
Minimizing the cost of Fault Location when testing from a
Finite State Machine

Robert M. Hierons
Department of Mathematical and Computing Sciences, Goldsmiths College, University of London
Email: r.hierons@gold.ac.uk

Abstract
If a test does not produce the expected output, the incorrect output may have been
caused by an earlier state transfer failure. Ghedamsi and von Bochmann [1992] and
Ghedamsi et al. [1993] generate a set of candidates and then produce further tests to
locate the failures within this set. We consider the special case where there is a state
identification process that is known to be correct. A number of preset and adaptive
approaches to fault location are described and the problem of minimizing the cost is
explored. Some of the approaches lead to NP-hard optimization problems for which
possible heuristics are suggested.
Keywords: Finite state machine, fault location, adaptive testing, minimal length test.

1. Introduction
The use of Finites State Machines (FSM) to model systems has lead to much

interest in deriving tests from them (e.g. Aho et al. [1988], Petrenko et al. [1994b],
Hierons [1996], Ural [1997], and Hierons [1997]). Most work has concentrated on
developing tests with certain properties and, possibly, finding the shortest such test.
Section 2 will provide a brief introduction to testing from FSM.

If an incorrect output, called a symptom, is detected during testing it may have
been caused by either an incorrect output (an output fault) or an earlier incorrect state
transfer (a state transfer fault). It is therefore important to apply a strategy to locate
the failure that occurred.

Ghedamsi and von Bochmann [1992] and Ghedamsi et al. [1993] generate a
set of transitions whose failure could explain the behaviour exhibited (these
transitions are called candidates). They then produce tests (called distinguishing
tests) in order to find the faulty transitions within this set. The problem of generating
candidates is briefly considered, in the situation in which there has been only one
failure, in Section 3.

In this paper the special case, where there is a state verification process that is
known to be correct, will be investigated. Algorithms, that generate distinguishing
tests with low order polynomial size, will be given for both single and multiple faults.

Several algorithms for generating distinguishing tests, in the presence of one
fault, will be considered in Section 4. In Section 5 the problem of minimizing the
cost is discussed. Some of these optimization problems are NP-hard and possible
heuristics are discussed in Section 6.

While the algorithms given assume that the state verification process is
correct, sometimes variants of them can be used when the state verification process
contains candidates. This is examined in Section 7.

The problem of fault location in the presence of multiple faults is discussed in
Sections 8 and 9. It transpires that many of the approaches discussed for single faults
can be extended to this more general case. While Ghedamsi et al. [1993] provide a
general solution to the problem of fault location, their algorithm suffers from
combinatorial explosion and produces a distinguishing test whose size is exponential

1

lbsrjpm
Cross-Out

lbsrjpm
Cross-Out

(in the number of transfer faults and the number of test cases with symptoms). We
show that this combinatorial explosion can be avoided if there is a state verification
process that is known to be correct. They also assume that all faults have been
reached: we introduce one approach that does not assume this. Finally, in Section 10,
conclusions are drawn.

2. Preliminaries

2.1. Finite state machines
A finite state machine (also called a Mealy Machine) is defined by a tuple (S,T,s0, ,)
where S is a finite set of states, T is a finite set of transitions between states, s0 is the
initial state, is the finite input alphabet, and is the finite output alphabet. Each
transition is defined by a triple (si,sj,in/out) in which si is the initial state of the
transition, sj is the final state of the transition, and in/out is the input/output
behaviour. A graphical representation of the FSM given in Aho et al. [1988] is shown
in Figure 1. This FSM will be denoted G throughout this paper. A general FSM with
n states will be denoted M=(S,T,s0, ,).

A number of systems can be modelled by FSM, an example being the control
section of a communications protocol (see e.g. Huang and Hsu [1994]). It has been
noted that many Process Algebra specifications can be converted into an FSM
(Petrenko et al. [1994a]).

