f(j); x/y) is a transition of N. A
checking sequence of M is an input sequence starting at a specific state of M that distinguishes M
from any FSM of Φ(M) which does not conform to M.

2.2 Controllability (Synchronization) Problem

 4

Let each transition t of an FSM M have one of the following labels, label(t) ∈ {iL/-, iU/-, iL/oL,
iL/oU, iU/oL, iU/oU, iL/oU,L, iU/oU,L} where iL (iU) is an input from L(U), oL(oU) is an output to
L(U) and oU,L is an output to L and U. Then, considering two consecutive transitions of M, one of
the testers, say L (or U), faces a synchronization problem if L (or U) did not take part in the first
transition and if the second transition requires that it sends an input to M [SB 84]. For example, a
synchronization problem will occur if t1 is followed by t2 and label(t1) = iL/oL whereas
label(t2) ∈ {iU/- , iU/oL, iU/oU, iU/oU,L}.

Two adjacent transitions t and t' of M form a synchronizable pair of transitions if t' can
follow t without generating a synchronization problem. For example, a transition with label iL/oU
forms a synchronizable pair of transitions when followed by any other transition of M. For a
transition t of an FSM, each transition t' that forms a synchronizable pair of transitions with t is
called an eligible successor of t. Using the notion of eligible successor, one can determine, in
polynomial time, whether there is a non-empty subset of edges specified as eligible successors of
e for each edge e ∈ E in a given digraph G = (V, E) [BU 91]. A transition sequence of an FSM
(or a path of the corresponding digraph G = (V, E)) is synchronizable if for every two
consecutive transitions in the sequence (or edges in the path), the second transition is an eligible
successor of the first one. An input-output (input) sequence is synchronizable if it is (the input
portion of) the label of a synchronizable path.

2.3 Observability Problem

An observability problem exists when a tester θ (= U or L) is expecting an output in response to
either the previous input or the current input and because it is not the one to send the current
input, it cannot determine when to start and stop waiting for the output. The observability
problem manifests itself as an undetectable output shift fault. Formally, given an FSM M and a
test sequence x1/y1, x2/y2, …, xm/ym of M, where xi ∈ X and yi ∈ Y, 1 ≤ i ≤ m, an output shift fault
in an implementation N of M occurs when, in the labels xj/yj and xj+1/yj+1 of any two consecutive
transitions, 1 ≤ j ≤ m-1, there exists an output oθ (= oU or oL) that is
• either in yj of M that occurs in yj+1 of N and not in yj of N (forward output shift fault);
• or in yj+1 of M that occurs in yj of N and not in yj+1 of N (backward output shift fault).
In general, if there is an output shift fault related to an output oθ in any two consecutive
transitions whose labels are xj/yj and xj+1/yj+1, this fault will not be detected by tester θ that
satisfies the following condition

(oθ is in yj of M XOR oθ is in yj+1 of M) AND input xj+1is not sent by tester θ.
In this case, we say that the tester θ is involved in the shift.

3 THE PROPOSED METHOD

Let M = (S, X, Y, δ, λ) hereafter stand for a minimal FSM which is represented by a strongly
connected digraph G = (V, E) where there is a non-empty subset of outgoing edges of vertex vj
specified as eligible successors of e (tail(e)=vj), for each edge e ∈ E. Let |S| be n and s1 ∈ S be
the initial state of M. The construction of a synchronizable checking sequence of M is based on
the construction of a digraph G' = (V', E') such that there is a one-to-one mapping from the edges
in G to the edges in G', and that every pair of edges (corresponding to a pair of adjacent edges in
G) covered by some path in G' is a synchronizable pair of transitions in M. Thus, finding a
synchronizable checking sequence on G will be reduced to finding a checking sequence on G'.
After the checking sequence is formed, it is examined for potentially undetectable output shift

 5

faults. Each potentially undetectable output shift fault is eliminated in the checking sequence
without creating any synchronization problem by adding some subsequences to the checking
sequence. The resulting checking sequence can then be applied in a distributed test architecture
without creating controllability or observability problems.

3.1 Construction of the Digraph G'

For each vertex v in G = (V, E), define:
DepartU[v] = {e ∈ E : head(e) = v and label(e) ∈ {iU/-, iU/oU, iU/oL, iU/oU,L}}
DepartL[v] = {e ∈ E : head(e) = v and label(e) ∈ {iL/-, iL/oL, iL/oU, iL/oU,L}}
ArriveU[v] = {e ∈ E : tail(e) = v and label(e) ∈ {iU/-, iU/oU}}
ArriveL[v] = {e ∈ E : tail(e) = v and label(e) ∈ {iL/-, iL/oL}}
ArriveU,L[v] = {e ∈ E : tail(e) = v and label(e) ∈ {iL/oU, iU/oL, iL/oU,L, iU/oU,L}}.

Note that the edges in DepartU[v] are eligible successors of edges in ArriveU[v] and ArriveU,L[v].
The edges in DepartL[v] are eligible successors of edges in ArriveL[v] and ArriveU,L[v].
Furthermore, edges in DepartU[v] are the only eligible successors of edges in ArriveU[v], and
edges in DepartL[v] are the only eligible successors of edges in ArriveL[v].

