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ABSTRACT 

 

Identifying an appropriate method for modelling automotive dissipative silencers normally 

requires one to choose between analytic and numerical methods.  It is common in the 

literature to justify the choice of an analytic method based on the assumption that equivalent 

numerical techniques are more computationally expensive.  The validity of this assumption is 

investigated here, and the relative speed and accuracy of two analytic methods are compared 

to two numerical methods for a uniform dissipative silencer that contains a bulk reacting 

porous material separated from a mean gas flow by a perforated pipe.  The numerical 

methods are developed here with a view to speeding up transmission loss computation, and 

are based on a mode matching scheme and a hybrid finite element method.  The results 

presented demonstrate excellent agreement between the analytic and numerical models 

provided a sufficient number of propagating acoustic modes are retained.  However, the 

numerical mode matching method is shown to be the fastest method, significantly 

outperforming an equivalent analytic technique.  Moreover, the hybrid finite element method 

is demonstrated to be as fast as the analytic technique.  Accordingly, both numerical 

techniques deliver fast and accurate predictions and are capable of outperforming equivalent 

analytic methods for automotive dissipative silencers. 
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1.  INTRODUCTION 

Numerous models are now available for computing sound attenuation by dissipative silencers 

typically found on internal combustion engines.  The models developed range from simple 

plane wave analytic models to fully three-dimensional numerical models.  The computational 

effort required by each method can vary significantly and one is usually left with a decision 

of how best to balance computational speed with solution accuracy.  This article aims to 

develop a better understanding of how different approaches compare in terms of speed and 

accuracy by analysing four different methodologies: (i) an analytic model based on the 

fundamental mode only; (ii) an analytic mode matching method; (iii) a numerical mode 

matching method; and, (iv) a hybrid numerical method.  Here, the two numerical methods 

presented are modifications of existing techniques with a view to improving computational 

efficiency without sacrificing accuracy.  The accuracy and efficiency of each method is then 

compared for a straight through dissipative silencer containing a perforated pipe separating a 

mean fluid flow from a bulk reacting porous material. 

 

The most straightforward and computationally efficient approach to modelling automotive 

dissipative silencers is to assume that only the fundamental mode propagates within each 

silencer section.  This allows for a simple closed form analytic solution to be written, see Peat 

[1] and, later, Kirby [2].  This method is attractive since one does not need to find roots of a 

governing eigenequation and so the method is very quick.  There is, however, a penalty to 

pay for this speed and Kirby [2] demonstrates that at higher frequencies and for larger 

silencers the method lacks accuracy.  Nevertheless, the methodology is useful for low 

frequency design work and, since it includes both mean flow and a perforated pipe, Kirby’s 

method [2] will be reviewed later on. 
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To improve prediction accuracy it is necessary to include higher order modes, at least within 

the silencer section.  This complicates matters since one must now solve the governing 

eigenequation for the silencer section, which is far from straightforward when mean flow is 

present.  This normally requires an iterative method such as, for example, the Newton-

Raphson method [3-5] or the Secant method [6, 7].  The different iterative methods have their 

relative advantages and disadvantages, but the very fact that iterative solutions are required 

impacts on computational efficiency.  On solving the governing eigenequation it is necessary 

to match axial continuity conditions over the inlet and outlet planes of the silencer.  When no 

mean flow is present analytic methods have been used to enforce continuity of pressure and 

axial velocity with little difficulty [3, 4, 6-8], even for multiple area discontinuities [9] and 

for large silencers [10].  However, when mean flow is present Kirby and Denia [5] suggested 

that it is necessary to change the axial continuity conditions so that they equate to the 

transverse continuity conditions used to match between the mean flow region and the 

absorbing material.  Analytic mode matching then delivers a transfer matrix for the silencer 

in which normally between four and eight silencer modes need to be included [3, 5] in order 

to obtain sufficient accuracy and so inverting the transfer matrix is normally very quick.  It is 

tempting then to view analytic mode matching as very computationally efficient and much 

faster than numerical methods; however, the speed of analytic mode matching schemes 

depends almost entirely on the time taken to find the roots of the governing eigenequation, 

and it is not necessarily the case that this is faster than equivalent numerical methods.  This 

issue was noted by Albelda et al. [8], who avoided solving the usual dispersion relation by 

sub-dividing the silencer cross-section in order to find two sets of modes after first enforcing 

zero pressure and zero radial velocity over the perforated pipe.  The authors note that these 

two sets of modes may be computed analytically for circular and elliptical geometries, 
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although they do not provide details of the dispersion relations that follow.  The Galerkin 

method is then used to find the eigenvectors and axial wavenumbers for the silencer itself, 

and for circular and elliptical geometries the integrals that follow may be calculated 

analytically.  The usual mode matching procedure is then employed to find the silencer 

transmission loss.  Accordingly, this method neatly sidesteps the root finding problems 

associated with the more usual silencer eigenequation and so is potentially faster than the 

traditional analytical methods.  Furthermore, an extension of this method to include mean 

flow and a perforated pipe has recently been reported [11], although the full details have yet 

to be published. 

 

Numerical methods generally separate into two different approaches: those which take 

advantage of the uniform geometry often present in automotive silencers, and those which 

seek to model the whole silencer chamber.  The first approach clearly has the potential to 

speed up solutions although, in common with analytic mode matching, this method can be 

cumbersome if many different discontinuities are present such as inlet and outlet extensions.  

Conversely, the second approach is traditionally thought to be very time consuming and this 

method appears to be more suited to very complex non-uniform silencer designs.  

Accordingly, for a uniform dissipative silencer a numerical mode matching method appears 

to be the most attractive, and this has the added advantage of avoiding an iterative technique 

to solve the governing eigenequation.  For example, Astley et al. [12] use the finite element 

method to solve the governing eigenequation and then use collocation to match across a 

discontinuity in a lined rectangular duct.  Later, Glav [13, 14] used a point matching 

technique to study uniform silencers with irregular cross-sections, although the rate of 

convergence of this method is sensitive to silencer geometry and the collocation grid chosen.  

