Testing from Semi-independent Communicating Finite State Machines
with a Slow Environment

RoB M. HIERONS GOLDSMITHS COLLEGE;
UNvERSITY OF LONDON

November 24, 1998

ABSTRACT. Some systems may be modelled as a set of Communicating
Finite State Machines with a slow environment. These machines communicate
through the exchange of values. While it is possible to convert such a model into
one Finite State Machine, from which test cases can be derived, this process
may lead to an explosion in the number of states. Alternatively, it is possible to
utilize any independence that exists. The problem of producing a minimal test
set, in the presence of certain types of independence and unique input/output
sequences, can be represented as a variant of the Vehicle Routing Problem.
Possible heuristics for solving this problem are outlined and the method is
applied to an example.

Keywords: Communicating finite state machine, minimizing testing, unique
input/output sequence, vehicle routing problem

1. INTRODUCTION
Several classes of system can be modelled as Finite State Machines (FSMs) and, in
particular, communications protocols ([1]) and control systems ([2]) are often defined
in this manner. Given an FSM model that defines the required behaviour of an im-
plementation, it is important to verify the implementation against the FSM. Testing
usually forms part of this verification.

Many real systems lead to large FMSs. One approach to tackling the problem
of scale is to represent a system as a set of Communicating Finite State Machines
(CFSMs) ([3], [4], and [5]). The system is, in effect, represented by a set of FSMs
that interact. This leads to smaller and more understandable representations.

An CFSM is an FSM with a queue. A set of CFSMs has a slow environment if
inputs can only be sent to the system when all the queues are empty. This is sufficient
to model a number of real systems, such as communications protocols with handshake
([3]). It will be assumed that there is a slow environment and no livelocks.

The use of FSMs to model systems has lead to much interest in the generation
of tests from them ([6], [7], [8], and [9]). Where these approaches can be automated
there is the potential for much more effective and efficient testing. While it is possible
to extend these test methods to CFSMs, a combinatorial explosion can occur. The

lbsrjpm
Cross-Out

Testing from Semi-independent Communicating Finite State Machines with a Slow Environment?2

main theme of this paper is the utilization of certain properties in order to avoid this
combinatorial explosion.

In Section 2 FSMs will be introduced and in Section 3 approaches to testing against
FSMs will be briefly reviewed. In Section 4 CFSMs will be defined. In Section 5 a
method for testing against CFSMs, with certain properties, will be developed. This
approach leads to an NP-complete combinatorial problem and heuristics for solving
this problem are described in Section 6. The approach is applied to an example in
Section 7. The method outlined in Sections 5 and 6 cannot be applied to certain
classes of transitions, and alternative approaches for these are briefly discussed in
Section 8. Finally, in Section 9, conclusions are drawn.

2. FINITE STATE MACHINES

A (deterministic) FSM can be represented by a tuple (S, sq, A, d, X, O) in which S is
a finite set of states, sq is the initial state, X is the output function, d is the next state
function, X is the finite input alphabet, and O is the finite output alphabet. If the
system is executed with input value ¢n while in state s; a transition occurs producing
output A(s;,in) and moving the machine to state §(s;,in). This transition is defined
by the tuple (s;, d(s;,in),in/A(s;,in)). The functions A and 6 can be extended, to be
applied to input sequences, to A* and ¢*. Only deterministic FSMs will be considered
and these will be referred to as FSMs.

Two states s; and s; are equivalent if, for each input sequence, they produce the
same output sequence. An FSM is minimal if no two states in it are equivalent
and two FSMs are equivalent if their initial states are equivalent. See [10] for more
information on FSMs.

A directed graph (digraph) is given by a vertex set and an edge set. Each edge is
defined by its initial vertex and its final vertex and may have a label. A digraph is said
to be strongly connected if for any pair (v;, v;) of vertices there is some path from v;
to v;. It will be assumed that any F'SM considered is minimal and the corresponding
digraph is strongly connected.

