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Abstract

Mutation testing traditionally involves mutating a pro-
gram in order to produce a set of mutants and using these
mutants in order to either estimate the effectiveness of a test
suite or to drive test generation. Recently, however, this
approach has been applied to specifications such as those
written as finite state machines. This paper extends muta-
tion testing to finite state machine models in which tran-
sitions have associated probabilities. The paper describes
several ways of mutating a probabilistic finite state machine
(PFSM) and shows how test sequences that distinguish be-
tween a PFSM and its mutants can be generated. Testing
then involves applying each test sequence multiple times,
observing the resultant output sequences and using results
from statistical sampling theory in order to compare the
observed frequency of each output sequence with that ex-
pected.

1 Introduction

In recent years we have observed an evolution in the
kind of systems and properties that formal methods are
dealing with. In the beginning they mainly concentrated
on the functional behaviour of systems, that is, on what a
system could/should do. This led to formalisms such as
the (original) notions of process algebras, Petri nets, and
Moore/Mealy machines. The next step was to deal with
quantitative information such as the probabilities resolving
the non-deterministic choices that a system may undertake
(see, for example, [24, 16, 7, 27]). There exist several areas
where probabilistic representations have been applied suc-
cessfully including computational linguistics, pattern recog-
nition, bio-informatics and circuit testing.

In order to specify systems dealing with probabilities we
will use probabilistic finite state machines (PFSMs) that
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are finite state machines with probabilities attached to their
transitions. Intuitively, a transition in a finite state machine
indicates that if the machine is in a state s and receives
an input ¢ then it can produce an output o and change its

state to s’. An appropriate notation for such a transition

_¥e, s'. If we consider a probabilistic ex-

. . . .. ifo/p
tension of finite state machines, a transition s ———— s’

indicates that the probability with which the event happens
is p. We consider a variant of the reactive interpretation
of probabilities (see for example [24]) since it is the most
suitable for our framework. Intuitively, a reactive inter-
pretation imposes a probabilistic relation among transitions
labelled by the same action but choices between different
actions are not quantified. In our setting we are able to
express probabilistic relations between transitions outgoing
from a state and having the same input action (the output
may vary). For example, let us suppose that the transitions

i1/01/p1 i1/02/p2
—

could be s

from state s are t1 = s

i1/03/ps3

t3 = § —
i2/03/Ds
—

S1,tog =5
i2/01/pa
s

52,

82, ty = s3, and t5 =

s1. If input ¢; is received then the choice be-
tween t1, to, and ¢35 will be resolved according to probabili-
ties p1, p2, and p3. Naturally, these values must lie between
0 and 1 and their sum should be 1. Something similar hap-
pens for ¢4 and ¢5. However, there does not exist any prob-
abilistic relation between transitions labelled with different
input actions (e.g. 1 and t4).

After describing a formalism to deal with these concepts
we present a testing methodology based on mutation testing.
Originally mutation testing was applied to code [20, 5] but
some work has looked at specification mutation [6]. Here
the specification is mutated and for each mutant a test is de-
rived that distinguishes the behaviours of the mutated and
original specifications. The effect is to ensure that the im-
plementation under test (IUT) does not implement any of
the incorrect specifications. Mutations are chosen in order
to simulate real faults. The belief is that if a test suite dis-
tinguishes between the specification and mutants then it dis-
tinguishes between the specification and any faulty IUT. We
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describe different mutation operators that can be applied to
a PFSM specification. Additionally, we present approaches
to finding input sequences in order to distinguish the mu-
tants and the specification.

This paper concerns black-box testing; if we apply an
input to an IUT then we observe an output but we can-
not see the probabilities that the IUT has assigned to the
choices. Thus, even though implementations will behave
according to fixed probabilities we cannot determine their
values through testing. In our approach, we estimate the
probabilities by applying a test several times. We use sta-
tistical results to establish the number of times we need to
apply the test to obtaining a required confidence level.

The rest of the paper is organized as follows. In the next
section we introduce preliminary concepts and the notion of
a PFSM. In Section 3 we show how we can produce input
sequences that distinguish states of a PESM. In Section 4 we
introduce mutation operators for PESMs and corresponding
test generation methods. In Section 5 we describe how test-
ing can use input sequences produced by the methods in
Section 4. In Section 6 we review previous works on test-
ing probabilistic systems. Finally, in Section 7 we present
our conclusions and some lines of future work.

2 Preliminaries
2.1 Basic notation

In this paper sequences are represented by listing their
elements preceded by (, followed by ), and separated by
commas. Where a variable represents a sequence its name
will have a bar above it, an example being a. In addition,
[0, 1] denotes the set {p | 0 < p < 1} of numbers that could
represent probabilities, (0, 1] denotes the set {p | 0 < p <
1} of numbers that could represent positive probabilities,
and (0, 1) denotes the set of values strictly between 0 and 1
andso (0,1) ={p|0<p<1}.

