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Abstract
An exact expression for the fluid-coupled structural waves that propagate in
a three-dimensional, rectangular waveguide with elastic walls is presented in
terms of the non-separable eigenfunctions, ψn(y, z). It is proved that these
eigenfunctions are linearly dependent and that an eigenfunction expansion rep-
resentation of a suitably smooth function, f(y, z), converges point-wise to that
function. Orthogonality results for the derivatives ψny(a, z) are derived which,
together with a partial orthogonality relation for ψn(y, z), enable the solution
of a wide range of acoustic scattering problems. Two prototype problems, of
the type typically encountered in two-part scattering problems, are solved and
numerical results showing the displacement of the elastic walls are presented.

Keywords: Three-dimensional waveguide, flexible wall, elastic plate, orthogo-
nality relation, acoustic scattering, mode-matching.

1 Introduction

The propagation of acoustic waves along ducts or pipes has long been of inter-
est to scientists and engineers. This is partly because ducting systems, such as
those used for heating, ventilation and air-conditioning (HVAC), provide ideal
channels for the transmission noise through structures such as buildings and
aircraft. Acoustic scattering is a feature of ducting systems that becomes rel-
evant whenever there is an abrupt change in geometry or material property.
At such a discontinuity the incident sound field undergoes both reflection and
transmission, usually initiating all propagating higher-order modes in the pro-
cess. Capitalising on this phenomena, much research has been carried out into
the effective design of reactive silencers for ducting systems. In recent years
there has been increasing interest in the effect that wave-bearing boundaries
have on the propagating noise and, in this context, much of the analytic work
concerns two-dimensional ducts or those circular cylindrical geometries. A wide
range of analytic techniques have been employed to study this class of problem
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including the Wiener-Hopf technique (Rawlins, 2007), Fourier methods (Huang,
2002) and mode-matching (Lawrie & Guled, 2006).

Whilst the Wiener-Hopf technique has long been a convenient tool by which
to tackle a wide range of two part-problems, analytic mode-matching has only
recently been established as a viable tool for two-dimensional structures in which
the boundary conditions contain high-order derivatives. The reason for this is
that the eigenfunctions for such systems do not satisfy standard orthogonality
conditions, such as that for the set of functions cos(nπy/a), n = 0, 1, 2, . . ..
Orthogonality relations (OR) do, however, exist albeit of non-standard form
and Lawrie & Abrahams (1999) were amongst the first authors to demonstrate
this. Since then this class of OR has arisen in a number of different physical
situations, see for example, Evans & Porter (2003), Manam et. al. (2006),
Kaplunov et al (2004).

Problems involving the propagation of guided waves in three-dimensional
media are often more difficult to analyse. Recent studies include those of Za-
kharov (2008) who derived ORs for 3-D waves in visco-elastic laminates and
Zernov & Kaplunov (2008) who studied 3-D edge waves on plates. Three-
dimensional guided waves are of particular relevance to the HVAC industry
since many HVAC ducts have a rectangular cross-section. For this reason, there
is a vast body of literature concerning the propagation of acoustic waves in such
ducts. Most of the literature, however, deals with ducts that have rigid walls
and the primary reason for this is the inherent difficulties involved in analysing
those with flexible walls. Articles that do address the effects of flexible duct
walls include those by Cabelli (1984), Lawrie & Abrahams (2002), Huang &
Choy (2005) and Martin et al (2004), the latter of which is primarily an exper-
imental investigation of the wall displacement.

This article is concerned with sound propagation in a three dimensional
duct, of rectangular cross-section, formed by three rigid walls and closed by a
thin elastic plate (see figure 1). The analysis herein builds upon the work of
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Figure 1: Duct geometry and yz cross-section.

Lawrie & Abrahams (2002) who first presented a non-separable ansatz for the
duct modes together with a partial OR. That article offered a pioneering insight
into the three-dimensional case, it was clear, however, that the partial OR is
insufficient to enable the efficient solution of some typical scattering problems.
The partial OR is based on that for the underlying two-dimensional system,
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(see Lawrie & Abrahams, 1999) and thus, whilst incorporating the appropriate
orthogonality properties in the y direction, it neglects any such properties for
the z direction. Recent developments, however, in the theory under-pinning
such two-dimensional systems, Lawrie (2007), has paved the way for a better
understanding of their three-dimensional counterparts. Thus, the aim of this
article is two-fold. Firstly, it is intended to establish the analytic properties
of the eigenfunctions for the three dimensional waveguide shown in figure 1.
Secondly, it is intended to investigate the potential use of these eigenfunctions
in mode-matching problems for three dimensional geometries.

In §2, following Lawrie & Abrahams (2002), the eigenfunctions and disper-
sion relation are presented. Some significant new results are derived in §3: it is
proved that the eigenfunctions are linearly dependent and that an eigenfunction
expansion of a suitable function, f(y, z), converges point-wise to that function.
In §4 the derivatives ψny(a, z), n = 0, 1, 2, . . . are considered. It is demonstrated
that these functions are also linearly dependent and some new orthogonality
results are presented. Two prototype problems are studied in §5. Both of these
involve a semi-infinite duct of the type shown in figure 1. In the first an acoustic
field is generated by a prescribed pressure at the end of the duct and the edge of
the plate is assumed to be simply supported (pin-jointed). The second is forced
by a prescribed velocity field and spring-like edge conditions are applied. Some
concluding remarks are presented in §6.

