
Amorphous Procedure Extraction

Mark Harman1 David Binkley2 Ranjit Singh1 Robert M. Hierons1

1Brunel University 2Loyola College
Uxbridge, Middlesex Baltimore MD

UB8 3PH, UK. 21210-2699, USA

Keywords: Program Slicing, Program Transformation, Variable Dependence Analysis

Abstract

The procedure extraction problem is concerned with
the meaning preserving formation of a procedure from a
(not necessarily contiguous) selected set of statements.
Previous approaches to the problem have used depen-
dence analysis to identify the non-selected statements
which must be ‘promoted’ (also selected) in order to pre-
serve semantics. All previous approaches to the problem
have been syntax preserving.

This paper shows that by allowing transformation of
the program’s syntax it is possible to extract both proce-
dures and functions in an amorphous manner. That is,
although the amorphous extraction process is meaning
preserving it is not necessarily syntax preserving.

The amorphous approach is advantageous in a variety
of situations. These include when it is desirable to avoid
promotion, when a value-returning function is to be ex-
tracted from a scattered set of assignments to a variable,
and when side effects are present in the program from
which the procedure is to be extracted.

1 Introduction

Procedure extraction, as introduced by Komondoor
and Horwitz [18], is the problem of extracting a collec-
tion of marked statements into a free–standing procedure
while maintaining the semantics of the program. Initial
marking of statements might come from an attempt at re-
factoring, clone detection, or the result of an attempt at
reuse. The specific details of how the set of statements
comes to be initially marked is not the focus of this paper
and is assumed to have been performed. The focus of this
paper is how transformation of the source code can facil-
itate the more precise extraction of a set of statements.

One of the key technical issues with the procedure ex-
traction concerns statement promotion. Promotion oc-
curs when a statement not marked for extraction must,
nonetheless be extracted, in order to preserve the pro-
gram’s semantics. Such an initially unmarked statement
is said to be ‘promoted’ as it effectively becomes marked
during the extraction process.

An important goal of procedure extraction is to mini-
mize the need for promotion, because it increases the size
of the extracted procedure; thus, reducing precision. The
closer the extraction process can come to extracting only
those statements initially marked, the better.

Prior approaches to procedure extraction have been
syntax–preserving. That is, the extracted procedure is
formed entirely from statements in the original program
(both those originally marked and those promoted). Fur-
thermore, apart from the call to the new procedure, the
original program is formed entirely by deletion of ex-
tracted statements and the occasional replication of pred-
icates from the original program.

This paper describes an amorphous approach to pro-
cedure and function extraction. The amorphous approach
to procedure extraction allows additional flexibility in the
extraction process. This helps reduce the need for promo-
tion and predicate replication. It is achieved by relaxing
the syntactic constraints on the extraction process; thus,
the amorphous version can use transformation as well as
deletion and copying. However, amorphous procedure
extraction retains the requirement that the extracted pro-
gram and the original must be semantically equivalent.

The resulting algorithms outlined herein seem a more
natural approach to adopt for procedure extraction, since
the need to retain a strict syntactic link between the ex-
tracted and original version of the program is not impor-
tant in many applications. Also, since the extraction pro-
cess is inherently transformational, in that it transforms

1

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

source from one program into procedures in another, the
user has already accepted some form of program transfor-
mation. Finally, the amorphous approach is better suited
to handling programs with side effects.

The principal contributions of the paper are as follows:

1. Amorphous extraction is introduced.

2. Amorphous extraction is shown to reduce the need
for statement promotion; thus, leading to more pre-
cise extraction.

3. Amorphous extraction is shown to be able to extract
value-returning functions.

4. Amorphous extraction is shown to be more effective
when applied to programs with side effects.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the procedure extraction problem and for-
malizes the definition of both syntactic and amorphous
procedure extraction. Section 3 shows how the amor-
phous approach reduced the need for promotion. Sec-
tion 4 shows how the amorphous approach is well-suited
to handling the related problem of value–returning func-
tion extraction. Section 5 shows how the amorphous
approach is better suited than the syntax–preserving ap-
proach in the presence of side–effects. Finally Section 6
concludes with directions for future research.