Given set X, P(X) denotes the powerset of X: the set
of subsets of X. Thus, P(X) = {X'|X’ C X}. Given set
W of sequences, Pre(W) = {z'|3z € W,z" € X*.z =
Z'Z"} denotes the set of prefixes of sequences from W.
Given sets A and B, A < B denotes the set of relations
between A and B. Given a relation f of type A < B and
a € A, ais related to b under f is denoted by f(a,b) and
f(a) denotes the set of elements of B related to a under f
and so f(a) = {b € B|f(a,b)}.

2.2 Mutation testing

The idea behind mutation testing is that if a test suite dis-
tinguishes a program P from other similar programs then it
is probably good at discovering faults. The technique intro-
duces small changes in a program, one at a time, to generate

142

a set of mutants. We produce mutants by applying one or
more mutation operators to a given program. In general,
P’ is an nth order mutant if it is produced by application
a sequence of n mutation operators. Usually only first or-
der mutants are considered and two arguments are used to
justify this. First, the competent programmer hypothesis
states that expert programmers often write almost correct
programs, so low order mutants represent most real faults.
Second, if the tests find small differences generated by low
order mutants, then it is likely that they find more complex
differences. This is called the coupling effect.

After we have obtained a collection of mutants from a
program, a set of tests 1" is applied to distinguish each of
the mutants from the original program. If the output pro-
duced by a mutant P’ is different to the one produced by
the original program P for test t € T, then t kills P’. If no
possible test case kills P’, then P’ is an equivalent mutant
of P. The objective of mutation analysis is to produce test
cases that kill all non-equivalent mutants. Test suites that
achieve this goal are adequate relative to mutation.

Another strategy given in [6] is specification mutation .
The specification is mutated, and for each mutation a test
is derived that distinguishes the behaviours of the mutated
and original specifications. The effect is to ensure that the
system under test does not implement any of the incorrect
specifications. The mutations are chosen in order to sim-
ulate real faults and thus the belief is that a test suite that
kills the mutants will not be passed by a faulty system. This
approach has also been applied with finite state machines
based models [12, 11, 13, 33]).

2.3 Finite Automata

A Finite Automaton (FA) N is defined by a tuple
(S, s0,A,0,Sr) in which S is a finite set of states, sg € S
is the initial state, A is the finite alphabet, § : S X A < §
is the state transfer relation, and Sr C S is the set of final
states. If IV receives a € A when in state s € S it moves
to a state ' € d(s, a) and this defines a transition (s, s’, a).
The relation ¢ can be extended to take sequences from A*,
giving relation 6*, in the usual way. FA N is a determin-
istic finite automaton (DFA) if for all a € A and s € S,
0(s,a)| < 1.

State s of N defines the language Ly(s) = {a €
A*|6*(s,a) N Sp # 0} of words that can take N from s
to a final state. Word a € A* distinguishes states s and s’ of
N if @ is in exactly one of Ly (s) and Ly (s’). If no word
distinguishes s and s’ then they are equivalent. Two FA are
equivalent if their initial states are equivalent. DFA N is
minimal if no DFA with fewer states is equivalent to V.

A Probabilistic Finite Automaton (PFA) NV is defined by
a tuple (5, so, 4, 9, Sp,prob) in which S is a finite set of
states, so € S is the initial state, A is the finite alphabet,



0 : S x A < S is the state transfer relation, S C S is the
set of final states, and prob is the transition probability func-
tion of type S x A x S — [0,1]. If N receives a € A when
in state s € S it moves to a state s’ € d(s, a) with probabil-
ity prob(s,a,s’) and this defines transition (s, s’,a). The
relation § can be extended to take sequences from A*, giv-
ing §*, in the usual way.

Definition 1 Let N = (S, s¢, A, , Sg, prob) be a PFA and
let s,s' be states of N. Then a € A* distinguishes states s
and s' if the string a is accepted from states s and s’ with
different probabilities. States s and s’ are equivalent if no
string from A* distinguishes them.

2.4 Probabilistic finite state machines

A non-deterministic finite state machine (NFSM) is a
FA in which each transition has an associated output. An
NFSM is defined by a tuple (.5, sg, X, Y, f) in which S is a
finite set of states, sg € S is the initial state, X is the finite
input alphabet, Y is the finite output alphabet, and f is the
transition relation. For each state s € .S and input z € X,
f(s,x) denotes a set of tuples of the form (s’,y) in which
s’ € Sandy € Y. Given (s',y) € f(s,z), (s,5,z/y) is
a transition and this should be interpreted as meaning that
if we receive input  while in state s then we can move to
state s’ and produce output y. A deterministic finite state
machine (DFSM) is an NFSM in which for every state s
and input z, |f(s,x)| < 1. There has been much interest
in testing from a DFSM (see, for example, [9, 18, 3]) or an
NFSM (see, for example, [26, 29, 21, 17]). See [25] for a
survey.

