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Abstract
If a test does not produce the expected output, the incorrect output may have been 
caused by an earlier state transfer failure.  Ghedamsi and von Bochmann [1992] and 
Ghedamsi et al. [1993] generate a set of candidates and then produce further tests to 
locate the failures within this set.  We consider the special case where there is a state 
identification process that is known to be correct.  A number of preset and adaptive 
approaches to fault location are described and the problem of minimizing the cost is 
explored.  Some of the approaches lead to NP-hard optimization problems for which 
possible heuristics are suggested. 
Keywords: Finite state machine, fault location, adaptive testing, minimal length test. 

1. Introduction 
The use of Finites State Machines (FSM) to model systems has lead to much

interest in deriving tests from them (e.g. Aho et al. [1988], Petrenko et al. [1994b], 
Hierons [1996], Ural [1997], and Hierons [1997]).  Most work has concentrated on 
developing tests with certain properties and, possibly, finding the shortest such test. 
Section 2 will provide a brief introduction to testing from FSM. 

If an incorrect output, called a symptom, is detected during testing it may have 
been caused by either an incorrect output (an output fault) or an earlier incorrect state 
transfer (a state transfer fault).  It is therefore important to apply a strategy to locate 
the failure that occurred.

Ghedamsi and von Bochmann [1992] and Ghedamsi et al. [1993] generate a 
set of transitions whose failure could explain the behaviour exhibited (these 
transitions are called candidates).  They then produce tests (called distinguishing
tests) in order to find the faulty transitions within this set.  The problem of generating 
candidates is briefly considered, in the situation in which there has been only one 
failure, in Section 3. 

In this paper the special case, where there is a state verification process that is 
known to be correct, will be investigated.  Algorithms, that generate distinguishing 
tests with low order polynomial size, will be given for both single and multiple faults. 

Several algorithms for generating distinguishing tests, in the presence of one 
fault, will be considered in Section 4. In Section 5 the problem of minimizing the 
cost is discussed.  Some of these optimization problems are NP-hard and possible 
heuristics are discussed in Section 6. 

While the algorithms given assume that the state verification process is 
correct, sometimes variants of them can be used when the state verification process 
contains candidates.  This is examined in Section 7. 

The problem of fault location in the presence of multiple faults is discussed in 
Sections 8 and 9.  It transpires that many of the approaches discussed for single faults 
can be extended to this more general case.  While Ghedamsi et al. [1993] provide a 
general solution to the problem of fault location, their algorithm suffers from
combinatorial explosion and produces a distinguishing test whose size is exponential 

1

lbsrjpm
Cross-Out

lbsrjpm
Cross-Out



(in the number of transfer faults and the number of test cases with symptoms).  We
show that this combinatorial explosion can be avoided if there is a state verification 
process that is known to be correct.  They also assume that all faults have been 
reached: we introduce one approach that does not assume this. Finally, in Section 10, 
conclusions are drawn. 

2. Preliminaries 

2.1. Finite state machines 
A finite state machine (also called a Mealy Machine) is defined by a tuple (S,T,s0, , )
where S is a finite set of states, T is a finite set of transitions between states, s0 is the 
initial state,  is the finite input alphabet, and  is the finite output alphabet.  Each 
transition is defined by a triple (si,sj,in/out) in which si is the initial state of the 
transition, sj is the final state of the transition, and in/out is the input/output 
behaviour.  A graphical representation of the FSM given in Aho et al. [1988] is shown 
in Figure 1.  This FSM will be denoted G throughout this paper.  A general FSM with 
n states will be denoted M=(S,T,s0, , ).

A number of systems can be modelled by FSM, an example being the control 
section of a communications protocol (see e.g. Huang and Hsu [1994]).  It has been 
noted that many Process Algebra specifications can be converted into an FSM 
(Petrenko et al. [1994a]). 