During the construction of G' = (V', E') from G = (V, E), for each vertex v ∈ V, 1, 2 or 3
vertices are created in G', depending on the labels of edges arriving and departing v, so that if an
edge arrives at a vertex in V', it can take as its eligible successor any of the edges departing at
this vertex. The procedure of constructing the digraph G' = (V', E') from a strongly connected
digraph G = (V, E) such that V' = VU ∪ VL ∪ VU,L and E' = Ec ∪ F is as follows:
(1) For each vertex v in V,

If DepartU[v] ≠ Ø, then a vertex vU is created in VU.
If DepartL[v] ≠ Ø, then a vertex vL is created in VL.

(2) For each edge (w, v; x/y) ∈ ArriveU[v] (this implies that (w, v; x/y) ∈ DepartU[w]), a directed
edge from wU to vU is created in Ec. Similarly, for each edge (w, v; x/y) ∈ ArriveL[v] (this
implies that (w, v; x/y) ∈ DepartL[w]), a directed edge from wL to vL is created in Ec.

(3) For each edge (w, v; x/y) ∈ ArriveU,L[v], one of the following is performed:
a) In the case that vertex vU exists but vertex vL does not,
 if (w, v; x/y) ∈ DepartU[w], then a directed edge from wU to vU is created in Ec,
 else (i.e., (w, v; x/y) ∈ DepartL[w]) a directed edge from wL to vU is created in Ec.
b) In the case that vertex vL exists but vertex vU does not,
 if (w, v; x/y) ∈ DepartU[w], then a directed edge from wU to vL is created in Ec,
 else (i.e., (w, v; x/y) ∈ DepartL[w]) a directed edge from wL to vL is created in Ec.
c) In the case that both vU and vL exist, a vertex vU,L is created in VU,L (if it does not already

exist) and two edges (vU,L, vU) and (vU,L, vL) with nil labels, denoted by -/(-, -) when
needed, are constructed in F.

 If (w, v; x/y) ∈ DepartU[w], then a directed edge (wU, vU,L; x/y) is created in Ec,
 else (i.e., (w, v; x/y) ∈ DepartL[w]) a directed edge (wL, vU,L; x/y) is created in Ec.

It follows from the construction of G' = (V', E') that
- for each edge e ∈ E of G there is exactly one corresponding edge e' ∈ Ec of G'
- for each edge e' ∈ Ec of G' there is exactly one corresponding edge e ∈ E of G.

 6

Given an edge e ∈ E of G, let f(e) denote the corresponding edge e' ∈ Ec of G'. Then f can be
extended to be applied to sequences of edges. Given path p' in G', let g(p') denote p' with the
edges from F removed. Then, a path p' in G' that starts at v1U,L is said to correspond to a path p
of G that starts at v1 if, and only if, f(p)=g(p'). If path p' in G' that starts at v1U,L corresponds to
path p of G that starts at v1, then label(p) = label(g(p')).
From the construction of G' = (V', E'), the following propositions are immediate:

Proposition 1: For each synchronizable path p in G that starts at v1, there is a corresponding path

p' in G' that starts at v1U,L.
Proposition 2: For each path p' in G' that starts at v1U,L, there is a corresponding synchronizable

path p in G that starts at v1.
Proposition 3: Every vertex v ∈ V' of G' is reachable from v1U,L.

3.2 Construction of Synchronizable Checking Sequences

Checking sequences that will be formulated in this paper will utilize synchronizable UIO
sequences. A Unique input-output (UIO) sequence for a state of an FSM is an IO-sequence that
is not exhibited by any other state of the FSM [SD 88]. A synchronizable unique input/output
(SUIO) sequence for a state s of an FSM is a synchronizable IO-sequence that forms a UIO for s.
Although an SUIO sequence itself does not cause any synchronization problem, a
synchronization problem can still arise if the transition corresponding to the first io-pair of the
SUIO sequence is not an eligible successor of the transition which precedes the SUIO sequence
in a given transition sequence. For example, when an SUIO sequence for a state s starts with an
input sent by U, any incoming transition of state s with label iL/oL or iL/-, will cause a
synchronization problem if it precedes the SUIO sequence. To avoid a synchronization problem,
for each state s, two SUIO sequences may be needed, denoted by SUIOU(s) and SUIOL(s) where
SUIOU(s) starts with an input sent by U and SUIOL(s) starts with an input sent by L.

A general approach for the construction of synchronizable checking sequences based on UIO
sequences is first to construct a state cover which is an input sequence used to verify that an
implementation N of a given FSM M has all the states of M. This is followed by a transition
cover which is an input sequence used to verify that N implements all transitions of M. In order
to verify each state s of M in N, not only the input portion of the UIO(s) is applied to s, but also
the input portions of UIOs of every other state is also applied to s so that the uniqueness of UIOs
in N can also be established. If N passes the state cover then, the verification of each transition t
= (si, sj; x/y) of M in N is attempted by bringing N to si, applying the input x, verifying that the
observed output is y, and verifying that N reaches sj by applying the input portion of UIO(sj).

The proposed method for the construction of a synchronizable checking sequence from M is
based on the following observations regarding an FSM from which we may generate a
synchronizable checking sequence using SUIOs:
A) If for each state s ∈ S, ArriveU[s] = ∅, then no state in S needs to have an SUIOU.
 Further, if no state in S has an SUIOU then for each state s ∈ S, ArriveU[s] must be ∅.
 A also holds for L.
B) If for at least one state s ∈ S (represented by v ∈ V), ArriveU[s] ≠ ∅ then
 a) DepartU[s] must not be ∅
 (as edges in DepartU[s] are the only eligible successors of edges in ArriveU[s]).
 b) s needs to have an SUIOU, i.e., SUIOU(s) with an input portion IvU

 7

 (as the verification of edges in ArriveU[s] requires an SUIO that starts with the label of an
edge in DepartU[s]).

 c) SUIOU(s) must be used in the verification of s in N
 (as the verification of edges in ArriveU[s] requires the use of SUIOU(s)).
 d) for each state s' ∈ S,
 - DepartU[s'] must not be ∅,
 - ArriveU[s'] or ArriveU,L[s'] must not be ∅,
 - IvU must be the input portion of the label of a synchronizable transition sequence that

starts at s', (as the verification of s in N requires the use of SUIOU(s) whose
uniqueness in N must be established), and

 - At least one of the edges in ArriveU[s'] or ArriveU,L[s'] must form a synchronizable
pair of transitions with the transition in DepartU[s'] that maps to the first transition of
the sequence induced by IvU at s'.