A probabilistic finite state machine (PFSM) is an NFSM
in which every transition also has an associated probability.
A PFSM M is defined by a tuple (S, sg, X, Y, h) in which
S is a finite set of states, so € S is the initial state, X is
the finite input alphabet, Y is the finite output alphabet, and
h:SxX < SxY x(0,1] is the transition relation. For
each state s € S and input z € X, h(s, z) denotes a set of
tuples of the form (s’,y,p) in which s’ € S, y € Y, and

€ (0,1]". Foralls € Sandz € X, 3\ e P =
1.

If (s',y,p) € h(s,z) then (s,x,y,s’,p) is a transition
of M with starting state s. The probabilities should be in-
terpreted in the following way. If (s’,y,p) € h(s,z) and
M receives input x when in state s then with probability p
it moves to state s’ and produces output y. For a survey on
probabilistic automata see [36].

TAn equivalent but less compact representation would include in
h(s, z) the transitions with probability 0.
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Figure 1. A PFSM

Example 1 Let us consider the probabilistic finite state ma-
chine depicted in Figure 1. Each transition has an as-
sociated probability. We can observe that all the transi-
tions from state so have probability 1. In contrast, for
the state s1 we have the transitions (s1,12,01, S2, i) and
(s1,12,02, s3, %) with input io; naturally their probabilities
sum to 1.

An alternative characterization of the transitions of M is
through a function pys of type S x X x Y x S — [0,1].
Given states s and s’, input s and output y, pas(s, z,y, s') is
the probability that M moves to state s’ and produces output
y if it receives input = when in state s. Naturally h and pps
fully define one another since (s',y,p) € h(s,z) < p >
0 /\p]W(& T, Y, S/) =D

We can extend the transition relation h to input se-
quences, producing relation h* of type S x X* <« S X
Y™ x (0,1]. It is simplest to first define p}, and express h*
in terms of pj,. A similar approach has been applied for
PFA (see, for example, [36]).

Definition 2 Ler M = (S, s, X,Y,h) be a PFSM. Given
input/output sequence T/y and state s € S we define the
probability of reaching state s’ from s with T/ as:

,):{(1)

Sl) = Z p*M(S,i'7g,S//)pM(8/I,
s'’es

ify=cand s = s,

"
S,€,Y,8 .
Pau(s, €.y, otherwise

P (s, Tz, gy, z,y,s")

Let us note that py/(s, Z, 7, s') is 0 whenever |Z| # |g|.
In a slight abuse of notation p}, (s, Z,%) denotes the prob-
ability that M produces output sequence y if it receives
input sequence Z when in state s. Thus, p},(s,Z,7) =
Y eesPr(s,Z,9,5"). We can now extend the transition
relation h to input sequences.

h*(s,z) =

{(s",7,0)lp = pr(5,2,7,5") Ap >0}



PFSM M is observable, or output-complete, if for every
state s, input « and output y there is at most one transition
leaving s with input = and output y. In this paper we con-
sider both observable PFSMs (OPFSMs) and PFSMs that
are not observable. PFSM M is completely specified if for
every state s and input x, |h(s, x)| > 1 holds.

Some systems have a special operation called a reset that
takes the system to its initial state irrespective of the current
state. The IUT has a reliable reset if it has a reset that is
known to be correct. A reliable reset could represent some
way of resetting the IUT, such as switching it off and then
on again. In this paper we assume that the IUT has a reliable
reset.

Two states of an NFSM or DFSM are equivalent if they
define the same sets of behaviours: the same set of in-
put/output sequences. For two states of an PFSM to be
equivalent we need that they define the same sets of be-
haviours with the same probabilities. Thus, states s and
s" of PEFSM M are equivalent if for every input sequence
T € X* and output sequence § € Y*, we have that
pi(s,%,9) = piy(s',Z,7). If s and s’ are not equivalent
then they are distinguishable. Two PFSMs are equivalent
if their initial states are equivalent. If there exists some
g € Y* such that p3}, (s, Z,9) # pi; (s, T, §) then Z is said
to distinguish s and s’. M is minimal if no PFSM with
fewer states that M is equivalent to M.

Let us suppose that we are testing a black box that is
equivalent to M and we know that we are either in state s
or in state s’. If T distinguishes s and s’ then it can be used
to determine the state if we can apply it in the current state
multiple times since we can estimate the probability of each
output sequence and the corresponding probabilities are dif-
ferent for s and s’. If we have a reset then we could repeat
the following separated by resets: apply the test sequence
that led to the current state and then apply . If we are
to apply an input sequence Z once only to distinguish two
states s and s’ then we need a stronger concept: the input of
Z must be guaranteed to lead to different output sequences
from s and s’ and thus the corresponding sets of possible
output sequences must be disjoint.