2 Travelling wave solutions

In this section the non-separable ansatz for the duct modes, posed by Lawrie
& Abrahams (2002), is presented. The duct occupies the region −∞ < x < ∞,
0 ≤ y ≤ a, −b ≤ z ≤ b where (x, y, z) are Cartesian coordinates that have
been non-dimensionalised with respect to k−1, k being the fluid wavenumber.
An elastic plate of infinite length and width 2b bounds the duct at y = a,
−b ≤ z ≤ b, whilst the remaining three sides are rigid (figure 1). A compressible
fluid of density ρ and sound speed c occupies the interior region of the duct,
but the exterior region is in vacuo. The travelling waves are assumed to have
harmonic time dependence, exp(−it), where t has been non-dimensionalised
with respect to ω−1, with ω = ck. Without loss of generality, it can be assumed
that the duct modes propagate in the positive x direction, so that the non-
dimensional, time-independent velocity potential, φ(x, y, z), assumes the form

φ(x, y, z) =
∞∑

n=0

Bnψ(sn, y, z)eisnx (1)

where Bn is the amplitude of the nth travelling wave, sn is the axial wavenum-
ber (as yet unknown, but assumed to be either positive real or have positive
imaginary part) and the nonseparable reduced potential ψ is to be determined.
It is convenient, in the first instance, to treat the wavenumber as a continuous
variable s rather than a discrete set of values, sn. Thus, when written in terms
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of ψ(s, y, z), Helmholtz’ equation reduces to
{

∂2

∂y2
+

∂2

∂z2
+ 1− s2

}
ψ(s, y, z) = 0. (2)

The normal component of fluid velocity vanishes at the three rigid walls which,
on assuming even eigenmodes, φ(x, y,−z) = φ(x, y, z), implies:

∂ψ

∂y
= 0, y = 0, 0 ≤ z ≤ b, (3)

∂ψ

∂z
= 0, z = 0, b, 0 ≤ y ≤ a. (4)

The boundary condition that describes the deflections of the thin elastic plate
bounding the top of the duct is

{(
∂2

∂z2
− s2

)2

− µ4

}
ψy − αψ = 0, y = a, 0 ≤ z ≤ b (5)

where µ is the in vacuo plate wavenumber and α a fluid loading parameter.
Thus, µ4 = c2hρp/(Bk2) and α = c2ρ/(Bk3) where B = Eh3/{12(1 − ν2)} is
the plate bending stiffness in which E is Young’s modulus, ρp is the density of
the plate, and ν is Poisson’s ratio. Details pertaining to the derivation of (5)
are given by Grant & Lawrie (2000) and the references therein.

The vertical displacement of the plate is proportional to φy(x, a, z), where
the subscript y here and henceforth denotes differentiation. Further, the elastic
plate is assumed to be clamped to the adjacent rigid sides of the duct, hence,
the displacement and gradient along these edges are zero and it follows that:

∂ψ

∂y
= 0, y = a, z = b, (6)

∂2ψ

∂y∂z
= 0, y = a, z = b. (7)

These conditions will henceforth be referred to as the corner conditions. Note
that alternative conditions, such as free plate edges, could equally well have
been chosen.

Lawrie & Abrahams (2002) propose the following ansatz for ψ(s, y, z)

ψ(s, y, z) =
∞∑

m=0

Em(s)Ym(y) cosh(τm(s)z). (8)

This respects the fact that ψ is chosen to be even in z, see (4). The functions
Ym(y), m = 0, 1, 2, . . ., from (2) and (3), satisfy the following simple ordinary
differential equation and boundary condition,

Y ′′
m(y)− γ2

mYm(y) = 0 and Y ′
m(0) = 0, (9)
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which yields Ym(y) = cosh(γmy), where γm is related to τm(s) through τ2
m(s) +

γ2
m + 1 − s2 = 0. A further condition for Ym(y) can be obtained by ensuring

that ψ satisfies (5). On substituting (8) into (5) it is found that the quantities
γm, m = 0, 1, 2, . . . are defined by

K(γm) = {(γ2
m + 1)2 − µ4}Y ′

m(a)− αYm(a) = 0, (10)

where the ′ denotes differentiation with respect to the argument, in this case
y. Note that, this notation is used only to denote the derivative for functions
of one variable, otherwise the full partial derivative or the subscript notation is
used.

Although non-Sturm-Liouville, the eigen-system specified by (9) and (10) is
well studied. It is a straightforward procedure to show that the appropriate OR
for this system is

α

∫ a

0

Ym(y)Yj(y) dy = Cjδjm − (γ2
m + γ2

j + 2)Y ′
j (a)Y ′

m(a) (11)

where δjm is the usual Kronecker delta and

Cj = 2(γ2
j + 1)[Y ′

j (a)]2 + 1
2αγ−2

j Y ′
j (a)Yj(a) + 1

2αa. (12)

Furthermore, the eigenfunctions Yj(y), j = 0, 1, 2, . . . have the following prop-
erties:

∞∑
n=0

Y ′
n(a)Yn(y)

Cn
=

∞∑
n=0

γ2
nY ′

n(a)Yn(y)
Cn

= 0; (13)

∞∑
n=0

γ2
n [Y ′

n(a)]2

Cn
= 1; (14)

α

∞∑
n=0

Yn(v)Yn(y)
Cn

= δ(y − v) + δ(y + v) + δ(y + v − 2a), (15)

where δ(.) is the usual Dirac delta function. These results are established by
Lawrie (2007)1 and, in view of their significance to the analysis that follows, it
is useful to relate the notation of that article to that used herein. The above
eigensystem is retrieved from the general system considered by Lawrie on setting
Pa(s) = s4−µ4, Qa(s) = −α, P0(s) = 1, Q0(s) = 0. It should also be noted that
the definition of Cm above differs from that in Lawrie (2007) by a multiplicative
α.