Kirby [15] extended the work of Astley et al. [12] and applied collocation to silencers of 
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elliptical cross-section containing both mean flow and a perforated pipe.  This represents a 

general method for silencers of arbitrary cross-section; however, because the method is 

numerically based it has generally been viewed as computationally inefficient for circular 

silencers and inherently slower than equivalent analytic techniques. 

 

General numerical schemes suitable for complex silencer geometries have also been applied 

in the study of automotive silencers, see for example Bilawchuk and Fyfe [16] who review 

the application of the finite element method (FEM) and the boundary element method 

(BEM).  When no mean flow is present, the BEM has been applied successfully to 

complicated silencers geometries [16-18].  Similarly, the FEM has also been used to study 

dissipative silencers without flow [16, 19], and Mehdizadeh and Paraschivoiu [20] report a 

comprehensive three-dimensional approach.  Clearly, using a fully three-dimensional model 

is very computationally expensive and the number of degrees of freedom used by 

Mehdizadeh and Paraschivoiu [20] appears to be excessive, at least for a uniform circular 

silencer.  It is noticeable, however, that the boundary element models do not combine the 

effects of both mean flow and a perforated pipe, and only Peat and Rathi [21] have 

successfully added mean flow to a finite element model of a bulk reacting dissipative 

silencer.  Here, Peat and Rathi focus on computing the silencer four poles, which requires 

solving the problem twice.  Thus, if one desires only the silencer transmission loss then this 

method is more computationally expensive than, say, the three point method [20], although 

computation of the silencer four poles does allow predictions to be easily incorporated into 

models of an overall silencer system.  Peat and Rathi [21] also omitted a perforated pipe, but 

superimposed a mean bias flow inside the absorbing material in order to examine the effect 

this has on silencer performance.  It is likely, however, that a perforated pipe will lower the 

mean flow inside the porous material and so it appears justified to neglect this effect, 
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especially as perforated pipes are always present in commercial silencers.  Peat and Rathi 

[21] demonstrated generally good agreement with the analytic mode matching method of 

Cummings and Chang [3], at least at higher frequencies, although it appears here to be 

reasonable to assume that the FEM should be slower than the analytic mode matching method 

for comparable accuracy. 

 

The relative computational efficiency and accuracy of predictions for two analytic and two 

numerical methods are reviewed here.  This is carried out for a circular dissipative silencer 

containing mean flow and a perforated pipe.  Here, particular attention will be paid to 

improving existing numerical techniques so that they are more computationally efficient for a 

given degree of accuracy.  The analytic techniques to be used as benchmark predictions are 

the low frequency algorithm of Kirby [2], which will be abbreviated here as the APW 

method, and the analytic mode matching method of Kirby and Denia [5], abbreviated as the 

AMM method.  The analytic method of Kirby and Denia has been chosen here as it 

represents the more usual mode matching approach (see also [3, 4, 6, 7]), and in the absence 

of further details on the method of Albelda et al. [11].  The analytic methods are compared 

against new versions of the point collocation method of Kirby [15] and the FEM of Peat and 

Rathi [21].  Here, the point collocation method (abbreviated as the NMM method) is 

modified by including the new axial matching conditions reported by Kirby and Denia [5] 

and enforcing these conditions using mode matching rather than collocation.  The FEM of 

Peat and Rathi [21] is modified to include a perforated pipe, but the method will also be 

improved by utilising the hybrid numerical method recently reported by Kirby [22].  This 

hybrid numerical method is not new (see for example Astley [23]), but it has yet to be applied 

to the study of dissipative silencers, with or without mean flow.  The hybrid method uses a 

modal representation for the sound field in the inlet and outlet pipes and, using mode 
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matching, “joins” this to a finite element representation of the sound field in the silencer 

chamber.  This avoids the need to mesh the inlet and outlet pipes, but also avoids the rather 

cumbersome three point method for finding silencer transmission loss and so makes it very 

straightforward to find the silencer four poles.  Accordingly, the hybrid method (abbreviated 

here as the HFE method) has the potential to speed up the FEM for dissipative silencers and 

the efficiency of this method will be benchmarked against the other analytic and numerical 

methodologies.  The article begins by reviewing the essential elements of the analytic 

models.  A detailed description of the two numerical models is then reported and results are 

presented in the form of transmission loss predictions; the analysis that follows will focus on 

the relative efficiency of each method rather than a direct comparison with experimental data 

(which has been reported elsewhere). 

 

2.  THEORY 

 

The automotive dissipative silencer is assumed to consist of a region of (isotropic) bulk 

reacting porous material of arbitrary cross-section, separated by a concentric perforated pipe 

from a central airway that contains a uniform mean gas flow of Mach number M, see Fig. 1.  

The inlet and outlet pipe walls, and the walls of the silencer chamber, are assumed to be rigid 

and impervious to sound.  Before reviewing different numerical and analytic methods for 

analysing this problem the general governing equations, boundary conditions, and 

expressions for the inlet and outlet pipes are reported.  Accordingly, the acoustic wave 

equation for region q ( .4or  3 ,2 ,1=q ) is given by,  
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where qc  is the speed of sound, qp′  is the acoustic pressure, and t is time.  The hard wall 

boundary condition is given by 

 

 0=⋅′∇ qqp n , (2) 

 

over the outer surface wΓ , where qn  is the outward unit normal vector in region q.  A modal 

representation for the sound field in regions R1 and R4 is used in each of the methods that 

follow and so the sound pressure is written as an expansion over the pipe eigenmodes, to give 
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Here, F
n
, A

n
, D

n
 and E

n
 are the modal amplitudes; n

iλ  are the incident and n

rλ  the reflected 

axial wavenumbers, and n

iΦ  are the incident and n

rΦ  the reflected eigenfunctions in regions 1 

and 4, respectively.  A time dependence of t
e

ωi  is assumed (where 1i −=  and ω  is the 

radian frequency) and 00 ck ω= , where 0c  is the isentropic speed of sound in air.  For a 

circular pipe with acoustically hard walls, the wavenumbers and eigenfunctions may easily be 

found (see Ref. [5]). 