When reasoning about testing it is normal to assume that
the IUT behaves like an unknown element of a fault model
(see, for example [22]). Usually the fault model contains
descriptions written in the same language as the specifica-
tion. Thus, for example, when testing from a DFSM it is
normal to assume that the IUT behaves like an unknown
DFSM. Conformance relations can then be formally de-
fined. Here we briefly review the conformance relations for
testing from a (completely specified) DFSM or NFSM.

When testing from a completely specified NFSM there
are two notions of correctness. One notion is equivalence,
but an alternative is that every behaviour of the IUT is also
a behaviour of the specification and that the IUT is com-
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pletely specified. The assignment of probabilities to transi-
tions removes the possibility of using the second notion of
correctness for NFSMs and thus when testing from a PFSM
the IUT is correct if it behaves like an unknown PESM N
that is equivalent® to M.

3 Distinguishing states of a PFSM

This section shows how we can produce an input se-
quence that distinguishes two states of PFSM M. We first
consider the case where M is observable and show that here
the problem can be represented in terms of finding a se-
quence that distinguishes two states of a FA. We then con-
sider the general case.

Definition 3 Let M = (S, s9, X, Y, h) be a PESM. We de-
finea FAF (M) = (S, s0, A, 6,S) where Ais X xY x(0,1]
and given s € S, z € X,y € Y, and p € (0,1],
0(s, (x,y,p)) = s ifand only if (s',y,p) € h(s,x).

Given a € A*, let in(a) denote the corresponding input
sequence. The function ¢n can be defined recursively in the
following way. First, the base case is in(e) = e. Given
a = (z,y,p) € Aand a € A*, in(aa) = zin(a). The
following show that algorithms that produce sequences that
distinguish states of a FA can also be used to produce se-
quences that distinguish state of an OPFSM.

Proposition 1 If input sequence T distinguishes states s
and s' of OPFSM M then there is some a € A* such that a
distinguishes states s and s’ of F(M) and in(a) = T.

Proof

Let us suppose that T distinguishes states s and s’ of M.
By definition, there exists § € Y™* such that p%, (s, Z, ) #
ph(s', T, 7). Without loss of generality, assume that p =
Pi(s,2,9) > 0.

Since M is observable, there is only one walk in M from
state s with input/output sequence Z/y. Let {t1,...,tx)
(k = |z|) denote the sequence of transitions on this walk
and for each t; = (s, 24, Yi, si41,p:) let a; = (4, Yi,ps)
and let @ = (ay,...,ag). If there is no walk from s’ in
M with input/output sequence Z/7 then @ does not label a
walk from state s’ of F'(M) and so a distinguishes states s
and s’ of F'(M) as required. Alternatively, if there is a walk
from s’ in M with input/output sequence /¢ then there is
only one such walk so since p3,(s, Z,§) # pi/(s',%,7), @
does not label a walk from state s’ of F/(M) and so a dis-
tinguishes states s and s’ of F'(M) as required. O

Proposition 2 Given an OPFSM M and a € A* such that
a distinguishes states s and s’ of F/(M), if no proper prefix

2A richer set of conformance relations have been defined for general
probabilistic state machines (see, for example, [31, 37]).



of a distinguishes s and s' and in(a) = T then T distin-
guishes states s and s’ of M.

Proof

Let us suppose that @ distinguishes states s and s’ of
F (M) and no proper prefix of @ distinguishes s and s’. Let
a= {ay,...,ag), a; = (x4,Yi,0i), T = (x1,...2%) and
g = {y1,-..,Yk). Without loss of generality, a labels a
walk from state s of F'(M) and does not label a walk from
state s’ of F'(M).

Since M is observable, there is only one walk in M from
state s with input/output sequence Z/gy. If Z/§ does not
label a walk from state s’ of M then by definition Z dis-
tinguishes states s and s’ of M as required. We thus as-
sume that Z/g labels a walk from state s’ of M and that
this walk consists of the sequence (¢, . . ., t}.) of transitions.
Let p} denote the probability associated with transition ¢/.
Since no proper prefix of @ distinguishes s and s’ and so
(ay,...,ax_1) labels a walk from s’ in F'(M) we have that
p; = p for 1 < i < k. Since @ does not label a walk from
s in F(M), pp # p},. Thus, p3,(s,,Z,9) = p1...0x #
pi...p, = pi(s’,Z,7) and so Z distinguishes states s and
s" of M as required. O

Note the condition that no proper prefix of a distin-
guishes s and s’. To see why we require this suppose that
a = (x1,y1,0.5)(z2,y2,0.5), a labels a walk from s, and
there is a walk with label (21, y1,1)(z2, y2,0.25) from state
s'. Then a distinguishes states s and s” of F'(M), since @ la-
bels a walk from s but not s’. However, the input sequence
2122 might not distinguish between states s and s’ of M
since both states have a probability of 0.25 of producing
y1Y2. Naturally, if we consider the minimal prefix of a that
distinguishes states s and s’ of F'(M) then the correspond-
ing input sequence x; does distinguish between states s and
s' of M.

