
On The Testability of SDL Specifications

R. M. Hierons a T.-H. Kim b H. Ural c

aDepartment of Information Systems and Computing, Brunel University,
Uxbridge, Middlesex, UB8 3PH, United Kingdom

bSchool of Computer and Software Engineering, Kumoh National Institute of
Technology, 188 Sinpyeong-dong, Gumi-si, Gyeongbuk 730-701, Korea

cSchool of Information Technology and Engineering, Faculty of Engineering,
University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario, K1N 6N5,

Canada

Abstract

The problem of testing from an SDL specification is often complicated by the pres-
ence of infeasible paths. This paper introduces an approach for transforming a class
of SDL specification in order to eliminate or reduce the infeasible path problem.
This approach is divided into two phases in order to aid generality. First the SDL
specification is rewritten to create a normal form extended finite state machine (NF-
EFSM). This NF-EFSM is then expanded in order to produce a state machine in
which the test criterion may be satisfied using paths that are known to be feasible.
The expansion process is guaranteed to terminate. Where the expansion process
may lead to an excessively large state machine, this process may be terminated
early and feasible paths added. The approach is illustrated through being applied
to the Initiator process of the Inres protocol.

Key words: SDL, test generation, extended finite state machine, infeasible path
problem.

1 Introduction

Testing is a vital part of the software development process. The test process
typically is, however, time consuming, error-prone, and expensive. While these
problems may be overcome, or reduced, by introducing test automation, test
automation must be based on some source of information. One such source of
information is a formal or semi-formal specification.

Many systems have some internal state that affects and is affected by the
system’s operations. Such state-based systems are often specified using an

Preprint submitted to Elsevier Preprint 24 June 2003

extended finite state machine (EFSM) based language such as SDL [11]. An
SDL specification may be rewritten to form an EFSM which may act as the
basis for automating or semi-automating testing [2,14].

When testing from an EFSM based language it is usual to generate a set of
paths through the EFSM. Test data is then produced to trigger these paths.
Each path contains a sequence of transitions, each of which has a precondition
or guard. As a consequence of this a path p defines a path condition c(p): a
condition that an input sequence x must satisfy in order for x to lead to p
being followed. Thus, generating test data for a path p involves finding an
input sequence that satisfies c(p).

It is possible for a path p to be infeasible: no input sequence satisfies the
condition c(p). This is a consequence of the preconditions of more than one
transition contributing to c(p): some of these preconditions may conflict. While
it might be reasonable to expect each transition in a specification to be feasible
(i.e. can be executed under some condition that may occur) many specifica-
tions will contain infeasible paths. For example, a process that starts by trying
to establish a connection may have some counter that starts at 0 and is incre-
mented on each failed attempt. Suppose the process abandons this attempt to
make a connection if the counter reaches some predefined value n. Then any
path that requires m consecutive failed attempts, for m > n, is infeasible. The
presence of infeasible paths may lead to there being no test data that triggers
a path chosen in test generation. The problem of generating tests from an
EFSM may thus be complicated by the presence of infeasible paths.

This paper introduces a new approach that expands an EFSM in order to
bypass the infeasible path problem. The procedure is composed of two phases:
building a normal form EFSM (NF-EFSM) from a specification and expanding
the NF-EFSM to improve testability. The use of an NF-EFSM aids general-
ity: once a specification has been transformed into this form the expansion
procedure may be applied. Thus, in order to extend the results to some other
specification language such as Z [18,19], VDM [12] or Statecharts [4], it is
sufficient to find some mapping from specifications in that language to NF-
EFSMs.

This paper extends the work of [6–8] on the refinement of an EFSM for the
generation of executable tests. The work in this paper is most similar to that
in [8]. There are two main differences. First, [8] does not give an algorithm for
generating tests from a partially expanded EFSM, produced where it is not
feasible to fully expand the EFSM. Further, here alternative approaches are
evaluated on the Initiator process of the Inres protocol.

This paper is organized as follows. Section 2 provides a brief overview of SDL
and defines a normal form EFSM. Section 3 shows the generation of an NF-

2

EFSM from an SDL specification. The expansion procedure, which forms the
core of this paper, is proposed in Section 4. Section 5 compares the work in
this paper to previous work on expanding EFSMs while Section 6 considers the
problem of generating tests from an expanded EFSM or a partially expended
EFSM. Finally, in Section 7, conclusions are drawn.

2 SDL Specifications and Normal Form EFSMs

SDL is a specification and description language standardized by the ITU
(International Telecommunication Union). An SDL specification is graphi-
cal and symbol-based but its data is described using abstract data types and
ASN.1[10]. It can be seen as a set of EFSMs communicating with each other
where each EFSM is described by its process diagram with several logical
states and transitions between them.

Typically, the sequential behaviour of a formal specification can be repre-
sented as an EFSM. However, the operation within a transition of this EFSM
may contain conditional statements that determine which behaviour, out of
some set of behaviours, is applied. For example, the operation might contain
an if statement. Such a transition may be replicated to give one transition
for each behaviour, in order to ensure that each behaviour is tested. The ex-
panded EFSM is an EFSM where transitions have no guard related to internal
variables, in other words, they are always executable at the originating state.
However, in order to obtain executable transitions, some states may have to
be split and some transitions may have to be replicated. The process of ex-
panding an EFSM to eliminate infeasible paths is the main topic of this paper.
We will now define the notion of a Normal Form EFSM.

Definition 1 A normal form extended finite state machine (NF-EFSM) M
is the 7-tuple (S, s0, V, σ0, P, I, O, T) where

• S is the finite set of logical states
• s0 ∈ S is the initial state
• V is the finite set of internal variables
• σ0 denotes the mapping from the variables in V to their initial values
• P is the set of input and output parameters
• I is the set of input declarations
• O is the set of output declarations
• T is the finite set of transitions.

The label of a transition t ∈ T is defined by the 5-tuple (ss, gI , gD, op, sf) in
which:

3

• ss is the start state of t;
• gI is the input guard which can be expressed as the 3-tuple (i, P i, gP i),

where
· i ∈ I ∪ {NIL};
· P i ⊆ P ; and
· gP i is the input parameter guard that is either nil or represented as a

logical expression given in terms of variables in V ′ and P ′ where V ′ ⊆ V ,
∅ 6= P ′ ⊆ P i;

• gD is the domain guard and is either nil or represented as a logical expression
given in terms of variables in V ′′ where ∅ 6= V ′′ ⊆ V ;

• op is the sequential operation which is composed of simple statements such
as output statements and assignment statements; and

• sf is the final state of t.

Note that if P i = ∅, then gP = NIL. External events which may trigger
state transitions of the system are represented as input declarations in an NF-
EFSM (they are members of the set I). Input parameters are the attributes
or parameters of those external events. V contains all of the variables that
occupy some memory in the system.

The label of a transition in an NF-EFSM has two guards that decide the
feasibility of the transition: the input guard gI and the domain guard gD. gI

is the guard for inputs, or events, from the environment that must be satisfied
in order for the transition to be executed. An input i is represented by ‘?i’
which means ‘input i from the environment’. Some inputs may carry values
of specific input parameters and gI may guard those values with the input
parameter guard gP , such as p = 1 where p ∈ P . The input guard (NIL, ∅, NIL)
represents no input being required, which makes the transition spontaneous.
gD is the guard, or precondition, on the values of variables in the system (e.g.
v < 4, where v ∈ V). Note that in order to satisfy the domain guard gD of a
transition t it may be necessary to take some specific path to the initial state
of t. op is a set of sequential statements such as v := v+1 and !o where v ∈ V ,
o ∈ O, and !o means ‘output o to the environment (at a specific output port)’.

Clearly, none of the spontaneous transitions in an NF-EFSM should be with-
out any guards, i.e., uncontrollable. This observation leads to the following
assumption.

Assumption 1 An NF-EFSM does not have any transition with gI = (NIL, ∅, NIL)
and gD = NIL.

A transition in an NF-EFSM is conditional if its domain guard gD is not
NIL. A variable used in the domain guard of a transition in an NF-EFSM
is called a guard variable of the transition. A variable in an NF-EFSM is a
control variable if it is a guard variable of some transition of the NF-EFSM.