 

For the silencer chamber, region Rc (= R2 + R3), different methods will be used to find the 

sound pressure distribution; however, regions R2 and R3 will be “joined” using the same 

radial boundary conditions over the perforated pipe.  Following Kirby and Denia [5] this 

yields, 
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and 

 

 330032  nu ⋅=′−′ ζρ cpp . (6) 

 

Here, the fluid density in region R2 is 0ρ , the acoustic velocity vector in region q is denoted 

by qu , and the (dimensionless) impedance of the perforated pipe is denoted by ζ .  In view 

of the discussions by Kirby and Denia [5] on the measurement of the impedance of the 

perforated pipe, the constant Q (where 21 ≤≤ Q ) is introduced here so that 1=Q  

corresponds to continuity of velocity, and 2=Q  to continuity of displacement. 

 

2.1  Analytic Methods 

 

Two different analytic methodologies are reviewed here, the plane wave (APM) method of 

Kirby [2] and the mode matching (AMM) method of Kirby and Denia [5].  Both restrict their 

analysis to circular dissipative silencers.  Of course, these methods may in principle be 

extended to other regular geometries provided suitable transverse analytic functions are 

available, see for example the Mathieu functions used for elliptical silencers by Denia et al. 

[24].  As both analytic methods have been reported elsewhere only a brief review of the 

methodology behind each approach will be included here.  Both analytic methods depend on 

using a modal representation of the sound fields in each region and then matching appropriate 

continuity conditions over the silencer inlet and outlet planes (planes A and B, respectively).  

Here, the AMM method uses a closed form analytic solution that calculates the fundamental 

modes only, whereas the NMM method uses the Newton-Raphson method to locate higher 
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order modes [5].  In fact, it is in locating higher order modes that difficulties with analytic 

methods arise, as an iterative method is required in order to find the roots of the 

eigenequation.  Kirby and Denia [5] note that when mean flow is present locating all required 

roots is not always straightforward and this can lead to analytic methods taking longer to run 

than one would normally expect.  On locating the desired higher order modes, the axial 

continuity conditions are enforced, although for fundamental mode propagation these 

equations reduce to continuity of volume velocity and pressure [2].  When higher order 

modes are present Kirby and Denia [5] proposed using continuity of pressure and 

displacement, although the kinematic condition was written generally so that modifications 

may be made in light of further experimental evidence.  On applying the matching conditions 

it is then straightforward to construct a matrix for the silencer and, after application of the 

inlet and outlet axial boundary conditions, this is solved for the modal amplitudes.  The 

overall performance of the silencer is readily obtained from the modal amplitudes, which is 

normally quantified in terms of the silencer transmission loss (TL).  Kirby and Denia [5] also 

reported expressions for the four poles of the dissipative silencer; however, these expressions 

are incorrect and a corrected methodology will be introduced in Section 2.2.1.  For the multi-

mode method, the bulk of the solution time is taken up in finding the roots of the governing 

eigenequation and this will be reviewed in Section 3.  Once this has been done, finding the 

modal amplitudes does not normally take very long since the matrix that must be inverted is 

usually small, assuming that a relatively small number of modes is retained in the silencer 

chamber (normally between six and 10). 

 

2.2  Numerical mode matching 

A numerical matching technique is included here because it is suitable for analysing silencers 

of arbitrary but uniform cross-section, but also for circular silencers it avoids root finding 
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algorithms such as the Newton-Raphson method.  A point collocation scheme was reported 

by Kirby [15] for elliptical silencers and this method forms the basis of the numerical 

matching scheme that follows.  However, instead of matching over discrete collocation points 

on the silencer cross-section, the method presented here will use numerical mode matching 

and so numerical integration is used to enforce the axial matching conditions over planes A 

and B.  Here, the numerical mode matching (NMM) method adopts a modal representation 

for the sound field in the inlet and outlet pipes given by Eqs. (3) and (4); similarly for the 

silencer section  
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Here, B
n
 and C

n
 are the modal amplitudes, n

ik  are the incident and n

rk  the reflected axial 

wavenumbers, and n

iΨ  are the incident and n

rΨ  the reflected eigenfunctions.  To construct 

the governing eigenequation for the silencer chamber, the radial boundary conditions defined 

by Eqs. (5) and (6) are used, along with the assumption that the acoustic velocity normal to 

the walls of the silencer is zero.  The eigenproblem is then solved using the finite element 

method, and so the eigenvector for region Rc is approximated as 
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where jN  is a global trial (or shape) function for the (transverse) finite element mesh, 
jsΨ  is 

the value of ),( zyΨ  at node j, and ns is the number of nodes (or degrees of freedom) lying on 

the silencer cross section in region Rc.  Expressing Eq. (8) in vector form yields, 
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Following Kirby [15], the governing eigenequation is written as 
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where I  is an identity matrix.  The matrices 1R , 2R  and 3R  are given by 
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In addition, 
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Here, vectors 
2pΨ  and 

3pΨ  hold values of ),( zyΨ  on the perforated pipe and Sp2 and Sp3 

denote the surface of the perforated pipe lying in regions R2 and R3, respectively.   

 

Equation (10) is solved for nr incident and nr reflected eigenvalues and their associated 

eigenvectors.  Numerical mode matching proceeds by enforcing two matching conditions 

over the inlet and outlet planes (A and B).  The first condition is continuity of pressure and 

here the incident eigenfunction in region R1 is chosen as a weighting function, which yields  
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over plane B.  The second matching condition is a kinematic condition, which is chosen here 

to be the same as that used by Kirby and Denia [5].  Accordingly, the incident eigenfunction 

in region Rc is chosen as the weighting function and this yields, 
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for plane A, and 
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for plane B.  Here 
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and 0)(~ ρωρρ = , where )(ωρ  is the effective (complex) density of the porous material.  

Equations (20) to (23) represent four coupled equations which may be re-written as 
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where, 
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Lkknn

n
reCC 0i~ −= , for a silencer of length L.  The integrals in Eqs. (29)-(31) are carried out 

numerically after truncating the sums in the inlet and outlet pipes at 1m and 4m , respectively.  