2 The Amorphous and Syntax–Preserving
Procedure Extraction Problems

This section introduces the two forms of procedure ex-
traction studied and addresses the question of why pro-
gram slicing cannot simply be used to perform extrac-
tion. To begin with, Komondoor and Horwitz [18] define
the (syntax–preserving) procedure extraction problem as
a three step process:

Step 1. Identify the ‘marked’ statements (i.e., those
statements whose extraction is desired).

Step 2. Form a single-entry/single-exit block of contigu-
ous statements containing the marked statements.

Step 3. Extract the contiguous block into a procedure.

The first step is performed by an identification tool or a
programmer and is application dependent. For example,
the statements might be identified by a clone detection
tool. Alternatively, the marked statements might have
been identified by a source code analysis tool or a soft-
ware maintainer as a single thread of computation to be
better encapsulated in a single procedure.

The second step involves code motion and promotion.
Code motion attempts to move unmarked statements ei-
ther before the first marked statement or after the final
marked statement. When code motion is not possible
(perhaps because of data-flow constraints), statements are
promoted to the set of included statements. This pro-
cess continues until the marked statements form a con-
tiguous code fragment. Komondoor and Horwitz define
this step in terms of a control-flow graph (CFG) [18, 19].
Their algorithm then identifies a single-entry/single-exit
subgraph to be extracted. Statements (CFG nodes) re-
quired to make the subgraph single-entry/single-exit and
that can not be moved to a position before or after the
marked statements are promoted (and thus extracted).

The final step is the extraction itself. This includes de-
termining the location of the call to the new procedure,
the formal parameters of this procedure, and the actual
parameters used at the call. These can be determined
by a dependence analysis similar to that used in program
slicing [2, 3, 7, 26]. That is, a variable in the procedure
body will be passed as a call-by-value formal parameter
if it is referenced but not defined. It will be passed as a
call-by-reference formal parameter if it is defined in the
procedure body.

Following Komondoor and Horwitz [18, 19], the fo-
cus of this paper is upon Step 2. In particular, new tech-
niques are introduced that allow certain promotions to be
avoided resulting in a smaller (i.e., more precise) set of
statement to be extracted. The paper does not consider
the initial marking of statements (Step 1) nor the creation
of a procedure from the statements identified by Step 2
(Step 3).

2.1 Syntax–Preserving Procedure Extraction

All previous approaches to procedure (and function)
extraction are syntax preserving in the sense that the
statements of the body of the procedure exist in the origi-
nal program1. Thus, the syntax of the original program is
preserved in the procedure body.

In order to form a contiguous block of statements
for extraction, it is desirable to ‘move aside’ statements
which are not marked, thereby producing a sequence of
only marked statements. Unfortunately, data and control
dependencies may prevent unmarked statements from be-
ing moved aside. Where a statement cannot be moved
aside, it must be promoted. That is, it must become
marked for extraction.

For example, consider the fragment of code in Fig-
ure 1. Assume that Step 1 has identified an initial col-

1In order to ensure that the return is executed identically in the orig-
inal and extracted versions of the program, a minor ‘amorphousness’
is allowed by Komondoor and Horwitz. This is the introduction of a
‘return flag’. This again suggests that procedure extraction is inherently
amorphous.

2

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

1 ++ evens = 0
2 sum = 0
3 ++ i = 0
4 ++ if (A[i] != 0)
5 {
6 A[i] = abs(A[i])
7 ++ if (A[i]%2 == 0)
8 ++ evens = evens + 1
9 sum = sum + A[i]

10 }

Figure 1. An example requiring assignment
promotion and predicate replication.

lection of statements. Following Komondoor and Hor-
witz, these are marked “++” in the figures of this paper.
The goal of Step 2 is to extract these statements while
excluding the intervening unmarked statements (in this
case, Statements 2 and 6). For Statement 2, the absence
of data dependence between Statements 1 and 2 allows
Statement 2 to be pushed backwards past Statement 1.
Thus, Statement 2 need not be promoted. However, us-
ing standard2 dataflow arguments [30, 15], Statement 6
“A[i] = abs(A[i])” cannot be pushed backwards
or forwards because it depends upon Statement 4, which
precedes it, and Statement 7, which follows it, depends
on it. Therefore, in order to preserve both syntax and se-
mantics, Statement 6 must be promoted.