An FSM is said to be deterministic if there are no pairs of transitions that have
the same initial state and input. The transitions of a deterministic FSM can be
represented by a pair of functions and . The function gives the next state while
gives the output: if the system is in state si and a transition with input in is executed
the system moves to state (si,in) and produces output (si,in). These functions can be
extended in a natural way by taking their closures, getting functions * (type S * S)
and * (type S * *).

 b/y
 V2 V3

a/x b/x

 c/y
 b/x V5 b/x

a/z
 a/x

 V1 V4
 c/y

 a/x

 Figure 1

An FSM is said to be completely specified if for each input in and each state si
there is a transition tj from si that has input in. If an FSM F is not completely
specified, a completely specified FSM F’ can be produced from F by either adding an
error state or by adding null actions. An example is the FSM G in Figure 1 which

2

can be converted to a completely specified FSM G’ by adding the transitions
(V2,V2,c/null), (V3,V3,a/null), (V4,V4,c/null), (V5,V5,b/null) and (V5,V5,c/null).

Two states of an FSM F are said to be equivalent if and only if they have the
same set of valid input sequences and for each allowed input sequence they allow the
same set of output sequences. If an FSM F has no pair of equivalent states it is said to
be minimal.
 A directed graph (digraph) is defined by a set of vertices and a set of directed
edges between the vertices. Labels can be added to the edges. Thus, an FSM can be
represented by a digraph in which the vertices correspond to states and the edges,
labelled by the input/output, correspond to the transitions.

An FSM is strongly connected if, given any ordered pair of states (si,sj), there
is a sequence of transitions that will move the FSM from si to sj. See e.g. Kohavi
[1978] for more information on FSM. It will be assumed throughout this paper that
any FSM considered is deterministic, minimal, completely specified, and strongly
connected.

2.2. State verification
In order to check the final state of a transition it is necessary to further execute the
system. There are three main strategies (see e.g. Sidhu and Leung [1988] or Cavalli
et al. [1994]) which use:

1. Distinguishing sequence (DS)
2. Unique Input/Output (UIO)
3. Characterizing set

A distinguishing sequence is an input sequence that produces a different output for
each state. It is easy to check that the FSM G’ has a number of distinguishing
sequences, including ba.
A unique input/output sequence X for a state si is an input sequence that has the
property that, for all sj si

*(si,X) *(sj,X). Although X can verify si it need not be
able to verify any other state. Clearly a DS is a UIO for each state. It is noted in
Kohavi and Kohavi [1968] that it is possible to use an adaptive DS if it is not
necessary to produce a preset test sequence and, similarly, adaptive UIOs could be
used.

Some FSM do not have either a DS or a UIO for each state. Every minimal
FSM does, however, have a characterizing set (see e.g. Chow [1978]). A
characterizing set W is a set of input sequences with the property that, if every
sequence is executed from some state si, the set of output sequences verifies si. It is
noted by Fujiwara et al. [1991] that for some states not every element of W is
required: some subset can be used (the Wp method). This can reduce the effort
involved in verifying a state.

In this paper it will be assumed that each state of any FSM used has a UIO
that is known to be correct. This knowledge may have been derived from testing.
The approaches outlined can, however, be extended to the case where a characterizing
set is used.

2.3. Conformance testing
When testing from an FSM model it is assumed that the implementation under test
(IUT) can be modelled by an FSM and thus that testing involves comparing the

3

behaviour of two FSM. Often a failure can be categorized as either an output failure
or a state transfer failure. Naturally, this categorization requires a close
correspondence between the states of the two FSM (the existence of a valid state
identification process makes this categorization clear).

It is possible to test a transition by moving to the initial state of the transition,
applying the transition, and then checking the final state (e.g. Chow [1978]). Aho et
al. [1988] instead looked at the question of how test subsequences, of the form of a
transition followed by a UIO, can be combined in a manner that minimizes the length
of the total test sequence. They describe the problem as an instance of the Rural
Chinese Postman Problem (RCPP). The RCPP is the problem of producing a
minimal tour that passes through some given set of edges, in this case edges that
represent test subsequences.

While the RCPP is known to be NP-complete (see Lenstra and Kan [1976]),
Aho et al. [1988] apply a polynomial algorithm that produces an optimal solution
under certain conditions. Two sufficient conditions for this algorithm to work are that
either the FSM has a reset operation (some input that takes every state to the initial
state) or that the FSM has a loop (some transition with the same initial and final state)
for each state. While these conditions are sufficient they are not necessary.

Yang and Ural [1990] note that the test subsequences may overlap and utilize
this to reduce the test sequence length. Hierons [1996] represent this overlap using
invertible transitions, where a transition (si,sj,x/y) is invertible if it is the only
transition entering state sj with input x and output y. Invertibility is extended to
sequences by Hierons [1997].

