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Abstract

Vector autoregressions (VARs) are an important tool in time series
analysis. However, relatively little is known about the �nite-sample
behaviour of parameter estimators. We address this issue, by investi-
gating ordinary least squares (OLS) estimators given a data generating
process that is a purely nonstationary �rst-order VAR. Speci�cally, we
use Monte Carlo simulation and numerical optimization to derive re-
sponse surfaces for OLS bias and variance, in terms of VAR dimensions,
given correct and (several types of) over-parameterization of the model:
we include a constant, and a constant and trend, and introduce excess
lags. We then examine the correction factors required for the least
squares estimator to attain minimum mean squared error (MSE). Our
results improve and extend one of the main �nite-sample analytical bias
results of Abadir, Hadri and Tzavalis (Econometrica 67 (1999) 163),
generalize the univariate variance and MSE �ndings of Abadir (Econ.
Lett. 47 (1995) 263), and complement various asymptotic studies.
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1 Introduction

Vector autoregressions (VARs) have been extensively studied in economet-
rics and continue to be one of the most frequently used tools in time series
analysis. However, little is currently known about the properties of para-
meter estimators when applied to �nite samples of data, and especially in
nonstationary frameworks. In particular, the form and extent of estimator
bias and variance have not yet been fully investigated. In a recent paper,
Abadir, Hadri and Tzavalis (1999) (AHT) study nonstationary multiple au-
toregressive series, and derive an approximate expression for the bias of the
ordinary least squares (OLS) estimator of the matrix of autoregressive para-
meters, in terms of the sample size T and VAR dimension k. They consider
estimation of a correctly-parameterized �rst-order vector autoregression (a
VAR(1)), with no constant or trend, given that the data generating process
is a k-dimensional Gaussian random walk. Using Monte Carlo simulation,
they show that their �analytic approximation�provides a good representa-
tion of bias in �nite samples, and for small k (AHT, Table I).1

The purposes of this paper are twofold. Firstly, we extend the results
given by AHT in a number of directions, building upon previous studies by
Stamatogiannis (1999) and Lawford (2001, ch. 4). In broadening the scope
of AHT, we assess over-parameterization of the estimated VAR model, by
including a constant, and a constant and deterministic trend. This cre-
ates additional bias problems, as was suggested by simulation results for
the univariate case in Abadir and Hadri (2000, p. 97) and Tanizaki (2000,
Table 1). We also assess the e¤ects of introducing excess lags into the es-
timated model. We use Monte Carlo methods to simulate small sample
bias, and then �t a series of response surfaces using nonlinear least squares.
Well-speci�ed and parsimonious response surfaces are chosen following di-
agnostic testing, and are shown to perform extremely well in out-of-sample
prediction. In the correctly-parameterized setting, the prediction error of
our response surface is substantially less than that of the AHT form, across
the parameter space under investigation. To our knowledge, no other small
sample approximations �analytic or otherwise �were previously available
in the over-parameterized cases, or for excess lags.

Secondly, we focus attention on the variance and mean squared error
(MSE) of the least squares estimator, and generalize the heuristic univari-
ate variance approximation of Abadir (1995a) to the multivariate and over-

1Throughout this paper, we refer to mean-bias as �bias�. Median-bias is de�ned as the
di¤erence between the median of an estimator and the true parameter value; see Andrews
(1993) for a discussion of median-bias in the context of unit-root/autoregressive models.
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parameterized setting. We develop response surfaces for variance, and show
that multiplying the OLS estimator by a scalar correction factor achieves
minimum MSE and removes most of the bias, at the expense of a small
increase in estimator variance.

The paper is organized as follows. Section 2 introduces the possibly over-
parameterized VAR model and brie�y reviews existing �nite-sample results.
Section 3 outlines the response surface methodology, presents the experimen-
tal design, and proposes response surfaces for bias and variance, following an
extensive series of Monte Carlo experiments. Section 4 concludes the paper.
Proofs of Theorems 2.1 and 2.2 are available from the authors on request.
The notation generally follows Abadir and Magnus (2002). We represent
scalar, vector and matrix quantities as a, a and A respectively: these have
typical elements a = (a)j and A = (A)ij . When a vector or matrix reduces
to a scalar, we write a = a or A = a. Special vectors and matrices include
the k � 1 zero vector 0k and the k � k identity matrix Ik.