Proposition 3 There is an algorithm running in time O(n?)
that takes two states s1 and s of OPFSM M and deter-
mines whether they are equivalent, where n is the number
of states of M. If s1 and sy are distinguishable then the al-
gorithm returns a minimal input/output sequence of length
no more than n — 1 that distinguishes them.

Proof

Since F'(M) is a minimal FA, there exists a set of se-
quences of length at most n — 1 that pairwise distinguish
the states of F'(M) and such a set can be found in O(n?)
time (see, for example, [15]). The result thus follows from
Proposition 2. U

More general results have been proved for probabilistic
FA that are not deterministic and thus for PFSM that are not
observable?. The following has been proved [34].

3A PFSM is observable if and only if the corresponding FA is deter-
ministic.
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Theorem 1 There is an algorithm running in time O((n1 +
no)?) that takes two probabilistic automata Uy and U, and
determines whether Uy and Uy are equivalent, where nq
and ny are the number of states of Uy and U, respectively.
Furthermore, if Uy and Uy are not equivalent then the al-
gorithm outputs the lexicographically minimum string that
is accepted by Uy and U, with different probabilities. This
string will always be of length at most n1 + ny — 1.

We now show how this result can be applied to PFSMs.

Definition 4 Given PFSM M = (S,s0,X,Y,h) we can
define a PFA Fp(M) = (S, s0, A, 6, S, prob) in which

1. The alphabet Ais X xX Y.

2. Givens € S,z € X,y € Y,and p € (0,1,
8(s, (2, y) = s and prob(s, (z,y),5') = p if and
only if (s',y,p) € h(s, z).

The following results are an immediate consequence of
Definitions 1 and 4.

Proposition 4 [f input sequence x distinguishes two states
s and s' of PFSM M then there is some a € A* such that a
distinguishes states s and s’ of PFA Fp(M ) and in(a) = Z.

Proposition 5 Given PFSM M and input sequence T, if
there is some a € A* such that a distinguishes states s and
s" of Fp(M), no proper prefix of a distinguishes s and s’,
and in(a) = T then T distinguishes two states s and s’ of
M.

Proposition 6 There is an algorithm running in time
O((n1 + n2)*) that takes as input two PFSMs My and
My and determines whether My and My are equivalent,
where ny1 and ny are the number of states of My and My
respectively. If My and My are not equivalent then the al-
gorithm outputs the lexiographically minimum input/output
sequence for which My and Mo have different probabilities.
This input/output sequence will always be of length at most
n1+no — 1.

Proof
This follows by applying Theorem 1 to Fp(M) and
Fp(M'). 0

Since our PFSM M is minimal, and so its states are pair-
wise distinguishable, we can define a set of input sequences
that distinguish between the states of M.

Definition 5 A set W of input sequences is a characteriza-
tion set for PFSM M if for every pair (s, s') of states of M
with s # s there exists some input sequence T € W that
distinguishes s and s'.



The proof of the following is similar to that for the equiv-
alent result for DFSMs (see, for example, [9]).

Proposition 7 Let us suppose that M is a minimal OPFSM
with n states. Then there exists a characterization set W for
M with at most n — 1 input sequences where each sequence
has length at most n — 1.

The more general case, where M need not be observable,
is similar.

Proposition 8 Let us suppose that M is a minimal PFSM
with n states. Then there exists a characterization set W for
M with at most n — 1 input sequences where each sequence
has length at most 2n — 1.

Proof

States s and s’ of M are distinguished by an input se-
quence Z if and only if Z distinguishes between the PFSM
formed by changing the initial state of M to s and the PFSM
formed by changing the initial state of M to s’. Thus, by
Proposition 6, there is a sequence of length at most 2n — 1
that distinguishes between any pair of distinct states of M.

Let W = {Z1,... %1} denote a characterization set for
M such that no proper subset of W is a characterization
set for M. Let ~; (0 < ¢ < k) denote the equivalence
relation on the states of M such that: s ~; s’ if for all
1 < j < i we have that Z; does not distinguish between s
and s’. Clearly ~1 has at least two equivalence classes and
by the minimality of W we must have that for all 1 < i <
k, ~;1+1 has more equivalence classes than ~;. Thus, the
number of equivalence classes for ~; (1 < ¢ < k) must be
at least < + 1. However, the number of equivalence classes
is bounded above by n andthus k+1 < nandsok <n—1
as required. U

Similar to testing from a DFSM [14], when identifying
a given state s; of M it may be sufficient to use a set of
prefixes of sequences in W. Such a set is called an identifi-
cation set.