4

A transition in an NF-EFSM is unconditional if its domain guard gD is NIL.

The operation of a transition in an NF-EFSM has only simple statements such
as output statements and assignment statements, that is, it has no branching
statements such as ‘if ... else’, ‘case’, ‘for’, ‘repeat ... until’, and ‘do
... while’ statements. Therefore, an NF-EFSM has the following property.

Property 1 When a transition in an NF-EFSM is executed, all the actions
of the operation specified in its label are performed consecutively and only
once.

Definition 2 An NF-EFSM is deterministic if for every input sequence x
there is no more than one output sequence that may be produced by the NF-
EFSM in response to x.

Definition 3 An NF-EFSM is strongly connected if for every ordered pair
of states (s, s′) there is some feasible path from s to s′.

Assumption 2 An NF-EFSM is deterministic and strongly connected.

Loops may lead to the explosion of the state space of an EFSM and affect
the executability of a transition. In the following, we analyze loops in an NF-
EFSM and make a few assumptions on loops in order to simplify the problem
studied in this paper. Future work will consider how these assumptions may
be relaxed.

Let us start with the definition of several terms.

Definition 4 In an NF-EFSM,

• The (global) control state of an NF-EFSM is a set G = VC∪{logical state variable}
where VC is the set of control variables and the logical state variable takes
a value from S.

• a cycle is a path that starts and ends at the same state, i.e., its starting and
terminating states are the same.

• a simple cycle or a loop is a cycle in which none of the states appears more
than once, except the starting state which appears twice.

• a self loop is a loop that is constructed from one transition.
• a loop is unconditional if all of its transitions are unconditional; otherwise,

it is conditional.

Note that by definition, any unconditional loop is an infinite loop: the number
of iterations is unbounded. There are two types of unconditional loop.

Definition 5 An unconditional loop is a Type 1 unconditional loop where
each iteration of the loop generates the same global control state subspace.

5

Such a loop does not cause the state space explosion of the NF-EFSM. We
allow this type of unconditional loops in an NF-EFSM.

Definition 6 An unconditional loop is a Type 2 unconditional loop if some
iteration of the loop generates a different global control state subspace.

Type 2 unconditional loops will not be allowed in an NF-EFSM in order to
avoid an infinite state space.

We differentiate between three types of conditional loops.

Definition 7 A conditional loop is a Type 1 conditional loop if the number
of iterations of the loop is not bounded above and each iteration of the loop
generates the same global control state subspace.

Definition 8 A conditional loop is a Type 2 conditional loop if the number
of iterations of the loop is not bounded above and some iteration of the loop
generates a different global control state subspace.

Type 1 and Type 2 conditional loops are thus equivalent to Type 1 and Type 2
unconditional loops and therefore we allow Type 1 conditional loops and we do
not allow Type 2 conditional loops in an NF-EFSM. Two examples of Type 2
conditional loops are given in Figure 1 (here x and y are assumed to be control
variables). The first example shows the case where the variables used in the
domain guards are not modified. In the second case there are modifications to
the variables used in the domain guards but here these modifications cannot
contribute to the satisfaction of the condition to terminate the loop.

s �
t�s�

� � � � � � � � � � �
	�
 �� � ��
 � � � � �

t �

� � � � � 	 � � �
��
 � � �� � � � � s �

t �s�
� � � � � � � � � � �
	�
 � � � � �

t �

� � � � � 	 � � �
	�
 � 	 �� � � � �

Fig. 1. Two examples of Type 2 conditional loops

Definition 9 A conditional loop is a Type 3 conditional loop if the number
of iterations of the loop is bounded above.

We identify two classes of Type 3 conditional loops: one class consists of
single-transition loops, i.e., self-loops, and the other class consists of multiple-
transition loops. We will only deal with single-transition loops; we leave the
handling of NF-EFSMs that have multiple-transition conditional loops with
finite iteration for future research.

Definition 10 A Type 3 conditional loop is said to be well-structured if it is
a self-loop.

6

Assumption 3 All loops within an NF-EFSM are either Type 1 uncondi-
tional loops, Type 1 conditional loops, or well-structured Type 3 conditional
loops.

Note that a consequence of this assumption is that every path from the initial
state back to the initial state, that is not a self-loop, returns the value of each
state variable to its initial value.

3 Producing an NF-EFSM from an SDL Specification

A process diagram in an SDL specification is an EFSM. A transition from one
logical state to another is described in a series of symbols, each representing
an element of the transition. The guard of a transition is decided by both
input symbols and decision symbols. In general, a transition has one input
symbol, but may have several decision symbols. Moreover, there may be a
cyclic path with a decision. To directly generate an NF-EFSM, the process
diagram should be in the form of Figure 2(a). If an operation has complex
elements such as multiple decision symbols, cyclic paths, timer operations,
saves, and procedure calls it can be flattening using various techniques[20].

Domain propagation may also be used [1]. Domain propagation Partition in-
dividual operators such that their behaviour in a subdomain of the partition
is uniform. Each such operator can be replaced by a disjunction of behaviours
with preconditions. The following is an example.

y = |x|

→ ((x ≥ 0) ∧ (y = x)) ∨ ((x < 0) ∧ (y = −x))

Consider the process diagram specified in SDL of the Initiator process of the
Inres protocol [9] shown in Figure 3. To build the NF-EFSM, timer operations
are flattened as follows. For a timer T , we define a variable T that records the
remaining time to the expiry of T . If there are more than two timers, we define
another variable min timer that contains the minimum value of all currently
active timeout periods [20]. The timer expiry input of T is changed to the input
T expired and the statement ‘undef T ’. Undef applied to a variable x makes
the value of x undefined. This is considered to be equivalent to assigning a
special value to the variable x. The application of Set to a timer T is converted
to the assignment of the duration to variable T , and reset applied to timer T
is converted into the statement ‘undef T ’. It is very difficult to flatten save
operations in general. In this example, a save operation is used to keep the
user data from being lost. In our example, that operation is removed in the
NF-EFSM by assuming that the input queue from the user is controlled to send

7

(a) An SDL process diagram

S �

S�

t � : (s � , (I � , ,), v � > 0 ,
!O � ; v � := 0 , s �)

t � : (s � , (I � , ,), v � < = 0 ,
v � := v � + 1 ; !O � , s �)I �

v � > 0���

v � := 0

O �v � := v � + 1

O �

��� �

(b) T h e corresponding N F - E F SM

t 	 t

S �

S � S�

Fig. 2. An SDL process diagram and its representation in the NF-EFSM

out ‘IDATreq’ signal only when Initiator is at the connect state. For testing a
save operation of an input, feasible subpaths may be added to the NF-EFSM
as new transitions each of which starts with some transition having the save
operation and ends with some transition whose guard has the corresponding
input.

The function ‘succ(v)’ toggles between 0 and 1 for the value of a binary variable
v. The task number := succ(number) is flattened as follows:

number =

1 if number = 0

0 if number = 1

The final NF-EFSM of Initiator process is shown in Figure 4.

4 The Expansion Procedure

This paper focuses on the problem of producing an expanded EFSM given
a specification of a deterministic system. The purpose of this expansion is
to simplify test generation. In order to provide generality, the expansion is
based on a two-phase transformation approach as shown in Figure 5. The
normalization phase of a specification varies according to its formal model
but the expansion phase of an NF-EFSM is common for any specification.
The motivation for using an NF-EFSM is as follows. First, the syntax of an
NF-EFSM is independent of the syntax of the specification language used.
Second, every operation of a transition in an NF-EFSM represents a single

8

DR

C R

counter : = 1

T

counter< 4
� � � ��� �

� � � 	
 � �

counter : =
counter + 1

I DI S i n d

r e s e t (T)

d i s c o n n e c t

w a i t

w a i t

d i s c o n n e c t

w a i t

I C O N r e q

I DI S i n d

s e t (n o w + p,T)

C C DR

d i s c o n n e c t

C R

r e s e t (T)

num b er : = 1

S e t (n o w + p,T)

I C O N c o n f

c o n n e c t

DR

DT (num b er,
d a t a)

counter : = 1

c o n n e c t

s e n d i n g

d i s c o n n e c t

I DA T r e q
(d a t a)

I DI S i n d

s e t (n o w + p,T)

T

counter< 4
� � � ��� �

� � � 	
 � �

counter : =
counter + 1

I DI S i n d

r e s e t (T)

s e n d i n g

s e n d i n g

A K (n u m) DR

d i s c o n n e c t

DT (num b er,
ol d d a ta)

r e s e t (T)

num b er : =
s u c c (num b er)

s e t (n o w + p,T)

c o n n e c t

I DA T r e q

n u m =num b er� � � ��� �

� � � 	
 � �

ol d d a ta : = d a t a

p Du r a t i o n = 5 ;

Fig. 3. The SDL diagram of Initiator process of Inres protocol

behaviour which can be executed if its guard is satisfied. In Section 6 it will be
shown that this feature is important when applying data flow testing. Finally,
most of the existing methods for test generation can be applied directly to an
NF-EFSM even if we don’t expand it.