Equations (25)-(28) are then solved simultaneously for the unknown modal amplitudes after 

setting 10 =F , 0=n
F  for 0>n , and 0=n

E  for all n.  For plane wave propagation in the 

inlet and outlet pipes, the silencer TL may then readily be obtained from   
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2.2.1  Four pole representation 

 

In the paper by Kirby and Denia [5] expressions are provided for the four poles of a 

dissipative silencer.  These expressions are incorrect.  Instead one must solve the systems of 

equations twice with different axial boundary conditions [25].  The general four pole transfer 

matrix (for plane wave propagation in the inlet/outlet pipes) is given as 
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For (ii) 00
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Here, 00cZ ρ=  and the subscripts (i) and (ii) denote the value of the modal coefficient for 

solutions (i) and (ii), respectively.  The silencer TL may then be calculated from 
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 { }2221121110 5.0log20TL TZTZTT +++= . (36) 

 

Note that the choice of 0=′= xx  suppresses the influence of higher order modal scattering 

close to the inlet and outlet planes in regions 1R and 4R .  To include this scattering, one may 

simply set inLx −= , and outLx =′  so that the four pole transfer matrix is computed in regions 

1R and 4R , a distance inL  and outL  from planes A and B, respectively.  A study of the effect 

of suppressing modal scattering at planes A and B is included towards the end of the 

following section. 

 

2.3  Hybrid numerical method 

A hybrid numerical (HFE) method is reported here, which is based on the method of Kirby 

[22].  This requires a full finite element discretisation of the silencer chamber and so is based 

on the method of Peat and Rathi [21], although their method is extended here to include a 

perforated pipe.  Note however that the addition of a perforated pipe means that mean flow in 

the absorbent material is neglected, and in the analysis that follows only an isotropic porous 

material is considered.  Accordingly, the acoustic pressure in the silencer chamber, region Rc, 

is approximated by 
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where jN  is a global trial (or shape) function for the finite element mesh, 
jcp  is the value of 

the acoustic pressure at node j, and nc is the number of nodes (or degrees of freedom) in 

region Rc.  Expressing Eq. (37) in vector form yields, 
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A weighted residual statement of the wave equation for regions R2 and R3 may now be 

formulated.  After application of Green’s theorem this yields 
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for region R2, and 
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for region R3.  Here, 2p  and 3p  hold the values of acoustic pressure in regions R2 and  R3, 

respectively; S2 and S3 denote the outer surface of regions R2 and  R3, respectively, Γ  is the 

propagation constant of the porous material, and 
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Equations (39) and (40) are coupled together using the pressure and kinematic boundary 

conditions identified in Eqs. (5) and (6).  For clarity it is convenient first to separate out the 

integrals on the right-hand side of Eqs. (39) and (40), and to write 
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and 
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(42) 

 

where SA and SB denote the surface of planes A and B that lie in region 2, respectively; Sp2 

and Sp3 denote the surface of the perforated pipe that lies in region R2 and R3, respectively.  

Equation (41) is the key to implementing the HFE method since it is through the integrals 

over SA and SB that the acoustic velocity in the silencer chamber is matched to the velocity in 

the inlet and outlet pipes.  This requires the use of Eqs. (3) and (4), which when substituted 

into the relevant surface integrals in Eq. (41) yields, 
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and 
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Note that the summations have been removed here for clarity.  It is convenient to re-write 

these integrals in matrix form, to give 
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where  
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and 
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Here, 1m  and 4m  are the number of modes in regions R1 and R4, respectively.  Note also that 

Φ=Φ=Φ ri .  The remaining surface integrals in Eqs. (41) and (42) are re-written using the 

boundary conditions for the perforated pipe given by Eqs. (5) and (6), to give 
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Here, 
3pp′  and 

2pp′  denote the acoustic pressure on the perforated pipe in regions R2 and  R3, 

respectively.  The right-hand side of Eq. (49) contains a second order derivative if 2=Q , this 

may be eliminated by integration, to give 
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where the vectors 
2pp  and 

3pp  hold the values of acoustic pressure on the perforated pipe in 

regions R2 and  R3, respectively, and 
2cS  represents a pair of circuits at 1rr =  on planes A and 

B.  Equations (50) and (51) may now be written in matrix form, to give 
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and 
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and 
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Finally, Eqs. (39) and (40) are re-written using matrix notation and then combined to give 
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Here, 
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Equation (57) matches the acoustic velocity in the silencer chamber to that in the inlet and 

outlet pipes; however, before the problem can be solved a further matching condition is 



 23 

required and here continuity of pressure is enforced separately over planes A and B.  For 

plane A, this gives 
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and for plane B 
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Here, 
A2p  and 

B2p  hold values of the acoustic pressure in region R2 that lies on SA and SB, 

respectively.  It was noted by Astley [23] that in order to obtain a final system matrix that is 

symmetrical it is necessary to weight each pressure condition using the velocity in the 

inlet/outlet pipes.  Accordingly, for plane A the reflected velocity in region R1 is used, and for 

plane B the incident velocity in region R4 is used.  This then gives 
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Equations (57), (63) and (64) are now solved to find the unknown pressures in the silencer 

chamber and the modal amplitudes in the inlet and outlet pipes.  To combine these equations, 

it is convenient first to write 
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where matrix mnG  has order nm nn × .  Here, 1n  and 3n  denote the number of nodes on SA and 

SB, respectively (where, 11 nm ≤ , and 34 nm ≤ ); cn  is the number of nodes in region Rc, and 

en  is the number of nodes that lie in region 2, but do not lie on AS  and BS  (so that 