Expression (11) can now be employed to impose the condition of no normal
velocity on the rigid face at z = b, see (4). On multiplying by Ej(s)τj(s) sinh(τj(s)b)

1The reader is advised that there are errors of sign in equations (3.24) and (3.26) of Lawrie
(2007). These do not, however, impinge upon the results presented in that article.
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and summing over j, it is found that

α

∫ a

0

Ym(y)
∞∑

j=0

Ej(s)τj(s) sinh(τj(s)b)Yj(y) dy = −Y ′
m(a)P (s) (16)

−Y ′
m(a)(γ2

m + 2)
∞∑

j=0

Ej(s)τj(s) sinh(τj(s)b)Y ′
j (a) + Em(s)τm(s) sinh(τm(s)b)Cm

where

P (s) =
∞∑

j=0

Ej(s)τj(s) sinh(τj(s)b)γ2
j Y ′

j (a). (17)

The first and third terms of (16) are zero (due to boundary condition (4) and
corner constraint (7)) and, it follows that

Em(s) =
Y ′

m(a)P (s)
Cmτm(s) sinh(τm(s)b)

. (18)

The ansatz for ψ(s, y, z), (8), can be multiplied by any arbitrary constant (or
function of s) and so, without loss of generality, it is chosen that P (s) = 1. It
follows that the duct modes have the form

ψ(s, y, z) =
∞∑

m=0

Y ′
m(a)Ym(y) cosh(τm(s)z)
Cmτm(s) sinh(τm(s)b)

. (19)

Note that (17) and (18) confirm (14). Equation (19) contains the quantity s
which corresponds to the axial wavenumber of the mode and is, as yet, unspeci-
fied. Condition (6), however, has not been imposed and it is this that gives rise
to the dispersion relation, that is

L(s) =
∞∑

m=0

[Y ′
m(a)]2 cosh{(s2 − γ2

m − 1)1/2b}
Cm(s2 − γ2

m − 1)1/2 sinh{(s2 − γ2
m − 1)1/2b} = 0. (20)

Despite its complicated form, it is a straightforward, if tedious, procedure to
numerically solve (20) and the roots sn, n = 0, 1, 2, . . . are the admissible axial
wavenumbers for the duct modes. Further, it is straightforward to show that:

(i) for every root sn there is another root −sn;
(ii) there is a finite number of real roots;
(iii) there is an infinite number of roots located on <(s) = 0,=(s) > 0;
(iv) there is an infinite number of roots with non-zero real and imaginary

parts.
In order that (1) represents only waves that travel in the positive x direction
and/or decay exponentially as x →∞, the convention is adopted that the +sn

roots have either <(sn) > 0,=(sn) = 0 or =(sn) > 0. They are ordered sequen-
tially, real roots first, starting with the largest real root and then by increasing
imaginary part. Thus, s0 is always the largest real root. It is important to note
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that for any complex root, say sc, lying in the first quadrant of the complex s-
plane, then −s∗c , where ∗ indicates the complex conjugate, also lies in the upper
half plane. Such pairs are positioned in the sequence of roots according to the
magnitude of their imaginary part and, furthermore, in the order sc followed by
−s∗c . It is worthwhile commenting that that these roots lie on curves reminis-
cent of the parabolic arcs observed in studies of 2-D elastic waveguides, see for
example Besserer & Malischewsky (2004). Finally, it is assumed that sn 6= 0
and that no root is repeated. Where appropriate, the notation ψn(y, z) will
henceforth be used to indicate that s has been replaced by sn in the function
ψ(s, y, z). Likewise, τm(sn) becomes τmn etc.

In the next two sections several properties of the eigenfunctions ψn(y, z),
n = 0, 1, 2, . . . and their derivatives ψny(a, z), n = 0, 1, 2, . . . are presented. In
§5, these results are used to solve two prototype scattering problems.

3 Analytic properties of the eigenfunctions

Lemma: The set of eigenfunctions ψn(y, z), n = 0, 1, 2, . . . satisfy the following
orthogonality relation

α

∫ b

0

∫ a

0

ψn(y, z)ψ`(y, z) dy dz = D`δ`n −
∫ b

0

{ψnyyy(a, z)ψ`y(a, z)

+ ψny(a, z)ψ`yyy(a, z) + 2ψny(a, z)ψ`y(a, z)} dz (21)

where Dn = −L′(sn)/(2sn) and δ`n is the Kronecker delta function.

Proof: This result (first presented by Lawrie & Abrahams, 2002) is verified by
substituting the series expressions for ψn(y, z) and ψm(y, z) (that is (19) with
s replaced by sn and sm respectively) into the left hand side of (21). On in-
terchanging the order of summation and integration and using (11), expression
(21) follows. ¤

Theorem: The eigenfunctions ψn(y, z) described above are linearly dependent
for 0 ≤ y ≤ a, 0 ≤ z ≤ b.

Proof: In order to prove this result it is necessary only to determine one infinite
sum of the eigenfunctions which is zero. Such a sum can be constructed by
analysing the families of poles in the integrand of a suitably chosen integral. The
method is the same as that used by Lawrie (2007). The appropriate integral is

I1(y, z, w) =
1

2πi

∫ ∞

−∞

sψy(s, a, w)Z1(s, y, z)
L(s)

ds = 0, (22)

where 0 ≤ y ≤ a, 0 ≤ w, z ≤ b and the path of integration is indented
above(below) any poles on the negative(positive) real axis. Note that ψy(s, a, w)
is obtained directly on differentiating (19) with respect to y , L(s) is given by
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(20) and

Z1(s, y, z) =
∞∑

m=0

Y ′
m(a)Ym(y) sinh(τm(s)z)

Cm(s2 − γ2
m − 1) sinh(τm(s)b)

, (23)

which, on differentiating with respect to z, yields ψ(s, y, z).
The integrand has three families of poles.
i) Those corresponding to the admissible wavenumbers sn, n = 0, 1, 2 . . . and

defined by L(s) = 0.
ii) Those corresponding to s2 − γ2

m − 1 = 0.
iii) A doubly infinite family of poles defined by sinh(τm(s)b) = 0. That is,

occurring when s = (1+γ2
m−(nπ/b)2)1/2 = νmn, m = 0, 1, 2, . . ., n = 1, 2, 3 . . . .