Definition 6 Given state s; of minimal PFSM M and char-
acterization set W, a set W; C Pre(W) is an identification
set if for every state s; of M with s; # s;, there is some in-
put sequence T € W; that distinguishes s; and s;.

4 Mutation operators

This section describes mutation operators for PEFSMs and
approaches to finding input sequences to distinguish the re-
sultant mutants. Section 5 explains how testing can pro-
ceed on the basis of this. Throughout this section M =
(S, 50, X,Y, h) denotes the PFSM being mutated and M’
denotes a mutant. Proposition 6 tell us that we can decide
whether M and M’ are equivalent in time O(n?*) and, if
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they are not equivalent, produce a sequence of length at
most 2n — 1 to distinguish them. In this section we con-
sider conditions under which we can improve on this.

4.1 Changing the initial state

We can form a mutant of M by making some state
s € S\ {so} of M the initial state and this gives n — 1
different mutants. Let My = (5,s,X,Y,h) (s # so) be
such a mutant. Then we want to find a sequence that distin-
guishes the initial states of M and M,. This is equivalent
to the problem of finding a sequence to distinguish states sy
and s of M. The following result is thus clear.

Proposition 9 Let M = (S,s0,X,Y,h) be a PESM and
let My = (S,s,X,Y, h) for some state s # so. If Wy is an
identification set for the initial state of M then there exists
an input sequence T € Wy that distinguishes M and M.

Thus, any identification set W, for the initial state of M
distinguishes M from every mutant of the form M for s #
s0. As shown in Section 3, [Wy| < n — 1 and if M is
observable then the elements of W have length at most n —
1 and otherwise they have length at most 2n — 1.

4.2 Altering probabilities

Suppose that t = (s, z,y, s’,p) is a transition of M and
let A be a (possibly negative) value such that 0 < p+ A <
1. We can mutate M by changing the probability associated
with ¢ to p + A. Naturally, we must change the probability
of at least one other transition from s with input x so that
the sum of the probabilities is still 1. Let M’ be a PFSM
formed by altering the probability of ¢ to p’ # p.

Let us suppose that the probability of producing output y
from state s of M in response to z is different from the prob-
ability of producing output y from state s of M’ in response
to x (this must be the case if M is observable). Then to dis-
tinguish M and M’ it is sufficient to devise a sequence @ in
the following way. First, find a shortest path @, in F'(M)
from sq to s. Then we set @ = ay(x,y,p).

Proposition 10 Ler M (t, A) be an PFSM formed by alter-
ing the probability of transition t = (s, x,y, s, p) of PFSM
M to0 < p+ A < 1 and suppose that the probabil-
ity of producing output y from state s of M in response
to x is different from the probability of producing output
y from state s of M' in response to x (i.e. pp(s,x,y) #
Prt,a)(8,2,y). Let ay be a shortest path in F(M) from
so to s. If a = ai(x,y,p) then in(a) distinguishes M and
M’ and has length at most n.

Proof



Let ; and g; be the input and output sequences from
a; respectively. By the minimality of a@;, no path in
F(M) from sy with label @; contains the transition ¢.
Thus, p?w(SQ, Ty, ?1) = p?\/[(t,A) (SQ7 ry, 1171) Thus, since
P (5, 2,Y) # Par(e,a) (S, 2,y) and for every state s # s
we have that pys (s, z,y) = par,a)(s’, 7, y) we have that
Pir (50,72, 79) # Py (50. 712, 51y) as required. Fi-
nally, since @, is a shortest path from s to s it has length at
most n — 1 (since there are no repeated states) and so a has
length at most n. O

If the probabilities of producing output ¥ in response to x
from state s of M and M (t, A) are the same then by Propo-
sition 6 we can decide in O(n*) whether M and M (¢, A)
are equivalent and, if they are not, find a sequence of length
at most 2n — 1 that distinguishes them.

4.3 Changing the target state of a transi-
tion

Suppose t = (s,x,y,s’,p) is a transition of M and let
s" denote a state of M (s’ # s'). We can create a new
PFSM, called M (t, s’), by changing the ending state of ¢ to
s". The following are clear.

Proposition 11 Let t denote a transition (s,x,y,s’,p) of
PFESM M and let s” be a state of M with s’ # s". If M is
observable then M (t, s") is observable.

Proposition 12 If M is observable then there is an O(n?)
time algorithm that decides whether M (t,s") and M are
equivalent and, if they are not equivalent, returns an input
sequence of length at most 2n — 1 that distinguishes them.