2 Models and background

Let fxtgT1 be a k�1 discrete time series that follows a purely nonstationary
Gaussian VAR(1), where T is the sample size, and 
 is positive-de�nite:

xt = A1xt�1 + "t; "t � IN (0k;
) ; A1 = Ik: (1)

We examine the �nite-sample bias, variance and MSE of the least squares
(maximum likelihood) estimator of A1, for each of the following estimated
VAR(p) models:

xt =

pX
j=1

bAjxt�j + b"t; (A)

xt = �+

pX
j=1

Ajxt�j + "t; (B)

xt = e�+ e�t+ pX
j=1

eAjxt�j + e"t; (C)

where overparameterization arises through inclusion of a constant (B), a
constant and time trend (C), and when there are multiple lags; that is,
when p > 1 (A,B,C).2 Throughout, we assume the following:

2We are very grateful to one of the referees, who suggested that we consider p 6= 1.
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Assumption 2.1. x�j = 0k; j = 0; 1; : : : ; p� 1:

Assumption 2.2. 
 = Ik:

Assumption 2.1 (zero initial values) is chosen for simplicity, and to avoid
potential problems of bias nonmonotonicity that can arise when non-zero
initial values are considered.3 Assumption 2.2 (spherical errors) may be
imposed in simulations without loss of generality, following invariance The-
orems 2.1 and 2.2 (proofs of which are available from the authors on request):

Theorem 2.1. Given Assumption 2.1, the bias matrix B =E( bA1)�A1 ofbA1 is scalar, and bias is invariant to 
, for the Models (A)�(C):
Theorem 2.2. Given Theorem 2.1, the variances of each of the diagonal

elements of bA1 are identical, and variance is invariant to 
:
Abadir (1993) uses some results on moment generating functions to de-

rive a high-order closed form (integral free) analytical approximation to the
univariate �nite-sample bias of ba1 given Model (A), k = p = 1, and with
ja1j = 1. The �nal expression is based upon parabolic cylinder functions,
and is computationally very e¢ cient. Abadir further shows that bias may
be described rather more simply in terms of exponential functions in poly-
nomials of T�1, and develops the heuristic approximation

bUNIV � �1:7814T�1 exp
�
�2:6138T�1

�
; (2)

where �1:7814 is the expected value of the limiting distribution of T (ba1�1);
e.g. see Le Breton and Pham (1989, p. 562).4 Heuristic �ts have been used
elsewhere in the literature, e.g. Dickey and Fuller (1981, p. 1064), and
we distinguish here between �heuristic� approximations and the response
surface approach used in this paper. Despite the fact that only 5 datapoints
are used in the derivation of (2), it is accurate in-sample to 5 decimal places

3The correctly-parameterized univariate Model (A), with k = p = 1, was examined
by Abadir and Hadri (2000) given a (nearly) nonstationary data generating process, and
non-zero initial values. They show, using numerical integration, that the bias of ba1 can
be increasing in sample size T , due to the e¤ect of jx0j. This nonmonotonicity disappears
under estimation of univariate Models (B) and (C), at the expense of higher bias. A small
simulation study of (1) and (A) by Lawford (2001), with k � 6, p = 1 and x0 6= 0k, leads
to the interesting conjecture that bias nonmonotonicity also disappears when k > 1.

4This constant can conveniently be calculated by using 1� 1
2

R1
0
u (coshu)�1=2 du = 1�

2
p
2 3F2 (1=4; 1=4; 1=2; 5=4; 5=4;�1) � �1:7814, where 3F2 is a hypergeometric function:
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for bias, and is more accurate than the special function expression (see
Abadir, 1993, Table 1). We found that (2) also performs very well out-
of-sample, at least to 1 decimal place of �100�bias. Other studies that
examine the bias and exact moments of OLS in univariate autoregressive
models, with a variety of disturbances, include Evans and Savin (1981),
Nankervis and Savin (1988), Tsui and Ali (1994), and Vinod and Shenton
(1996); see also Maeshiro (1999) and Tanizaki (2000) and references therein.