31 nnnn ce −−= ).  The values for pressure at those nodes in region Rc that do not lie on SA 

and SB are held in matrix cep .  To solve the problem it is necessary to ascribe the axial 

boundary conditions in the inlet and outlet pipes; to find the silencer TL it is easiest here 

simply to assume plane wave conditions in the inlet and outlet pipe and to set 10 =F , 0=n
F  

for 0>n , and 0=n
E  for all n.  This then gives 
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where 
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The silencer TL may then readily be computed using Eq. (32).  Alternatively, it is 

straightforward to solve for the silencer four poles using the method outlined in Section 2.2.1.  
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Here, it is necessary to solve the problem twice: (i) setting 04 =′p , and (ii) setting 04 =′u .  In 

general this may be written as 
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with the positive sign used for solution (i) and the negative sign for solution (ii).  The silencer 

four poles may then be obtained from Eqs. (34) and (35).  Note that by enforcing the axial 

matching conditions over the inlet and outlet planes of the silencer modal scattering close to 

these planes (in regions R1 and R4) is suppressed when computing the four poles.  This may 

be avoided by moving planes A and B into regions R1 and R4, although this will be at the 

expense of extending the finite element mesh.  Alternatively, one could add in lengths inL  

and outL  in the four pole formulation of Section 2.2.1, which would incur no additional 

computational expenditure.  However, for automotive silencers very little additional energy is 

likely to be dissipated through the scattering of higher order modes in regions R1 and R4.  For 

example, for Silencers 1 to 3 the addition of inlet and outlet mesh extensions delivers an 

average change in transmission loss of 0.2 percent (with a maximum of 0.5 percent) when 

compared to computations that omit the mesh extensions.  Accordingly, it is justifiable, at 

least for the automotive silencers studied here, to keep planes A and B coincident with the 

inlet and outlet planes of the silencer. 
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3.  RESULTS AND DISCUSSION 

 

The accuracy and computational efficiency of the four different modelling approaches 

detailed in Section 2 are investigated here for three circular dissipative silencers.  Results will 

also be presented for two silencers with elliptical cross-sections in view of the change in 

matching conditions described in Section 2.2.  The dimensions of each silencer are listed in 

Table 1, where the outer radius of the circular silencers is denoted by 2r  and the elliptical 

silencers have dimensions ba ×  where a  is the major axis and b is the minor axis.  Here, 

Silencers 1 and 2 have been chosen to match two of the silencers studied by Kirby and Denia 

[5]; Silencer 3 was studied by Selamet et al. [7] and is included because of a low perforated 

pipe porosity; Silencers 4 and 5 are identical to those studied by Kirby [15].  All the 

calculations that follow assume that mean flow with a Mach number of 15.0=M  is present 

in the airway. 

 

The bulk acoustic properties of the materials contained within each silencer are defined here 

using Delany and Bazley coefficients, where 
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and 
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Here, the constants a1,…,a8 are Delany and Bazley coefficients that must be measured for 

each absorbing material, ξ  is the non-dimensional frequency parameter given by Θ= f0ρξ  

and Θ  is the material flow resistivity.  Values of the Delany and Bazley constants for E 

Glass and Basalt wool can be found in Ref. [15], and for Silencer 3 these values can be found 

in Ref. [7].  A low frequency correction, discussed in detail by Kirby [2, 15] is also adopted 
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here, but only for Silencers 1, 2, 4 and 5; this correction is omitted from Silencer 3 in order to 

remain consistent with the material specification in Ref. [7].  For the perforated pipe the 

normalised impedance ζ  is given by [5] 

 

 σσρζζ /)]()1~(425.0i[ 0 Fdk −+′=  (74) 

 

where 

 

 5.15.0 17.006.11)( σσσ +−=F . (75) 

 

Here, d is the hole diameter, σ  is the open area porosity and ζ ′  is the orifice impedance 

measured in the absence of an absorbing material.  Values for ζ ′  were measured by Kirby 

and Cummings [26] and this data is adopted here with mm 3.5 =d  and the hole thickness 

mm 1 =t  for Silencers 1, 2, 4 and 5, for Silencer 3 mm 2.49 =d  and mm 0.9 =t  [7].  For a 

mean flow Mach number of 15.0=M  a friction velocity of m/s 56.2=∗u  is used for the 

impedance calculations [26]. 

 

The focus of this paper is on investigating the relative accuracy and computational efficiency 

of four alternative modelling methodologies.  Silencer design normally focuses on computing 

overall silencer performance, which is usually quantified in terms of the silencer TL.  

Accordingly, the performance of each modelling approach will be judged in terms of the TL 

predictions and this will be computed without recourse to finding the silencer four-poles.  

The analysis of each method will begin by examining the convergence of the AMM, NMM 

and HFE methods.  Here, the AMM predictions will follow exactly the method reported by 

Kirby and Denia [5].  For the NMM method axisymmetry is assumed so that for circular 

silencers a one-dimensional (y plane) transverse finite element mesh is necessary and here 

three noded isoparametric line elements are used; for the elliptical silencers a two-

dimensional (y and z plane) transverse finite element mesh is necessary and here six noded 



 28 

isoparametirc triangular and eight noded isoparametric quadrilateral elements are used.  For 

the HFE method, symmetry allows a two-dimensional cross section to be studied for the 

circular silencers (x and y plane) and here eight noded quadrilateral elements are used.  

Furthermore, the inclusion of a perforated pipe in the NMM and HFE models is achieved by 

adding a node on either side of the perforated pipe, noting that the perforated pipe is treated 

as an infinitely thin surface in the model and so each adjacent node has an identical location.  

The analysis of convergence is restricted here to the AMM, NMM and HFE methods because 

the APW approach does not include an iterative solution and so “convergence” is not defined 

for this method. 

 

3.1.  Circular dissipative silencers 

In Figures 2-4, the convergence of the TL predictions for each method is shown for a 

frequency of 2 kHz.  This frequency has been chosen because it represents an upper limit of 

the frequency range of interest and so represents a stringent test on convergence.  In each 

figure the relative percentage change in the TL prediction ( Eδ ) is plotted against the number 

of degrees of freedom for the model, where 

 

 
j

jj

j
TL

TLTL
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100
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Here, Eδ  tracks the percentage change in the TL computation j, when compared to the 

previous computation j-1, so that convergence is achieved when 0→Eδ .  Note that as j 

increases, the number of degrees of freedom in the model is increased; however, in order to 

properly track convergence it is important to use small increments in the number of degrees 

of freedom, nN and nH, or the number of modes nA.  For the AMM method An  denotes the 

size of the overall system of equations, with 41 2 mmmn cA ++= , where m1 and m4 are the 
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number of modes in regions 1 and 4, respectively, and mc is the number of modes in the 

silencer chamber (see Ref. [5]).  Similarly, for the NMM method, 41 2 mnmn sN ++=  (with 

rs nn = ), and for the HFE method, 41 mnmn cH ++= . 