In addition to code motion and promotion, extrac-
tion needs to consider predicates. The interesting case
is a predicate with subordinate marked and an unmarked
statements. Here there are two possibilities: mark all
the subordinate statements or replicate the predicate. As
there may be many unmarked statements, it is often
preferable to replicate the predicate.

For example, in Figure 1, Statement 9
“sum = sum + A[i]” is not marked, but is con-
trolled by Statement 4 “A[i] != 0” which is marked.
In order to avoid the promotion (and therefore extraction)
of Statement 9 it is necessary to replicate Statement 4.

Komondoor and Horwitz do not provide a formal def-
inition of procedure extraction. Instead, they define pro-
cedure extraction by giving an algorithm. Definition 1,
given below, captures the essence of the Komondoor and
Horwitz algorithm, with the exception of their work on
return flags, which is a special case that involves a lim-

2It is interesting to note that a more sophisticated dataflow argument
would reveal that statement 6 can, indeed, be moved forward because
taking the absolute value of a variable does not affect its evenness. How-
ever, such dataflow arguments are typically computationally expensive
to implement.

ited form of amorphousness. This definition is given to
facilitate comparison between the syntax–preserving and
amorphous procedure extraction.

Definition 1 (Syntax Preserving Procedure Extraction)

Given a set of (not-necessarily contiguous) marked
statements M from a program P , let Sα be the statement
preceding (lexigraphically) the first statement in M ,
let Sω be the statement following the last statement
in M , and let M+ be a contiguous set of statements
such that M ⊆ M+. A Syntax–Preserving Procedure
Extraction of M is a procedure Q which contains M+

and a program P ′ obtained from P by replacing M+

with a single call to Q, such that the region bounded by
Sα and Sω in P and P ′ are semantically equivalent (i.e.,
when executed starting at Sα on the same state if either
reaches Sω then both reach Sω and furthermore they do
so in states having the same values for all live variables.)
�

Observe that, since P and P ′ are syntactically equiv-
alent outside of the region bounded by Sα and Sω, the
above implies that they are semantically equivalent (i.e.,
for all initial states on which either terminates they both
terminate in identical final states). Also observe that pro-
motion never adds a statement beyond the last statement
in M nor from before the first statement of M .

2.2 Amorphous Procedure Extraction

Amorphous procedure extraction is a relaxation of
the syntax–preserving formulation, which allows trans-
formation of the original program in order to ‘massage
out’ the semantics associated with the marked statements.
Compare this with syntax–preserving procedure extrac-
tion, in which the marked statements are extracted ‘in
tact’ and may bring with them additional statements via
promotion.

Definition 2 (Amorphous Procedure Extraction)
Given a set of (not-necessarily contiguous) marked state-
ments M from a program P , let Sα be the statement pre-
ceding (lexigraphically) the first statement in M , let Sω

be the statement following the last statement in M , and
let the sequence “prefix; M+; postfix” be obtained from
the statements between Sα and Sω through transforma-
tion. An Amorphous Procedure Extraction of M is a pro-
cedure Q and a program P ′ obtained from P by replac-
ing the statements between Sα and Sω with the sequence
“prefix; call Q; postfix”, such that the region bounded
by Sα and Sω in P and P ′ are semantically equivalent

3

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

(i.e., when executed from Sα on the same state if either
reached Sω then both reach Sω in states having the same
values for all live variables.) �

2.3 Why Extraction is not Just a Special Case
of Program Slicing

At first sight it might appear that procedure extraction
is merely a special case of program slicing [30, 15]. A
program slice captures a semantic projection of a pro-
gram. It is constructed by deleting from a program those
statements and predicates that do not affect the value of a
chosen set of variables at a chosen point within the pro-
gram. Thus, one might ask, why not simply slice the
original program on the variables assigned in the set of
marked statements? Alternatively, why not perform a si-
multaneous slice on all the marked statements; something
akin to a decomposition slice [10]?