The path of integration can be deformed onto a semi-circular arc of radius
R >> 1 in the upper half plane. On evaluating the residue contributions for the
poles crossed and noting that there is no contribution from the arc as R →∞,
it is found that

−
∞∑

n=0

ψny(a,w)Z1(sn, y, z)
Dn

+
z

b

∞∑
m=0

Y ′
m(a)Ym(y)

Cm
(24)

+
2
π

∞∑
n=1

∞∑
m=0

Y ′
m(a)Ym(y)(−1)n sin(nπz/b)

Cm n

{
ψy(s, a, w)

L(s)

}

s=νmn

= 0.

It is straightforward to show that

lim
s→νmn

ψy(s, a, w)
L(s)

= (−1)n cos(
nπw

b
), (25)

and thus expression (24) becomes

∞∑
n=0

ψny(a, w)Z1(sn, y, z)
Dn

=
2
π

∞∑
m=0

Y ′
m(a)Ym(y)

Cm

∞∑
n=0

cos(nπw/b) sin(nπz/b)
εnn

(26)
where ε0 = 2 and εn = 1, n > 0. It is interesting to observe that this now takes
the form of a separable function: an infinite sum of the eigenfunctions Ym(y)
times an infinite sum of the functions sin(nπz/b). The latter can be evaluated,
thus
∞∑

n=0

ψny(a,w)Z1(sn, y, z)
Dn

=
∞∑

m=0

Y ′
m(a)Ym(y)

Cm
(27)

× {1−H(w − z) + H(w + z − 2b)−H(−z − w)}
where H(.) is the usual Heaviside function, defined such that H(0) = 1/2. On
differentiating this with respect to z, it is found that

∞∑
n=0

ψny(a,w)ψn(y, z)
Dn

=
∞∑

m=0

Y ′
m(a)Ym(y)

Cm
(28)

× {δ(w − z) + δ(w + z − 2b) + δ(−z − w)} .
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Thus, the sum of interest has been expressed as a product of a sum of the
eigenfunctions Ym(y) and some delta functions. Due to the linear dependence
of the functions Ym(y), see (13), the sum in the right hand side of (28) is in fact
zero. It follows that

∞∑
n=0

ψny(a,w)ψn(y, z)
Dn

= 0, 0 ≤ y ≤ a, 0 ≤ w, z ≤ b. ¤ (29)

This result demonstrates that the eigenfunctions ψn(y, z) are linearly de-
pendent. In fact, (29) is not the only such sum. On replacing ψy(s, a, w) with
ψyyy(s, a, w) in the integrand of (22) and repeating the above calculation, it is
found that

∞∑
n=0

ψnyyy(a,w)ψn(y, z)
Dn

=
∞∑

m=0

γ2
mY ′

m(a)Ym(y)
Cm

(30)

× {δ(w + z − 2b) + δ(−z − w) + δ(w − z)}

which on using (13) reduces to

∞∑
n=0

ψnyyy(a, w)ψn(y, z)
Dn

= 0, 0 ≤ y ≤ a, 0 ≤ w, z ≤ b. (31)

Lemma:The eigenfunctions ψn(y, z) described by (19)–(20) have the property

∞∑
n=0

ψn(y, z)ψn(v, w)
Dn

= {δ(v − y) + δ(v + y) + δ(v + y − 2a)} (32)

× {δ(w + z − 2b) + δ(z + w) + δ(w − z)},
0 ≤ v, y ≤ a, 0 ≤ z, w ≤ b.

Proof: As for theorem 3.2, this result can be proved by analysing the families
of poles in the integrand of a suitably chosen integral. The appropriate integral
is

I2(y, z, w) =
1

2πi

∫ ∞

−∞

sψsy(s, a, w)Z2(s, y, z)
L(s)

ds = 0, (33)

where 0 ≤ y ≤ a, 0 ≤ w, z ≤ b and the path of integration is indented
above(below) any poles on the negative(positive) real axis and

Z2(s, y, z) =
∞∑

m=0

Y ′
m(a)Y ′

m(y) sinh(τm(s)z)
Cmγ2

m(s2 − γ2
m − 1) sinh(τm(s)b)

. (34)

Note that, on differentiating (34) with respect to both y and z and putting
s = sn, ψn(y, z) is retrieved. The pole structure of this integrand is the same
as that for I1(y, z, w) and, on deforming the path of integration onto a semi-
circular arc of radius R >> 1 in the upper half plane and evaluating the residue
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contributions for the poles crossed, it is found that, as R →∞
∞∑

n=0

ψn(v, w)Z2(sn, y, z)
Dn

=
2
π

∞∑
m=0

Ym(v)Y ′
m(y)

Cmγ2
m

∞∑
n=0

cos(nπw/b) sin(nπz/b)
εnn

.

(35)
Again the variables have been separated, thus, the sum of interest has been
expressed in the form “a sum dependent on y times a sum that is dependent on
z”. It follows that
∞∑

n=0

ψn(v, w)Z2(sn, y, z)
Dn

=
∞∑

m=0

Ym(v)Y ′
m(y)

Cmγ2
m

(36)

× {1−H(w − z)−H(−z − w) + H(w + z − 2b)}.