This section describes the procedure that expands an NF-EFSM to form an
Expanded EFSM(EEFSM) or a Partially Expanded EFSM(PEEFSM). The
expansion procedure will be illustrated using the NF-EFSM in Figure 4 ob-
tained from the SDL specification of the Initiator Process.

9

disconnect
(s �)

w a it
(s�)

connect
(s �)

sending
(s�)

�
s � � � ��� � � 	 � �
 � � � � � � � s � 	

�
s � � � � ������� � � � � 	 � �

� � � � � � ! " # $
 � � $ %&! " ' � s� 	

t (�) * � � � ' ! " + � s � 	

t ,

t -

t .
t /

t 0

t 1 -
t 1 ,

t 2

t 3
t 4

t , (

t , ,

t , -

t , .

t , /

� s� � � �5�6� � 	 � � 7&�&�&� 8 % $� � 9�: � ! " ; $
 � �5����< = �&8 � s � 	

�
s� � � > ? � @ A � � � � � 	 �� � � � � � &B�C � 7 �&�&� 8 % $

 � � $ � � � � � � ! " � � � � � � D ; $
%&! " ' � s� 	

� s� � � > ? � @ A � � � � � 	 �� � � � � � &E "FC �
7 �&�&� 8 % $
 � � � � �&� � s � 	

� s� � � ��� � � 	 � � 7&�&�&� 8 % $

 � � � � �&� � s � 	

�
s � � � ��� � � 	 � �

 � � � � �&� � s � 	

�
s � � � GIH � J � 7 KML �
� 7&K " � � 9�: � 	 �� � 9�: � " ; �
7&�&�&� 8 % $
� � 9�: � ! " # � s � 	

�
s � � � � �FG�> � � � � J � N O N L � 	 � �� � � � � � ! " # $ � P Q Q R � R ! " �&N O N $

 ��>S� � � 9�: � � �&N O N 	 $ %&! " ' � s� 	

�
s� � � G�H � J � 7&KTL �
� 7 K " � � 9�: � 	 �� � 9�: � " # �
7&� �&� 8 % $
� � 9�: � ! " ; � s � 	

� s� � � GIH � J � 7&KTL �
� 7&K B E � � 9�: � U �� � � � � � B C � 7&�&�&� 8 % $� � � � � � ! " � � � � � � D ; $��>S� � � 9�: � � � P Q Q R � R 	 $
%&! " ' � s � 	

�
s� � � > ? � @ A& � � � � � 	 �� � � � � � SBFC �
7&� �&� 8 % $� � � � � � ! " � � � � � � D ; $��>S� � � 9�: � � � P Q Q R � R 	 $
%&! " ' � s � 	�

s� � � G�H � J � 7&KTL �
� 7 K B E � � 9�: � U �� � � � � � E " C � 7&�&�&� 8 % $

 � � � � �&� � s � 	

�
s� � � > ? � @ A � � � � � 	 �� � � � � � &E "FC �
7 �&�&� 8 % $
 � � � � �&� � s � 	

�
s � � � ��� � � 	 � �

 � � � � �&� � s � 	

Fig. 4. The NF-EFSM of Initiator process of Inres protocol

NF-EFSM

Z

SZ

SD L

U ML
(s t a t e c h a r t)

(P) EEFSM

(1) No r m a l i z a t i o n (2) Ex p a n s i o n

Fig. 5. The proposed approach: two-phase expansion

4.1 Expansion of an NF-EFSM

4.1.1 Notation

Before giving a detailed description of the expansion algorithm, we introduce
some notation and functions. First, D denotes the domain constructed from
all the control variables in V and Λ denotes the domain constructed from all
the input parameters in P that are used in the input guards. The subset of D
allowed at a state will be called the domain of the state.

Recall that the label of a transition t is (ss, gI , gD, op, sf) where ss is the start
state, gI is the input guard, gD is the domain guard, op is the sequential oper-
ation, and sf is the final state of t. In this paper, we use the term precondition
of a transition ti, denoted Pi, to mean the domain guard gD of ti. The term

10

parameter condition of a transition ti, denoted by λi, is the input parameter
guard gP of ti.

The unary dom operator takes a logical expression and returns the subdomain
of D that satisfies this condition while the unary cond operator takes a subdo-
main of D and returns the corresponding logical expression. The postcondition
of a transition ti, denoted by Qi(·) : P(D) × P(Λ) → P(D), is the function
that derives a domain in D, according to the operation opi of the transition ti,
given two subdomains of D and Λ respectively. d(·) : S → P(D) is the domain
function of a state, and sST (·) : T → S and sFN(·) : T → S are the starting
state and final state functions of a transition, respectively.

The algorithm requires that all the postcondition functions and their inverse
functions can be evaluated symbolically in any domain considered.

4.1.2 Algorithm

Step.1 Partition the domain of a state s that has at least two conditional
transitions originating from it as follows: Let the conditional transi-
tions t1, t2, · · · , tn(n ≥ 2) originating from state s have preconditions
P1, P2, · · · , Pn respectively.

Each subdomain, {Ps
X |X ⊆ {1, . . . , n} ∧X 6= {}} is given by

Ps
X = dom ((∧i∈XPi) ∧ (∧i/∈X¬Pi)).

For example, if an operation at a state s is rewritten as
∨

1≤i≤3(Pi ∧
Qi), a partition of the domain of state s by the operation is

{Ps
{1},Ps

{2},Ps
{3},Ps

{1,2},Ps
{2,3},Ps

{1,3},Ps
{1,2,3}}.

Each Ps
X in the domain of state s can be depicted as Figure 6.

P1

P2 P3

� � �

� ��� � �
	

� � ��� � � � �
�

� � � �
�

� � � � � �
�

s

s

s

s

s

s s

Fig. 6. An example of partitioning

The number of disjoint subdomains is at most 2n − 1 but may be
fewer because some of them may be empty.

Then, if the final non-empty disjoint subdomains are Ps
1 , · · · ,Ps

m(m ≤
2n − 1), split the state s to s1, · · · , sm whose domains are Ps

1 , · · · ,Ps
m,

respectively.
If this is the first iteration, repeat this step for all the states from

11

which there are outgoing conditional transitions. After the first itera-
tion, priority is given to states that are not within any well-structured
loop, if there exist such states; otherwise, the state to be split is selected
among states that are within well-structured loops.

Step.2 Rearrange transitions related to the split states. If a state si is split
into n(≥ 2) states, si1 , · · · , sin , remove each transition tj going from
or to the state si. Then, for each removed transition tj going from
the state si to a state sf (6= si), make n temporary transitions going
from sik (1 ≤ k ≤ n) to sf whose labels are the same as that of the
removed transition. For each removed transition tj going to the state
si from a state ss(6= si), make n temporary transitions going from ss

to sik (1 ≤ k ≤ n) whose labels are the same as that of the removed
transition. For each removed transition tj going from and to the same
state si, a self loop, make n2 temporary transitions going from each sik

(1 ≤ k ≤ n) to each sik′ (1 ≤ k′ ≤ n) whose labels are the same as that
of the removed transition.