3. TESTING AGAINST A FINITE STATE MACHINE
When testing an implementation against an FSM F', it is assumed that the imple-
mentation behaves like some, unknown, FSM F’. Testing thus involves attempting
to determine whether F' and F’ are equivalent.

In order to test a transition ¢ it is necessary to move to the initial state of ¢,
execute ¢, and then verify the final state. One approach to verifying a state s is to
execute a Unique Input/Output sequence (UIO) for s: an input sequence u with the
property that, for all s' # s, A*(s',u) # A*(s,u).

Testing from Semi-independent Communicating Finite State Machines with a Slow Environment3

One test criterion is that every transition is tested by being executed and having
its final state verified. It is then desirable to find the shortest test that satisfies this
criterion ([7], [8], [9]). We will look at the problem of finding the shortest test, that
includes a test for every transition, in the presence of a UIO for every state.

4. COMMUNICATING FINITE STATE MACHINES
4.1. Introduction. The system of CFSMs M that is formed out of M,..., My,
with a slow environment, will be denoted M |Ms)|...|Mj. Each M; has corresponding
S, sb, X;, Oy, \; and §;. Tt will be assumed that this representation is deterministic,
and thus that the X; are pairwise disjoint.

A transition ¢ from M; is said to be a communicating transition (CT) if the
output from ¢ is in the input alphabet of some other machine and otherwise ¢ is a
non-commaunicating transition (NCT). Whenever a machine M; produces a value that
is in the input alphabet of some M;, M; accepts this value. Thus, a CT does not
directly output a value, but activates a transition in another machine.

A system of CFSMs N = N;|N|Nj3 is given in Figure 1. If N; is in state ry and
a is input then N; moves to r; and outputs z: this transition is an NCT. If NV; is in
state ro and b is input then N7 moves to 7, and produces c. This triggers a transition
in N, and thus is a CT. The output produced depends upon the state of Ns.

For an input a, two machines AM; and M; can be combined by linking output of
a by M; to M;. It is only possible to trigger the transitions in A/;, with input a, by
output from M.

It may be possible to combine the M; to form one FSM and test from this. The
FSM would, however, have O(I1;|S;|) states and O((I1;|S;|)(>; | X;|)) transitions. It
is thus often desirable to use any independence that exists within the model in order
to reduce the test effort.

4.2. Semi-independence. In order to move M; to a state s; it is necessary to
execute a number of transitions. When manipulating one machine it is usually de-
sirable to use NCTs. The set of M; will be called semi-independent if the following
hold:

1. Each M;, restricted to NCTs, is strongly connected.

2. For each 7 and s € S; there is a state verification process for s that contains
only NCTs.

It will be assumed that any set of M; considered is semi-independent.
If the CTs from N are removed the N; are still connected. The UIOs for the N;
are given in Figure 2. While these UIOs do not contain CTs, when executed from

Testing from Semi-independent Communicating Finite State Machines with a Slow Environment4

another state they can lead to communication. These communications may lead to
different output and thus must be considered. The UIO for uy cannot be applied if
Ny is in s9 and the UIO for s, cannot be applied if Ny is in ro. While the NV; are not
semi-independent, it is only necessary to be avoid these situations.

The transition ¢ from M; is said to feedback, in a particular configuration of the
other machines, if the execution of ¢ leads to a sequence of communications that
includes at least one more transition from M;. The transition ¢ is said to be a feedback
transition if ¢ always feedbacks. Further, a transition ¢ is a weak feedback transition
if the execution of t always leads to a sequence of actions that includes feedback.
A transition is said to be a non-feedback transition if there is some feedback free
sequence containing it.

In the example, the transition in N; from 7y to ro with input b creates feedback if
N5 is in state sy, as Ny produces output a which triggers a further transition in Nj.
It is easy to check that N has no (weak) feedback transitions.

As it is normal to check the final state in testing, when testing a CT it is desirable
to avoid feedback as this reduces the effectiveness of the state verification. Feedback
transitions and weak feedback transitions will be considered separately in Section 8.