 

A comparison between Figs. 2, 3 and 4 indicates that the convergence of the NMM method is 

much more stable than the AMM and HFE methods.  Here, the convergence of the AMM 

method is rather erratic, although the general trend is similar to that seen for the NMM 

method.  The HFE method also displays rather erratic convergence although achieving 

smooth convergence for this model is more difficult because one must modify a two-

dimensional finite element mesh, which can lead to step changes in accuracy as, say, an extra 

transverse element is added over the length of the silencer.  In contrast, the NMM method 

exhibits very good convergence and attains low values of Eδ  much faster than the other two 

methods.  However, it should be noted that all three methods converge to values of 1.0<Eδ  

relatively quickly and, once this limit has been achieved, this level of accuracy is generally 

maintained.  Furthermore, convergence to values of 1.0<Eδ  generally equates to 

convergence in TL predictions to at least one decimal place.  This is significant, as practical 

silencer design is not normally interested in delivering predictions to levels of accuracy 

greater than one decimal place, especially as one cannot measure TL to this degree of 

accuracy.  Accordingly, convergence to 1.0=Eδ  should be viewed as sufficient for most 

practical uses of the models presented here. 

 

In Figures 2-4 the number of degrees of freedom required to achieve a given level of 

convergence is normally much higher for the HFE method when compared to the two mode 

matching methods.  This is to be expected because the AMM and NMM methods utilise the 

uniform geometry of the silencer section; however, the respective values for An , Nn  and Hn  
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do not necessarily provide a reliable guide to the relative speed of each method.  To 

investigate this further, values of Eδ  are plotted against the time taken (in seconds) to 

generate each TL computation in Figures 5-7, for Silencers 1, 2 and 3 at a frequency of 2 

kHz.  Here, the APW method has again been omitted, not only because convergence is not 

defined for this method but also because the predictions are almost instantaneous.  For 

example, after averaging the time taken to compute a large number of frequency calculations, 

the approximate time to deliver one frequency calculation was estimated to be s 0005.0=t , 

which is far quicker than the other methods.  Of course, this should be no surprise given the 

nature of the APW method; however, it is the accuracy of this method that is of more interest 

and this will be reviewed later on in this section.  Thus, the focus in Figs. 5-7 is on the rates 

of convergence of the three other methods and here the relative speed of each method may be 

compared against one another.  The values generated in Figs. 5-7 were computed on a 

Pentium 4, 3.6 GHz machine with 1 GB of RAM and the values quoted for a single frequency 

were obtained by running multiple frequency calculations and taking an average value.  It is 

not surprising that in each of these figures the time taken to compute a new TL value 

increases as the number of degrees of freedom increases.  Figures 5-7 are, however, 

interesting in that they show the AMM method performing relatively poorly when compared 

to the two numerical methods.  Clearly, the NMM is very quick when compared to the AMM 

and HFE methods and low values of Eδ  are achieved with very little computational effort.  

Conversely, the AMM method performs relatively poorly and is at least ten times slower than 

the NMM method for values of 1.0≈Eδ .  The reason for this is that the time taken to solve 

the NMM equations is largely dictated by the size of the final matrix ( Nn ), whereas for the 

AMM method the time taken is dominated by the root finding algorithm.  Here, the relatively 

fast Newton-Raphson method has been used to find the roots (see Ref. [5]), but the number of 

initial guesses required coupled with an iterative process means that this method is time 
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consuming, especially as one must find both incident and reflected wavenumbers.  It is 

probably possible here to optimise the root finding algorithm further and to improve the 

speed of this method, but it is unlikely that this will be improved sufficiently to match the 

speed of the NMM method.  These results illustrate the dominance of root finding over the 

computational speed of the AMM method and so indicate the potential advantages of 

alternative analytic approaches such as the substructuring method of Albelda et al. [8, 11].  

Here, if the two subdomain eigenproblems can be solved quickly and one does not require too 

many modes to obtain a converged solution, then this method should outperform the AMM 

method.  However, firm conclusions await a full reporting of the method, and one doubts that 

this method would be faster than the NMM method if the number of substructural modes 

used in the absence of flow [8] are representative of those required when flow is present. 

 

In Figs. 5-7 the speed of convergence of the HFE is seen to be comparable to the NMM 

method at higher values of Eδ , but eventually this method slows as higher levels of 

convergence are sought and eventually the method becomes slower than the AMM method.  

It is, however, rather surprising to note that the HFE method performs well when compared 

to the AMM at values of 1.0≈Eδ  and is even comparable in speed to the NMM method.  In 

Fig. 4, the number of degrees of freedom required to deliver convergence to 1.0≈Eδ  is much 

higher than that seen for the AMM and NMM methods; however, the HFE method delivers a 

sparse, symmetric and banded matrix, which leads to relatively fast inversion when compared 

to mode matching methods that invert dense non-symmetric matrices.  Accordingly, the 

results presented here demonstrate that the time taken to invert a small but dense non-

symmetric matrix is similar to that taken to invert a much larger but banded symmetric 

matrix.  Therefore, for values of 1.0≈Eδ  the HFE method is capable of computations with a 

speed comparable to the NMM method but faster than an equivalent analytic method, a point 
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that is often not recognised in the literature.  Of course, as one increases values of Hn  the 

time taken to solve the HFE problem increases rapidly, but only at relatively high values of 

Hn  is the HFE method seen to become slower than the AMM method. 