More recently, AHT consider Model (A), k � 1, p = 1, and prove that
B is exactly a scalar matrix, i.e. diagonal with equal diagonal elements:
B = diag(b; : : : ; b), and that B is not a function of 
. Furthermore, they
develop a simple approximation tomultivariate �nite-sample bias (especially
AHT, p. 166, and Abadir, 1995a, p. 264):

BAHT � bUNIVkIk � bAHTIk; (3)

for T > k + 2 (this existence requirement varies with the density). It is
clear that bias is invariant to 
, and is approximately proportional to the
dimension of the VAR, even when 
 = Ik. To facilitate a subsequent
discussion of cointegrating relations, AHT formulate their maintained model
as4xt = Cxt�1+"t, where the di¤erence operator satis�es4xt = xt�xt�1,
and C � A1 � Ik. Since the bias of bC is equivalent to the bias of bA1, our
results may be directly compared to those in AHT.

Abadir (1995a, p. 265) uses the univariate Model A (p = 1) variance de-
�nition v = 2T�2sd2, with values for standard deviation �sd�of normalizedb�1 taken from Evans and Savin (1981, Table III), and performs a similar
heuristic process to that used in derivation of (2) for bias. This gives a
variance approximation:

vUNIV � 10:1124T�2 exp
�
�5:4462T�1 + 14:519T�2

�
; (4)

which is shown to be accurate to at least 7 decimal places in small sam-
ples. Since the bias and variance of each of the diagonal elements of bA1 are
identical, we may use MSE(b�1) = b2+v to compute the mean squared error.

In the following section, we present the Monte Carlo experimental design,
develop very accurate response surface approximations to multivariate bias
and variance, and consider a simple correction for the OLS estimator to have
minimum MSE.
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3 Structure of Monte Carlo analysis

Response surfaces are numerical-analytical approximations, which can be
very useful when summarizing and interpreting the small-sample behaviour
of tests and estimators. They have been applied to a variety of econometric
problems by, inter alia, Engle, Hendry and Trumble (1985), Campos (1986),
Ericsson (1991), MacKinnon (1994, 1996), Cheung and Lai (1995), MacK-
innon, Haug and Michelis (1999) and Ericsson and MacKinnon (2002). See
Hendry (1984) for an introduction. Brie�y, a statistic � is modelled as a
function (response surface) 	(.) of relevant variables, that is usually formu-
lated in line with known analytical results. Monte Carlo simulation is used
to generate estimates ��n of � , n = 1; 2; : : : ; N , based upon M (n) replica-
tions respectively; and b	(.) is estimated using an appropriate procedure,
depending upon the form chosen for 	(.). The method can be computa-
tionally intensive, since M (n) and (especially) N must be large if b	(.) is
to be accurately speci�ed. To avoid problems of speci�city, b	(.) must be
subjected to diagnostic testing, and its out-of-sample performance assessed.

3.1 Monte Carlo design and simulation

The data generating process (DGP) and models were introduced in (1) and
(A)�(C). We adopt a minimal complete factorial design, which covers all
possible triples (T; k; p) from

T 2 f25; 30; : : : ; 80; 90; 100; 150; 200g ; k 2 f1; 2; 3; 4g ; p 2 f1; 2; 3; 4g ; (5)

giving 256 datapoints. The sample sizes that we have chosen are represen-
tative of those that are commonly used in practice, and our design includes
small k and p, so that the e¤ects of changes in VAR dimension and model
lag can be explored. We calculate the OLS estimate for each combination
of (T; k; p) in the parameter space, from which we directly derive the bias.
Since B is a scalar matrix, we may estimate the scalar b by averaging over
the estimated diagonal elements of B. This results in a further reduction in
the number of replications needed for a given accuracy as k increases.5 We
simulate variance v similarly.