Step.3 For each temporary transition ti, there are only two conditions on
the relationship between d(sST (ti)) and dom Pi since sST (ti) is defined

by a subdomain PsST (ti)
X for some X: d(sST (ti)) ⊆ dom Pi or d(sST (ti))∩

dom Pi = ∅.
Therefore, for each temporary transition ti, make it permanent or

discard it depending on the following cases:
• Case A. If dom Pi∩d(sST (ti)) = ∅ or Qi(d(sST (ti)), dom λi)∩d(sFN(ti)) =
∅, discard ti.

• Case B. If dom Pi ⊇ d(sST (ti)) and Qi(d(sST (ti)), dom λi) ⊆ d(sFN(ti)),
make ti unconditional.

• Case C. If dom Pi ⊇ d(sST (ti)) and Qi(d(sST (ti)), dom λi) 6⊆ d(sFN(ti))
and Qi(d(sST (ti)), dom λi) ∩ d(sFN(ti)) 6= ∅,
· If dom P ′

i ⊇ d(sST (ti)) then make ti unconditional.
· If dom P ′

i 6⊇ d(sST (ti)) then make ti conditional with domain
guard P ′

i .
Here P ′

i = d(sST (ti)) ∩Q−1
i (d(sFN(ti))).

Note that Pi and λi are the precondition and the parameter condition
of ti respectively, and Qi(·) is the postcondition of transition ti.

Step.4 If the initial state is split, determine which of the split states is now
the initial state. Remove all states that cannot be reached from the
initial state. Then, if Condition A or Condition B is satisfied, terminate.
Otherwise, return to Step 1.
• (Condition A. Complete termination) There are no conditional tran-

sitions.
• (Condition B. Reasonable termination) All the remaining conditional

transitions in the present PEEFSM are conditional transitions con-
structing well-structured loops in the original NF-EFSM, and further
expansion is considered, by the user, to be impractical or unnecessary

12

because sufficient unconditional transitions are obtained to satisfy the
selected test coverage criterion.

The following property is an immediate consequence of the restrictions placed
on loops.

Property 2 Every NF-EFSM may be expanded to form a finite EEFSM.

4.1.3 Justification

The algorithm attempts to construct an EEFSM from a given NF-EFSM by
partitioning the domain of each state with the preconditions of its conditional
transitions. When a state s is split in order to change outgoing conditional
transitions into unconditional ones, several conditional transitions may be
generated from the transitions that end at s. So, the algorithm may have to
split some states repeatedly until one of the termination conditions of Step.4
is satisfied. The repetitive splitting of states for building the EEFSM may
yield a large EEFSM. In some cases it may not be practical to produce the
complete EEFSM and here the reasonable termination condition (Condition
B) allows the tester to terminate the expansion.

Figure 7 shows an example of the reasonable termination with a well-structured
loop. In this figure and the following figures, gI = (NIL, ∅, NIL), gD = NIL,
and gP = NIL are represented by blanks and NIL or empty components are
also represented by blanks. In addition, dotted arrows are used to indicate
that the transition is conditional. From state sb, two conditional transitions tb
(a self loop `), and tc originate. In the first iteration of the algorithm, sb is split
to sb1 and sb2 according to the preconditions of tb and tc. Then, the transition
tb is replicated to four temporary transitions whose starting and terminating
states are sb1 and sb1 , sb1 and sb2 , sb2 and sb1 , and sb2 and sb2 , respectively.
Among those temporary transitions, tb1 and tb2 become conditional. After the
first iteration of the algorithm, there is a well-structured loop `′ instead of
`. The well-structured loop will be modified repeatedly until it is eventually
changed to a transition at the n-th iteration. However, if n is large, it may
be appropriate to use the reasonable termination condition. The PEEFSM
generated by the first iteration satisfies the reasonable termination condition
and the decision to terminate is made by the user or some heuristic. Section
6 will consider the problem of generating tests from a PEEFSM.

4.2 An Example

Consider the NF-EFSM given in Figure 4. The application of the expansion
algorithm to this NF-EFSM progresses as follows:

13

s �

t�

l
t �

� � � � � � � � � � � 	�
 � � � � �

s�

s �

t � � � � � � ��� � � � � 	�
 � � � � �

� � � � � � � � � � 	 � � �
	�
 ��� � � � �

� � � � � � � � � � 	 � � �
	�
 � 	 ��� � � � �

t �

s �

� � ������� !�"�#�� $&%('�) *+'�, -

t�

l'

t �

s�

s �

s �

� ����� # ! . /! 0�.�# 1 2 !�1 ! . � ! 1 " $

s � 3

s � 4

t � 4

� � � � � ��� � � � � 	�
 � � � � �3

� � �+� � ��� � � � � 	�
 � � � � �4

t � 3
3� � � � � � � � � � � 	�
 � � � � �

3

t � 4

t � 3

� � �+� � � � � � � 	 � � �
	�
 ��� � � � �4

� � �+� � � � � � �
	 � ��) � �
	�
 � 	 ��� � � � �
3

3

� � �+� � � � � � � 	 � ��) � �
	�
 � 	 � � � � � �3

4

Fig. 7. An example for Condition B

At Step.1, the domain of state wait is partitioned according to the disjoint
preconditions of two conditional transitions, P1 = (counter < 4) and P2 =
(counter >= 4). So wait is split as follows.

wait1 : (counter < 4)

wait2 : (counter ≥ 4)

Since this is the first iteration, the domain of state sending is also partitioned
according to the preconditions, P1 = (counter < 4), P2 = (counter ≥ 4),
P3 = (number = 0), and P4 = (number = 1) from conditional transitions
t61, t62, t7, t8, t9, and t10, as follows. Among 15(= 24−1) candidate subdomains,
there are four non-empty subdomains and thus the state sending is split to
form the following four states.

sending1 : (counter < 4 ∧ number = 0)

sending2 : (counter < 4 ∧ number = 1)

sending3 : (counter ≥ 4 ∧ number = 0)

sending4 : (counter ≥ 4 ∧ number = 1)

At Step.3, 18 temporary transitions become unconditional ones (Case B), 12
become conditional ones (Case C), and the other ones are discarded (Case
A). At the end of this step, a PEEFSM of Initiator process is generated as
shown in Figure 8, where the labels of transitions are not shown in order to
aid simplicity. In this example, the copies of a transition are distinguished by
the use of labels.

14

disconnect

w a it �
� � ����� � 	
 �

connect

t �

t

t � �

t � �

t�

t � �

t � �

t �

t �

t � �

t

t � �

t �

t � �

w a it�
� � ����� � 	 � � �

t � � t � �

t � �

sending �
� � ����� � 	 � � �
������� � 	 �

sending !
� � ����� � 	 � � �
������� � 	 � "

sending �
� � ����� � 	
 �
������� � 	 �

sending �
� � ����� � 	
 �
������� � 	 ��"

t � �

t � � �

t � �t � � �

t � � #
t � �

t � � #
t � �

t � $ #
t � $

t � % #
t � % t � �

t � $t � %t � � t � �t � �

Fig. 8. On expanding process of Initiator process : after the first iteration

At Step.4, Conditions A and B are not satisfied because there are conditional
transitions, t5a and t5b which do not originate from the starting state of any
well-structured loop. We still have 12 conditional transitions and we start the
second iteration of the algorithm.

In the second iteration of the algorithm, at Step.1, connect is selected and
this is partitioned according to the preconditions P1 = (number = 0) and
P2 = (number = 1). This gives the following two states.

connect1 : (number = 1)

connect2 : (number = 0)

At Step.3, 10 temporary transitions become unconditional (Case B) and the
others are discarded (Case A). As a consequence of state splitting the transi-
tions t5a and t5b became unconditional. At the end of this step, a PEEFSM of
the Initiator process is generated as shown in Figure 9.

At Step.4, Condition A is not satisfied but Condition B may be satisfied
because t5a and t5b have been changed to unconditional transitions. While
this process may continue to produce an EEFSM, it will terminate here in
order to illustrate issues regarding generating tests from PEEFSMs.