There are two reasons why slicing is not appropriate.
The following also applies to other slicing related opera-
tions such as limited slicing [31], chopping [16, 20], and
the ‘wedge’ [21].

First, slicing captures unwanted statements on which
marked statements depend. As these statements are not
tagged for extraction, slice–based approaches are inexact.
For example, any statement in the slice that occurs before
the first marked statement need not be extracted as it is
already ‘out of the way.’

Second, there can be statements between marked
statements that are in the slice on marked statements, but
should not be extracted. For example, consider

++ x = 1;
y = 1;

++ a = y + x;

For this code fragment, the slice on the marked state-
ments includes the whole fragment. In particular, the
assignment to y is in the slice because of the data de-
pendence of the assignment to a upon it. However, amor-
phous procedure extraction moves the y assignment back
before the first statement and then extracts just the assign-
ments to x and a. This process is outlined below.

3 Increased Precision: Avoiding Promotion

The next three sections present the three improve-
ments amorphous procedure extraction brings to the ex-
traction problem. First, using an amorphous approach
it becomes possible to avoid promoting statements that
would otherwise require promotion. This leads to smaller
extracted procedures when compared with the syntax-
preserving counterparts. The relationship between amor-
phous and syntax–preserving procedure extraction is sim-

ilar to the relationship between amorphous and syntax–
preserving slicing [12]: amorphous slices are typi-
cally smaller than their corresponding syntax–preserving
counterparts. To illustrate the issue, consider the follow-
ing simple program fragment

++ z = z * 2;
x = z + 1;

++ y = x + 2;

The problem faced by syntax–preserving extraction is
that the assignment to x is unwanted in the extracted pro-
cedure, but it cannot be moved ‘out of the way.’ It cannot
move before the assignment to z, because it references
z. It cannot move after the assignment to y because it
assigns to x. With the syntax–preserving approach, the
only solution is to promote the assignment to x so that it,
too, becomes marked. However, this makes the extracted
procedure less precise, as it contains statements not orig-
inally marked for extraction.

Whether this is indicative of an imprecise marking
would depend on whether x is used later in the procedure,
in which case this definition should be promoted. For this
example we are showing only that amorphous extraction
can produce smaller extractions.

Using amorphous procedure extraction, it becomes
possible to transform the program such that the assign-
ment to x can move after the assignment of y. This is
achieved by a substitution of the value assigned to x in
the assignment to y:

++ z = z * 2;
++ y = (z+1) + 2;

x = z + 1;

The resulting assignment to y can then be simplified,
yielding the following code:

++ z = z * 2;
++ y = z + 3;

x = z + 1;

This transformation and simplification is typical of
amorphous slicing [12, 14]. In the context of procedure
extraction, the sacrifice of the syntax–preserving nature
of traditional procedure extraction allows the extraction
of fewer statements with the amorphous approach.

4 Function Extraction for Defined Variable

The second of the three improvements amorphous pro-
cedure extraction brings to the extraction problem deals
with extracting functions. The function extraction prob-
lem is a natural counterpart to the procedure extraction

4

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

anomalous = 0
count = 0
Total = 0
while (count < MAX &&

A[i] != Terminator)
{

Total = Total + A[i]
count++

}
if (Total < 0)

anomalous = 1
if (Total == 0

|| count == 0)
{

anomalous = 1
average = 0

}
else
{

average = Total / count
if (average > Highest)
{

anomalous = 1
Highest = average

}
}
if (!anomalous)

Report(Total, Average)
else

ReportAnomalous()

++ anomalous = 0
count = 0
Total = 0
while (count < MAX &&

A[i] != Terminator)
{

Total = Total + A[i]
count++

}
if (Total < 0)

++ anomalous = 1
if (Total == 0
|| count == 0)

{
++ anomalous = 1

average = 0
}
else
{

average = Total / count
if (average > Highest)
{

++ anomalous = 1
Highest = average

}
}
if (!anomalous)

Report(Total, Average)
else

ReportAnomalous(;)

count = 0
Total = 0
while (count < MAX &&

A[i] != Terminator)
{

Total = Total + A[i]
count++

}
++ anomalous = 0

if (Total < 0)
++ anomalous = 1

if (Total == 0
|| count == 0)

{
++ anomalous = 1

average = 0
}
else
{

average = Total / count
if (average > Highest)
{

++ anomalous = 1
Highest = average

}
}
if (!anomalous)

Report(Total, Average)
else

ReportAnomalous()

Figure 2. Anomalous function extraction example.

problem. While the techniques introduced by Komon-
door and Horwitz extends to function extraction, this sec-
tion shows that an amorphous approach is highly suited
to the function extraction problem, leading to smaller ex-
tracted functions.