5We experimented with a pseudo-antithetic variate technique, based upon Abadir�s
(1995b) univariate �AV4�, and were able to increase the speed of the simulations by
roughly 50%, for a given precision [Model (A), p = 1]. While conventional antithetics are
not generally applicable to the nonstationary setting, the pseudo-antithetic is not valid
either for some of the models considered above, and is therefore not used in this paper.
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We generate random numbers from the N(0; 1) using a similar technique
to MacKinnon�s (1994, p. 170) long-period algorithm. We create two inde-
pendent series of U(0;1) pseudorandom numbers fujg and fvjg, using multi-
plicative linear congruential uniform generators due to L�Ecuyer (1988). We
then generate a single series of N(0; 1) variates using Marsaglia and Bray�s
(1964, p. 263, correcting for a typo in point 4) mixture and rejection method.
The period of our procedure is much larger than our total random number
requirement. All simulations were performed on a Pentium 4 machine, with
a 2GHz processor and 256MB of RAM, running GAUSS under Microsoft
Windows XP.

Wherever possible, our numerical results were checked with partial ex-
act and approximate results in the literature. These include MacKinnon and
Smith (1998, Figure 1), who plot bias functions under Model (B) (k = p = 1);
and Pere (2000, Table 3), who reports values that correspond to variances
in the same model, in his study of adjusted pro�le likelihood. Evans and
Savin (1981, Table 3) give bias and standard deviation for 2�1=2T (b�1 � �1)
under Model (A) (k = p = 1), which agree closely (3 to 5 decimal places)
with our simulation results. Roy and Fuller (2001, Tables 1 and 6) report
bias and MSE for T = 100, under univariate Models (B) and (C).

3.2 Post-simulation analysis

We regressed the Monte Carlo estimates of bias and variance under Models
(A)�(C) on functions of sample size, VAR dimension and lag-order, to re�ect
the dependence of b and v upon these parameters, and the degree of over-
parameterization. Following extensive experimentation, we chose to �t the
following nonlinear bias response surface for each of the models:6

b (Ti; ki; pi) =
�
�1 + �2 ki + �3 pi + �4 p

2
i + �5 k

3
i p
6
i

�
T�1i (6)

� exp
��
�6 + �7 ki + �8 pi + �9 p

2
i + �10 kip

2
i

�
T�1i

�
+ ui:

The dependent variable b (Ti; ki; pi) is the simulated �nite-sample bias with
sample size Ti, VAR dimension ki, and lag-order pi, which take values from

6Some early motivation for numerical re�nement of (3), when p = 1, came from con-
sideration of low-order partial derivatives of bAHT . Straightforward algebra gives (for
T � 1) bAHT < 0, @bAHT =@k < 0, @2bAHT =@k2 = 0, (for T � 3) @bAHT =@T > 0,
@2bAHT =@k@T > 0, (for T � 5) @2bAHT =@T 2 < 0. Upon comparing these theoretical
partials with approximate partial derivatives from simulated data, it is found that each
holds, except for @2b=@k2 = 0 (simulations suggest that @2b=@k2 > 0, for T not too large).
This �nding suggested that improvements were possible over (3), and especially that k
entered the formula in a more complicated manner than (3).
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(5); ui is an error term. We denote the estimated response surface by bRS,
and estimated coe¢ cients are reported in Table 1. Convergence of the non-
linear least squares routine was very fast, and required few iterations. Se-
lection criteria included small residual variance, parsimony, and satisfac-
tory diagnostic performance. The response surface �ts are very good, and
the diagnostic test statistics are insigni�cant at the 5% level. The sign of
each estimated coe¢ cient remains the same across the models. Moreover,
the absolute value of each estimated coe¢ cient changes monotonically, as
additional deterministic terms are included in the estimated model. The
estimated coe¢ cient b�2 does not change signi�cantly across the models.

We recalculate Table I in AHT as Table 2 in this paper, with increased
accuracy, with additional results reported for T = 400; 800 and k = 6; 7; 8,
and correcting for a typo in AHT Table I: (T; k) = (25; 5). It is convenient to
interpret the scaled bias values as percentages of the true parameter value,
e.g. in Model A, given (T; k) = (25; 8), the absolute bias of each of the esti-
mated parameters on the diagonal of bA1 is 46:7% of the true value (unity).
Clearly, absolute bias is strictly increasing in k and decreasing in T . As T
increases, bias goes to zero, as is well-known from asymptotic theory. We
see that bAHT gives a good approximation to bias for k small, and especially
for k = 1, where (3) reduces to the excellent heuristic approximation (2).
However, as k increases, bRS provides much closer approximations to bias,
even for T quite large. Out-of-sample points reported in Table 2 for bRS