5 Comparisons with Previous Work

Two papers [6,7] presented test generation methods from a Z specification
and a µSZ specification, respectively. They partitioned the domain of the
input or the internal memory according to the preconditions of the operations.

15

disconnect

w a it �
� � ����� � 	
 �

connect �
������ � 	 ���

t �

t �

t � �

t � �

t�

t � �
t � � �

t �

t �

t � �

t � �

t � � �

t � � �

t � � �

w a it�
� � ����� � 	 � � �

t � � t � � �

t � �

sending
� � ����� � 	 � � �
������ � 	 � !

sending "
� � ����� � 	 � � �
������ � 	 � �

sending �
� � ����� � 	
 �
������ � 	 � !

sending �
� � ����� � 	
 �
������ � 	 ���

t � �

t � � �

t � � �t � � �

t � � #
t � �

t � � #
t � �

t � $ #
t � $

t � % #
t � %

t � � �

t � � $t � � %t � � t � � �t � � �

connect�
������ � 	 � !

t � � �

Fig. 9. On expanding process of Initiator process : after the second iteration

Test cases, for control flow testing, are generated from the resultant EFSM.
However, these approaches are specific to the specification language used.

Hierons et al. [7] refine the EFSM by data abstraction, which is similar to
the first iteration of our algorithm. It does not go further because the repet-
itive refining may not terminate. However, as discussed in Section 4.1.3, the
algorithm in this paper is guaranteed to terminate under the assumptions
made and it may be terminated where further expansion may make the num-
ber of states excessive. The approach of Hierons et al. [7] may also introduce
nondeterminism which is not inherent in the system. This complicates test
generation.

Recent work by Uyar and Duale has considered the problem of eliminating the
infeasible path problem for EFSMs where it is known that all operation and
guards are linear [21]. The assumptions made in this paper are quite different:
rather than assume linearity, restrictions are placed on the structure of the
EFSM.

Henniger transforms an Estelle specification to form an equivalent EEFSM [5].
The transformation is feasible under the assumption that the control variables
have finite domains. However, it first generates a very large FSM: for every
state in the EFSM and every combination of values for the control variables,
it produces a state in the EEFSM. This EEFSM is then minimized. Naturally,
this approach may suffer from the state space explosion problem.

16

6 Test Generation

This section will consider the problem of generating a test to satisfy the all-uses
criterion. The all-uses criterion considers definitions and uses of variables. An
assignment x := e is a definition of x and a use of each variable referenced
by e. Outputs and guards are uses of the variables referenced. A path is
definition clear with respect to a variable x if it contains no definitions of x
after its first transition. Then a feasible du-pair consists of an ordered pair
(t1,t2) of transitions where there is some variable x that is defined at t1 and
used at t2 such that there is a feasible definition clear path with respect to x

that starts with t1 and ends with t2. The all-uses coverage is the proportion of
feasible du-pairs executed in testing. The all-uses criterion is satisfied if and
only if all feasible du-pairs are covered in testing.

Due to the feasibility of all paths in an EEFSM, test generation from an
EEFSM is straightforward. If we have a PEEFSM which is constructed by
using the reasonable termination condition, there are some conditional tran-
sitions. In this case, it is possible to use one of the following solutions:

(1) Try to generate test paths which do not traverse conditional transitions.
(2) Resume the expansion algorithm to get the complete but potentially very

large EEFSM.
(3) If test generation is based on a given test coverage criterion such as all-

uses, a PEEFSM may be transformed to an EEFSM that is smaller than
the complete EEFSM. Such an EEFSM is not equivalent to the original
NF-EFSM, but it has a set of unconditional paths starting at the initial
state that, between them, satisfy the test coverage criterion.

The first approach may be a reasonable and practical solution. However, this
may lead to a low test coverage. We will now compare these approaches for
the Initiator process of the Inres protocol. Table 1 contains a summary of the
results of the comparison, which will now be described in more detail.

Table 1
The number of du-pairs determined to be executable

The number of NF-EFSM PEEFSM Complete Transformed

(after 2nd iteration) EEFSM EEFSM

du-pairs 61 164 389 196

executable du-pairs 6 (9.8%) 21 (12.8%) 389 (100%) 196 (100%)

(unconditional)

executable du-pairs 6 (9.8%) 13 (21.3%) 61 (100%) 61 (100%)

(NF-EFSM basis)

17

The above result was obtained from the Initiator process of the Inres protocol
shown in Figure 4. After two iteration of the expansion algorithm, Condition
B was satisfied and the PEEFSM shown in Figure 9 was generated. We used
this PEEFSM as a target for comparison. The result shows the number of the
required du-pairs that are determined to be executable, where a du-pair is
said to be executable if there is a triple (unconditional preamble path starting
from the initial state, unconditional def-clear path, unconditional postamble
path going to the terminating state) for the du-pair. These three paths may be
combined to form an unconditional path that covers the du-pair and returns
to the initial state. As shown in Figure 4, 8 of the 16 transitions in the NF-
EFSM of the Initiator process are conditional. We can easily determine that
6 out of 61 du-pairs are executable.

The PEEFSM generated after the second iteration has 164 du-pairs, and only
21 du-pairs are determined to be executable among those. The expansion has
lead to seven additional du-pairs being determined to be executable. After the
fifth iteration, we have the complete EEFSM which has 389 executable du-
pairs. It should be noted that 164 du-pairs in the PEEFSM and 389 du-pairs
in the EEFSM contain multiple copies of the 61 du-pairs in the NF-EFSM. It
is sufficient to have one executable copy of each du-pair.

The second solution, which corresponds to the third column in Table 1, in-
volves producing an EEFSM. In some cases this may be considered to be
justified by the test requirements or risk.

The last solution is not a general solution: a transformation method that tar-
gets the test criterion is applied. Essentially, the PEEFSM is transformed by
adding unconditional paths with the intention of making the test criterion
satisfiable with unconditional paths. A transformation method is proposed in
this section. It generates a much smaller EEFSM, which has only 196 exe-
cutable du-pairs, than the complete EEFSM. The transformed EEFSM allows
the all-uses criterion to be satisfied using unconditional paths (see the 4th
column of Table 1).

In the following two subsections, we discuss test coverage and test generation.
Since test generation for control flow test was discussed in [7], here we focus
on data flow test generation. Section 6.2 gives a method for generating tests
from a PEEFSM produced by the reasonable termination condition.

6.1 Test coverage

Where a function is used within the definition of an operation, and this has a
number of separate behaviours, the transition need not be split when generat-
ing the NF-EFSM. However, domain propagation may be applied to split the

18

transition in order to increase test coverage. Consider the ‘succ(·)’ function in
the Initiator process. This can be written by using conditional statements or
by using the modular function. In the first case, domain propagation should
be applied, while in the second case, domain propagation is not necessary if
the modular function is a built-in function of the description tool for SDL. In
the example, we assumed that the function was written in the first form.

It is worth noting that when rewriting an EFSM to an NF-EFSM, a transi-
tion is split where it has a number of separate behaviours with conditions.
This assists data flow testing when the transition’s operation has a number of
sub-behaviours which differ in either the variables referenced or the variables
defined. For example, suppose a transition t whose domain guard is gD, has
the operation defined by if (x>0) y:=a; else z:=b;. In forming an NF-
EFSM, t is split into two transitions: t1 whose domain guard is x > 0∧gD and
operation is y:=a; and t2 whose domain guard is x ≤ 0 ∧ gD and operation
is z:=b;. This eliminates a potential problem in data flow testing: if t is not
split, the data dependencies exercised by executing t within a test sequence
may depend upon the value of x when t is executed. It may thus appear that
a data dependence has been exercised, due to a path being traversed, when
this data dependence has not been covered.

6.2 Test generation for data flow test

When we generate a manageable size EEFSM, test generation for data flow
testing is straightforward because all paths are executable in that EEFSM.
We simply find a set of paths satisfying the required test selection criterion.
If instead we have a PEEFSM we may be able to transform that PEEFSM
into a transformed EEFSM according to a specific test criterion and gener-
ate test cases satisfying that criterion. Naturally, the transformation applied
will depend upon properties of the specification: we cannot expect there to
be an algorithm that achieves this for all specifications. This section gives a
transformation that, under the conditions outlined earlier and the one given
below, allows the all-uses criterion to be satisfied. Future work will consider
alternative conditions and corresponding transformation algorithms.