An FSM is said to be deterministic if there are no pairs of transitions that have 
the same initial state and input.  The transitions of a deterministic FSM can be 
represented by a pair of functions  and .  The function  gives the next state while 
gives the output: if the system is in state si and a transition with input in is executed 
the system moves to state (si,in) and produces output (si,in).  These functions can be 
extended in a natural way by taking their closures, getting functions * (type S * S)
and * (type S * *).

    b/y
  V2    V3

a/x          b/x 

     c/y
       b/x V5    b/x 

a/z
       a/x 

  V1    V4
    c/y

    a/x 

    Figure 1

An FSM is said to be completely specified if for each input in and each state si
there is a transition tj from si that has input in.  If an FSM F is not completely
specified, a completely specified FSM F’ can be produced from F by either adding an 
error state or by adding null actions.  An example is the FSM G in Figure 1 which 
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can be converted to a completely specified FSM G’ by adding the transitions 
(V2,V2,c/null), (V3,V3,a/null), (V4,V4,c/null), (V5,V5,b/null) and (V5,V5,c/null).

Two states of an FSM F are said to be equivalent if and only if they have the 
same set of valid input sequences and for each allowed input sequence they allow the 
same set of output sequences.  If an FSM F has no pair of equivalent states it is said to 
be minimal.
 A directed graph (digraph) is defined by a set of vertices and a set of directed 
edges between the vertices.  Labels can be added to the edges.  Thus, an FSM can be 
represented by a digraph in which the vertices correspond to states and the edges, 
labelled by the input/output, correspond to the transitions. 

An FSM is strongly connected if, given any ordered pair of states (si,sj), there 
is a sequence of transitions that will move the FSM from si to sj.  See e.g. Kohavi 
[1978] for more information on FSM.  It will be assumed throughout this paper that 
any FSM considered is deterministic, minimal, completely specified, and strongly 
connected.

2.2. State verification
In order to check the final state of a transition it is necessary to further execute the 
system.  There are three main strategies (see e.g. Sidhu and Leung [1988] or Cavalli 
et al. [1994]) which use: 

1. Distinguishing sequence (DS) 
2. Unique Input/Output (UIO) 
3. Characterizing set 

A distinguishing sequence is an input sequence that produces a different output for 
each state.  It is easy to check that the FSM G’ has a number of distinguishing 
sequences, including ba.
A unique input/output sequence X for a state si is an input sequence that has the 
property that, for all sj si

*(si,X) *(sj,X).  Although X can verify si it need not be 
able to verify any other state.  Clearly a DS is a UIO for each state.  It is noted in 
Kohavi and Kohavi [1968] that it is possible to use an adaptive DS if it is not 
necessary to produce a preset test sequence and, similarly, adaptive UIOs could be 
used.

Some FSM do not have either a DS or a UIO for each state.  Every minimal
FSM does, however, have a characterizing set (see e.g. Chow [1978]).  A 
characterizing set W is a set of input sequences with the property that, if every 
sequence is executed from some state si, the set of output sequences verifies si.  It is 
noted by Fujiwara et al. [1991] that for some states not every element of W is 
required: some subset can be used (the Wp method).  This can reduce the effort 
involved in verifying a state. 

In this paper it will be assumed that each state of any FSM used has a UIO 
that is known to be correct.  This knowledge may have been derived from testing. 
The approaches outlined can, however, be extended to the case where a characterizing 
set is used. 

2.3. Conformance testing
When testing from an FSM model it is assumed that the implementation under test
(IUT) can be modelled by an FSM and thus that testing involves comparing the 
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behaviour of two FSM.  Often a failure can be categorized as either an output failure 
or a state transfer failure.  Naturally, this categorization requires a close 
correspondence between the states of the two FSM (the existence of a valid state 
identification process makes this categorization clear). 

It is possible to test a transition by moving to the initial state of the transition, 
applying the transition, and then checking the final state (e.g. Chow [1978]).  Aho et 
al. [1988] instead looked at the question of how test subsequences, of the form of a 
transition followed by a UIO, can be combined in a manner that minimizes the length 
of the total test sequence.  They describe the problem as an instance of the Rural
Chinese Postman Problem (RCPP).  The RCPP is the problem of producing a 
minimal tour that passes through some given set of edges, in this case edges that 
represent test subsequences. 