3. Single Faults: Generating Candidates

3.1. Introduction
In this section it will be assumed that the IUT has only one fault. The results will be
generalized to multiple faults in Sections 8 and 9. For the rest of this paper it will be
assumed that some test set TS={tc1,...,tcp}, where the tci are test cases, has been
executed. A test case tci consists of a sequence of expected transitions ti,1,...,ti,m(i),
starting at s0, with input values xi,1,xi,2,...,xi,m(i) and expected output yi,1,yi,2,....,yi,m(i).
When executed, tci produces actual output zi,1,zi,2,...,zi,m(i). A symptom is any i,j such
that yi,j zi,j. As tests after a symptom will be ignored, without loss of generality it will
be assumed that symptoms occur in the final transitions of test cases only. The
approach outlined in this section is similar to that given in Ghedamsi and von
Bochmann [1992].

If the input/output of a symptom is not allowed by any state, there must have
been a failure in this execution, but otherwise an earlier state transfer failure may
have lead to an incorrect state. It is thus necessary to develop the set of transitions
whose failure could explain the behaviour exhibited.

If a system that was intended to implement the FSM G’, defined earlier, was
tested with the input sequence abaab and produced the output sequence xxxzy, rather
than the expected output sequence xxxzx, this situation would exist. The transition b/y
is valid from some states, though not the expected state. There are therefore two
possibilities: either the last execution was incorrect or some previous transition lead
to an incorrect state.

4

3.2. Generating Conflict Sets
For a symptom, at input xi,m(i) in test case tci, there is an initial candidate list
consisting of {xi,j|1 j m(i)}. Strategies that can reduce this set without further testing
will now be considered.

If some subsequence of the observed behaviour is not allowed from any state
of the model there must have been at least one failure in this subsequence. The
smallest such subsequence is found. This is defined by the largest m giving
input/output behaviour (xi,m/zi,m,...,xi,m(i)/zi,m(i)), and corresponding set of transitions
{ti,m,....,ti,m(i)}, that is not allowed from any state. As there is only one fault, one of
these transitions was erroneous. This set is called a conflict set.

In the earlier example, where output xxxzy was produced from input abaab, it
is possible to apply this approach. In this case there is no state in the model from
which the sequence a/z,b/y is valid and therefore there must be a failure in at least one
of these transitions. This reduces the search space for the failure to 2 of the 5
transitions.

3.3. Generating Diagnostic Candidates
The conflict sets can now be considered as a group. An initial tentative candidate set
is given by the intersection of the conflict sets.

If only one transition, to, provides symptoms then this is a possible candidate.
The tests are checked to see whether they are consistent with to being the fault: if all
occurrences of to produce the same output then to is included in the set of candidates.

If there is more than one transition that produces a symptom then, as there is
only one fault, the fault must be a state transfer fault. For every transition ti that may
have a transfer fault the set, EndStatesi, of possible alternative final states for ti is
found. The final set of candidates, TE, is the set of the ti for which EndStatesi {} and
possibly a transition that may have an output fault. Algorithms for finding these sets
are to be found in Ghedamsi and von Bochmann [1992].

4. Locating Single Faults

4.1. Overview
Some set, TE, of candidates t1,...,tq has been found. In order to locate the fault it is
necessary to further execute the system. Two main strategies that will be considered:

1. Executing subsequences ti,1,...,ti,k in each case verifying the final state.
2. Individually testing the transitions from TE.

These approaches will now be discussed and minimizing the cost, when using the
second approach, will be discussed in more detail in Section 5. It should be noted that
Ghedamsi and von Bochmann [1992] and Ghedamsi et al. [1993] do not consider
minimizing the cost of fault location.

4.2. Executing subsequences
Given a test case tci that contains a symptom at transition ti,m(i) and a number of
possible candidates ti,m,...,ti,m(i) in TE it is possible to develop tests by checking the
final state of subsequences of ti,m,...,ti,m(i). Suppose s is the initial state of ti,m. One
approach is to initially execute (xi,m,...,xi,m(i)-1) from s and check the final state, if it is
possible for there to have been an output fault. If this is not the expected state there

5

has been a failure in this subsequence and so (xi,m,...,xi,m(i)-2) is executed from s and its
final state checked. This can be repeated until a failure has been isolated. As there is
only one fault, it is sufficient to apply this to any test case that contains a symptom.