 B also holds for L.

Before the proposed method is presented the following assumptions are made:
1) The implementation N of M implements the reset feature of M correctly. A reset transition

has label r/(-, -) and the reset input r can be sent by any of the testers and can be followed by
any input from any tester without causing any synchronization problem. N is deterministic,
minimal, composed of at most n states, and complete.

2) For each edge e ∈ E, there is a synchronizable path that starts at the initial vertex v1 and
contains e.

3) For each state s, represented by vertex v ∈ V, if ArriveU[v] (resp. ArriveL[v]) ≠ ∅, then
SUIOU(s) (resp. SUIOL(s)) exists and if ArriveU,L[v] ≠ ∅, then at least one of SUIOU(s) or
SUIOL(s) exists.

4) There is at most one state s represented by a vertex v ∈ V, such that ArriveU,L[v] = ∅ and
 there is at least one state s' represented by a vertex v' ∈ V, such that ArriveU[v'] ≠ ∅ and
 there is at least one state s'' represented by a vertex v'' ∈ V, such that ArriveL[v''] ≠ ∅.
5) The input portion of each SUIO sequence is a synchronizable input sequence for each state s
 in M and can follow a transition entering state s without creating a synchronization problem.

The first assumption dramatically reduces the length of the state cover. Without this
assumption, the resulting synchronizable checking sequence of the FSM will be restrictively long
as it will have to rely on locating sequences [HE 64] which in general have exponential length. In
addition, the application of a reset breaks the connection in most real protocols, and thus can be
utilized to form test cases from the resulting synchronizable checking sequence. The last four
assumptions are necessary for any method that will attempt to construct a synchronizable
checking sequence of a given FSM using UIOs. The second assumption assures that every
transition of the FSM is part of a synchronizable transition sequence starting at the initial state.
The third assumption assures that for each transition of the FSM, there is an SUIO
synchronizable with the transition so that one can construct the state and transition covers. The
fourth assumption requires that there should be at least one state that is reached by transitions
whose inputs are related to U (or L). The fifth assumption requires that any SUIO should be a
synchronizable sequence for all states of the FSM. The last two assumptions assure that the
uniqueness of the SUIOs in an implementation of the given FSM can be verified.
It follows from the asumptions that, DepartU[v] ≠ ∅ and DepartL[v] ≠ ∅ for each v ∈ V. Thus,
there will be vL and vU ∈ V' for each v ∈ V and one can modify the procedure given in Section
3.1 by deleting the conditions for creating vL and vU in (1) and for creating vU,L in (3)c.

 8

The proposed method utilizes G'=(V', E') constructed from G=(V, E) and proceeds as
follows:
Step 1: Let IvU and IvL denote the input portions of SUIOU(v) and SUIOL(v), respectively.

Let v in G=(V, E) stand for the state s in S.
a) For each vertex vU and vL in V',
 construct IvU and IvL if both SUIOU(v) and SUIOL(v) must exist

 (If both ArriveU[v]≠∅ and ArriveL[v]≠∅). Call the shorter of {IvU, IvL} IvU,L.
 Otherwise, construct either IvU if SUIOU(v) must exist or IvL if SUIOL(v) must exist.
 (The nonempty sequence IvU will be used in
 1) verifying a transition that is in ArriveU[v]≠∅
 (or if ArriveU[v]=∅ and SUIOL(v) does not exist, in ArriveU,L[v])
 2) part of the verification of state s in N)
 (The above statement in parantheses also holds for IvL).
 b) construct sets QU and QL of input sequences corresponding to input portions of
 SUIO sequences that will be applied to each vertex v in V for state verification:

 QU = {IvU | for each vU that has a SUIOU(v) and IvU is not a prefix of IwU, v≠w in V}.
 QL = {IvL | for each vL that has a SUIOL(v) and IvL is not a prefix of IwL, v≠w in V}.

Step 2: Assume that when a reset input r is applied, the next vertex is v1
U,L.

Denote by TiU and TiL the shortest transfer sequence on G'=(V', E') from the initial vertex
v1

U,L to vertices vi
U and vi

L respectively. If vertex vi
U,L exists then denote by TiU,L the

shortest transfer sequence on G'=(V', E') from the initial vertex v1
U,L to vertex vi

U,L and
let TiU = TiL = TiU,L.

 Let mU denote |QU|, mL denote |QL|, and Qθ (i) denote the ith element of Qθ (=QU or QL).
 Construct an input sequence C, called cover of G'=(V', E'), that contains:

a) a state cover which is the concatenation of
rTiU QU(1)rTiU QU(2) ... rTiUQU(mU)rTiL QL(1)rTiL QL(2) ... rTiLQL(mL), ∀i, 1 ≤ i ≤ n.

b) a transition cover which consists of a test segment rThead(e) xItail(e)
for each edge e' in Ec corresponding to the edge e in G=(V, E) where Thead(e) is the
same transfer sequence on G'=(V', E') from v1

U,L to head(e) as the one used in a).
Clearly, given an appropriate choice of transfer sequences, the state cover contains a test
segment for each edge that is the last edge traversed by a transfer sequence before a state
is verified. Therefore, a test segment for each such edge in Ec need not be included in the
transition cover.