Then, on differentiating with respect to both y and z, and using (9) and (15),
it is found that

α

∞∑
n=0

ψn(v, w)ψn(y, z)
Dn

= {δ(y − v) + δ(y + v) + δ(y + v − 2a)} (37)

× {δ(z − w) + δ(z + w) + δ(w + z − 2b)}. ¤

Theorem: Given that the coefficients

Bn =
1

Dn

{
α

∫ b

0

∫ a

0

f(v, w)ψn(v, w) dvdw

+
∫ b

0

[fy(a,w)ψnyyy(a,w) + fyyy(a,w)ψny(a, w) + 2fy(a,w)ψny(a,w)] dw

}

exist, where f(y, z) is any function that is three times differentiable on the
domain 0 ≤ y ≤ a, 0 ≤ z ≤ b and the eigenfunctions ψn(y, z) are defined by
(19)–(20), then the series

∞∑
n=0

Bnψn(y, z) (38)

converges point-wise to f(y, z) for 0 ≤ y ≤ a, 0 ≤ z ≤ b.

Proof: Assume that a suitably smooth function f(y, z), 0 ≤ y ≤ a, 0 ≤
z ≤ b can be expressed as an eigenfunction expansion in terms of ψn(y, z),
n = 0, 1, 2, . . .. Let FN (y, z) be the sum of the first N terms of this eigenfunction
expansion, thus

FN (y, z) =
N∑

n=0

Bnψn(y, z). (39)
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On substituting the coefficients Bn into (39), it is found that
N∑

n=0

Bnψn(y, z) =
N∑

n=0

1
Dn

{
α

∫ b

0

∫ a

0

f(v, w)ψn(v, w) dvdw (40)

+
∫ b

0

[
fy(a,w)ψnyyy(a,w) + fyyy(a,w)ψny(a,w)

+ 2fy(a,w)ψny(a,w)
]

dw

}
ψn(y, z)

which, after interchanging the order of differentiation and integration and then
letting N →∞, may be written as

∞∑
n=0

Bnψn(y, z) = α

∫ ∞

−∞

∫ ∞

−∞
F(v, w)

∞∑
n=0

ψn(y, z)ψn(v, w)
Dn

dvdw (41)

+
∫ b

0

{
fy(a,w)

∞∑
n=0

ψnyyy(a,w)ψn(y, z)
Dn

+
[
fyyy(a,w) + 2fy(a,w)

] ∞∑
n=0

ψny(a, w)ψn(y, z)
Dn

}
dw

where
F(v, w) = f(v, w)H(v)H(a− v)H(w)H(b− w). (42)

Now, on utilizing (29), (31) and lemma 3.3 it is found that
∞∑

n=0

Bnψn(y, z) =
∫ ∞

−∞

∫ ∞

−∞
F(v, w){δ(v − y) + δ(v + y) + δ(v + y − 2a)}

×{δ(w + z − 2b) + δ(z + w) + δ(w − z)} dvdw

= f(y, z), 0 ≤ y ≤ a, 0 ≤ z ≤ b. ¤ (43)

4 The derivatives of the eigenfunctions

It has been proved that a function f(y, z) can be represented as an eigenfunction
expansion in terms of the eigenfunctions ψn(y, z). The partial OR, (21), utilises,
however, only the orthogonality properties of the functions Yn(y). That is, it
neglects any orthogonality properties in the z dependence of ψn(y, z). Yet, on
differentiating (28) and (30) with respect to y, setting y = a and using (13) and
(14), the following two results are obtained:

∞∑
n=0

ψny(a,w)ψny(a, z)
Dn

= 0, (44)

and
∞∑

n=0

ψnyyy(a,w)ψny(a, z)
Dn

= δ(w + z − 2b) + δ(−z − w) + δ(w − z) (45)

11



where 0 ≤ w, z ≤ b.
Expressions (44) and (45) provide useful information about the set of func-

tions ψny(a, z). The first of these expressions indicates that these functions are
linearly dependent whilst the other hints at the existence of an OR for this set
of functions. Further, on differentiating (41) with respect to y, setting y = a
and using (29) and (44) it is found that

∞∑
n=0

Bnψny(a, z) =
∫ b

0

fy(a, w)
∞∑

n=0

ψnyyy(a,w)ψny(a, z)
Dn

dw

=
∫ ∞

−∞
Gy(a,w){δ(w + z − 2b) + δ(z + w) + δ(w − z)} dw

= fy(a, z), 0 ≤ z ≤ b, (46)

where
Gy(a,w) = fy(a,w)H(w)H(b− w). (47)

It may be deduced, from (46), that an arbitrary, suitably differentiable function
q(z) defined for 0 ≤ z ≤ b can be expressed as an eigenfunction expansion in
terms of the functions ψny(a, z). That is,

q(z) =
∞∑

n=0

Ãnψny(a, z) (48)

where

Ãn =
1

Dn

∫ b

0

q(w)ψnyyy(a, w) dw. (49)

At this point it is expedient to remark that, unlike (44) and (45), the sum

∞∑
n=0

ψnyyy(a, w)ψnyyy(a, z)
Dn

(50)

is neither convergent nor can it be expressed in terms of delta functions. This
an important implication for the class of function that can be represented as an
eigenfunction expansion of the form (38). If (41) is differentiated three times
with respect to y and y is then set to a, the divergent sum (50) arises. Thus, in
order for the eigenfunction expansion (38) to be three times differentiable, it is
necessary that fy(a, z) = 0, 0 ≤ z ≤ b. Expression (50) also impinges upon the
results that follow immediately below.