To begin with consider the fragment shown in the left
column of Figure 2, which calculates total and average
rainfall for a set of readings stored in array A. The code
contains a “flag” variable, anomalous, which is ini-
tially false (the value 0). This flag is set to true
(the value 1) when an anomalous situation is detected.
If there is no anomaly, then a standard report is gen-
erated by procedure Report. If there is an anomaly,
then an anomalous report is generated by procedure
ReportAnomalous. The details of these procedures
are not relevant to this discussion.

While this example is a little contrived, it is intended to
illustrate the way in which code may become fragmented
in its processing of ‘special cases.’ That is, when the code
was original written, the anomalous flag may have only
denote a single kind of anomaly. Perhaps the anomaly

that the count was zero and therefore than the average
could not be properly calculated. However, as the code
evolved, more and more anomalies were added resulting
in multiple assignments to anomalous. At some point,
the logic becomes rather obscure and the maintainer of
the system may decide to attempt to extract the computa-
tion of anomalous into a boolean function.

In order to extract the code relevant to the variable
anomalous, all the points at which anomalous is as-
signed are first marked as shown in the centre of Fig-
ure 2. The next step applies a statement push transfor-
mations [14] in an attempt to collect the assignments
of anomalous into a single loop–free code segment.
If this can be achieved, then it will be possible to ex-
tract a single conditional expression which determines
the value of anomalous. The push transformation in
essence moves assignment past other statements updat-
ing them as necessary. In this example, the initialization
of anomalous can be pushed forward past the while
loop. The result is shown in the right hand column of
Figure 2.

5

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

Once a segment of loop–free code that contains the as-
signments to the variable of interest has been obtained, a
modified amorphous slice is used to extract a single as-
signment statement to this variable. This can be achieved
with a modified amorphous slice taken with respect to the
final value of this variable in the segment of code con-
taining the assignments. The modification excludes from
the slice statements before the first marked statement and
statements after the last marked statement. In this case,
the amorphous slice is taken with response to the follow-
ing code.

++ anomalous= 0
if (Total < 0)

++ anomalous= 1
if (Total == 0||count == 0)
{

++ anomalous= 1
average= 0

}
else
{
average= Total/count
if (average > Highest)
{

++ anomalous= 1
Highest= average

}
}

Prior to simplification, the resulting amorphous slice is

anomalous =
(Total < 0) ?

((Total == 0 || count == 0) ?
1:
(((Total / count) > Highest) ?

1:
1)):

((Total == 0 || count == 0) ?
1:
(((Total / count) > Highest)

1:
0))

This is simplified3 to

3The simplification algorithm [14] is defined for WSL [27]. The
implementation uses the FermaT Simplify transformation [28] tactic
to do this series of simplifications.

anomalous =
(Total < 0) ?

1:
(Total == 0 || count == 0) ?

1:
(Total / count) > Highest

which can be further simplified to (although the current
implementation of the amorphous slicer does not discover
this simplification)

anomalous =
Total <= 0 || count == 0
|| (Total/count) > Highest

This assignment captures the meaning of the flag variable
anomalous. It can be extracted into a function, called
anomalous and inserted back into a transformed ver-
sion of the original program as follows:

count = 0
Total = 0
while (count < MAX &&

A[i] != Terminator)
{

Total = Total + A[i]
count++

}
if (Total < 0)

;
if (Total == 0 || count == 0)

average = 0
else
{

average = Total / count
if (average > Highest)

Highest = average
}

if (Anomalous(Total, Count, Highest))
Report(Total, Average)

else
ReportAnomalous()

In this version, all assignments to anomalous have
been replaced by the use of a call to the following func-
tion

int Anomalous(int Total, int Count,
int Highest)