While the RCPP is known to be NP-complete (see Lenstra and Kan [1976]), 
Aho et al. [1988] apply a polynomial algorithm that produces an optimal solution 
under certain conditions.  Two sufficient conditions for this algorithm to work are that 
either the FSM has a reset operation (some input that takes every state to the initial 
state) or that the FSM has a loop (some transition with the same initial and final state) 
for each state.  While these conditions are sufficient they are not necessary. 

Yang and Ural [1990] note that the test subsequences may overlap and utilize 
this to reduce the test sequence length.  Hierons [1996] represent this overlap using 
invertible transitions, where a transition (si,sj,x/y) is invertible if it is the only 
transition entering state sj with input x and output y.  Invertibility is extended to 
sequences by Hierons [1997]. 

3. Single Faults: Generating Candidates 

3.1. Introduction 
In this section it will be assumed that the IUT has only one fault.  The results will be 
generalized to multiple faults in Sections 8 and 9.  For the rest of this paper it will be 
assumed that some test set TS={tc1,...,tcp}, where the tci are test cases, has been 
executed.  A test case tci consists of a sequence of expected transitions ti,1,...,ti,m(i),
starting at s0, with input values xi,1,xi,2,...,xi,m(i) and expected output yi,1,yi,2,....,yi,m(i).
When executed, tci produces actual output zi,1,zi,2,...,zi,m(i).  A symptom is any i,j such 
that yi,j zi,j.  As tests after a symptom will be ignored, without loss of generality it will 
be assumed that symptoms occur in the final transitions of test cases only.  The 
approach outlined in this section is similar to that given in Ghedamsi and von 
Bochmann [1992]. 

If the input/output of a symptom is not allowed by any state, there must have 
been a failure in this execution, but otherwise an earlier state transfer failure may
have lead to an incorrect state.  It is thus necessary to develop the set of transitions 
whose failure could explain the behaviour exhibited. 

If a system that was intended to implement the FSM G’, defined earlier, was 
tested with the input sequence abaab and produced the output sequence xxxzy, rather 
than the expected output sequence xxxzx, this situation would exist.  The transition b/y
is valid from some states, though not the expected state.  There are therefore two 
possibilities: either the last execution was incorrect or some previous transition lead 
to an incorrect state. 
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3.2. Generating Conflict Sets 
For a symptom, at input xi,m(i) in test case tci, there is an initial candidate list 
consisting of {xi,j|1 j m(i)}.  Strategies that can reduce this set without further testing 
will now be considered. 

If some subsequence of the observed behaviour is not allowed from any state 
of the model there must have been at least one failure in this subsequence. The 
smallest such subsequence is found.  This is defined by the largest m giving 
input/output behaviour (xi,m/zi,m,...,xi,m(i)/zi,m(i)), and corresponding set of transitions 
{ti,m,....,ti,m(i)}, that is not allowed from any state.  As there is only one fault, one of 
these transitions was erroneous.  This set is called a conflict set.

In the earlier example, where output xxxzy was produced from input abaab, it 
is possible to apply this approach.  In this case there is no state in the model from
which the sequence a/z,b/y is valid and therefore there must be a failure in at least one 
of these transitions.  This reduces the search space for the failure to 2 of the 5 
transitions.

3.3. Generating Diagnostic Candidates 
The conflict sets can now be considered as a group.  An initial tentative candidate set 
is given by the intersection of the conflict sets. 

If only one transition, to, provides symptoms then this is a possible candidate. 
The tests are checked to see whether they are consistent with to being the fault: if all 
occurrences of to produce the same output then to is included in the set of candidates. 

If there is more than one transition that produces a symptom then, as there is 
only one fault, the fault must be a state transfer fault.  For every transition ti that may
have a transfer fault the set, EndStatesi, of possible alternative final states for ti is 
found.  The final set of candidates, TE, is the set of the ti for which EndStatesi {} and 
possibly a transition that may have an output fault.  Algorithms for finding these sets 
are to be found in Ghedamsi and von Bochmann [1992]. 

4. Locating Single Faults

4.1. Overview 
Some set, TE, of candidates t1,...,tq has been found.  In order to locate the fault it is 
necessary to further execute the system.  Two main strategies that will be considered: 

1. Executing subsequences ti,1,...,ti,k in each case verifying the final state. 
2. Individually testing the transitions from TE.