This process is like searching an ordered list of length O(m(i)-m). Suppose T
is an upper bound on the test sequence length. If UIOs are used and the length of
these is bounded above by u then the test length is of O((T+u)(m(i)-m)). If a
characterizing set is used, this has O(n) elements each of O(n) length and thus the test
length is of O(n(m(i)-m)(n+T)).

Searching an ordered list in a linear manner is relatively inefficient. This
suggests the use of an adaptive process in which a binary search is used. The first
step is to check the final state produced by executing (xi,m,...,xi,m(i)-1) from s, if there is
a possible output fault. At each subsequent stage the state of the midpoint of the
subsequence being considered is checked. If this is correct, the second half of the
subsequence is now considered and otherwise the first half is used. This proceeds
until the subsequence being considered has length one: the fault has been located.

If UIOs are being used the size of the test set is of order O((u+T)log2(m(i)-m))
as there are O(log2(m(i)-m)) steps. If a characterizing set is being used the test size is
of O(n(n+T)log2(m(i)-m)).

If there is a state identification process that is known to be correct and a
reliable reset, this approach to locating the failure can always be applied. This
approach may therefore be particularly useful in cases where it is difficult to test the
individual transitions without using transitions from TE.

4.3. Individually testing the elements of TE

If T is large relative to n, testing subsequence may be inefficient as it is necessary to
execute a subsequence with length O(T) in order to reach a transition to be tested.
Instead, to test a transition ti TE it is possible to use a sequence that takes the system
to head(ti), executes x, and then executes a UIO for tail(ti). This process must avoid
other (untested) candidates. If there is a possible output fault it is natural to initially
test this, but if this is not erroneous some approach to testing the other transitions is
required. The following strategies will be considered:
1. testing the transitions separately, each time resetting after the test (testing with

reset).
2. producing one sequence containing tests for every candidate.

The first approach is similar to that given in Ghedamsi and von Bochmann
[1992], though they do not consider the problem of minimizing the cost. The
optimization problem is simpler for the former, and will be discussed in Section 5.
The optimization problem for the latter will be discussed in Section 5 and further
developed in Section 6.

5. The Cost of Locating Single Failures

5.1. Introduction
It will be assumed throughout the rest of Sections 5 and 6 that there is a state transfer
fault (if there is a possible output fault it has been checked). The cost of testing
candidates separately will be investigated.

There are two possible costs to consider: the worst case and the expected case.
Both will be investigated but, as the expected case requires the existence of a
probability distribution, the generation of such a distribution will first be discussed.

6

5.2. Assigning a probability
For the rest of this section it will be assumed that the only knowledge present, that
can be used to derive a probability, is the behaviour exhibited. If there is other
information, such as it being known that certain parts of the system are more likely to
contain faults than others, this can be used: the rest of the paper only assumes that
some probability of failure has been assigned to each ti TE.

The mutant FSMs, that are consistent with the behaviour exhibited and differ
only in one state transfer, can be found. Unless there is extra information it will be
assumed that these mutants are equiprobable. Thus, for a candidate ti, the proportion
of mutants that have ti as a failure gives the probability that ti is erroneous.

The number of mutants is proportional to the number of alternative final states
for ti that allow the observed behaviour. The probabilities, pi, can be defined by:

pi=
| |

| |

EndStates

EndStates

i

i
t Ti E

If there is additional information, it is possible to adjust these values.

5.3. Ordering testing with reset

5.3.1. Determining the optimal ordering
When testing with reset the worst case cost varies very little with the order of testing
as it is effectively the cost of testing every transition. The expected effort will thus be
considered.

For the purposes of optimization, the cost of testing a transition can be
considered to be zero if the transition is erroneous, as this transition must be tested in
order to find the failure. The cost is thus non-zero only if the transition is correct
(probability (1-pi)), in which case the cost is given by the length of the sequence
required to test ti, which will be denote c(ti). If the shortest path, avoiding other
candidates, to the initial state of ti is denoted path(ti) and the UIO used for the final
state of ti is ui then:

c(ti) = |path(ti)|+|ui|+2

If head(ti) cannot be reached while avoiding other candidates, c(ti) is infinite. The
expected cost of testing ti is given by:

C(ti)=(1-pi)c(ti)

The transitions are tested in order of increasing C(ti). If it is only necessary to avoid
untested candidates, these values can be updated after each test, as the |path(ti)| can
change. Clearly there will always be an order that allows untested transitions to be
avoided, as the UIOs are known to be correct.