{
return Total <= 0 || count == 0 ||

(Total/count) > Highest
}

Of course, removing the assignments to anomalous

6

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

in the original program fragment, may occasion some ad-
ditional simplification, for example, deletion of the (now
empty) statement:

if (Total < 0)
;

This example has illustrated how amorphous function
extraction can extract a function which captures the com-
putation of a selected variable. The original program is
re-factored to contain a single simple function which iso-
lates all the computation relevant to the variable. This al-
lows the remaining part of the program to be simplified.
In the example, anomalous data is handled in one single
place rather than scattered throughout the program.

An interesting application of amorphous function ex-
traction is when the extracted function may not be re-
tained. This is in contrast to previous proposed uses of
syntax–preserving procedure extraction (e.g., clone de-
tection). Thus, in the above example, the extraction is
performed entirely for the sake of comprehension. In-
deed, the maintainer may decide to jettison the extracted
function, once he or she has used it to assist in under-
standing the logic captured by the flag variable.

Another example in which the extracted function is not
retained is flag removal as used in testability transforma-
tion [13, 1]. In this application, it is desirable to remove
flags from a version of the program purely to generate test
data. Once the test data is generated it is applied to the
original program; the transformed program is no longer
needed and can be ‘thrown away.’

5 Procedure Extraction in the Presence of
Side Effects

The final improvement amorphous procedure extrac-
tion brings to the extraction problem deals with side ef-
fects. A side effect is any state change caused by the
evaluation of an expression. In contrast, side–effect free
expressions, when evaluated simply returns a value, caus-
ing no change in state.

Side effects significantly increase the complexity of
procedure extraction. It may become necessary to per-
form (otherwise) unnecessary promotions, simply to ex-
tract whole statements. Amorphous extraction can avoid
their promotion. For example, consider the program frag-
ment shown in Figure 3. In this code, it is inconvenient to
use the traditional “++” notation to denote marked state-
ments as the program contains expressions with side ef-
fects and it may be desirable to extract an expression with
a side–effect, rather than the statement that contains it. In
order to show the text to be extracted, such text will ap-
pear shadowed .

x = a - b++ - c

y = x*2

x++

Figure 3. An example with side effects.

x = a - b - c

b++

y = x*2

x++

Figure 4. The example from Figure 3 with
side effects removed.

The program fragment shown in Figure 3 can be trans-
formed to remove side–effects [8]. The result, shown in
Figure 4, is a longer program, but one in which the side
effects in expressions are made explicit in the form of
added statements.

For this example, the removal process is straightfor-
ward. In the presence of arrays, loops, or conditional
statements, the process of side–effect removal is more
complex and can significantly alter the program syntax.
Therefore, any approach based upon prior side–effect re-
moval will be inherently amorphous.

With the side–effect free program, it is “easy” to ex-
tract the procedure, by moving the assignment to y back-
wards past the assignment to b. Without prior side effect
removal, this transformation is not possible as the y as-
signment cannot be pushed backwards past the x assign-
ment since the y assignment references x. It also cannot
be pushed forwards past the increment of x for the same
reason. Thus, the assignment to y would have to be pro-
moted by the syntax–preserving extraction process.

Using the amorphous approach it becomes possible
to “free” this statement. In this case, side effect re-
moval, separates out the side–effecting part of the pro-
gram (which is targeted for extraction) from the side–
effect free part (which is not targeted for extraction).
This separation, allows the unwanted y assignment to be
pushed up past the side effects, though not past the (side
effect free version of) the original x assignment.

The presence of side–effects prohibitively complicates
the application of many software engineering techniques,
such as symbolic execution [6], partial evaluation [4, 9]
and transformation [29, 22, 24], which typically consider
only side effect-free systems. Such approaches can usu-
ally be defined to handle side effects, but this often re-
quires effort disproportionate to the perceived gain.

The presence of side-effects is also widely believed

7

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

to inhibit program comprehension, and is deprecated in
many guides, standards, and sets of style rules for pro-
gramming [17, 25, 23, 11, 5]. However, despite this ad-
vice many programs, in particular C language programs,
typically contain significant side effect using expressions.
An obvious example is the pre– or post–increment oper-
ator, but consider also the common practice of testing the
result of an assignment.