Assumption 4 Suppose that well-structured Type 3 loop ` starts and ends
at state s. Then every path, from the initial state to s, initialises each state
variable v, mentioned by the guard of `, to a constant.

The above guarantees that the value for the state variables in V mentioned
in the guard of ` is defined by the path taken. However, different paths may
lead to different values for these variables.

19

The transformation algorithm is iterative. Each iteration involves choosing
some state s1 with one or more conditional transitions leaving it and, on the
basis of this, transforming the PEEFSM by splitting s1 and replacing the con-
ditional transitions with paths generated by the unfolding of the conditional
loops at s1. This is outlined in Figure 10.

We will now explain how the state, considered in the current iteration, is
chosen. When a state s is split in forming the PEEFSM, a set {s1, . . . , sn}
of states is formed. Possibly, some states are unreachable and so are deleted.
At least one of the states in {s1, . . . , sn} will be reached by no conditional
transitions from other elements of {s1, . . . , sn}. Such a state s1 is called a head
state. It is straightforward to see that there is some state s of the original
EFSM with corresponding head state s1 in the PEEFSM that is reachable,
from the initial state, using one or more unconditional paths. Such a state may
be found through a breadth-first search starting at the initial state s0. Such a
head state s1, and the corresponding set {s1, . . . , sn}, is then considered.

At s1, there may be m well-structured loops which will be called `1, · · · , `m.
Further, at state s1, there are m conditional transitions going to s2, · · · , sn′(n

′ ≤
n) that are copies of the m well-structured loops and we call these t1, · · · , tm. In
addition, there may be unconditional transitions to1, · · · , tow originating from s1

and unconditional transitions (or paths) T1, · · · , Tu terminating at s1. Those
transitions are drawn shaded because their transformation is not shown in
Figure 10(b).

l �

(a) (b)

... t �l �

...

s �

t �

T �T �

t � t�
s �

s �	�

s �

s �
�

s � �

s �

P �

P �

���

Fig. 10. Transformation of conditional transitions in a PEEFSM

The transformation algorithm replaces `1, · · · , `m and t1, · · · , tm by several un-
conditional paths. The paths added are designed to allow the all-uses criterion
to be satisfied using these paths in place of the conditional transitions between
the states in {s1, . . . , sn}.

Since s1 will be reached using paths from {T1, · · · , Tu}, if the postconditions
of T1, · · · , Tu are not the same, the transformation algorithm splits s1 into
s11, · · · , s1r according to the postconditions of T1, · · · , Tu. Unconditional paths
P1, · · · , Pz(z ≥ m) are then constructed; these replace `1, · · · , `m and t1, · · · , tm
as shown in Figure 10(b). Here assumption 4 is important since it guarantees

20

that the values of the state variables, mentioned in the guards of the loop, are
fully defined by a path Ti and thus the process of unfolding the loops generates
unconditional paths.

The transformation procedure proceeds as follows. First, the chosen head state
s1 is split according to the postconditions of some unconditional paths going
to s1 (Step.1). The PEEFSM may have to be rearranged again due to the
states split at Step.1 (Step.2). Then, the procedure adds a set of unconditional
paths that cover all du-pairs that are not covered by the paths of unconditional
transitions in the PEEFSM (Step.3 and 4). The final transformed EEFSM is
completed by removing isolated states and transitions that enter and leave
isolated states.

Step.1 Let s1 be a head state that has one or more conditional transitions
leaving it and that is reachable, by unconditional paths, from the ini-
tial state. Let T1, · · · , Tu denote unconditional paths that reach s1. Let
T1, · · · , Tu have distinct postconditions Q1, . . . , Qu with respect to the
set V ′ of control variables mentioned in the guards of the self-loops
from s1. Then, partition the domain of s1 into dom(Q1), . . . , dom(Qu).

Step.2 Execute the algorithm in Section 4.2.2 from Step.2 with the reason-
able termination condition.

Step.3 Let `i(1 ≤ i ≤ m′) denote a well-structured loop in the present
PEEFSM which starts at a state s1j(1 ≤ j ≤ r). For every uncondi-
tional transition tok(1 ≤ k ≤ w) originating from s1j, add a path going
from s1j to sFN(tok) by concatenating `i and tok if there is a path start-
ing with tok within which a variable defined in `i is used without being
re-initialized previously.

Step.4 Let S1 = {s11, · · · , s1r}, and S2 = {s2, · · · , sn}. Let `i(1 ≤ i ≤ m′)
denote a well-structured loop in the present PEEFSM which starts
from a state s1j ∈ S1 and whose replicated conditional transition ti
terminates at sl ∈ S2. Let `i1 and `i2(1 ≤ i1, i2 ≤ m′) denote two
well-structured loops in the present PEEFSM which start from s1j

and whose replicated conditional transitions ti1 and ti2 terminate at
sl1 , sl2 ∈ S1 respectively. Then, construct a minimal number of paths
composed of possible combination of the loop(s) to satisfy the following
requirements.
(1) There must be at least one path that starts with `i and goes from

s1j to a state in S2.
(2) There must be at least one path that ends with a copy of `i (pos-

sibly ti) and goes from a state in S1 to sl.
(3) There must be at least one path that contains a subpath composed

of the concatenation (`i, `i) and goes from a state in S1 to a state
in S2.

(4) There must be at least one path that contains a subpath composed
of a concatenation (`i1 , `i2) that goes from a state in S1 to a state

21

in S2, if, for an unconditional path Tk(1 ≤ k ≤ u) used at Step.1,
the postcondition of Tk followed by `i1 implies P `

i2
∨ P t

i2
, where P `

i2

and P t
i2

are the preconditions of `i2 and ti2 respectively.
(5) There must be at least one path that contains a subpath composed

of a concatenation (`i2 , `i1) and goes from a state in S1 to a state
in S2, if, for an unconditional path Tk(1 ≤ k ≤ u) used at Step.1,
the postcondition of Tk followed by `i2 implies P `

i1
∨ P t

i1
, where P `

i1

and P t
i1

are the preconditions of `i1 and ti1 .
Note that paths found to satisfy points 3-5 may also cover a number

of the requirements in points 1 and 2. Observe that due to Assumption
4, these additional paths are unconditional.

Step.5 Remove all conditional transition between the states in S1 ∪ S2.
Step.6 Remove the states that cannot be reached from any other states or

do not have any outgoing transitions. Then, remove all the transitions
whose originating or terminating states do not exist. If there are no
well-structured loops, terminate; otherwise go to Step.1.

s �

s�

t�

T � �t �

t �

s�

l � l �

u� (l �),
d � (l �)

d� (T �)

u� (l �),
d � (l�)

�u� (t �)

u � (t �),
d� (t �)

u� (t �),
d � (t�)

u� (t�) t� t 	 u� (t)

s �

s�

t�

T � �t�

t �

s �

l � l�

t� t 	

s �

s�

t �

T � �t �

t �

s�

l � l �

t� t 	

A

B

C
D

E

(a) (b) (c)

Fig. 11. Types of du-pairs to be considered

Steps 3 and 4 of the algorithm show the kinds of du-pairs we should consider
when constructing unconditional paths to cover the required du-pairs. Since
a well-structured loop has a ‘use’ and a ‘def’ of its guard variable, all distinct
du-pairs whose defs and/or uses are in well-structured loops must be included
in the paths to be constructed.

Figure 11 depicts the types of du-pairs which have to be considered. Figure
11(a) is an example of PEEFSMs that can be generated at Step.3 of the
transformation algorithm. If the guard variable of well-structured loops `1 and
`2 is x, `1 and `2 have ux(`1) and dx(`1), and ux(`2) and dx(`2), respectively,
where dx(t) and ux(t) are a def and a use of a variable x in a transition (or a
path) t respectively. When an unconditional transition to1 originating from s1,
the state of `1 and `2, has ux(t

o
1), we have to consider du-pairs (dx(`1), ux(t

o
1))

and (dx(`2), ux(t
o
1)). This type of du-pair, called Type A, is considered by

Step.3 of the algorithm.