 

The final test for each method is a comparison between the accuracy of the predictions 

generated.  Accuracy will be examined here first by comparing TL predictions converged to 

two decimal places, and then by comparing predictions converged to 1.0≈Eδ .  This allows a 

comparison between the accuracy that each method is capable of and also the accuracy that 

may be achieved if one is interested in economising on computational speed.  In Tables 2-4, a 

comparison between TL predictions converged to two decimal places is shown for Silencers 

1-3.  Here, problems with the accuracy of the APW method are obvious at higher frequencies 

as well as for a perforated pipe of low porosity.  This supports the observations made by 

Kirby [2] and indicates that, although the APW method provides instantaneous predictions, 

the accuracy of these predictions is acceptable only if one is interested in relatively low 

frequencies, say below 500 Hz.  For the other three methods very good agreement between 

TL predictions is observed over the entire frequency range.  This serves to validate the NMM 

and HFE models in Sections 2.2 and 2.3, respectively.  It is interesting also to note the very 

good agreement between the HFE method and the two mode matching techniques.  In the 

article by Kirby and Denia [5] it was proposed that continuity of displacement should be used 

for the axial kinematic matching condition over the inlet/outlet planes of the silencer, but 

only if continuity of displacement was already being used for the transverse kinematic 

condition over the perforated pipe.  Accordingly, the NMM method reported here adopts this 

suggestion and so matches using the same conditions as those adopted by the AMM method.  

In contrast, the HFE method described in Section 2.3 uses continuity of displacement over the 

perforated pipe and (the more usual) continuity of velocity over the silencer inlet/outlet 
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planes.  The excellent agreement between each method thus lends support to the observations 

of Kirby and Denia [5] and suggests that modifying the axial kinematic condition is necessary 

only when using a modal expansion for the sound pressure field in the silencer section. 

 

Tables 2-4 also contain TL predictions converged to 1.0≈Eδ  (in parentheses).  This level of 

accuracy roughly equates to a TL prediction converged to one decimal place and is therefore 

designed to record the level of accuracy possible when lowering the solution time.  

Accordingly, the data in parentheses in Tables 2-4 should be viewed in conjunction with 

Figures 5-7.  Here, the TL predictions are virtually identical for the AMM, NMM and HFE 

methods and so, when considering accuracy to only one decimal place, the same predictions 

are obtained regardless of the method chosen.  Therefore, one may chose an appropriate 

method based on the speed of solution, and an examination of Figures 5-7 clearly shows that 

the NMM is the fastest of the three techniques, and is significantly faster than the AMM 

method.  What is interesting, however, is that the HFE method also outperforms the AMM 

method and is comparable in speed to the NMM method, at least for the dissipative silencers 

studied here.  Clearly, this result has ramifications when choosing a modelling technique.  

Here, it is not necessarily the case that a numerical method is always slower than an analytic 

method.  The results presented indicate that the opposite is true if one is only interested in 

generating TL predictions for automotive silencers to an accuracy of one decimal place, 

which normally represents an acceptable level of accuracy.  Therefore, for simple circular 

dissipative silencers the NMM method provides a reliable technique that does not depend on 

mode matching and is significantly faster than an equivalent analytic method; for more 

complex but axially uniform silencer geometries, such as those which include inlet/outlet 

extensions, the HFE method is also capable of outperforming the AMM and modifying the 

finite element mesh to accommodate more complex geometries is very straightforward.   
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3.2.  Elliptical dissipative silencers 

The NMM model presented in Section 2.2 is a modified version of the point collocation 

method of Kirby [15] that includes the new axial kinematic matching condition later 

suggested by Kirby and Denia [5].  In view of these changes it is appropriate here to revisit 

those predictions presented in Ref. [15].  Accordingly, predictions are presented in Figs. 8 

and 9 for Silencers 4 and 5 (see Table 1).  The TL predictions presented in Figs. 8 and 9 are 

for values of 1.0≈Eδ  and were obtained using 74=Sn , 141 == mm  and 4=rn .  

Furthermore, after taking an average of the time taken to compute the TL for a number of 

different frequencies, the time taken for a single frequency is estimated to be 0.68 s, which 

compares well with the time taken for circular silencers.  It is evident in Figs. 8 and 9 that the 

agreement between prediction and experiment has improved when compared to the 

equivalent predictions presented by Kirby [15]; however, the difference is small, which is 

probably because of the high material flow resistivity used in Silencers 4 and 5 (see Ref. [5]) 

for a fuller discussion on the influence of material flow resistivity on the axial boundary 

condition).  A comparison between prediction and experiment does, however, demonstrate 

the accuracy that may be achieved using the NMM method for elliptical silencers, and this 

may be achieved in a time that is comparable to that achievable when using the AMM for 

circular silencers. 

 

5.  CONCLUSIONS 

 

Two numerical and two analytic models are compared here.  The analytic models include the 

plane wave approach of Kirby [2] and the AMM method of Kirby and Denia [5].  Here, the 

plane wave approach is shown to be inaccurate at higher frequencies, but also when 
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perforated pipes of low porosity are present.  Accordingly, in order to be confident of 

accurate predictions above approximately 500 Hz, it is necessary to include higher order 

modes in the modelling methodology.  The accuracy and speed of the AMM method is then 

compared to two new numerical models: the point collocation approach of Kirby [15], which 

is modified in order to implement a numerical version of mode matching, and the finite 

element approach of Peat and Rathi [21], which is modified to include a perforated pipe and a 

more efficient hybrid finite element method.   

 

A comparison between the AMM method and the two numerical methods shows excellent 

agreement between the transmission loss predictions obtained for the three silencers studied 

here.  This then allows one to choose an appropriate modelling technique on the basis of 

speed and/or flexibility, and here it is shown that the numerical models perform very well 

when compared to the AMM method.  For example, the NMM method is shown to be 

significantly faster than both the AMM and HFE methods for each of the silencers studied 

here.  This is because the NMM does not require an iterative algorithm to find the roots of the 

silencer eigenequation (necessary in the AMM method), and the number of modes required to 

obtain an accurate solution is relatively small.  Accordingly, the number of degrees of 

freedom required in the (transverse) finite element mesh is relatively small for the NMM 

method, even for an asymmetric cross-section.  However, what is perhaps surprising is that 

the new HFE method also provides relatively fast solutions.  Here, if one is interested only in 

generating transmission loss predictions accurate to one decimal place, then the HFE method 

is as least as fast as the AMM method, and in most cases faster.  This is because, in addition 

to avoiding the need to use iterative root finding techniques, the HFE method delivers a 

banded symmetric matrix and this facilitates fast matrix inversion despite the increase in the 

number of degrees of freedom.  Accordingly, predictions can be generated quickly when 



 36 

using the HFE method and the normal assumption in the literature that analytic equals fast, 

and numerical equals slow, are not necessarily true, at least for automotive dissipative 

silencers.  Therefore, for more complex silencer geometries the flexibility of the HFE method 

becomes attractive and for silencers that include, say, inlet and outlet extensions, a numerical 

approach can readily be applied in the knowledge that this will not necessarily be slower than 

the more usual analytic approach. 