The concern in this paper is not the impact upon com-
prehension, but the increased need for promotion caused
by side–effects when using syntax–preserving extraction.
In some cases, the requirement to preserve syntax may
lead to large scale promotion of unwanted code, making
the extraction rather ineffective. Amorphous function ex-
traction is much better suited to extract code from C pro-
grams since we can affect side-effect removal. Consider
the following C fragment:

for (count = tot = average = 0;
c = A[count++] != 0;
tot += c)

{
// empty

}
average = tot/count

The fragment is intended to compute the total and av-
erage of the values in array A, up to, but not including
the first zero–valued element of the array. Suppose the
programmer wishes to examine the effect of the program
solely upon the variable count. The programmer may
extract this variable into a single procedure (or a func-
tion which returns its value). With the syntax-preserving
form of extraction, the whole loop must be extracted in
tact. The amorphous version begins by first transforming
the loop to be side effect free:

count = 0
tot = 0
average = 0
for (;A[count] != 0;)
{

c = A[count]
count++
tot += c

}
count++
average = tot/count

Notice that after side–effect removal, the for loop has
effectively become a while loop. However, this is less
important than the way in which side–effect removal has
clearly highlighted a bug in the original version of the
program. The value of count is incremented one more
time than necessary by the loop and so the computation

of average is incorrect.
Nonetheless, the programmer may not notice this until

the variable count is extracted from the program into a
single procedure. The extracted body of which will be

count = 0;
for (;A[count] != 0;)

count++;
count++;

Notice how the amorphous procedure extracted clearly
highlights the bug in the computation of count and the
role which side–effect removal has played in this pro-
cess. The fact the side effect removal is inherently amor-
phous, suggests that function (and procedure) extraction
in the presence of side effects will profit from adopting
an ‘amorphous’ approach.

6 Conclusion and Future Work

This paper has introduced a variation of Komondoor
and Horwitz’s procedure extraction. Whereas the orig-
inal formulation of the problem was largely syntax–
preserving, the new version is amorphous. That is, while
it preserves the semantic connection between the ex-
tracted and unextracted program, there is not necessarily
a syntactic link.

The paper shows that the amorphous approach con-
veys three advantage. It reduces the need for statement
promotion (reducing the size of the extracted procedure);
thus, increasing precision. It is also better suited to han-
dling the related problem of function extraction, where
it again produces smaller extracted functions than the
syntax-preserving version. Third, the amorphous ap-
proach produces smaller extracted procedures in the pres-
ence of side effects. Future work on amorphous proce-
dure extraction includes empirical studies that will help
asses the degree to which the these advantages lead to
practical improvements for real programs.

References

[1] BARESEL, A., BINKLEY, D. W., HARMAN, M.,
AND KOREL, B. Evolutionary testing in the pres-
ence of loop–assigned flags: A testability transfor-
mation approach. In International Symposium on
Software Testing and Analysis (ISSTA 2004) (Omni
Parker House Hotel, Boston, Massachusetts, July
2004). To appear.

[2] BINKLEY, D. W., AND GALLAGHER, K. B. Pro-
gram slicing. In Advances in Computing, Volume
43, M. Zelkowitz, Ed. Academic Press, 1996, pp. 1–
50.

8

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

[3] BINKLEY, D. W., AND HARMAN, M. A survey of
empirical results on program slicing. Advances in
Computers 62 (2004), 105–178.

[4] BJØRNER, D., ERSHOV, A. P., AND JONES, N. D.
Partial evaluation and mixed computation. North–
Holland, 1987.

[5] CANNON, L., ELLIOTT, R., KIRCHHOFF,
L., MILLER, J., MILNER, J., MITZE, R.,
SCHAN, E., WHITTINGTON, N., SPENCER,
H., KEPPEL, D., AND BRADER, M. Recom-
mended C style and coding standards, 2000.
http://www.cs.umd.edu/users/cml/cstyle/indhill-
cstyle.html.