Naturally, if M is not observable and M and M (t, s”)
are not equivalent then in O(n*) we can produce an input
sequence Z, of length at most 2n — 1, that distinguishes
them.

4.4 Creating a new transition

Let us suppose that t = (s, z,y, s’,p) is a transition of
M, let s” denote a state of M, let ' denote an output and
let p’ < p denote a probability. We can create a new PFSM,
M(t,s"”,y',p"), by reducing the probability associated with
t to p — p’ and creating a new transition (s, z,y’,s”,p’).
If M has a transition from s to s’ with input z and out-
put 3’ then we have simply altered probabilities and simu-
lated a mutation operator already discussed in Subsection
4.2. Since this case is redundant we do not consider it here.

If 3y # y then we have reduced the probability of pro-
ducing output y in response to x from s. Thus, we can
distinguish M and M (¢, s”,y’, p’) by choosing a minimum
length sequence a; € A* that labels a path in F'(M) from
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so to s and use in(aq )z. This input sequence has length at
most n. Otherwise we can refer to the result that we can
decide in O(n?) time whether M and M (t,s”,y’,p’) are
equivalent and, if they are not, produce an input sequence
of length at most 2n — 1 that distinguishes them.

Example 2 Figure 2 shows two mutants of the PFSM from
Figure 1. The first is formed by changing the probabil-
ity associated with transition (s3, 11,01, S3, %) to %. Since
the sum of probabilities of the transitions from ss with in-
put i1 must be 1, we also alter the probability attached to
transition (3,11, 03, S2, %) to %. The second mutant is ob-
tained from by adding a new transition (sa, 13,03, S3, %)
This forces us to decrease the probability associated to the
transition (s2, 13, 01, $2,1) to %

5 Applying the test sequences

Let M denote the specification PFSM, M’ a mu-
tant of M, and Z/y an input/output sequence such that
(80, Z,9) # pi (s, T, y) and so T distinguishes be-
tween M and M’. Let py denote p%,(so, Z, %) and let p,,
denote p%,, (s(, T, 7). If we can determine the probability
p of observing ¢ in response to Z in the IUT then we have
two cases: if p = p, then the IUT is distinguished from the
mutant M’ and otherwise the TUT is faulty. However, we
cannot determine p through testing; the best we can do is to
produce an estimate p of p.

If we test the IUT with Z a total of r times and in k of
these tests we observe 4 then our estimate is p = é Nat-
urally, the greater the value of r the higher our confidence
in p being close to the true value p. We now show how sta-
tistical results regarding confidence intervals can be used in
order to determine the required value of .

Suppose that we fix a confidence level ¢ € (0,1) and we
have this confidence of p being within e of p. The confi-
dence denotes the probability that our estimate p satisfies
p—e < p < p+ e. We want the estimate to either provide
evidence that the IUT is faulty or that the IUT is not equiv-
alent to M’. We are guaranteed to achieve this if we cannot
have both p, and p,,, in the interval (p — e, p + e). This is
the case if 2e < |ps — p.,| and thus we can set e = w.
Naturally, we can choose a smaller value of e if we wish to
have an estimate p with a smaller confidence interval.

Each application of z has two possible results: either the
output sequence is ¢ or it is some i’ # 3. We thus have a
binomial distribution. We now discuss two sets of standard
statistical results for binomial distributions that show how
we can choose r given e and c.

Note that an alternative approach is to use hypothesis
testing, with the null hypothesis either being that the true
probability is the same as the probability in the mutant
(p = pm) or that the true probability is either p,, or ‘on
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Figure 2. Two mutants

the other side of p,, from p,’ (i.e. if p,, > p, then the null
hypothesis is p — ps > p., — ps). However, here we fo-
cus on the use of confidence intervals since they have the
additional benefit of allowing us to state the confidence we
have of the true probability p being within e of the sample
probability p.

5.1 Estimating with a small sample

Since we have a binomial distribution with probability p,
the probability of observing 7 in response to T a total of k
times in r trials is

P(k,p,r) = < ; >p’“(1p)(rk)
rl

(k)= meom

Based on this we get the following likelihood function
L(p', k,r), which represents the probability that p’ is the
true probability if we have observed ¢ a total of £ times out
of r tests with Z.

where

r
k

L(p/,kﬂ’) — ( 2 >p/k:(1 _p/)(’l‘—k?)

Given k and r it is possible to calculate a value e such
that we have confidence of at least ¢ that p is within e of p
and thus to determine whether we have tested a sufficient
number of times. However, this computation becomes in-
creasingly expensive as r increases and this motivates an
interest in alternative approaches for large samples.