are combinations of k = 5; 6; 7; 8, and T = 400; 800. While bAHT is only
applicable for correctly parameterized Model A, our response surfaces can
be used when p 6= 1, and also when additional deterministics are included.
Although the response surfaces are developed with small-sample rather than
asymptotic considerations in mind, it is interesting to approximate univari-
ate asymptotic bias by setting k = p = 1 and letting T !1 in TbRS, from
(6), which gives TbRS =

P5
i=1
b�i of approximately �1:7, �5:2 and �9:7 in

Models (A), (B) and (C) respectively.
Kiviet and Phillips (2003, equation (2.19), and Figure 2.1) consider uni-

variate Model (B), where the DGP can have a non-zero drift, and write
autoregressive bias in terms of �g-functions�g0 (T ) and g1 (T ), which they
calculate using simulations. The function g0 (T ) represents least squares bias
when there is a zero drift in the DGP, while g1 (T ) appears as the bias in-
crement due to non-zero drift. Our equation (6) simpli�es (when k = p = 1)
to g0 (T ) � �5:1577T�1 exp

�
�2:3134T�1

�
, which provides a convenient

means of calculating g0 (T ) without further simulations.
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Using (4) as motivation, we �t the variance response surface

vi (Ti; ki; pi) =
�
1 + 2 ki + 3 k

2
i + 4 pi + 5 p

2
i + 6 p

3
i

�
T�2i (7)

� exp[
�
7 + 8 pi + 9 p

2
i + 10 p

3
i + 11 kipi

�
T�1i +�

12 + 13 pi + 14 p
2
i + 15 p

3
i + 16 k

2
i p
2
i

�
T�2i ] + ui;

where v (Ti; ki; pi) is the simulated �nite-sample variance. Estimated re-
sponse surfaces vRS are given in Table 3, and are seen to �t very well. The
signs of each of the estimated coe¢ cients remains the same across the mod-
els, although their absolute values do not change monotonically. While the
RESET4 and RESET2 tests give con�icting results, vRS provides a good
approximation across the parameter space (5), and we note that no variance
approximations were previously available for overparameterized models, ex-
cess lags, or k > 1. Equations (6) and (7) may be combined to give an
approximation to MSE. The dependencies of bias and variance on T , k,
and p are depicted in Figures 1 and 2, which plot scaled response surfaces
�100 � bRS and 10; 000 � vRS, against T and k, for Models (A)�(C), and
p 2 f1; 2; 3; 4g.

Bias and variance are not the only criteria to be used in comparison of
time series estimates, and the mean squared error, MSE(b�1) = b2 + v; is
often of interest. For univariate Model A (p = 1), Abadir (1995a) de�nes �
as a correction factor such that MSE(�b�1) is minimized, bm and vm as the
bias and variance of the corrected OLS estimator �b�1, and shows that

� =
1 + b

v + (1 + b)2
; bm =

�v
v + (1 + b)2

; vm = �2v; (8)

when �1 = 1. We are now in a position to substitute simulated values for
bias and variance into (8) in order to calculate � for various T; k; p. As
an illustration, correction factors are reported in Table 4, for p = 1, which
displays qualitatively similar results to those in Abadir (1995a, Tables 2,3).
It is clear that OLS (� = 1) does not achieve minimum MSE. It is also
shown that the corrected OLS is almost unbiased, unlike OLS. From Table
4, � increases monotonically with k and decreases monotonically with T
� asymptotically, the OLS achieves minimum MSE. The correction can be
particularly large for small T , e.g. (T; k) = (25; 5) implies a correction of
32%. The corrected estimator is much less biased than the OLS, and bm

tends to zero more rapidly than b. However, this reduction in bias comes at
the expense of a small increase in the variance of the corrected estimator,
vm. It is seen that b2 forms a much larger proportion of MSE than variance
for k � 3, although this is completely reversed following the minimum MSE
correction; and that MSE e¢ ciency is generally decreasing in T and k.