Proposition 4: Cover C of G'=(V', E') exists.

Proof:
By assumption 2, for any edge e ∈ E, there is a synchronizable path starting at the initial vertex
and containing e. Thus, by construction of G', for any e'∈ Ec, there is a path on G' starting at the
initial vertex v1

U,L and containing e'. Every vertex in VU ∪ VL is the head of some edge in Ec and
every vertex in VU,L is the tail of some edge in Ec. Therefore, for each vertex v ∈ V', there is a
transfer sequence on G' from vertex v1

U,L to vertex v and as stated in Proposition 3, v is reachable
from v1

U,L. Also, for each vertex v ∈ V', there is an edge from v to v1
U,L with the label r/(-, -), i.e.,

a reset edge. Therefore, G' is strongly connected. Moreover, by assumptions 3 and 4; and by

 9

construction of Qθ, Qθ is not empty and, by assumption 5, every element of Qθ is the input
portion of the label of a path on G' starting at a vertex v ∈ V'. Therefore, all the subsequences of
C of the type rI, I∈X*, are defined on G', i.e., cover C of G' exists. EOP.

Theorem 1:
Let G' = (V', E') be a digraph constructed from a given digraph G = (V, E) representing an FSM
M and let state cover C1 of G' be the input portion of an IO-sequence R1 which is the label of a
path P1 starting at vertex v1

U,L of G'. Then if R1 is also an IO-sequence for implementation N =
(S', X, Y, δ', λ') of Φ(M) then N has n states and the SUIO sequences for each state of M are also
unique in N.

Proof:
First, it must be established that R1 is a synchronizable IO-sequence for M. This is the case since,
by construction, state cover C1 is an input sequence on G'. Therefore, R1 is a synchronizable
sequence as it is the label of a path in G'. Hence, R1 is a synchronizable IO-sequence for M.

Second, it must be shown that if R1 is also an IO-sequence for an implementation N in Φ(M)
then N has n states and the SUIO sequences for each state of M are also unique in N. In order to
show this is the case, note that, any state of M is in one of the following two disjoint subsets of S:
1. S1 = {si ∈ S | vi

U,L ∉V'}. By assumption 4, |S1| ≤ 1 and if S1={si}, for some si, by assumption
5, vi

U and vi
L are in V'.

2. S2 = {si ∈ S | vi
U,L ∈V'}. By the construction of G', vi

U,L is the tail of some edge in Ec and, by
the construction of QU ∪ QL, at least one of {IsiU, IsiL} is an element of QU ∪ QL. Therefore,
the state recognition for a state si ∈ S2 is achieved by rTviU,L QU(1)rTviU,L QU(2) ... rTviU,L
QU(mU) rTviU,L QL(1)rTviU,L QL(2) ... rTviU,L QL(mL).
Since r is correctly implemented in N and N is deterministic, if T is some transfer sequence,

N will always be in the same state after the application of rT. Thus, since R1 is an IO-sequence
for N, the states of N reached by the transfer sequences for states in S2 are pairwise distinguished
by QU ∪ QL. Therefore, N has at least |S2| distinct states.

To each state s of M in S2, there corresponds a unique state s' of N, such that ∀I ∈ QU ∪ QL,
λ'(s', I) = λ(s, I). Let S'2 = {s' | s ∈ S2}. If S1 = ∅, then N has exactly n states and ∀s' ∈ S'2, ∀I ∈
QU ∪ QL, λ'(s', I) = λ(s, I) and thus the result follows.

Suppose now that S1 ≠ ∅, say S1 = {sk}. Then |S2| = n-1, so N has already n-1 determined
states and both vk

U and vk
L exist. Then the sequence IskU must exists and in M this distinguishes

sk from the states in S2. Thus, since R1 is an IO-sequence for N, the state of N reached by TskU is
not in S'2 and so N has n states. A similar argument follows for vk

L. Further, since the states of N
reached by TskU and TskL are not contained in S'2, and |S'- S'2|=1, the states of N reached by TskU
and TskL must be the same. Thus sk is identified in N by the use of either IskL or IskU and so the
SUIO sequences for each state of M are also unique in N as required. EOP

Theorem 2:
Let G' = (V', E') be a digraph constructed from a given digraph G = (V, E) representing an FSM
M. Let transition cover C2 of G' be the input portion of an IO-sequence R2 which is the label of a
path P2 starting at vertex v1

U,L of G' and let state cover C1 be the input portion of an IO-sequence
R1 which is the label of a path P1 starting and ending at vertex v1

U,L of G'. Then the input portion
of R = R1R2 is a synchronizable checking sequence of M.

 10

Proof:
First, R is a synchronizable IO-sequence of M since, by construction, C1C2 is an input sequence
on G'. Second, by Theorem 1, if R is also an IO-sequence for an implementation N in Φ(M) then
N has n states and the SUIO sequences for each state of M are also unique in N. Thus there is a
one-to-one correspondence f from the states of M to the states of N defined by the SUIOs.

In order to complete the proof, the following must be shown:
suppose R is an IO-sequence for an implementation N in Φ(M). Let (a, b; x/y) be an edge of G,
then (f(a), f(b); x/y) is a transition of N.