In view of (29) and (44) it is clear that the expansion (48) is not unique.
The coefficient Ãn, n = 0, 1, 2, . . . can be generalised as follows :

An =
1

Dn

∫ b

0

[
p(w)ψn(a, w) + q(w)ψnyyy(a,w) + λ(w)ψny(a, w)

]
dw (51)

where p(w) and λ(w) are suitable but arbitrary functions. Then q(z) is still given
by (48) but with Ãn replaced by An. A natural question to ask is: given the

12



coefficients An, can p(z) and λ(z) be constructed as an eigenfunction expansion
similar in form to (48)? In fact, it is relatively straightforward to construct
such a representation for the function p(z). On multiplying (51) by αψn(y, z)
and summing over n, then integrating with respect to y, 0 ≤ y ≤ a, and using
(37), it is found that

p(z) = α

∞∑
n=0

Anχn(z) (52)

where

χn(z) =
∫ a

0

ψn(y, z) dy =
∞∑

m=0

[Y ′
m(a)]2 cosh(τmnz)

Cmγ2
mτmn sinh(τmnb)

. (53)

It is a little more complicated, however, to construct the function λ(z). Since
the sum (50) is not defined, it is not possible to multiply through by ψnyyy(a, z)
and then sum. Instead it is necessary first to construct the coefficient

Gn =
1

Dn

∫ b

0

[
p(w)ψn(a,w) + q(w)ψnyyy(a,w)

]
dw, (54)

=
1

Dn

∞∑
m=0

Am(αTmn + Rnm)

where (48) and (52) have been used implying that

Rnm =
∫ b

0

ψnyyy(a, w)ψmy(a, w) dw (55)

and

Tmn =
∫ b

0

χm(w)ψn(a,w) dw. (56)

Then

An −Gn =
1

Dn

∫ b

0

λ(w)ψny(a, w) dw (57)

and it follows that

λ(z) =
∞∑

n=0

{
An − 1

Dn

∞∑
m=0

Am(αTmn + Rmn)

}
ψnyyy(a, z). (58)

The following example is included to demonstrate the effectiveness of the
three eigenfunction expansions (48), (52) and (58). It should be noted that q(z)
and λ(z) must satisfy q′(0) = λ′(0) = 0 and q(b) = q′(b) = λ(b) = λ′(b) = 0,
they are otherwise arbitrary. The function p(z), on the other hand must satisfy
p′(0) = p′(b) = 0. These restrictions are consistent with the corner conditions
satisfied by ψny(a, z), n = 0, 1, 2, . . . . Thus, the functions p(z), q(z) and λ(z)
are chosen to be: p(z) = 1 + (1 + cos(πz/b))2; q(z) = (z2 − b2/16)(z2/b2 − 1)4

and λ(z) = (4z2/b2 − 1)(36z2/b2 − 1)(z2/b2 − 1)6. The eigenfunctions used to
generate the series representations of these functions are those corresponding

13
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Figure 2: The functions a) p(z) and b) q(z) plotted with their eigenfunction
expansions.
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Figure 3: The function λ(z) and its eigenfunction expansion.

to a duct with physical dimensions ak−1 = 0.15m, bk−1 = 0.31m and bounded
by an aluminium plate of thickness 0.002m. The frequency is 85 Hz, for which
the dispersion relation has two real roots. Figures 2 a) and b) show the func-
tions p(z) and q(z) together with their eigenfunction representations (evaluated
using 30 and 45 terms respectively). Figure 3 shows λ(z) and its eigenfunc-
tion representation evaluated using 60 terms. In each case the eigenfunctions
representations overlie the actual functions. Note that, although it is required
only that q(z) and λ(z) have a zero of order two at z = b, the eigenfunction
expansions generally converge faster the higher the order of this zero.

5 Two prototype scattering problems

In this section the use of (21) and (45) for solving two typical scattering prob-
lems is demonstrated. The problems are drawn from a class often encountered
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when using mode-matching to solve a two part problem involving acoustic prop-
agation in a duct - though normally for the two-dimensional case, for example
Lawrie & Kirby (2006). For both prototype problems the duct is semi-infinite,
lying in the region x > 0, but in all other respects is identical to that described
at the beginning of §2. In the first case the scattered field is generated by
a prescribed pressure distribution applied to the surface x = 0, 0 ≤ y ≤ a,
0 ≤ z ≤ b and plate is simply supported along x = 0, 0 ≤ z ≤ b whilst for the
second, the velocity is prescribed and spring-like edge conditions are applied. In
both cases, numerical results are generated for a duct with physical dimensions
ak−1 = 0.15m, bk−1 = 0.31m and bounded by an aluminium plate of thickness
0.002m.

Prescribed pressure
The fluid velocity potential can be expressed in terms of the eigenmodes ψ`(y, z)
as

φ(x, y, z) =
∞∑

`=0

B`ψ`(y, z)eis`x (59)

where the amplitude B` is determined from the applied pressure and the “pin-
jointed” edge conditions:

φy(0, a, z) =
∞∑

`=0

B`ψ`y(a, z) = 0, 0 ≤ z ≤ b; (60)

φyxx(0, a, z) = −
∞∑

`=0

B`s
2
`ψ`y(a, z) = 0, 0 ≤ z ≤ b. (61)

Since the edge conditions are applied on x = 0, y = a for 0 ≤ z ≤ b, it follows
that φyz(0, a, z) = φyzz(0, a, z) = 0, 0 ≤ z ≤ b. Thus, due to Helmholtz’s
equation, φyxx(0, a, z) + φyyy(0, a, z) = 0 which enables the edge conditions to
be expressed as φy(0, a, z) = φyyy(0, a, z) = 0, 0 ≤ z ≤ b. On multiplying (21)
by B` and summing over ` and applying the edge conditions, it is found that

Bn =
α

Dn

∫ b

0

∫ a

0

f(y, z)ψn(y, z) dy dz (62)

in which f(y, z) is the (known) non-dimensional pressure applied to the end face
x = 0, 0 ≤ y ≤ a, −b ≤ z ≤ b.