These approaches will now be discussed and minimizing the cost, when using the 
second approach, will be discussed in more detail in Section 5.  It should be noted that 
Ghedamsi and von Bochmann [1992] and Ghedamsi et al. [1993] do not consider 
minimizing the cost of fault location. 

4.2. Executing subsequences
Given a test case tci that contains a symptom at transition ti,m(i) and a number of 
possible candidates ti,m,...,ti,m(i) in TE it is possible to develop tests by checking the 
final state of subsequences of ti,m,...,ti,m(i).  Suppose s is the initial state of ti,m.  One 
approach is to initially execute (xi,m,...,xi,m(i)-1) from s and check the final state, if it is 
possible for there to have been an output fault.  If this is not the expected state there 
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has been a failure in this subsequence and so (xi,m,...,xi,m(i)-2) is executed from s and its 
final state checked.  This can be repeated until a failure has been isolated.  As there is 
only one fault, it is sufficient to apply this to any test case that contains a symptom.

This process is like searching an ordered list of length O(m(i)-m).  Suppose T
is an upper bound on the test sequence length.  If UIOs are used and the length of 
these is bounded above by u then the test length is of O((T+u)(m(i)-m)).  If a 
characterizing set is used, this has O(n) elements each of O(n) length and thus the test 
length is of O(n(m(i)-m)(n+T)).

Searching an ordered list in a linear manner is relatively inefficient.  This 
suggests the use of an adaptive process in which a binary search is used.  The first 
step is to check the final state produced by executing (xi,m,...,xi,m(i)-1) from s, if there is 
a possible output fault.  At each subsequent stage the state of the midpoint of the 
subsequence being considered is checked.  If this is correct, the second half of the 
subsequence is now considered and otherwise the first half is used.  This proceeds 
until the subsequence being considered has length one: the fault has been located. 

If UIOs are being used the size of the test set is of order O((u+T)log2(m(i)-m))
as there are O(log2(m(i)-m)) steps.  If a characterizing set is being used the test size is 
of O(n(n+T)log2(m(i)-m)).

If there is a state identification process that is known to be correct and a 
reliable reset, this approach to locating the failure can always be applied.  This 
approach may therefore be particularly useful in cases where it is difficult to test the 
individual transitions without using transitions from TE.

4.3. Individually testing the elements of TE

If T is large relative to n, testing subsequence may be inefficient as it is necessary to 
execute a subsequence with length O(T) in order to reach a transition to be tested. 
Instead, to test a transition ti TE it is possible to use a sequence that takes the system
to head(ti), executes x, and then executes a UIO for tail(ti).  This process must avoid 
other (untested) candidates.  If there is a possible output fault it is natural to initially 
test this, but if this is not erroneous some approach to testing the other transitions is 
required. The following strategies will be considered: 
1. testing the transitions separately, each time resetting after the test (testing with 

reset).
2. producing one sequence containing tests for every candidate. 

The first approach is similar to that given in Ghedamsi and von Bochmann
[1992], though they do not consider the problem of minimizing the cost.  The 
optimization problem is simpler for the former, and will be discussed in Section 5. 
The optimization problem for the latter will be discussed in Section 5 and further
developed in Section 6. 

5. The Cost of Locating Single Failures 

5.1. Introduction 
It will be assumed throughout the rest of Sections 5 and 6 that there is a state transfer 
fault (if there is a possible output fault it has been checked).  The cost of testing 
candidates separately will be investigated. 

There are two possible costs to consider: the worst case and the expected case. 
Both will be investigated but, as the expected case requires the existence of a 
probability distribution, the generation of such a distribution will first be discussed. 

6



5.2. Assigning a probability 
For the rest of this section it will be assumed that the only knowledge present, that 
can be used to derive a probability, is the behaviour exhibited.  If there is other 
information, such as it being known that certain parts of the system are more likely to 
contain faults than others, this can be used: the rest of the paper only assumes that 
some probability of failure has been assigned to each ti TE.