5. TESTING AGAINST SEMI-INDEPENDENT CFSMSs
5.1. Testing non-communicating transitions. An NCT ¢ from M; should not
affect any other machine. As the M; are semi-independent it is possible to test ¢ by
moving M; to the initial state of ¢, using NCTs, and then executing ¢ followed by a
UIO.
If a transition ¢ cannot be executed directly, as it can only receive input from

another machine, the shortest sequence of transitions that leads to its execution can
be found.

5.2. Testing communicating transitions. If a CT is executed it is necessary
to check the final state of each machine affected. It is possible to control the sequence
of transitions by setting up the other machines, using NCTs, before executing the
transition.

The execution of a CT can lead to a sequence of transitions being executed. If
there is no feedback and the sequence is followed by the verification of the final state
of the affected machines, each transition in the sequence is tested. The problem of
minimizing the test effort thus reduces to finding a minimal cost set of such sequences
that covers the CTs. The (weak) feedback transitions cannot be tested in this manner
and these will be discussed in Section 8.

Suppose that for each M; and x € X, there is an NCT in M; with input z and
every transition can receive input from outside the system. Then every transition can

Testing from Semi-independent Communicating Finite State Machines with a Slow Environmentd

be included in a sequence that has no feedback.

The problem of finding the minimum cost test can be represented using a graph.
Each machine is represented by a set of vertices and the triggering of a transition
by another is represented by an edge between the corresponding vertices. There is a
special vertex, s, that is not associated with any machine. Possible sequences of CTs
will be represented by circuits that include s.

The structure of the graph is outlined in Figure 3 and is summarized by:

1. For each M; and input value a that can trigger an NCT, there is a corresponding
vertex with an edge to s. This represents receiving input a and executing an
NCT. The cost is the minimum, over the corresponding transitions, of the cost
of testing the transition.

2. For each M; and CT ¢ (from M;) there is a vertex representing t. If ¢ can be
triggered from outside M there is an edge from s, with cost 0, to this vertex.

3. For each vertex representing a CT ¢ there is an edge to each possible event #'
that can be triggered by t. The cost of the edge is the cost of testing ¢.

Circuits through s represent sequences of communications, ending in an NCT, if
no machine is visited more than once. It will be necessary to include this constraint
in any optimization procedure. The cost of a circuit (the sum of the costs of edges)
gives the number of transitions executed in order to test the corresponding sequence.
The minimal cost (covering) set of circuits is required.

It is important to consider the size of the graph. Suppose there are o CTs. For
each machine there are at most |X;| vertices corresponding to NCTs. There are «
vertices corresponding to CTs. The number of vertices is therefore of O(a+Y; | X;|).

For each CT t from M; to M; there is at most one edge to vertices representing
NCTs and there is one edge for each CT from M, that can be triggered by the output
of t. The number of edges corresponding to CTs is therefore of O(a?). There is one
edge from s for every CT and one edge to s for each input value that can lead to an
NCT. Thus the number of edges is of O(a? + ¥; | X;|).

The problem reduces to that of finding a set of circuits that minimizes the total
cost, with the constraint that no circuit may visit a machine more than once. This
is similar to a Vehicle Routing Problem (VRP) (see [11]). The VRP is NP-complete
and so heuristics are normally applied. In Section 6 the VRP will be defined and
possible heuristics will be discussed.

5.3. Including the non-communicating transitions. The approach outlined
tests the NCTs separately, and thus any NCT terminating a tour is tested more than

Testing from Semi-independent Communicating Finite State Machines with a Slow Environment6

once. This is based on the assumption that when testing an NCT it is best to avoid
the execution of CTs. Alternatively, the NCTs can be included in the optimization
problem. We will now consider this situation.

If an NCT t terminates a sequence triggered by a CT it need not be tested
elsewhere and thus the execution of ¢ can be given cost 0. This is only the case
for one use of t. The graph can thus be extended by having two copies of each
terminating transition: one with cost 0 and the other with the normal cost. The
vertex with cost 0 can only be used once.