To demonstrate the above solution, numerical results are presented for the
case in which the pressure distribution applied at x = 0 is

f(y, z) =
(

4z2

b2
− 1

) (
1 + cos(

πz

b
)
)2

(
y2

2a
− a cosh(y/a)

sinh(1)

)

and the frequency is 155 Hz (for which the dispersion relation has three real
roots). Figures 4 a) and 4 b) show the “plate displacement” φy(x, a, z) obtained
using (59) with the coefficients given by (62). A section of the displacement
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Figure 4: Pin-jointed plate: a) and b) show the real and imaginary parts of
φy(x, a, z), 0 ≤ x ≤ 2, −b ≤ z ≤ b, (b=0.879); c) and (d) show the real and
imaginary parts of the section φy(x, a, b/3), 0 ≤ x ≤ 1.
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(taken in the xy-plane at z = b/3) is shown in figures 4 c) and d). This con-
firms that, as expected for a simply supported plate, the plate displacement is
zero whilst the gradient is non-zero at x = 0. Note, for this example, all the
eigenfunction expansions have been evaluated using 50 terms. Note also that
the applied pressure is separable,“even” in z and has been chosen such that
the z dependence satisfies the constraints discussed in §4, that is, f(y, 0) 6= 0
and f(y, b) = fz(y, b) = 0. In addition, to these constraints it is necessary that
fy(0, z) = fy(a, z) = 0. The first of the latter two is a reflection of the fact that
ψny(0, z) = 0, n = 0, 1, 2 . . . and the second, as mentioned above, is required in
order that fyyy(a, z) can be expressed as an eigenfunction expansion in terms
of ψnyyy(a, z), n = 0, 1, 2, . . ..

Prescribed velocity
Similarly to the above case, the fluid velocity potential can be expressed in terms
of the eigenmodes ψn(y, z) as

φ(x, y, z) =
∞∑

n=0

{
Bn − 1

snDn

∫ b

0

λ(w)ψny(a,w) dw

}
ψn(y, z)eisnx (63)

where λ(w) is unrelated to that of §4. The integral in (63) is an arbitrary
eigensolution and, in view of (29), it is clear that the x derivative of this term
vanishes when x = 0. Thus, the boundary condition at x = 0, 0 ≤ y ≤ a,
−b ≤ z ≤ b is expressed as

φx(0, y, z) =
∞∑

n=0

Bnisnψn(y, z) = f(y, z) (64)

where f(x, y) is the (known) velocity distribution applied to the end of the
duct. The edge conditions to be applied are a spring-like condition, that is
φyxxx + βφy(0, a, z) = 0, 0 ≤ z ≤ b where β is proportional to the spring
stiffness, together with the zero gradient condition φyx(0, a, z) = 0, 0 ≤ z ≤ b.
Note that, as β → ∞ this pair of conditions tend to those for a clamped edge.
Note also that the clamped edge conditions cannot be applied directly as they
give rise to a Fredholm integral equation of the first kind, for which it is unclear
if a unique solution exists.

Thus, on multiplying (21) by B`is`, summing over ` and applying the zero
gradient edge condition,

Bnisn =
1

Dn

∫ b

0

∫ a

0

f(y, z)ψn(y, z) dy dz+
1

Dn

∫ b

0

fyyy(a, z)ψny(a, z) dz. (65)

Analogous to the previous problem, φyxxx(0, a, z)+φxyyy(0, a, z) = 0 and hence
the remaining edge condition can be expressed as φxyyy(0, a, z)− βφy(0, a, z) =
0, 0 ≤ z ≤ b which, on using (63) can be expressed as an integral equation. It
is found that

iλ(z) = fyyy(a, z)− β

∞∑
n=0

Bnψny(a, z) + β

∫ b

0

λ(w)
∞∑

n=0

ψny(a, w)ψny(a, z)
snDn

dw (66)

17



where (45) has been used in order to isolate the unknown function λ(z) on the
left hand side and Bn is given by (65). This is a Fredholm integral of the second
kind and is straightforward to solve numerically.

To demonstrate the above solution, numerical results are presented for the
case in which the velocity distribution applied at x = 0 is f(y, z) = (z2/b2 −
1)6(y2/a2 − 1)2. The frequency is taken to be 50 Hz (for which the dispersion
relation has only one real root). Figure 5 shows the function λ(z), 0 ≤ z ≤ b
obtained by solving (66) numerically. It is worth noting that λ(z) satisfies the
conditions λ′(0) = 0 and λ(b) = λ′(b) = 0, and that, in order to ensure this, it
was necessary to choose the applied velocity distribution to satisfy fyyy(a, b) = 0.
Figures 6 a) and b) show the plate displacement φy(x, a, z) obtained using (63)
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Figure 5: The real and imaginary parts of the function λ(z) evaluated using
(66).

having determined λ(z) with β = 100000. It is clear that φy(0, a, z) ≈ 0, −b ≤
z ≤ b. A section of the plate displacement (taken in the xy-plane at z = b/3) is
shown in figures 6 c) and d). This confirms that the plate displacement is close to
zero and the gradient is zero at x = 0. Note, for this example, the eigenfunction
expansions have been evaluated using a maximum of 45 terms. Finally, figure 7
shows the absolute value of the non-dimensional plate displacement at the edge
x = 0 plotted against β for three fixed values of z, that is: z = 0, b/3, 3b/4.
When β = 0 the spring-like condition reduces to the zero force condition, whilst
as β increases it is clear that, after an modest initial augmentation, the edge
displacement tends to zero.