The mutant FSMs, that are consistent with the behaviour exhibited and differ 
only in one state transfer, can be found. Unless there is extra information it will be 
assumed that these mutants are equiprobable.  Thus, for a candidate ti, the proportion 
of mutants that have ti as a failure gives the probability that ti is erroneous. 

The number of mutants is proportional to the number of alternative final states
for ti that allow the observed behaviour.  The probabilities, pi, can be defined by: 

pi=
| |

| |

EndStates

EndStates

i

i
t Ti E

If there is additional information, it is possible to adjust these values. 

5.3. Ordering testing with reset 

5.3.1. Determining the optimal ordering 
When testing with reset the worst case cost varies very little with the order of testing 
as it is effectively the cost of testing every transition.  The expected effort will thus be 
considered.

For the purposes of optimization, the cost of testing a transition can be 
considered to be zero if the transition is erroneous, as this transition must be tested in 
order to find the failure.  The cost is thus non-zero only if the transition is correct 
(probability (1-pi)), in which case the cost is given by the length of the sequence 
required to test ti, which will be denote c(ti).  If the shortest path, avoiding other 
candidates, to the initial state of ti is denoted path(ti) and the UIO used for the final 
state of ti is ui then: 

c(ti) = |path(ti)|+|ui|+2

If head(ti) cannot be reached while avoiding other candidates, c(ti) is infinite.  The 
expected cost of testing ti is given by: 

C(ti)=(1-pi)c(ti)

The transitions are tested in order of increasing C(ti).  If it is only necessary to avoid 
untested candidates, these values can be updated after each test, as the |path(ti)| can 
change.  Clearly there will always be an order that allows untested transitions to be 
avoided, as the UIOs are known to be correct. 

5.3.2. Determining the expected cost
Sometimes it is useful to have an estimate of the cost of fault location.  In order to 
produce an expected cost of testing, the expected cost of testing an erroneous 
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transition is required.  Given some ti TE an estimate of the cost of testing ti is 
produced by, for each x EndStatesi, determining the cost of testing ti if the final
(erroneous) state actually is x.  Given x  EndStatesi and UIO uk=a1,...,ar for tail(ti),
the expected number of transitions required to distinguish x from head(ti) is given by: 

ident(tail(ti),x,ui) = min{b| *(x,a1,...,ab) *(tail(ti),a1,...,ab)}

Thus the expected number of transitions required to determine that the final state of ti
is erroneous is: 

Fail t u
ident tail t x u

EndStatesi i

i i
x EndStates

i

i( , )
( ( ), ,

| |

)

Let the set U give a UIO for each state and contain UIO ui for tail(ti).  Then the 
expected cost of testing ti, if ti is erroneous, is given by: 

D(ti,U) = |path(ti)|+1+ Fail(ti,ui)

If the transitions are tested in order , which is a permutation of (1,...,q), and the 
incorrect transition is t (i), the following gives the expected cost of testing: 

E( ,i,U) = D(t (i),U) +
j

i
jc t

1

1
( )( )

Thus, given permutation  and UIO set U, the expected cost of testing in the order 
is:

EC( ,U) = p
i

q

1 (i)E( ,i,U)

5.4. Testing without reset 

5.4.1. Overview
When testing without reset the test is made up of test subsequences, each 
corresponding to some ti TE followed by a UIO, connected to form a single test 
sequence.  The worst case and expected case costs will be investigated. 

5.4.2. Worst and expected case analysis 
It will be assumed that if one of the candidates is an output fault then this has been 
tested and removed from TE and that by removing the candidates from M we do not 
disconnect M.