The solution to the corresponding VRP will give a set of NCTs that are tested.
The others are tested separately.

6. HEURISTICS
The VRP is: given a set of customers (vertices), each with a demand, a set of edges
between them with costs, and a set of vehicles (each with a given capacity) find a set
of routes with the following properties:

1. Each customer is visited by exactly one vehicle

2. The total demand on any route is no more than the capacity of the correspond-
ing vehicle

3. It is the cheapest such set of routes.

There are a number of approaches to solving the VRP ([11]) including the use of
Tabu Search ([12]) and Genetic algorithms ([13]). The problem outlined in Section 5.2
is similar to a VRP except that more than one vehicle may visit a customer (a vertex
representing a CT) and there is a labelling of customers such that no vehicle may visit
two customers with the same label. The label represents the machine containing the
transition. These differences can easily be incorporated into some of the algorithms
devised for the VRP.

The following algorithm is a variant of the Savings Algorithm ([14]), outlined in
[11]:

The Savings Algorithm starts with each customer being on a separate (minimal)
route. For each pair of customers the saving, produced by putting them on the same
feasible route, is determined. Initially the two customers, for which the saving is
maximal, are combined. Customers are added (without violating the constraints), in
order of descending saving, to either end of the current route until no more customers
can be added to form a valid route. Another route is then started. The process
continues until all customers are covered by routes.

This can be applied to the problem outlined in Section 5.2: it is only necessary
to change the constraints that determine whether a route is feasible.

Testing from Semi-independent Communicating Finite State Machines with a Slow Environment7

7. EXAMPLE
These approaches will now be applied to N. The graph for N is given in Figure 4,
in which nc(«) denotes an NCT with input a. Those terminating transitions not
required are not included and the edges to the vertices representing CTs are not
shown. The states used for each termination are given in Figure 5 while the CTs are
listed in Figure 6.

There are three non-trivial sequences (i.e. not simply a CT followed by an NCT).
These are: tgtsnc(a), tstinc(e), and titgne(c). Thus one of these is executed and
every other CT is tested by being followed by an NCT. The sequences tgt3nc(a) and
tstinc(e) give the minimum cost and the former produces the test given in Figure 7 in
which, for each sequence, the transition being tested is underlined. In Figure 7 only
the input and output for N are shown: any values that get passed are not included.

As noted earlier, there are restrictions on the use of some UIOs but these do not
affect the test produced. If a test case was affected it might be possible to prefixed
it with input to change the state of a machine.

A number of the tests overlap and thus the test set can be reduced. An example
is the tests for the NCTs ry — a/z— > ry and 1y —a/y— > ry.

If the variant of the Savings Algorithm described in Section 6 is applied, the same
test sets are produced. There are three possible savings, corresponding to tgt3nc(a),
tstinc(e), and t1tgnc(c). The routes tgtgne(a) and tztine(e) give the greatest saving
and so one of these is chosen. There are no more savings and thus the process
terminates.

8. TESTING FEEDBACK TRANSITIONS

The existence of a large number of (weak) feedback transitions would suggest that
there is a high degree of dependency between the FSMs. In some cases this may
suggests that the model has low testability and could indicate a poor representation
that will be difficult to understand. When there are many (weak) feedback transitions
it may be necessary to apply alternative approaches (see e.g. [4]).

If there are few feedback transitions, the obvious approach is to find, for each such
transition ¢, the shortest sequence of transitions that tests ¢. Each path can be found
using, for example, Dijkstra’s algorithm (see e.g. [15]).

9. (CONCLUSIONS
If a system is described by a set of CFSMs with a slow environment it is possible
to create one FSM that represents the behaviour, and test from this. The test size
may, however, be reduced by taking advantage of any independence. If the machines
are semi-independent, the problem of finding the shortest test set is reduced to three

Testing from Semi-independent Communicating Finite State Machines with a Slow Environment8

problems: testing the non-communicating transitions, testing the non-feedback com-
municating transitions, and testing the (weak) feedback transitions.