5.3.2. Determining the expected cost
Sometimes it is useful to have an estimate of the cost of fault location. In order to
produce an expected cost of testing, the expected cost of testing an erroneous

7

transition is required. Given some ti TE an estimate of the cost of testing ti is
produced by, for each x EndStatesi, determining the cost of testing ti if the final
(erroneous) state actually is x. Given x EndStatesi and UIO uk=a1,...,ar for tail(ti),
the expected number of transitions required to distinguish x from head(ti) is given by:

ident(tail(ti),x,ui) = min{b| *(x,a1,...,ab) *(tail(ti),a1,...,ab)}

Thus the expected number of transitions required to determine that the final state of ti
is erroneous is:

Fail t u
ident tail t x u

EndStatesi i

i i
x EndStates

i

i(,)
((), ,

| |

)

Let the set U give a UIO for each state and contain UIO ui for tail(ti). Then the
expected cost of testing ti, if ti is erroneous, is given by:

D(ti,U) = |path(ti)|+1+ Fail(ti,ui)

If the transitions are tested in order , which is a permutation of (1,...,q), and the
incorrect transition is t (i), the following gives the expected cost of testing:

E(,i,U) = D(t (i),U) +
j

i
jc t

1

1
()()

Thus, given permutation and UIO set U, the expected cost of testing in the order
is:

EC(,U) = p
i

q

1 (i)E(,i,U)

5.4. Testing without reset

5.4.1. Overview
When testing without reset the test is made up of test subsequences, each
corresponding to some ti TE followed by a UIO, connected to form a single test
sequence. The worst case and expected case costs will be investigated.

5.4.2. Worst and expected case analysis
It will be assumed that if one of the candidates is an output fault then this has been
tested and removed from TE and that by removing the candidates from M we do not
disconnect M.

Given a valid permutation the problem of finding a valid test sequence can
be broken down into a number of sub-problems, one for each i, 1 i q. These sub-
problems are of the form: test the transition t (i) while avoiding (untested) candidates.
The test sequence required to test the transition t (i) with UIO set U, and in order
shall be denoted test(,t (i),U). This represents the shortest route from the final state
of the UIO used for t (i-1) to the initial state of t (i) followed by t (i) followed by some
UIO u (i). All this must avoid the set of elements from TE that are untested.

8

For each UIO, test(,ti,U) can be produced in O(n2). The cost of testing the
first i transitions, if they are correct, in the order given by is:

Cost(,i)= 1 j i|test(,t (j),U)|

The worst case analysis is given by this with i=q, adjusted to account for the fact that
the final transition is erroneous. Thus the worst case is given by:

WC(,U) = Cost(,q)+Fail(t (q),u (q))-|u (q)|

This can be calculated in O(n2|TE|). The problem of finding the optimal order
is, however, potentially much more difficult. This problem is simplified if all
candidates are avoided throughout testing: the problem is then an instance of the
RCPP. Possible heuristics for the general case are discussed in Section 6. When the
problem is an instance of the RCPP it may be possible to use any overlap that exists
between the test subsequences, possibly using approaches similar to those described
in Yang and Ural [1990], Hierons [1996], and Hierons [1997].

The expected cost of testing may also be considered. The expected cost is
given by:

ECost(,U) = p
i

q

1
(i)(Cost(,i)+Fail(t (i),u (i))-|u (i)|)

This can be calculated in O(n2|TE|). The problem of producing the order that
minimizes the expected cost is therefore: find a permutation of (1,...,q) that
minimizes ECost(,I). Again, possible heuristics are discussed in Section 6.

5.5. Test Length
When testing with one test sequence or testing using reset, each subsequence length is
of O(n+u) if UIOs are used. If a characterizing set is used, the subsequences are all of
length O(n) and thus the subsequences for a single candidate have length of O(n2).
When using UIOs the overall test length is of O(|TE|(n+u)) and when using a
characterizing set the overall test length is of O(|TE|n2).

It should be noted that these orders apply even if there is no attempt to find the
optimal permutation. Given any permutation, , a test of this order can be found in
O(n2|TE|) time.