Given a valid permutation the problem of finding a valid test sequence can 
be broken down into a number of sub-problems, one for each i, 1 i q.  These sub-
problems are of the form: test the transition t (i) while avoiding (untested) candidates. 
The test sequence required to test the transition t (i) with UIO set U, and in order 
shall be denoted test( ,t (i),U).  This represents the shortest route from the final state 
of the UIO used for t (i-1) to the initial state of t (i) followed by t (i) followed by some
UIO u (i).  All this must avoid the set of elements from TE that are untested. 
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For each UIO, test( ,ti,U) can be produced in O(n2).  The cost of testing the 
first i transitions, if they are correct, in the order given by  is: 

Cost( ,i)= 1 j i|test( ,t (j),U)|

The worst case analysis is given by this with i=q, adjusted to account for the fact that 
the final transition is erroneous.  Thus the worst case is given by: 

WC( ,U) = Cost( ,q)+Fail(t (q),u (q))-|u (q)|

This can be calculated in O(n2|TE|).  The problem of finding the optimal order 
is, however, potentially much more difficult.  This problem is simplified if all
candidates are avoided throughout testing: the problem is then an instance of the 
RCPP.  Possible heuristics for the general case are discussed in Section 6.  When the 
problem is an instance of the RCPP it may be possible to use any overlap that exists 
between the test subsequences, possibly using approaches similar to those described 
in Yang and Ural [1990], Hierons [1996], and Hierons [1997]. 

The expected cost of testing may also be considered.  The expected cost is 
given by: 

ECost( ,U) = p
i

q

1
(i)(Cost( ,i)+Fail(t (i),u (i))-|u (i)|)

This can be calculated in O(n2|TE|).  The problem of producing the order that 
minimizes the expected cost is therefore: find a permutation  of (1,...,q) that 
minimizes ECost( ,I).  Again, possible heuristics are discussed in Section 6. 

5.5. Test Length
When testing with one test sequence or testing using reset, each subsequence length is 
of O(n+u) if UIOs are used.  If a characterizing set is used, the subsequences are all of 
length O(n) and thus the subsequences for a single candidate have length of O(n2).
When using UIOs the overall test length is of O(|TE|(n+u)) and when using a 
characterizing set the overall test length is of O(|TE|n2).

It should be noted that these orders apply even if there is no attempt to find the 
optimal permutation.  Given any permutation, , a test of this order can be found in 
O(n2|TE|) time.

6. Heuristics to minimize the expected cost 
Given a permutation  the problem of calculating the expected and worst case costs 
are of O(|TE|n2).  Clearly, it is not usually feasible to calculate this for every 
permutation.

Two cases will be considered: either avoiding TE or avoiding untested 
elements of TE in testing.  The latter may produce shorter test sequences but is more
complex as the allowed connecting paths between subsequences depends upon the 
position within the test. 

A number of heuristics, such as Tabu search and Hill Climbing, are based 
upon making an initial guess and then making a number of small changes.  The initial 
guess would be some permutation and the small changes would be in the form of 
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swapping adjacent elements.  For each swap, the change in expected cost is 
calculated.  There are two possible approaches to generating the change in expected 
cost:

1.Generating these separately. 
2.Initially generating a matrix of distances in (S,T\TE,s0, , )) and calculating 

the costs from this. 
The second approach can only be applied when avoiding the use of all 

candidates in testing and may thus be suboptimal.
The first approach gives complexity O(n2) for each swap.  The second 

approach gives an initial effort of O(n3) (see e.g. Gibbons [1985]) but then each swap 
has complexity O(1).  If, as is usual, many swaps are required, the second approach 
may be preferable. 

7. State Identification Sequences containing elements of TE
Some states may not have UIOs that are known to be correct.  This adds a dependency 
between the transitions: it may be necessary to check some set of transitions before
testing a transition ti, as these are used in the UIO for ti.  The following algorithm
determines whether there is some order that allows this: 

Algorithm
Let TE’=T\TE

While TE {}
Find some ti in TE that can be tested using transitions from TE’.  If there is not such 
ti then Fail. 
Remove ti from TE and add it to TE’

End {while} 
Succeed

A permutation of 1,...,q will be said to be valid if, for every i,j such that 
1 (i)< (j) q, the UIO for t (i) does not contain t (j).  If heuristics, that involve 
swapping adjacent elements in the permutation, are used it is important that the 
allowed permutations are connected by valid swaps.  The following result shows that 
this is the case when (S,T\TE,s0, , ) is strongly connected: 

Lemma
Suppose M’=(S,T\TE,s0, , ) is strongly connected.  Then given valid permutations 1

and 2 on (1,...,q) it is possible to move from 1 to 2 via a sequence of valid 
permutations 1= 0’, 1’,..., r’= 2 such that for any j, j’ and j+1’ differ only by two 
adjacent elements being swapped. 