9



4 Concluding comments

We have performed an extensive set of Monte Carlo experiments on the bias
and variance of the OLS of the autoregressive parameters, given a data gen-
erating process that is a purely nonstationary VAR(1), where the estimated
model is a possibly overparameterized VAR(p), for small sample sizes, and
various VAR dimensions and lag lengths. Although the univariate frame-
work has been the subject of much previous research in econometrics, a
comprehensive multivariate simulation study has not previously been per-
formed. We estimate computationally convenient response surfaces for bias
and variance, that are generally much more accurate than existing approxi-
mations. Finally, we investigate the correction factors required for the OLS
to achieve minimum MSE and show that this correction can signi�cantly
reduce bias, at the expense of a small increase in estimator variance. Our
results may provide guidelines for applied researchers as to the behaviour
of VAR models, given that relatively short samples and nonstationary data
are often relevant in empirical work

Our work complements asymptotic treatments by Phillips (1987a) in the
univariate framework, and Park and Phillips (1988, 1989), Phillips (1987b),
and Tsay and Tiao (1990) in the multivariate setting. Our results may
also be useful when studying the derivation of exact formulae; for instance,
in conjunction with work by Abadir and Larsson (1996, 2001), who derive
the exact �nite sample moment generating function of the quadratic forms
that create the basis for the su¢ cient statistic in a discrete Gaussian vector
autoregression. Exact analytical bias expressions may involve multiple in�-
nite series of matrix-argument hypergeometric functions (generalizing, e.g.
Abadir, 1993). When such series arise in other areas of econometrics, they
are generally complicated and may be di¢ cult to implement for numerical
evaluation. We may, therefore, need to rely upon approximations in practice,
even when the exact formulae are available.
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Table 1
Estimated bias response surfaces bRS (6) for Models A, B and C7

Model A Model B Model Cb�1 �0:5920 �4:8260 �11:1301
(0:0485) (0:1069) (0:2428)b�2 �1:9972 �1:9827 �1:9541
(0:0094) (0:0188) (0:0399)b�3 1:0400 1:9973 4:1048
(0:0497) (0:0964) (0:2150)b�4 �0:1750 �0:3463 �0:7001
(0:0101) (0:0199) (0:0442)b�5 1:95� 10�6 2:64� 10�6 4:35� 10�6�
2:09� 10�7

� �
3:88� 10�7

� �
7:85� 10�7

�
b�6 �1:6710 �3:5992 �4:4288

(0:4850) (0:5476) (0:7987)b�7 �1:1296 �1:3918 �1:4934
(0:1034) (0:1289) (0:1596)b�8 1:3006 3:3222 3:9751
(0:3647) (0:4163) (0:7417)b�9 �0:5663 �0:9621 �1:0562
(0:0744) (0:0895) (0:1566)b�10 0:3173 0:3175 0:3230
(0:0114) (0:0138) (0:0189)

R
2

0:9995 0:9992 0:9981
RSS 0:000523 0:001403 0:006277
JB �2 (2) = 2:08 �2 (2) = 4:69 �2 (2) = 1:84
RESET4 F(3; 243) = 0:78 F(3; 243) = 1:89 F(3; 243) = 0:39
RESET2 F(1; 245) = 1:41 F(1; 245) = 1:94 F(1; 245) = 1:18

7Response surfaces (6) were estimated using nonlinear least squares, in E-Views.
White�s (1980) heteroscedasticity-consistent standard errors are given in parentheses. R

2

is the degrees-of-freedom adjusted coe¢ cient of determination. RSS is the residual sum
of squares. JB is the Jarque-Bera (1980) test for normality, asymptotically distributed
as �2 (2). RESET4 and RESET2 are Ramsey-Schmidt (1976) tests for omitted vari-
ables/correct functional form, distributed as F(s;N �K � s), where s + 1 = 4; 2 is the
highest power of �tted bias included in the auxiliary regression, N = 256 and K = 10.
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Table 2
Simulated and estimated scaled bias in Models A, B, C (p = 1)8

VAR dimension (k)
T 1 2 3 4 5 6 7 8

b 6:4 13:5 20:0 26:1 31:8 37:1 42:1 46:7
bAHT (6:4) (12:8) (19:3) (25:7) (32:1) (38:5) (44:9) (51:3)