6. Heuristics to minimize the expected cost
Given a permutation the problem of calculating the expected and worst case costs
are of O(|TE|n2). Clearly, it is not usually feasible to calculate this for every
permutation.

Two cases will be considered: either avoiding TE or avoiding untested
elements of TE in testing. The latter may produce shorter test sequences but is more
complex as the allowed connecting paths between subsequences depends upon the
position within the test.

A number of heuristics, such as Tabu search and Hill Climbing, are based
upon making an initial guess and then making a number of small changes. The initial
guess would be some permutation and the small changes would be in the form of

9

swapping adjacent elements. For each swap, the change in expected cost is
calculated. There are two possible approaches to generating the change in expected
cost:

1.Generating these separately.
2.Initially generating a matrix of distances in (S,T\TE,s0, ,)) and calculating

the costs from this.
The second approach can only be applied when avoiding the use of all

candidates in testing and may thus be suboptimal.
The first approach gives complexity O(n2) for each swap. The second

approach gives an initial effort of O(n3) (see e.g. Gibbons [1985]) but then each swap
has complexity O(1). If, as is usual, many swaps are required, the second approach
may be preferable.

7. State Identification Sequences containing elements of TE
Some states may not have UIOs that are known to be correct. This adds a dependency
between the transitions: it may be necessary to check some set of transitions before
testing a transition ti, as these are used in the UIO for ti. The following algorithm
determines whether there is some order that allows this:

Algorithm
Let TE’=T\TE

While TE {}
Find some ti in TE that can be tested using transitions from TE’. If there is not such
ti then Fail.
Remove ti from TE and add it to TE’

End {while}
Succeed

A permutation of 1,...,q will be said to be valid if, for every i,j such that
1 (i)< (j) q, the UIO for t (i) does not contain t (j). If heuristics, that involve
swapping adjacent elements in the permutation, are used it is important that the
allowed permutations are connected by valid swaps. The following result shows that
this is the case when (S,T\TE,s0, ,) is strongly connected:

Lemma
Suppose M’=(S,T\TE,s0, ,) is strongly connected. Then given valid permutations 1

and 2 on (1,...,q) it is possible to move from 1 to 2 via a sequence of valid
permutations 1= 0’, 1’,..., r’= 2 such that for any j, j’ and j+1’ differ only by two
adjacent elements being swapped.

Proof
Proof will be by induction on q. The result is trivially true for the base case of q=1.
The inductive hypothesis is: the result holds for all cases in which q=k. It is sufficient
to prove the result holds for any valid pair of permutations (1, 2) of (1,...,q) such that
q=k+1.

If 1(1)= 2(1) the result follows from the inductive hypothesis.

10

If 1(1) 2(1) it is sufficient to prove that 1 can be transformed into some
valid permutation 1

’, via a sequence of valid permutations that differ by swaps of
adjacent elements, such that 1

’(1)= 2(1).
In order to do this the element 2(1) can be located in 1 and, as this element

appears at the beginning of a valid permutation 2, it has a state identification
sequence that avoids all elements of TE. It can therefore be swapped with the
preceding element of 1 to produce a valid permutation, as it is not necessary to test
this previous element in order to test 2(1) and it is always possible to connect states
without using transitions from TE.

Thus 2(1) can be repeatedly moved forward via individual swaps in this
manner, each time producing a valid permutation, until there is some permutation 1

’

such that 1
’(1)= 2(1). The inductive hypothesis can now be applied to (1

’, 2) and
the result follows.

It should be noted that M’ being strongly connected is a sufficient, but not necessary,
condition.

These results suggest that heuristics such as Hill Climbing and Tabu Search
are appropriate where there is some feasible solution.

8. Multiple Faults

8.1. Overview
Ghedamsi et al. [1993] consider the problem of finding a set of candidates, and then
distinguishing tests, in the case where there may be more than one fault. The process
of finding a set of candidates is similar to that used with single failures. Ghedamsi et
al. [1993] also assume that every fault is reached by a test: each one is contained in a
test sequence in which it is not preceded by a fault and in which it leads to a
symptom. Some of the approaches we discuss require this condition.

8.2. Generating Conflict sets
These can be developed in very much the same way as when there is a single fault.
The main difference is that there may be more than one fault met by a test case and
thus, while a minimal subset whose behaviour is not allowed can be found, the initial
state of this may not be that expected. In order to check for this it is possible to
include an initial test to check the final state of the preceding sequence.