Proof
Proof will be by induction on q.  The result is trivially true for the base case of q=1.
The inductive hypothesis is: the result holds for all cases in which q=k.  It is sufficient 
to prove the result holds for any valid pair of permutations ( 1, 2) of (1,...,q) such that 
q=k+1.

If 1(1)= 2(1) the result follows from the inductive hypothesis. 
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If 1(1) 2(1) it is sufficient to prove that 1 can be transformed into some
valid permutation 1

’, via a sequence of valid permutations that differ by swaps of 
adjacent elements, such that 1

’(1)= 2(1).
In order to do this the element 2(1) can be located in 1 and, as this element

appears at the beginning of a valid permutation 2, it has a state identification
sequence that avoids all elements of TE.  It can therefore be swapped with the 
preceding element of 1 to produce a valid permutation, as it is not necessary to test 
this previous element in order to test 2(1) and it is always possible to connect states 
without using transitions from TE.

Thus 2(1) can be repeatedly moved forward via individual swaps in this 
manner, each time producing a valid permutation, until there is some permutation 1

’

such that 1
’(1)= 2(1).  The inductive hypothesis can now be applied to ( 1

’, 2) and 
the result follows.

It should be noted that M’ being strongly connected is a sufficient, but not necessary, 
condition.

These results suggest that heuristics such as Hill Climbing and Tabu Search 
are appropriate where there is some feasible solution. 

8. Multiple Faults

8.1. Overview 
Ghedamsi et al. [1993] consider the problem of finding a set of candidates, and then 
distinguishing tests, in the case where there may be more than one fault.  The process 
of finding a set of candidates is similar to that used with single failures.  Ghedamsi et 
al. [1993] also assume that every fault is reached by a test: each one is contained in a 
test sequence in which it is not preceded by a fault and in which it leads to a 
symptom.  Some of the approaches we discuss require this condition. 

8.2. Generating Conflict sets 
These can be developed in very much the same way as when there is a single fault. 
The main difference is that there may be more than one fault met by a test case and 
thus, while a minimal subset whose behaviour is not allowed can be found, the initial 
state of this may not be that expected.  In order to check for this it is possible to 
include an initial test to check the final state of the preceding sequence. 

Suppose for some tci the value m gives the shortest subsequence (finishing at 
the symptom ti,m(i)) that is not allowed from any state.  If the final state of ti,1,...,ti,m-1 is 
as expected, one of the transitions from ti,m,...,ti,m(i) is erroneous.  If the final state of 
ti,1...ti,m-1 is not that expected, there is some corresponding set of transitions (starting at 
the actual final state of ti,1...ti,m-1) that contains at least one failure.  This suggests 
executing a further test to determine the final state of ti,1,...,ti,m-1.

From now on it will be assumed that the final state of ti,1,...,ti,m-1 is correct and 
thus that it is know that there is a fault in {ti,m,...,ti,m(i)}: if this is not the case ti,m,...,ti,m(i)
is simply replaced by the transitions expected from the actual final state of xi,1...xi,m-1
and the candidate set {ti,1,...,ti,m-1}.

If some test case tci does not contain a failure in its first output, there is no 
output fault for the corresponding transition. All such output faults can be removed
from the set of candidates. 
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8.3. Generating Diagnostic Candidates 
Ghedamsi et al. [1993] take the set of tentative candidates and consider their 
consistency.  They generate the mutant machines (with the same number of states as 
M) that are consistent with the behaviour observed.  Unfortunately a combinatorial
explosion can occur at this step. 

We propose an alternative (adaptive) approach: for each test case tci that 
contains a symptom, test the candidates from this test case while avoiding all other 
candidates.  Once this has been done for a test case, update the candidates within the 
other test cases and repeat the process.  This continues until all failures are explained. 