25 bRS [6:4] [13:4] [20:0] [26:1] [31:8] [37:1] [42:1] [46:7]

b 19:2 25:0 30:6 35:9 40:9 45:7 50:2 54:5eb 35:3 40:0 44:5 49:0 53:2 57:3 61:2 64:9
b 3:4 7:2 10:8 14:3 17:6 20:9 24:0 27:0

bAHT (3:4) (6:8) (10:1) (13:5) (16:9) (20:3) (23:7) (27:1)
50 bRS [3:3] [7:1] [10:7] [14:2] [17:6] [20:9] [24:0] [27:1]

b 10:1 13:4 16:7 19:9 23:0 26:0 28:9 31:8eb 19:0 21:8 24:7 27:5 30:3 33:0 35:7 38:3
b 1:7 3:7 5:6 7:5 9:3 11:1 12:9 14:6

bAHT (1:7) (3:5) (5:2) (6:9) (8:7) (10:4) (12:1) (13:9)
100 bRS [1:7] [3:6] [5:5] [7:4] [9:2] [11:0] [12:8] [14:6]

b 5:2 7:0 8:7 10:5 12:2 14:0 15:7 17:3eb 9:9 11:4 13:0 14:6 16:3 17:9 19:5 21:1
b 0:9 1:9 2:9 3:8 4:8 5:8 6:7 7:6

bAHT (0:9) (1:8) (2:6) (3:5) (4:4) (5:3) (6:2) (7:0)
200 bRS [0:9] [1:8] [2:8] [3:8] [4:7] [5:7] [6:6] [7:6]

b 2:6 3:6 4:5 5:4 6:3 7:3 8:2 9:1eb 5:0 5:8 6:7 7:6 8:4 9:3 10:2 11:1
b 0:4 0:9 1:4 1:9 2:4 2:9 3:4 3:9

bAHT (0:4) (0:9) (1:3) (1:8) (2:2) (2:7) (3:1) (3:5)
400 bRS [0:4] [0:9] [1:4] [1:9] [2:4] [2:9] [3:4] [3:9]

b 1:3 1:8 2:3 2:7 3:2 3:7 4:2 4:6eb 2:5 3:0 3:4 3:9 4:3 4:8 5:2 5:7
b 0:2 0:5 0:7 1:0 1:2 1:5 1:7 2:0

bAHT (0:2) (0:4) (0:7) (0:9) (1:1) (1:3) (1:6) (1:8)
800 bRS [0:2] [0:5] [0:7] [1:0] [1:2] [1:5] [1:7] [1:9]

b 0:7 0:9 1:1 1:4 1:6 1:9 2:1 2:4eb 1:3 1:5 1:7 1:9 2:2 2:4 2:6 2:9

8All reported bias values have been multiplied by �100; b : simulated Model A bias;
bAHT : AHT approximation (3) to Model A bias; bRS : response surface approximation
(6) to Model A bias; b : simulated Model B bias; eb : simulated Model C bias.
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Table 3
Estimated variance response surfaces vRS (7) for Models A, B and C9

Model A Model B Model Cb1 �577:3455 �475:2821 �599:9928
(67:9299) (64:6035) (66:6310)b2 14:8429 11:8024 11:8949
(1:5446) (1:3549) (1:3234)b3 �1:2515 �0:8579 �0:9851
(0:2118) (0:2323) (0:2337)b4 835:9746 699:5872 926:2761
(110:7923) (104:9714) (107:7841)b5 �293:3134 �237:3200 �338:4298
(49:6442) (46:8486) (47:7701)b6 33:2823 26:3554 39:3300
(6:6201) (6:2138) (6:3091)b7 204:7508 156:7636 195:9282
(33:4742) (30:3960) (27:0088)b8 �317:0862 �248:6802 �311:9480
(47:0654) (44:2159) (41:2558)b9 111:6797 84:8254 113:3971
(19:8419) (18:8541) (17:9374)b10 �12:7168 �9:4667 �13:1610
(2:5656) (2:4405) (2:3538)b11 0:9210 0:6972 0:6001
(0:1081) (0:0988) (0:1064)b12 �2580:397 �1926:864 �2996:315
(582:2628) (554:1242) (497:8064)b13 3804:827 2807:966 4422:204
(829:8897) (808:5275) (764:8489)b14 �1361:316 �955:2007 �1646:161
(353:6673) (345:7677) (334:5968)b15 157:2569 107:3854 194:8083
(45:9910) (44:8123) (44:0648)b16 1:4373 1:4001 1:6215
(0:1178) (0:1190) (0:1350)