6 Discussion

The initial aim of this article was to establish the analytic properties of the
eigenfunctions ψn(y, z), n = 0, 1, 2 . . .. This has been accomplished in sections
three and four where several pertinent results are derived. In §3, theorem 3.2
proved that the eigenfunctions ψn(y, z), n = 0, 1, 2 . . . are linearly dependent.
It is interesting to note that, although non-separable themselves, certain sums
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Figure 6: Spring supported plate with β = 100000: a) and b) show the real and
imaginary parts of φy(x, a, z), 0 ≤ x ≤ 2, −b ≤ z ≤ b, (b=0.284); c) and (d)
show the real and imaginary parts of the section φy(x, a, b/3), 0 ≤ x ≤ 1
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involving products of the eigenfunctions ψn(y, z) (and/or their derivatives) can
be reduced to a separable form which enables them to be evaluated using known
properties of the underlying two-dimensional system. Sums (29) and (31) are
of this form and, furthermore, are valid for 0 ≤ w ≤ b which enables arbitrary
eigensolutions, such as that used in (63), to be assembled. These eigensolutions
satisfy (2)–(7) and are useful for constructing solutions that satisfy specified edge
conditions, such as the spring-like condition used in §5. Theorem 3.4 proved
that, with appropriate choice of the amplitude coefficients, an eigenfunction
expansion of a suitable function, f(x, y), converges point-wise to that function.
This result is particularly significant in that it justifies the use of such expansions
as a means of representing a wide class of functions.

In §4 the derivatives of the eigenfunctions were investigated and new or-
thogonality properties were presented. These results are not expressed in the
form of an orthogonality relation (indeed it is not clear whether an OR, as such,
exists). Instead it was demonstrated that three suitably smooth functions p(z),
q(z) and λ(z) can be expressed as an eigenfunction expansion in terms of the
functions χn(z), ψny(a, z) and ψnyyy(a, z) respectively, but with the same (or
closely related) amplitude coefficient in each case.

The second aim of this article was to investigate the potential use of the
eigenfunctions ψn(y, z) in mode-matching problems. This issue is addressed
in §5 where two prototype problems have been solved. These prototypes have
been selected to be representative of the class of problem that arises in a typical
mode-matching problem - in which the pressure and velocity must usually be
enforced at an interface between two adjacent duct sections. Here the interface
is taken to lie at x = 0. The first prototype deals with a prescribed pressure
and pin-jointed edge conditions and this is solved exactly using the partial OR,
(21). The second prototype deals with a prescribed velocity and spring-like edge
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conditions which tend to the usual clamped conditions as the spring constant
increases. The solution is constructed as an eigenfunction expansion containing
an additive eigensolution, see (63), which is expressed in terms of an unknown
function λ(z). On applying the edge conditions a Fredholm integral equation
is obtained which is then solved numerically to determine λ(z) - and hence the
solution to the problem.

The purpose of this paper is not to present a parametric investigation of
the prototype problems, but instead to assess whether the eigenfunction expan-
sions considered herein provide a viable solution method to three dimensional
mode-matching problems. Nevertheless, numerical results showing the plate
displacement are presented for both prototype problems thereby demonstrat-
ing that this approach is indeed a potentially powerful tool for tackling three-
dimensional mode-matching problems. There are, however, some issues that
need to be addressed. For example, sufficient roots of the dispersion relation
must be found in order for the method to be accurate. In fact, it is generally not
difficult to find the complex roots but obtaining the imaginary roots is a tedious
procedure. The reason for this is the structure of L(s). When s is imaginary
L(s) has an infinite number of asymptotes and the zeros generally lie very close
these and are consequently difficult to locate numerically due to the rapidly
changing gradient. Furthermore, due to the poles of L(s) it is difficult to apply
the argument principle as a means of testing whether all roots in a given region
of the complex plane have been found. On account of (44) and (45), however,
the quantity Rnm, (55), has some interesting properties, one of which is

Rnm =
∞∑

`=0

Rn`R`m

D`
. (67)

The sum on the right is highly sensitive to missing roots and, thus, this ex-
pression provides a useful check for whether sufficient roots of the dispersion
relation have been found. With these points in mind, however, it would be
useful to have some means of predicting the number and location of roots. A
Weyl series, see for example Howls & Trasler (1998), would be helpful in this
respect. Alternatively, following Lawrie & Kirby (2006), it may be possible to
construct a “root-free” approach for certain duct geometries.

In summary, this article presents an analytic investigation into a class of
eigenfunctions that is potentially of use in mode-matching problems involving
the propagation of sound in 3-D rectangular ducts. The thrust of the article is
in establishing the underlying properties of these eigenfunctions. It remains to
be seen whether the proposed methodology is numerically efficient when applied
to problems of real engineering significance - particularly when compared with
modern numerical approaches such as the semi-analytic finite element (SAFE)
method, see Castaings & Lowe (2008) and Moreau et al.(2006). Nevertheless,
based on such comparisons for the 2-D case, see Kirby & Lawrie (2005), it is
anticipated that this 3-D mode-matching method should prove a useful quali-
tative tool whilst simultaneously providing a benchmark against which to test
a variety of numerical strategies.
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