Suppose for some tci the value m gives the shortest subsequence (finishing at
the symptom ti,m(i)) that is not allowed from any state. If the final state of ti,1,...,ti,m-1 is
as expected, one of the transitions from ti,m,...,ti,m(i) is erroneous. If the final state of
ti,1...ti,m-1 is not that expected, there is some corresponding set of transitions (starting at
the actual final state of ti,1...ti,m-1) that contains at least one failure. This suggests
executing a further test to determine the final state of ti,1,...,ti,m-1.

From now on it will be assumed that the final state of ti,1,...,ti,m-1 is correct and
thus that it is know that there is a fault in {ti,m,...,ti,m(i)}: if this is not the case ti,m,...,ti,m(i)
is simply replaced by the transitions expected from the actual final state of xi,1...xi,m-1
and the candidate set {ti,1,...,ti,m-1}.

If some test case tci does not contain a failure in its first output, there is no
output fault for the corresponding transition. All such output faults can be removed
from the set of candidates.

11

8.3. Generating Diagnostic Candidates
Ghedamsi et al. [1993] take the set of tentative candidates and consider their
consistency. They generate the mutant machines (with the same number of states as
M) that are consistent with the behaviour observed. Unfortunately a combinatorial
explosion can occur at this step.

We propose an alternative (adaptive) approach: for each test case tci that
contains a symptom, test the candidates from this test case while avoiding all other
candidates. Once this has been done for a test case, update the candidates within the
other test cases and repeat the process. This continues until all failures are explained.

9. Minimal Effort with Multiple Faults

9.1. Ordering
Approaches equivalent to those outlined in Sections 5 and 6 can be used to diagnose
the fault in a test case that contains a symptom. This process can be repeated for all
test cases containing symptoms. It is certainly the case that, when there is a correct
state verification process, testing using subsequences and testing with reset can
always be applied to the individual test cases that contain symptoms.

Testing with subsequences has the additional advantage that, unlike the
algorithm given in Ghedamsi et al. [1993], it does not rely on the assumption that all
faults have been reached. It can thus be applied in some situations in which the
approach given in Ghedamsi et al. [1993] is not appropriate.

The order in which test cases are tackled can affect the cost, as the diagnosis
for one test case can reduce the effort required for another. Thus, for example, if a
transition is found to be correct it can be removed from the candidate sets for other
test cases.

An order that optimizes the expected saving, derived from removing
candidates from other test cases, is required. Let tcci denote the set of candidates in
tci. Without loss of generality, the set of test cases containing candidates is tc1,...,tck.
Let J denote the index set 1..k and TCi= . Then wj J i jtcc\{ } i=|TCi tcci| denotes the
number of candidates from tci that are contained in other candidate sets.

A natural heuristic is to diagnosed in order of decreasing wi. The value of
each wi must, however, be updated after every test and thus the test order is adaptive.
For example, one diagnosis for a test case tci may simply remove one candidate from
tcj but a different diagnosis for tci may fully diagnose tcj.

9.2. Test Length
Suppose there is an upper bound T on the length of the test cases, mt state transfer
faults, and mo output faults. Let E=mt+mo.

Initially we will consider testing using subsequences. Then using a linear
search the test length is of O((T+u)(mtT+mo)) when using UIOs and using a
characterizing set the test length is of O((T+n)n(mtT+mo) . Alternatively, when using
a binary search the test length is of O((T+u)(mtlog2(T)+mo)) if UIOs are used and
O((T+n)n(mtlog2(T)+mo) if a characterizing set is used.

Let us now consider testing candidates separately. Each test case that contains
a transfer fault requires O(T(n+u)) transitions if UIOs are being used and O(Tn2) if a
characterizing set is being used. Thus the overall diagnostic test length is

12

O((mo+mtT)(n+u)) when UIOs are being used and O((mo+mtT)n2) when a
characterizing set is being used.

10. Conclusions
If an incorrect output has occurred it may have been caused by a previous state
transfer failure. If this is the case, further tests must be performed in order to
determine which transition failed. There are then two cases to consider: it is known
that there is only one fault or there may be more than one fault.