9. Minimal Effort with Multiple Faults

9.1. Ordering 
Approaches equivalent to those outlined in Sections 5 and 6 can be used to diagnose 
the fault in a test case that contains a symptom.  This process can be repeated for all 
test cases containing symptoms.  It is certainly the case that, when there is a correct 
state verification process, testing using subsequences and testing with reset can 
always be applied to the individual test cases that contain symptoms.

Testing with subsequences has the additional advantage that, unlike the 
algorithm given in Ghedamsi et al. [1993], it does not rely on the assumption that all 
faults have been reached.  It can thus be applied in some situations in which the 
approach given in Ghedamsi et al. [1993] is not appropriate. 

The order in which test cases are tackled can affect the cost, as the diagnosis 
for one test case can reduce the effort required for another.  Thus, for example, if a 
transition is found to be correct it can be removed from the candidate sets for other 
test cases. 

An order that optimizes the expected saving, derived from removing
candidates from other test cases, is required.  Let tcci denote the set of candidates in 
tci.  Without loss of generality, the set of test cases containing candidates is tc1,...,tck.
Let J denote the index set 1..k and TCi= .  Then wj J i jtcc\{ } i=|TCi tcci| denotes the 
number of candidates from tci that are contained in other candidate sets. 

A natural heuristic is to diagnosed in order of decreasing wi.  The value of 
each wi must, however, be updated after every test and thus the test order is adaptive. 
For example, one diagnosis for a test case tci may simply remove one candidate from
tcj but a different diagnosis for tci may fully diagnose tcj.

9.2. Test Length
Suppose there is an upper bound T on the length of the test cases, mt state transfer 
faults, and mo output faults.  Let E=mt+mo.

Initially we will consider testing using subsequences.  Then using a linear 
search the test length is of O((T+u)(mtT+mo)) when using UIOs and using a 
characterizing set the test length is of O((T+n)n(mtT+mo) .  Alternatively, when using 
a binary search the test length is of O((T+u)(mtlog2(T)+mo)) if UIOs are used and 
O((T+n)n(mtlog2(T)+mo) if a characterizing set is used. 

Let us now consider testing candidates separately.  Each test case that contains 
a transfer fault requires O(T(n+u)) transitions if UIOs are being used and O(Tn2) if a 
characterizing set is being used.  Thus the overall diagnostic test length is 
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O((mo+mtT)(n+u)) when UIOs are being used and O((mo+mtT)n2) when a 
characterizing set is being used. 

10. Conclusions 
If an incorrect output has occurred it may have been caused by a previous state 
transfer failure.  If this is the case, further tests must be performed in order to 
determine which transition failed.  There are then two cases to consider: it is known 
that there is only one fault or there may be more than one fault. 

Ghedamsi et al. [1993] produce a general solution to the problem of fault 
location with multiple faults, but the length of the test generated is exponential in the 
number of transfer faults and the number of test cases with symptoms.  Instead we 
consider the situation in which there is a correct UIO for each state.  Algorithms have 
been introduced that generate tests with (low order) polynomial lengths.  These can 
easily be generalized to the use of a characterizing set. 

It is desirable to minimize the effort involved in fault location and the 
problems of minimizing the expected case and worst case have been discussed. 
While some of these problems are NP-hard, they have properties that suggests the use 
of heuristics such as Tabu Search and Hill Climbing.

Two basic approaches are described: testing subsequences and testing 
individual transitions.  The latter approach should produce shorter tests but relies on 
the assumption that all faults have been met (Ghedamsi et al. [1993] also makes this 
assumption).  The decision as to which approach should be used may thus depend 
upon the technique used to generate the initial test. 

The expected case analysis requires the existence of a probability distribution. 
The tester may have knowledge of the system that allows the generation of such a 
distribution.  Alternatively a method based on determining the number of possible 
next states, for each possible state transfer fault, can be used.  If a uniform distribution 
is used, the expected case and worst case problems are equivalent. 

If some UIOs contain candidates there is a dependency between the candidates 
and the problem becomes more complex.  An algorithm is given, for the case where 
there is one fault, that determines whether there is a test order that is consistent with 
these dependencies. If such an order exists heuristics such as Hill Climbing and Tabu 
Search may be appropriate. 
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