R
2

0:9970 0:9974 0:9979
RSS 0:000260 0:000226 0:000233
JB �2 (2) = 5:37 �2 (2) = 8:56� �2 (2) = 1:74
RESET4 F(3; 237) = 21:20�� F(3; 237) = 29:21�� F(3; 237) = 25:59��

RESET2 F(1; 239) = 3:73 F(1; 239) = 3:22 F(1; 239) = 1:03

9* and ** indicate that the statistic is signi�cant at the 5% and 1% levels respectively.
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Table 4
Minimum MSE correction in Model A (p = 1)10

VAR dimension (k)
T 1 2 3 4 5 6 7 8

� 1:05 1:12 1:18 1:25 1:32 1:38 1:44 1:49
br 0:23 0:24 0:26 0:29 0:32 0:35 0:39 0:44

25 vr 1:11 1:25 1:40 1:57 1:74 1:91 2:08 2:23
bc 24=1 42=3 53=5 61=7 66=10 70=13 73=17 75=20
me 86 75 69 67 66 66 68 70
� 1:03 1:07 1:11 1:15 1:19 1:23 1:27 1:31
br 0:11 0:11 0:12 0:12 0:13 0:13 0:14 0:15

50 vr 1:06 1:14 1:23 1:31 1:41 1:51 1:62 1:73
bc 24=0:4 42=1 53=1 61=2 66=2 71=3 74=3 76=4
me 81 67 58 52 48 46 44 43
� 1:02 1:04 1:06 1:08 1:10 1:12 1:14 1:16
br 0:06 0:05 0:06 0:06 0:06 0:06 0:06 0:06

100 vr 1:03 1:07 1:12 1:16 1:20 1:25 1:30 1:35
bc 23=0:1 42=0:2 53=0:3 61=0:4 66=0:5 70=0:6 74=0:8 76=0:9
me 79 62 53 46 41 37 34 32
� 1:01 1:02 1:03 1:04 1:05 1:06 1:07 1:08
br 0:03 0:03 0:03 0:03 0:03 0:03 0:03 0:03

200 vr 1:02 1:04 1:06 1:08 1:10 1:12 1:14 1:17
bc 24=0:0 42=0:1 54=0:1 60=0:1 66=0:1 71=0:1 74=0:1 76=0:2
me 77 60 49 43 37 33 30 28
� 1:00 1:01 1:01 1:02 1:02 1:03 1:03 1:04
br 0:02 0:01 0:01 0:01 0:01 0:01 0:01 0:01

400 vr 1:01 1:02 1:03 1:04 1:05 1:06 1:07 1:08
bc 21=0:0 40=0:0 51=0:0 59=0:0 65=0:0 70=0:0 73=0:0 76=0:1
me 80 61 51 43 37 32 29 26
� 1:00 1:00 1:01 1:01 1:01 1:02 1:02 1:02
br 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01

800 vr 1:00 1:01 1:01 1:02 1:02 1:03 1:03 1:04
bc 17=0:0 45=0:0 49=0:0 63=0:0 64=0:0 71=0:0 72=0:0 77=0:0
me 84 55 51 38 37 29 29 24

10� : correction factor, such that �b�1 attains minimum MSE; br: bias ratio�corrected
bias/OLS bias; vr: variance ratio�corrected variance/OLS variance

�
vr � �2

�
; bc: �x=y�

indicates that b2 forms x% of MSE under OLS, and corrected b2 forms y% of minimized
MSE; me: MSE e¢ ciency�MSE following correction/MSE under OLS.
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Figure 1: scaled bias response surface approximations, bRS
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Figure 2: scaled variance response surface approximations, vRS
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