22

Every unconditional path T1 terminating at s1 has dx(T1) and there are feasible
du-pairs (dx(T1), ux(`1)) and (dx(T1), ux(`2)). The first requirement of Step.4
handles this type of du-pair, which is called Type B.

Requirement 2 of Step.4 introduces paths that allow the data definitions from
some li to propagate onto uses through the inclusion of a path ending in li.

The repetition of a well-structured loop yields feasible du-pairs such as (dx(`1),
ux(`1)) and (dx(`2), ux(`2)). This type of du-pair, called Type D, is considered
by requirement 3 of Step.4. Finally, a combined traversal of two different well-
structured loops may also yield feasible du-pairs such as (dx(`1), ux(`2)) and
(dx(`2), ux(`1)). Requirements 4 and 5 of Step.4 consider this type of du-pairs,
which is called Type E. Figure 12 shows an example of the transformation.

s �

t�
� � � � � � � � � � � �
	 � � � � �
s�

s �

t �� � � � � � � � �
� � � � � � � � �

� � � � � � � � � � � � �
�
	 � � ��� � � �

t � t �

� � �
����� � � �
�
 !�!���
� �
� � " # $ %&# '!$(") % * #!) # $ % � #) + ,��

� � � � ��� � � � � � � �
�
	 � � � - � � �

s �

t �
s�

s �
t �

t � t �

s �

t � t �

� . �
/!'!$(# % � ,�* " + % 01$ 23���!�
� �

s �

t �
s�

s �t �s �

(t � ,t � ,t �) (t � ,t � ,t �)(t � ,t �)
P 4
P 5

P6
t 7 � � � � ��� � � �
� � � � � � � � �

� � � � � � � � � � � �
	 � � � � �

8

9

:

;

� � � � � � � � � � � < �
�
	 � � ��� � � �9

9
� � � � �
� � � � � � - �
�
	 � � � - � � �9

9
= =

> >� � � � � � � � � < � � � � � �
�
	 � � ��� � � �9

8

� � � � �
� � � � - � � � � � �
��	 � � � - � � �9

8
� � � � � � � � � � � � � � � � � �

� � � � ��� � � � � � � � � � � � �
t7

8 t 7

:

;

Fig. 12. An example for Step 4

The PEEFSM generated from the NF-EFSM given in Figure 12(a), with
the reasonable termination condition, is shown in Figure 12(b). The state
from which well-structured loops start is sb1 . We have one unconditional path
T1 = ta going to sb1 , and sb1 is not split. Therefore, we only have to consider
the transformation of well-structured loops. We skip Step.3 because there is
no unconditional transition originating from sb1 . At Step.4, we consider un-
conditional paths going from sb1 to sb2 . Some of the paths to be added must
start with and end with tb and tc and they must have subpaths (tb, tb) and
(tc, tc). Since the postcondition of tatb1 (which is x = 1) implies the disjunc-
tion of the preconditions of tc1 and tc2 (which is x < 4), it is necessary to have
subpath (tb, tc). Similarly, it is necessary to have subpath (tc, tb). Accordingly,
we added three unconditional paths P1, P2, and P3 to generate a final EEFSM
as shown in Figure 12(c).

Where the conditional transitions have simple arithmetic operations, a mini-
mal number of paths satisfying those requirements can easily be constructed.
After the final transformed EEFSM is built, test cases satisfying the all-uses
criterion can be generated in a straightforward manner. In the transformed

23

EEFSM, we may have more states and transitions but still have the same
number of distinct du-pairs. Some test cases generated from the transformed
EEFSM may be longer than the minimized test cases generated from the com-
plete EEFSM because in the transformed EEFSM, some fixed paths are used.
However, the difference in length between the two is less than the number of
the transitions constructing the fixed path and the number of test cases is
identical.

6.3 An example

We generate test cases satisfying the all-uses criterion for the PEEFSM of the
Initiator process shown in Figure 9. The PEEFSM has 10 conditional transi-
tions which were well-structured loops in the NF-EFSM. Using the transforma-
tion algorithm given in the previous subsection, those conditional transitions
are transformed to unconditional paths as follows. Transitions t3a and t3b,
starting from the state wait1 are transformed to a path (t3a, t3b, t3c, t3d) if the
only unconditional path T1 = t1 going to wait1 is considered. Note that every
path going to sending2 sets the relevant control variable counter to 0. Then
we construct the minimal number of paths satisfying the requirements as fol-
lows. Although there are unconditional transitions t14b and t62a starting from
sending2, there is no path starting from that state where the guard variable
counter is used without being re-initialized previously. Therefore, we added no
path at Step.3. Both t7b and t9b have to be executed three times to satisfy the
preconditions of t7d and t9d respectively. At Step.4, therefore, the paths have
to be composed of the concatenation of four transitions by combining those
transitions. At least one of the paths must start with t7 and at least one must
start with t9. At least one path must end with t7 and at least one must end
with t9. The paths must also contain each subpath composed of the concatena-
tion (t7, t7), (t9, t9), (t7, t9), and (t9, t7). We construct two unconditional paths
(t9a, t9b, t7a, t7b) and (t7c, t9c, t7d, t9d) for those conditional transitions. Note that
here the labels for the copies of t7 and t9 are not intended to correspond to
those in Figure 9. For the transitions t7a, t9a, t7c, and t9c, we construct two
unconditional paths (t9e, t9f , t7e, t7f) and (t7g, t9g, t7h, t9h) similarly. The final
transformed EEFSM of Initiator process is shown in Figure 13.

All the feasible definition-clear paths for all the du-pairs of the NF-EFSM are
derived as shown in Table 2. Those for the input parameters are left out for
simplicity because they are defined and used in the same transition.

From the derived definition-clear paths for all the du-pairs, a set of feasible
complete paths satisfying the all-uses criterion in the transformed EEFSM is
generated as shown in Table 3.

24

disconnect

w a it �
� � ����� � 	
 �

connect �
������ � 	 ���

t �

t �

t � �
t �

t � �
t � � �

t �

t �

t � �

t � �

t � � �

t � � �

t � � �
w a it �

� � ����� � 	 � � �

t � � �

t � �

sending �
� � ����� � 	 � � �
������ � 	 �

sending !
� � ����� � 	 � � �
������ � 	 ���

sending �
� � ����� � 	
 �
������ � 	 �

sending �
� � ����� � 	
 �
������ � 	 ���

t � �

t � � �

t � � �t � � �

t � � �

t � � "t � � #t � �
t � � �t � � �

connect�
�����$ � 	 �

t � � �

(t � � ,t � � ,t � " ,t � #) (t � % ,t � & ,
t � % ,t � &)

(t � ' ,t � ' ,
t � (,t � ()

(t � " ,t � " ,
t � # ,t � #)

(t � � ,t � � ,
t � � ,t � �)

Fig. 13. The transformed EEFSM of Initiator process for test generation satisfying
all-uses criterion

7 Conclusions

This paper has considered the problem of testing a state-based system based
on a specification in a formal language. The approach applied has two phases.
In the first phase the specification is transformed into a normal form extended
finite state machine (NF-EFSM). This phase has been developed for SDL. In
the second phase, the NF-EFSM is transformed in order to reduce or eliminate
the infeasible path problem in order to aid testing. Splitting the process into
these two phases aids generality: in order to extend the approach to some other
specification language it is sufficient to define a mapping from that language
to NF-EFSMs.

When the output of the second phase is an Expanded EFSM (EEFSM), all
paths in this EEFSM are feasible. Test generation may then be based around
choosing an appropriate set of paths which guarantee that the test criterion
is satisfied, and then finding test data to exercise these paths.

In some cases the EEFSM will be too large and instead the second phase ter-
minates with a Partially Expanded EFSM (PEEFSM). Where this is the case,
test generation is more complex. However, the PEEFSM may be further trans-
formed on the basis of the test criterion used: the further expansion is targeted
at elements of the test criterion that are not currently satisfiable using uncon-
ditional transitions. This paper has given such a transformation algorithm, for
the all-uses criterion, that operates under certain conditions. Future work will
consider alternative conditions and corresponding transformation algorithms.