5.2 Estimating with a large sample

We can treat the mean p as a normally distributed random
variable if rp > 5 and r(1 — p) > 5 and this distribution
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has mean p and the following standard deviation (see, for
example, [19]).

p(1—p)

r

While we do not know p, we can check that rp > 5 and
r(1—p) > 5 once the estimate has been produced. Here we
consider this case.

Given a normal distribution with standard deviation o,
true mean p and confidence value c there is a value z such
that the proportion of the distribution that is within the re-
gion (4 — zo,u + zo) is ¢. For a confidence of 0.95 we
can choose the value zy = 1.96 (see, for example, [19]).
Clearly, we should choose 7 such that zpo < e. Since

o=/ @ we choose 7 such that

1 —
p(1—p) w<e
r
This can be rewritten to:
- #p(l—p)
> o2

Thus, we apply Z a total of r times for some r that sat-
isfies the above equation. While we do not know p in ad-
vance, we know that the worst case is with p = % giving:

2
20

= de?
If we require a value of ¢ = 0.95, zg is slightly less than
2 and so it is sufficient to choose r such that:

r> l

2
If p is within e of the specified value p, then we have
the required confidence that the IUT is not equivalent to
mutant M’; otherwise we have confidence that the IUT is
faulty. Naturally, at this point we may wish to test the [UT
further with Z to gain an estimate with a narrower associated

confidence interval.



6 Related work

This section describes previous work on testing proba-
bilistic systems. Interestingly, there has been relatively lit-
tle work on this but there has been a considerable amount
of work on model checking PFSMs (see for example [2, 35,
10, 23, 32]).

It has been noted that we can consider the testing of a
stateless system to be a process of sampling its behaviour.
If the test suite used is randomly generated, possibly based
on a distribution (operational profile) that reflects expected
usage then the result of testing can be used to estimate the
reliability of the IUT [8, 4]. Further, we can place a confi-
dence in the observed reliability reflecting the true reliabil-
ity of the IUT within some margin.

Researchers have tackled the problem of testing from an
observable NFSM when each transition introduces a ran-
dom delay and the expected delay for a transition is repre-
sented by a probability distribution [28]. The problem is to
test to determine whether the distribution for each transition
in the IUT is correct, where correctness is represented by a
range of conformance relations. Testing is used to check
that the IUT satisfies the conformance relation, relative to
the specification, within a given degree of confidence.

It is sometimes desirable to have a process that can be
applied once in order to take a conforming IUT to a given
state or (strongly) distinguish two states of the specification
and thus of a conforming IUT. Naturally, there need not
exist single sequences that are guaranteed to achieve this
and thus it is normal to apply an adaptive process. Alur
et al. [1] show that it is PSPACE-complete to determine
whether there is a single input sequence that strongly dis-
tinguishes two states of a PFSM and that it is EXPTIME-
complete to determine whether there is an adaptive process
that strongly distinguishes two states of a PESM. Zhang and
Zheung show how policies (adaptive processes) can be gen-
erated to move an OPFSM from state s to another state s’
and how a policy can be found to (strongly) distinguish two
states of an OPFSM [38]. Note that the work of Alur et al.
[1] and Zhang and Zheung [38] refer to producing a sin-
gle sequence or policy that will achieve the desired results
through one application only. In contrast, we assume that
there is a reliable reset operation and thus that we can re-
peatedly apply an input sequence or policy.

A related problem is machine identification; we wish to
model the TUT rather than test to check that the IUT con-
forms to a given model. This problem has been considered
in the context of probabilistic state machines [30]. In this
approach, the set of observed traces is used to induce a FA
in the classical way. The probabilities on each transition are
then estimated by determining the ratios of the labels (from
each state) observed in testing.
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7 Conclusions

This paper developed mutation testing techniques for
probabilistic finite state machines (PFSMs). It defined sev-
eral mutation operators and adapted results from the theory
of probabilistic finite automata in order to produce test se-
quences that distinguish a PFSM M from a mutant M’. An
important property of PFSMs is that given two PESMs M
and M’ we can decide in polynomial time whether M and
M’ are equivalent and so mutation testing for PFSMs does
not suffer from the equivalent mutant problem.

An input sequence T kills a mutant M if there is some
output sequence y such that the probabilities of observing
Z/yin M and M’ are different. When Z is used in testing
we observe resultant input/output sequences and ideally we
would like to compare the probabilities of each of these with
those expected. However, we cannot determine the true
probabilities through testing and so this paper has shown
how results from statistic sampling theory can be used to
estimate the probabilities with sufficient precision, up to a
required level of confidence.

We have shown how an input sequence can be efficiently
generated to kill a mutant M’ of M. However, in applying
the resultant input sequences the number of repetitions de-
pends on the probabilities of the corresponding input/output
sequence in M and M’. There thus remains the following
question: how can we produce an input sequence Z that kills
M’ and minimizes the test execution effort for a given re-
quired confidence interval c?
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