In order to show this is the case, let e = (a, b; x/y) be an edge of G. Then there is a
corresponding edge e' in Ec. The subsequence of R for the verification of e is of the form
(rThead(e)xItail(e))/(λ(s1, Thead(e))yλ(tail(e), Itail(e))) and, by construction, Itail(e) ∈ QU ∪ QL. Then,
since R is an IO-sequence for N, Itail(e) is the input portion of an SUIO of state b'= f(b) of N.
Hence, the state reached by N after the application of Thead(e)x is b' = f(b).

Moreover, since R1 is an IO-sequence for N, the state reached by N after the application of
Thead(e) is a' = f(a). Therefore, e' = (a', b'; x/y) is a transition of N. This holds for every transition
of M. The result thus follows. EOP

3.3 Elimination of Potential Undetectable Output Shift Faults

The cover C, defined in the previous section, is a checking sequence in so far as it distinguishes
M from any faulty FSM N in Φ(M) that does not conform to M. However, under this definition M
is distinguished from a faulty FSM N in Φ(M) by observing the responses of N to the checking
sequence during testing. Since in the distributed test architecture the responses of N is observed
by local testers, with no global clock, there may be an observability problem and output shift
faults may go undetected, although the checking sequence is synchronizable.
This section considers the problem of adapting the cover C to avoid the observability problem
and gives a sufficient condition under which output shift faults cannot occur in the cover C. This
condition is based around the notion of the SUIOs used being resilient to output shift faults. This
is followed by the description of a method that augments the cover C to eliminate undetectable
output shift faults.

Before considering output shift faults, a number of terms will be defined. For an FSM M, let Xθ
⊂ X represent inputs that can be received from tester θ, Yθ represent outputs (including -) that
can be sent to θ, and Y ⊆ YU×YL. Let also πθ denote the projection function defined over an
output sequence O or input-output sequence I/O such that πθ(O) returns the sequence of outputs
where each output y ∈ Yθ \ {-} and πθ(I/O) returns the sequence of inputs and outputs where each
input x ∈ Xθ and each output y ∈ Yθ \ {-}. Then, an input sequence I locally distinguishes states s
and s' of M if there is some tester θ such that πθ(I/λ(s, I)) ≠ πθ(I/λ(s', I)). Further, an input
sequence I, upon which the behaviour of M is defined, locally distinguishes an FSM N in Φ(M)
from M if I locally distinguishes the initial states of N and M. Also, in the following, an SUIO
sequence I/λ(s, I) for a state s of M is taken as a synchronized IO-sequence with the property that
for every state s' in S \ {s} I locally distinguishes s and s' (i.e. there is a tester θ such that
πθ(I/λ(s, I) ≠ πθ(I/λ(s', I))).

3.3.1 The Effects of Resilient SUIOs in Detecting Output Shift Faults

 11

For an FSM M, let Xθ ⊂ X represent inputs that can be received from tester θ, Yθ represent
outputs (including -) that can be sent to θ, and Y ⊆ YU×YL. Let also πθ denote the projection
function defined over an output sequence O or input-output sequence I/O such that πθ(O) returns
the sequence of outputs where each output y ∈ Yθ \ {-} and πθ(I/O) returns the sequence of inputs
and outputs where each input x ∈ Xθ and each output y ∈ Yθ \ {-}. Then, an input sequence I
locally distinguishes states s and s' of M if there is some tester θ such that πθ(I/λ(s, I)) ≠ πθ(I/λ(s',
I)). Further, an input sequence I, upon which the behaviour of M is defined, locally distinguishes
an FSM N in Φ(M) from M if I locally distinguishes the initial states of N and M. Also, in the
following, an SUIO sequence I/λ(s, I) for a state s of M is taken as an IO-sequence with the
property that for every state s' in S \ {s} there is a tester θ such that πθ(I/λ(s, I) ≠ πθ(I/λ(s', I)).

This subsection considers the case where the effectiveness of the SUIOs used in the cover C
cannot be affected by output shift faults either within the SUIOs or between SUIOs and
transitions immediately preceding the SUIOs. Such SUIOs will be said to be resilient to output
shift faults. It will transpire that if the SUIOs used are resilient to output shift faults then the
cover C has no observability problem. The following defines what it means for an SUIO to be
resilient to output shift faults.
An SUIO I/O for state s is said to be resilient to output shift faults if for every state s' ∈ S \ {s}
there is a tester θ such that:
a) πθ(I/λ(s, I)) ≠ π θ(I/λ(s', I)).
b) for all z ∈ (Yθ \ {-})* we have that πθ(I/λ(s, I)) ≠ zπθ(I/λ(s', I)).
c) for all z ∈ (Yθ \ {-})* we have that zπθ(I/λ(s, I)) ≠ πθ(I/λ(s', I)).

The first condition states that I locally distinguishes states s and s'. The second condition
ensures that if I is input when M is in state s' the different behaviour is observed by θ even if
extra output is produced at θ prior to the input I. It thus ensures that a backward output shift fault
cannot occur between the SUIO and the transitions immediately preceding the SUIO. The third
condition ensures that if I is input when M is in state s' the different behaviour is observed by θ
even if some expected output fails to be produced at θ prior to the input I. It thus ensures that a
forward output shift fault cannot occur between the SUIO and the transitions immediately
preceding the SUIO. The following provides a sufficient condition for SUIO I/O of state s is
resilient to output shift faults.