Ghedamsi et al. [1993] produce a general solution to the problem of fault
location with multiple faults, but the length of the test generated is exponential in the
number of transfer faults and the number of test cases with symptoms. Instead we
consider the situation in which there is a correct UIO for each state. Algorithms have
been introduced that generate tests with (low order) polynomial lengths. These can
easily be generalized to the use of a characterizing set.

It is desirable to minimize the effort involved in fault location and the
problems of minimizing the expected case and worst case have been discussed.
While some of these problems are NP-hard, they have properties that suggests the use
of heuristics such as Tabu Search and Hill Climbing.

Two basic approaches are described: testing subsequences and testing
individual transitions. The latter approach should produce shorter tests but relies on
the assumption that all faults have been met (Ghedamsi et al. [1993] also makes this
assumption). The decision as to which approach should be used may thus depend
upon the technique used to generate the initial test.

The expected case analysis requires the existence of a probability distribution.
The tester may have knowledge of the system that allows the generation of such a
distribution. Alternatively a method based on determining the number of possible
next states, for each possible state transfer fault, can be used. If a uniform distribution
is used, the expected case and worst case problems are equivalent.

If some UIOs contain candidates there is a dependency between the candidates
and the problem becomes more complex. An algorithm is given, for the case where
there is one fault, that determines whether there is a test order that is consistent with
these dependencies. If such an order exists heuristics such as Hill Climbing and Tabu
Search may be appropriate.

11. References
1. Aho A.V., Dahbura A.T., Lee D., and Uyar M.U. 1988. An Optimization

Technique for Protocol Conformance Test Generation Based on UIO Sequences
and Rural Chinese Postman Tours, Proceedings of Protocol Model, Testing, and
Verification VIII, IFIP 1988, pp75-86

2. Cavalli A.R., Favreau J-P, and Philippou M. 1994. Formal Methods in
Conformance Testing: Results and Perspectives, Proceedings of Protocol Test
Systems VI, IFIP, pp3-17

3. Chow T.S. 1978. Testing Software Design Modelled by Finite State Machines,
IEEE Transactions on Software Engineering, 4 3 March 1978 pp178-187

4. Fujiwara S., Bochmann G., Khendek F., Amalou M., and Ghedamsi A. 1991. Test
Selection Based on Finite State Models, IEEE Transactions on Software
Engineering, 17 6 June 1991, pp591-603

5. Gibbons A. 1985. Algorithmic Graph Theory, Cambridge University Press.

13

6. Ghedamsi A. and Von Bochmann G. 1992. Test Result Analysis and Diagnosis for
Finite State Machines, Proceedings of the 12th International Workshop on Protocol
Test Systems, June 9-12, Yokohama, Japan, pp244-251

7. Ghedamsi A., Von Bochmann G., and Dssouli R. 1993. Multiple Fault Diagnosis
for Finite State Machines, Proceedings of IEEE INFOCOM’93, pp782-791.

8. Hierons R.M. 1996. Extending Test Sequence Overlap by Invertibility, The
Computer Journal, 39 4, pp325-330

9. Hierons R.M. 1997. Testing From A Finite State Machine: Extending Invertibility
to Sequences, The Computer Journal, 40 4

10.Huang C.-M. and Hsu J.-M. 1994. An Incremental Protocol Verification Method,
The Computer Journal, 37 8, pp698-710.

11.Kohavi Z. 1978. Switching and Finite Automata Theory, New York: McGraw-Hill
12.Lenstra J.K. and Rinnooy Kan A.H.G. 1976. On General Routing Problems,

Networks, 6 pp273-280.
13.Petrenko A., von Bochmann G., and Dssouli R. 1994a. Conformance Relations and

Test Derivation, Proceedings of Protocol Test Systems, VI C-19, pp157-178
14.Petrenko A., Yevtushenko N., Lebedev A., and Das A. 1994b. Nondeterministic

State Machines in Protocol Conformance Testing, Proceedings of Protocol Test
Systems VI, C-19, pp363-378

15.Sidhu D. and Leung T.-K. 1988. Experience with Test Generation for Real
Protocols, ACM SIGCOMM 88, pp257-261

16.Yang B. and Ural H. 1990. Protocol Conformance Test Generation Using Multiple
UIO Sequences with Overlap, in SIGCOMM 90, Communications, Architectures
and Protocols, Sept 24-27 1990, pp118-125

14