The problem of minimizing the test effort is simple for the non-communicating
transitions. The problem of testing the non-feedback communicating transitions can
be represented as a variant of the Vehicle Routing Problem. One heuristic has been
given, and alternative approaches have been suggested.

A feedback transition ¢ from M; can be tested by finding the shortest test sequence
that contains ¢. The feedback clearly reduces the confidence that can be derived
from correct test execution. A transition (s, s’,in/out) is invertible if it is the only
transition with input 7n and output out that enters state s’ ([9]). Invertible transitions
thus preserve state information. One possible solution to the problem of testing a
feedback transition from M, is, when possible, to avoid using non-invertible transitions
from M,;.

10. REFERENCES

1 TANENBAUM, A.S.: ’Computer Networks’ (Prentice Hall, International Edi-
tions, 1996) 3rd edn.

2 POMERANZ, 1. and REDDY, S.M.: "Test Generation for Multiple State-Table
Faults in Finite-State Machines’, IEEE Transactions on Computers, 1997, 46,
(7), pp. 783-794

3 LUO, G., VON BOCHMANN, G., and PETRENKO, A.: 'Test Selection Based
on Communicating Nondeterministic Finite-State Machines Using a General-
ized Wp-Method’, IEEE Transactions on Software Engineering, 1994, 20, (2),
pp. 149-162

4 PETRENKO, A., YEVTUSHENKO, N., VON BOCHMANN, G., and DSSOULI,
R.: "Testing in Context: framework and test derivation’, Computer Communi-
cations, 1996, 19, (14), pp. 1236-1249

5 HUANG, C-M., CHANG, Y-I., and HUANG D-T.: ’Reverse Protocol Verifica-
tion: Concept, Algorithm and Application’, The Computer Journal, 1996, 39,
(6), pp. 511-524

6 CHOW, T.S.: "Testing Software Design Modelled by Finite State Machines’,
IEEFE Transactions on Software Engineering, 1978, 4, pp. 178-187

7 AHO, A.V., DAHBURA, A.T., LEE, D., and UYAR, M.U.: ’An Optimization
Technique for Protocol Conformance Test Generation Based on UIO Sequences

Testing from Semi-independent Communicating Finite State Machines with a Slow Environment9

and Rural Chinese Postman Tours’ Protocol Specification, Testing, and Verifi-
cation VIII, 1988, Atlantic City, pp. 75-86, North-Holland

8 YANG, B. and URAL, H.: 1990. "Protocol Conformance Test Generation Using
Multiple UIO Sequences with Overlapping’ ACM SIGCOMM 90: Communica-
tions, Architectures, and Protocols, Sept 24-27 1990, Twente, The Netherlands,
pp. 118-125

9 HIERONS, R.M.: ’Extending Test Sequence Overlap by Invertibility’, The
Computer Journal, 1996, 39, (4) pp. 325-330

10 KOHAVI, Z.: ’Switching and Finite State Automata Theory’ (McGraw-Hill,
New York 1978)

11 CHRISTOFIDES, N.: 'Vehicle Routing’, in The Traveling Salesman, Editors
LAWLER E.L., LENSTRA J.K., RINNOY KAN A.H.G., and SHMOYS D.B.,
pp431-448 (Wiley, 1985)

12 ROCHAT, Y. and TAILLARD, E.: ’Probabilistic diversification and intensifi-
cation in local search for vehicle routing’, Journal of Heuristics, 1995, 1, (1),
pp. 147-167

13 THANGIAH, S.R., OSMAN, I.LH., VINAYAGAMOORTHY, R., and SUN, T.:
"Algorithms For The Vehicle Routing Problem With Time Deadlines’, American
Journal of Mathematical and Management Sciences, 1994, 13, (3&4), pp. 323-
355

14 CLARKE, G. and WRIGHT, J.W.: ’Scheduling of vehicles from a central depot
to a number of delivery points’, Operational Research, 1964, 12, pp. 568-581

15 GIBBONS, A.: "Algorithmic Graph Theory’ (Cambridge University Press, 1985)