Proposition 5:
SUIO I/O for state s is resilient to output shift faults if for each s' ≠ s there is a tester θ such that:
I=I1xI2 for some input x ∈ Xθ such that πθ(λ(δ(s, I1), xI2)) ≠ πθ(λ(δ(s', I1), xI2)).

Informally this means that the behaviours produced by the input of I in states s and s' differ at
θ after the input x ∈ Xθ. This is a sufficient condition because differences at θ after the input x at
θ cannot be involved in output shift faults with transitions before the input of x.

Suppose the SUIOs used in forming a cover C are resilient to output shift faults. Based on
this, it is possible to make the following observations about C and any FSM N∈Φ(M) that is not
locally distinguished from M by C.
a) N has n states and the SUIOs (locally) identify the states of N.
b) A transfer sequence for state s of M, used in forming C, reaches the corresponding state of N.

 12

From these observations it is possible to conclude that the test segment, in the transition cover,
for transition t of M executes the corresponding transition of N and then checks its final state.
Further, since the SUIOs are resilient to output shift faults, any fault in this transition would
locally distinguish N from M. The result below follows from these observations.

Theorem 3:
If the cover C, the synchronizable checking sequence of an FSM M, has been produced using
SUIOs that are resilient to output shift faults then C is free from the observability problems.

3.3.2 Elimination of Undetectable Output Shift Faults in the Cover

This subsection will consider the problem of augmenting the cover C, in order to eliminate
undetectable output shift faults, when some SUIOs used are not resilient to output shift faults.
Suppose input sequence x1, …, xq is being used and the tester wished to detect output shift faults
within this. It has been noted [YT 98] that this can be achieved by executing every prefix of x1,
…, xq. Since this may lead to a massive increase in the size of the checking sequence we will
analyse the structure of C in order to limit the number of prefixes that need to be added.

Suppose the cover C does not locally distinguish an N∈Φ(M) from M. Consider the state
cover. Since the role of this is to verify the transfer sequences and the uniqueness of SUIOs it is
only important to determine whether output may be shifted between the input/output pairs
induced by the last inputs of transfer sequences and SUIOs. Let τ(T) represent the input-output
sequence induced by a transfer sequence T. Thus, τ(T) = T/λ(s1, T). We may observe that τ(T) of
any transfer sequence T that is followed by an SUIOL cannot have an output shift fault, between
τ(T) and SUIOL, at port L since SUIOL starts with input at L. Thus, in C there can be no output
shift faults, involving L, between τ(T) of a transfer sequence T and any of the SUIOLs. From this
it follows that τ(T) must lead to the expected output at L and thus τ(T) cannot participate in an
output shift fault involving L. A similar argument shows that τ(T) of any transfer sequence T that
is followed by an SUIOU cannot have an output shift fault, between τ(T) and SUIOU, at U. Thus,
τ(TiU,L) of any transfer sequence TiU,L that is separately followed by an SUIOL and an SUIOU
cannot participate in an output shift fault.

Suppose now that there is some state i such that TiU≠TiL. There may be at most one such
state. Here there may be an output shift fault between τ(TiU) and the SUIOU and between τ(TiL)
and the SUIOL. Thus the test sequence is augmented with rTiU and rTiL.

Consider now the transition cover and the sequence from this that tests transition t=(si, sj;
x/y). Here t is tested by an input sequence in the form of a transfer sequence T followed by the
input of x and then the input portion of an SUIOU (SUIOL) I/O to check the state reached after x.
Given any transfer sequence T, the correct behaviour being observed by each tester, when
applying the (possibly augmented) state cover guarantees that there can be no output shift fault
between τ(T) and the following transitions. It is now sufficient to determine whether there may
be an output shift fault between x/λ(si, x) and I/λ(sj, I). Here we may note that if x is followed by
I then an output shift fault between x/λ(si, x) and I/λ(sj, I) can at most involve one output value
being shifted at L(U). Further, since the result of executing the SUIOs from each state has been
verified during the application of the state cover, an output shift fault may only occur if an
incorrect output in t compensates for SUIOU (SUIOL) I/O being executed from some state other

 13

than sj. Thus an output shift fault may occur between x/λ(si, x) and I/λ(sj, I) only if there is some
state s' ∈ S\{sj} such that one of the following holds.
a) Transition t involves output z at L and zπL(I/λ(sj, I)) = πL(I/λ(s', I)). This might allow a

backward output shift fault to go undetected, a fault leading to t not producing z at L being
masked by the final state of t being s'.

b) Transition t involves no output at L and there exists z ∈ YL such that πL(I/λ(sj, I)) = zπL(I/λ(s',
I)).This might allow a forward output shift fault to go undetected, the transition t erroneously
producing output z at L and moving to state s'.

There are equivalent necessary conditions for an output shift fault to be able to occur

between a transition being tested and an SUIOL. If an output shift fault may occur between x/λ(si,
x) and I/λ(sj, I) the test is augmented with the input sequence rTx.

It is important to note that, due to their role in the cover C, it is not necessary to consider the

possibility of output shift faults within the transfer sequences. This is because a transfer sequence
T is only used to reach a state of N and not to (directly) check the input/output behaviour of any
transition triggered by T. Having eliminate the possibility of output shift faults between the
transfer sequences and the SUIOs in the state cover then, assuming each tester sees the expected
behaviour when N is tested with C, each transfer sequence must reach the appropriate state of N
(given the mapping between states of M and N defined by the SUIOs). Based on this, the
transition cover then tests the individual transitions.