25

References

[1] J.Dick and A. Faive, Automating the generation and sequencing of test cases
from model-based specifications. FME’93, First International Symposium on
Formal Methods in Europe., Odense, Denmark, April 19–23, 1993, pp.268–284.

[2] A. Ek, J. Grabowski, D. Hogrefe, R. Jerome, B. Koch, and M. Schmitt, Towards
the industrial use of validation techniques and automatic test generation
methods for SDL specifications. in proceedings of the 8th SDL Forum, Evry,
France, 1997.

[3] German National Research Center for Information Technology, ESPRESS:
Engineering of safety-critical embedded systems. GMD FIRST Research
Project, http://www.first.gmd.de/org/espres.html.

[4] D. Harel, Statechart: A visual formalism for complex systems. Science of
computer programming, (8):231–274, 1987.

[5] O. Henniger, A. Ulrich, and H. Konig, Transformation of Estelle modules aiming
at test case generation. Proceedings of the 8th IFIP International Workshop on
Protocol Test Systems. Evry, France, 1995. Chapman & Hall.

[6] R.M. Hierons, Testing from a Z specification. Journal of Software Testing,
Verification and Reliablity., 7(1) (1997) 268–284.

[7] R.M. Hierons, S. Sadeghipour, and H. Singh, Testing a system specified using
Statecharts and Z. Information and Software Technology., 43 (2001) 137–149.

[8] R.M. Hierons, T.-H. Kim, and H. Ural, Expanding an Extended Finite State
Machine to Aid Testability. COMPSAC 02., 2002.

[9] D. Hogrefe, OSI formal specification case study: the Inres protocol and service.
Technical Report IAM-91-012, University of Bern, 1991. 5.

[10] International Organization for Standardization, Information Processing
Systems - Open Systems Interconnection - Specification of Basic Encoding Rules
for Abstract Syntax Notation One (ASN.1). IS 8825 (November 1987). First
Edition.

[11] ITU, ITU-T Recommendation Z.100: Specification and Description Language
(SDL). International Telecommunications Union, Geneva, Swizerland, 1999.

[12] C. B. Jones, Systematic Software Development Using VDM. 2nd ed., Prentice
Hall, Hemel Hempstead, U.K. 1990.

[13] T. H. Kim, I. S. Hwang, M. S. Jang, S. W. Kang, J. Y. Lee and S. B. Lee,
Test Case Generation of a Protocol by a Fault Coverage Analysis. ICOIN-12.,
Tokyo, Japan. (1998)

[14] C. Meudec, Automatic Generation of Software Test Cases From Formal
Specifications. PhD thesis, The Queen’s University of Belfast, 1998.

26

[15] S. Rapps and E. J. Weyuker, Selecting software test data using data flow
information. IEEE Trans. on Software Engineering, SE-11(4):367–375, April
1985.

[16] J. R. Shoenfield, Mathematical Logic. Addison-Wesley, Reading, Ma., 1967.

[17] H. Singh, M. Conrad, and S. Sadeghipour, Test Case Design Based on Z and
the Classification-Tree Method. First IEEE International Conference on Formal
Engineering Methods., Hiroshima, Japan, 1997, pp.81–90.

[18] J.M. Spivey, Understanding Z: A Specification Language and its Formal
Semantics. Cambridge University Press, Cambridge, United Kingdom, 1988.

[19] J.M. Spivey, The Z Notation: A Reference Manual. 2nd ed., Prentice Hall, New
York 1992.

[20] H. Ural, K. Saleh, and A. Williams, Test generation based on control and data
dependencies within system specifications in SDL. Computer Communications.,
23 (2000) 609–627.

[21] M. U. Uyar and A. Y. Duale Resolving Inconsistencies in EFSM Modeled
Specifications. IEEE Military Communications Conf. (MILCOM)., Atlantic
City, NJ, October 1999.

27

Table 2
The du-pairs in the transformed EEFSM of Initiator process

Variable Defined Used Def-clear Path Variable Defined Used Def-clear Path

counter t1 t3 t1, t3a T t1 t2 t1, t2a

counter t3 t3 t3a, t3b T t1 t3 t1, t3a

counter t3 t4 t3d, t4 T t1 t12 t1, t12a

counter t5 t7 t5b, t7c T t3 t2 t3d, t2b

counter t5 t9 t5a, t9a T t3 t3 t3a, t3b

counter t7 t7 t7a, t7b T t3 t4 t3d, t4

counter t7 t8 t7b, t8b T t3 t12 t3d, t12b

counter t7 t9 t7c, t9c T t5 t61 t5a, t61a

counter t7 t10 t7b, t10b T t5 t62 t5b, t62a

counter t9 t7 t9b, t7a T t5 t7 t5b, t7c

counter t9 t8 t9d, t8b T t5 t9 t5b, t9a

counter t9 t9 t9a, t9b T t5 t14 t5b, t14b

counter t9 t10 t9d, t10b T t7 t61 t7f , t61b

number t2 t5 t2a, t5b T t7 t62 t7b, t62b

number t2 t62 t2a, t5b, t62a T t7 t7 t7a, t7b

number t2 t7 t2a, t5b, t7c T t7 t8 t7b, t8b

number t2 t8 t2a, t5b, t7c, t9c, t7d, t9d, t8b T t7 t9 t7c, t9c

number t2 t9 t2a, t5b, t7c, t9c T t7 t10 t7b, t10b

number t61 t5 t61a, t5b T t7 t14 t7b, t14d

number t61 t62 t61a, t5b, t62a T t9 t61 t9h, t61b

number t61 t7 t61a, t5b, t7c T t9 t62 t9d, t62b

number t61 t8 t61a, t5b, t7c, t9c, t7d, t9d, t8b T t9 t7 t9b, t7a

number t61 t9 t61a, t5b, t9a T t9 t8 t9d, t8b

number t62 t5 t62a, t5a T t9 t9 t9a, t9b

number t62 t61 t62a, t5a, t61a T t9 t10 t9d, t10b

number t62 t7 t62a, t5a, t7g T t9 t14 t9d, t14d

number t62 t8 t62a, t5a, t7g, t9g, t7h, t9h, t8a p t0 t1 t0, t1

number t62 t9 t62a, t5a, t9e p t0 t3 t0, t1, t3a

olddata t5 t7 t5b, t7c p t0 t5 t0, t1, t2a, t5b

olddata t5 t9 t5b, t7c, t9c p t0 t7 t0, t1, t2a, t5b, t7c

p t0 t9 t0, t1, t2a, t5b, t9a

28

Table 3
A set of complete paths satisfying all-uses criterion in the transformed EEFSM of
Initiator process

P1 t0, t1, t12a

P2 t0, t1, t3a, t3b, t3c, t3d, t4

P3 t0, t1, t3a, t3b, t3c, t3d, t2b, t13b

P4 t0, t1, t3a, t3b, t3c, t3d, t12b

P5 t0, t1, t2a, t5b, t14b

P6 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t8b

P7 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t10b

P8 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t14d

P9 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t62b, t13a

P10 t0, t1, t2a, t5b, t7c, t9c, t7d, t9d, t8b

P11 t0, t1, t2a, t5b, t7c, t9c, t7d, t9d, t10b

P12 t0, t1, t2a, t5b, t7c, t9c, t7d, t9d, t62b, t13a

P13 t0, t1, t2a, t5b, t62a, t5a, t7g, t9g, t7h, t9h, t8a

P14 t0, t1, t2a, t5b, t62a, t5a, t7g, t9g, t7h, t9h, t61b, t13b

P15 t0, t1, t2a, t5b, t62a, t5a, t9e, t9f , t7e, t7f , t61b, t13b

P16 t0, t1, t2a, t5b, t62a, t5a, t61a, t5b, t62a, t5a, t14

P17 t0, t1, t2a, t5b, t62a, t5a, t61a, t5b, t7c, t9c, t7d, t9d, t8b

P18 t0, t1, t2a, t5b, t62a, t5a, t61a, t5b, t9e, t9f , t7e, t7f , t10b

29