 

It is shown here that automotive dissipative silencers that contain mean flow and a perforated 

pipe can be modelled accurately and even when using numerical methods these models can 

run very quickly on a desktop PC.  Accordingly, such models can readily be applied in an 

iterative design environment and from the results presented here, the most efficient technique 

for a uniform dissipative silencer is a numerical mode matching technique. 
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Table 1.  Dimensions and material parameters for dissipative silencers. 

Silencer 
Length L 

(mm) 
1r  

(mm) 
2r  

(mm) 
Absorbent 

Θ  

(Pa s/m
2
) 

σ  

1 315 37 76.2 E Glass 30,716 0.263 

2 330 37 101.6 E Glass 30,716 0.263 

3 257.2 24.5 82.2 
Fibrous 

Material 
4896 0.08 

4 350 37 60110× * 
Basalt 

Wool 
13,813 0.263 

5 450 37 5095× * E Glass 30,716 0.263 

* Elliptical silencers have dimension ba × , where a  is the major axis and b is the 

minor axis. 
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Table 2.  Transmission loss values for Silencer 1 converged to  

two decimal places and after optimising  

for computational speed (in parentheses). 

Frequency 

(Hz) 

APW 

(dB) 

AMM 

(dB) 

HFE 

(dB) 

NMM 

(dB) 

50 1.88 1.45 (1.4) 1.43 (1.4) 1.45 (1.5) 

100 3.30 2.75 (2.7) 2.73 (2.7) 2.76 (2.8) 

250 5.60 5.04 (5.0) 5.03 (5.0) 5.04 (5.0) 

500 12.69 11.62 (11.6) 11.62 (11.6) 11.61 (11.6) 

750 18.95 17.63 (17.6) 17.62 (17.6) 17.62 (17.6) 

1000 23.67 22.30 (22.3) 22.30 (22.3) 22.29 (22.3) 

1500 29.23 26.61 (26.6) 26.61 (26.6) 26.61 (26.6) 

2000 23.84 27.35 (27.4) 27.34 (27.3) 27.35 (27.4) 
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Table 3.  Transmission loss values for Silencer 2 converged to  

two decimal places and after optimising  

for computational speed (in parentheses). 

Frequency 

(Hz) 

APW 

(dB) 

AMM 

(dB) 

HFE 

(dB) 

NMM 

(dB) 

50 4.64 3.29 (3.2) 3.29 (3.3) 3.29 (3.3) 

100 5.62 4.58 (4.5) 4.60 (4.6) 4.59 (4.6) 

250 10.14 8.65 (8.6) 8.71 (8.7) 8.65 (8.7) 

500 16.79 14.36 (14.4) 14.41 (14.4) 14.35 (14.4) 

750 19.64 17.84 (17.8) 17.84 (17.8) 17.83 (17.8) 

1000 20.29 20.29 (20.3) 20.28 (20.3) 20.28 (20.3) 

1500 20.53 25.00 (25.0) 25.01 (25.0) 24.99 (25.0) 

2000 22.68 29.44 (29.5) 29.45 (29.4) 29.43 (29.4) 
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Table 4.  Transmission loss values for Silencer 3 converged to  

two decimal places and after optimising  

for computational speed (in parentheses). 

Frequency 

(Hz) 

APW 

(dB) 

AMM 

(dB) 

HFE 

(dB) 

NMM 

(dB) 

50 2.93 3.71 (3.7) 3.73 (3.7) 3.72 (3.7) 

100 6.84 6.32 (6.3) 6.37 (6.4) 6.33 (6.3) 

250 12.83 9.98 (10.0) 9.97 (10.0) 9.98 (10.0) 

500 17.07 14.43 (14.4) 14.43 (14.4) 14.43 (14.4) 

750 20.97 19.80 (19.8) 19.80 (19.8) 19.78 (19.8) 

1000 23.24 24.79 (24.8) 24.91 (24.9) 24.77 (24.8) 

1500 25.66 39.26 (39.3) 39.70 (39.7) 39.28 (39.3) 

2000 21.45 24.84 (24.8) 24.86 (24.8) 24.83 (24.8) 
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Figure 1.  Geometry of silencer. 
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Figure 2.  Convergence of TL for AMM method at a frequency of 2 kHz.  ——— , Silencer 

1; —  —  — , Silencer 2; — - — - — , Silencer 3. 
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Figure 3.  Convergence of TL for NMM method at a frequency of 2 kHz.  ——— , Silencer 

1; —  —  — , Silencer 2; — - — - — , Silencer 3. 
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Figure 4.  Convergence of TL for HFE method at a frequency of 2 kHz.  ——— , Silencer 1; 

—  —  — , Silencer 2; — - — - — , Silencer 3. 
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Figure 5.  Rate of convergence for TL of Silencer 1 at a frequency of 2 kHz.  ——— , NMM 

method; —  —  — , AMM method; — - — - — , HFE Method. 
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Figure 6.  Rate of convergence for TL of Silencer 2 at a frequency of 2 kHz.  ——— , NMM 

method; —  —  — , AMM method; — - — - — , HFE Method. 
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Figure 7.  Rate of convergence for TL of Silencer 3 at a frequency of 2 kHz.  ——— , NMM 

method; —  —  — , AMM method; — - — - — , HFE Method. 
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Figure 8.  TL for Silencer 4.  ——— , experiment [15]; —  —  — , NMM predictions. 

 

 



 52 

 

 

 

 

 

 

 

Figure 9.  TL for Silencer 5.  ——— , experiment [15]; —  —  — , NMM predictions. 

 