4 AN EXAMPLE

Consider the FSM M, represented by the digraph depicted in Figure 2, where input a is applied
by upper tester U and input b is applied by lower tester L. The output 0 is sent to U and output 1
and 2 are sent to L.

1

23

e4=b/(0, -)
e2=a/(0, -)

e6=b/(-, 2)

e3 = b/(-, 1)

e5=a/(-, 1) e1=a/(-, 1)

Figure 2 Digraph G = (V, E).

Edge types and eligible successors are:
e1 = (1, 2), label (e1) = iU/oL, Eligible Successors: e2, e3
e2 = (2, 1), label (e2) = iU/oU, Eligible Successor : e1
e3 = (2, 3), label (e3) = iL/oL, Eligible Successor : e4
e4 = (3, 3), label (e4) = iL/oU, Eligible Successors: e4, e5
e5 = (3, 1), label (e5) = iU/oL, Eligible Successors: e1, e6

 14

e6 = (1, 3), label (e6) = iL/oL, Eligible Successor : e4
Arrive and Depart sets for all vertices of G are determined as in Table 2.

 Table 2 Arrive and Depart sets for each vertex.
vertex DepartU DepartL ArriveU ArriveL ArriveU,L

1 e1 e6 e2 e5
2 e2 e3 e1
3 e5 e4 e3, e6 e4

The construction of the digraph G' proceeds as follows:
For each vertex v in V, DepartU[v] and DepartL[v] are not empty so vertices 1U, 1L, 2U, 2L, 3U, 3L
are created in V'. Then every edge of E is considered:
- e1 is in DepartU[1] and ArriveU,L[2], then construct 2U,L in VU,L, and create

edges (2U,L, 2U; -/(-, -)) and (2U,L, 2L; -/(-, -)) in F and edge e'1 = (1U, 2U,L ; a/(-, 1)) in Ec.
- e2 is in DepartU[2] and ArriveU[1], then construct edge e'2 = (2U, 1U ; a/(0, -)) in Ec.
- e3 is in DepartL[2] and ArriveL[3], then construct edge e'3 = (2L, 3L ; b/(-, 1)) in Ec.
- e4 is in DepartL[3] and ArriveU,L[3], then construct 3U,L in VU,L, and create

edges (3U,L, 3U; -/(-, -)) and (3U,L, 3L; -/(-, -)) in F and edge e'4 = (3L, 3U,L ; b/(0, -)) in Ec.
- e5 is in DepartU[3] and ArriveU,L[1], then construct 1U,L in VU,L, and create

edges (1U,L, 1U; -/(-, -)) and (1U,L, 1L; -/(-, -)) in F and edge e'5 = (3U, 1U,L ; a/(-, 1)) in Ec.
- e6 is in DepartL[1] and ArriveL[3], then construct edge e'6 = (1L, 3L ; b/(-, 2)) in Ec.

SUIO sequences for each state are:
SUIOU(1) = a/1, a/0 SUIOL(1) = b/2
SUIOU(2) = a/0 SUIOL(2) = b/1
SUIOU(3) = a/1, a/1 SUIOL(3) = b/0

1U 2U

3U 1L

3L 2L

e'1

e'2

e'3

e'6

e'5

e'4

1U,L

3U,L

2U,L

Figure 3 The Digraph G' of G in Figure 2.Edges in F are dashed.

Hence, the input portions of the SUIO sequences are:
I1U = aa, I1L = b; I2U = a, I2L = b; and I3U = aa, I3L = b. Since there exist both IvU and IvL for each
vertex v in V, IvU,L =IvL = b. Finally, QU = {aa}, QL = {b}.

 15

The construction of a cover C of G' proceeds as follows:
T1U =T1L =T1U,L = ε; T2U =T2L =T2U,L = a; and T3U = T3L = T3U,L = bb.

1) State Cover:
rT1U aarT1L brT2U aarT2L brT3U aarT3L b = raarbraaarabrbbaarbbb.

2) Transition Cover:
It contains a test segment for each transition except for edge e'1 (a test segment (rab) for e'1 is
already included in the state cover since e'1 is the last edge of T2U,L)
i.e.,
test segment for e'2 = (2U, 1U; a/(0, -)) is rT2U aI1U = raaaa
test segment for e'3 = (2L, 3L; b/(-, 1)) is rT2L bI3L = rabb
test segment for e'4 = (3L, 3U,L; b/(0, -)) is rT3L bI3U,L = rbbbb
test segment for e'5 = (3U, 1U,L; a/(-, 1)) is rT3U aI1U,L = rbbab
test segment for e'6 = (1L, 3L; b/(-, 2)) is rT1L bI3L = rbb.
Hence the transition cover is raaaarabbrbbbbrbbabrbb.
The state cover and the transition cover will result in the cover C of G as
raarbraaarabrbbaarbbbraaaarabbrbbbbrbbabrbb.
C is a synchronizable checking sequence of length 43.

It is straightforward to demonstrate that the SUIOs used in C satisfy the sufficient conditions,
given in Proposition 5, for SUIOs to be resilient to output shift faults. Consider, for example, the
input of b at L. This forms the input of the SUIOLs for each state. The expected output is: 2 at L
for s1; 1 at L for s2; and 0 at U (and thus null at L) for s3. For each pair of states there is a
difference in the output at L after the input of b at L. By Theorem 3, since the SUIOs are resilient
to output shift faults, the checking sequence is free from observability problems.

5 CONCLUSIONS

A method for constructing a checking sequence of a given FSM M using UIOs has been
proposed. The resulting checking sequence does not pose controllability and observability
problems during its application in a distributed test architecture. The length of the checking
sequence constructed by this method may be easily reduced by eliminating redundancies and by
making a wise choice of the transition sequences, and of the SUIO sequences to apply. The
reduction in length can be achieved by three complementary approaches: The first approach is to
eliminate rI, I∈X*, in the state or transition cover if there is an rI', I'∈X* in the state or transition
cover such that I is a prefix of I'. By following this approach, the cover C in our example, is
reduced to rbbaaraaaarabbrbbbbrbbab with a length of 24 inputs by eliminating raa, rb, raaa,
rab, and rbbb from the state cover and rbb from the transition cover.

In the proposed method, the same transfer sequences are used in both state and transition
verification parts. By choosing different transfer sequences, the second approach of length
reduction could increase the possibility of overlapping the test segments or of using shorter
transfer sequences to a given state prior to verifying its outgoing edges. For instance, in the cover
C in our example, the test segment (e'4) = rbbbb. One could use transfer sequence T3L =b to form
the test segment(e'4) = rbbb which would reduce the length of C by 1.

In the case that both SUIOU and SUIOL exists for a state s, the proposed method requires that

 16

IvU,L should be the shorter of {IvU, IvL}. The third approach of length reduction is to choose the
one that contributes to the greater reduction in the length of C. For instance, in the cover C in our
example, for e'4, there would be two possible test segments : rbbbb and rbbbaa and for e'5 there
also would be two possible test segments : rbbab or rbbaaa. Choosing test segment(e'5) =
rbbaaa implies that rbbaa can be deleted from C. Combining these three approaches yields C =
raaaarabbrbbbrbbaaa which is of length 19.

Naturally, when considering possible optimizations, it is import to guarantee that any changes
made maintain the cover being a checking sequence that is free from observability problems. For
example, when eliminating a prefix rI of rI' it is important to verify that this change cannot allow
an output shift fault to go undetected. The introduction of safe optimizations will form part of
future research.

Acknowledgments
This work is supported in part by the Natural Sciences and Engineering Research Council of
Canada under grants STR0149338 and OGP0000976. The authors wish to thank Stephanie
Guyot for her input to an earlier version of the work presented here.

REFERENCES
[AA 88] A. Aho, A.T. Dahbura, D. Lee, and M.U. Uyar, “An optimization technique for

protocol conformance test generation based on UIO sequences and rural Chinese
postman tours,” Protocol Specification, Testing, and Verification, S. Aggarwal and K.
K. Sabnani, eds., North-Holland, Amsterdam, 75-86, 1988.

[BU 91] S. Boyd and H. Ural, “The synchronization problem in protocol testing and its
complexity,” Information Processing Letters, 40, 131-136, 1991.

[CR 99] L. Cacciari and O. Rafiq, “Controllability and observability in distributed testing,”
Information and Software Technology, 41, 767-780, 1999.

[CV 89] W.Y.L. Chan, S.T. Vuong, and M.R. Ito, “An improved protocol test generation
procedure based on UIOS,” Proc. SIGCOMM'89 , 283-294, 1989.

[CU 95] W. Chen and H. Ural, “Synchronizable checking sequences based on multiple UIO
sequences,” IEEE/ACM Transactions on Networking, 3, 152-157, 1995.

[DS 90] A.T. Dahbura, K.K. Sabnani, and M.U. Uyar, “Formal methods for generating
protocol conformance test sequences,” Proc. of IEEE, 78, 1317-1325, 1990.

[GI 62] A. Gill, Introduction to the Theory of Finite-State Machine, McGraw-Hill, New
York, 1962.

[GU 95] S. Guyot and H. Ural, “Synchronizable checking sequences based on UIO
sequences,” Proc. IFIP IWPTS'95, Evry, France, 395-407, Sept. 1995.

[HE 64] F.C. Hennie, “Fault detecting experiments for sequential circuits”, in: Proc. Fifth
Ann. Symp. Switching Circuit Theory and Logical Design , 95-110, 1964.

[HI 97] R.M. Hierons, “Testing from a finite state machine: extending invertibility to
sequences”, The Computer Journal, 40, 220-230, 1997.

[II 95] ISO/IEC Open Systems Interconnection – Conformance Testing Methodolgy and
Framework, 9646-1, 1995.

[LY 94] D. Lee and M. Yannakakis, “Testing finite state machines: state identification and
verification,” IEEE Transactions on Computers, 43, 306-320, 1994.

[LB 94] G. Luo, R. Dssouli, G. v. Bochmann, P. Venkataram and A. Ghedamsi, “Test
generation with respect to distributed interfaces,” Computer Standards and

 17

Interfaces, 16, 119-132, 1994.
[SD 88] K.K. Sabnani and A.T. Dahbura, “A protocol test generation procedure,” Computer

Networks, 15, 285-297, 1988.
[SB 84] B. Sarikaya and G. v. Bochmann, “Synchronization and specification issues in

protocol testing,” IEEE Transactions on Communications, 32, 389-395, 1984.
[TY 98] K.C. Tai and Y.C. Young, “Synchronizable test sequences of finite state machines,”

Computer Networks, 13, 1111-1134, 1998.
[UW 93] H. Ural and Z. Wang, “Synchronizable test sequence generation using UIO

sequences,” Computer Communications, 16, 653-661, 1993.
[YT 98] Y.C. Young and K.C. Tai, “Observation inaccuracy in conformance testing with

multiple testers,” Proc. IEEE WASET, 80-85, 1998.