[6] COEN-PORISINI, A., AND DE PAOLI, F. SYM-
BAD: A symbolic executor of sequential Ada pro-
grams. In IFAC SAFECOMP’90 (London, 1990),
pp. 105–111.

[7] DE LUCIA, A. Program slicing: Methods and ap-
plications. In 1st IEEE International Workshop on
Source Code Analysis and Manipulation (Florence,
Italy, 2001), IEEE Computer Society Press, Los
Alamitos, California, USA, pp. 142–149.

[8] DOLADO, J. J., HARMAN, M., OTERO, M. C.,
AND HU, L. An empirical investigation of the in-
fluence of a type of side effects on program compre-
hension. IEEE Transactions on Software Engineer-
ing 29, 7 (2003), 665–670.

[9] FUTAMURA, Y., AND NOGI, K. Generalized par-
tial computation. In IFIP TC2 Workshop on Par-
tial Evaluation and Mixed Computation (1987),
D. Bjørner, A. P. Ershov, and N. D. Jones, Eds.,
North–Holland, pp. 133–151.

[10] GALLAGHER, K. B., AND LYLE, J. R. Using pro-
gram slicing in software maintenance. IEEE Trans-
actions on Software Engineering 17, 8 (Aug. 1991),
751–761.

[11] HAAHR, P. A programming style for java, Oct.
1999. http://www.webcom.com/˜haahr/essays/java-
style/.

[12] HARMAN, M., BINKLEY, D. W., AND DANICIC,
S. Amorphous program slicing. Journal of Systems
and Software 68, 1 (Oct. 2003), 45–64.

[13] HARMAN, M., HU, L., HIERONS, R. M., WE-
GENER, J., STHAMER, H., BARESEL, A., AND

ROPER, M. Testability transformation. IEEE
Transactions on Software Engineering 30, 1 (Jan.
2004), 3–16.

[14] HARMAN, M., HU, L., MUNRO, M., ZHANG,
X., BINKLEY, D. W., DANICIC, S., DAOUDI, M.,
AND OUARBYA, L. Syntax-directed amorphous
slicing. Journal of Automated Software Engineer-
ing 11, 1 (Jan. 2004), 27–61.

[15] HORWITZ, S., REPS, T., AND BINKLEY, D. W.
Interprocedural slicing using dependence graphs.
ACM Transactions on Programming Languages and
Systems 12, 1 (1990), 26–61.

[16] JACKSON, D., AND ROLLINS, E. J. A new model
of program dependences for reverse engineering. In
Proceedings of the ACM SIGSOFT ’94 Symposium
on the Foundations of Software Engineering (Dec.
1994), pp. 2–10.

[17] KERNIGHAN, B. W., AND PIKE, R. The practice of
programming. Addison-Wesley Longman, Reading,
Massachusetts, 1999.

[18] KOMONDOOR, R., AND HORWITZ, S. Semantics-
preserving procedure extraction. In Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL-00)
(N.Y., Jan. 19–21 2000), ACM Press, pp. 155–169.

[19] KOMONDOOR, R., AND HORWITZ, S. Effective
automatic procedure extraction. In 11th IEEE In-
ternational Workshop on Program Comprehension
(Portland, Oregon, USA, May 2003), IEEE Com-
puter Society Press, Los Alamitos, California, USA,
p. To appear.

[20] KRINKE, J. Evaluating context-sensitive slicing
and chopping. In IEEE International Conference
on Software Maintenance (ICSM 2002) (Montreal,
Canada, Oct. 2002), IEEE Computer Society Press,
Los Alamitos, California, USA, pp. 22–31.

[21] LAKHOTIA, A., AND DEPREZ, J.-C. Restructuring
programs by tucking statements into functions. In
Information and Software Technology Special Issue
on Program Slicing, M. Harman and K. Gallagher,
Eds., vol. 40. Elsevier, 1998, pp. 677–689.

[22] MEHLICH, M., AND BAXTER, I. Mechanical tool
support for high integrity software development. In
High Integrity Systems ‘97 (1997), IEEE Computer
Society Press, Los Alamitos, California, USA.

[23] MEYER, B. Object-oriented Software Construc-
tion, second ed. Prentice Hall, New York, NY, 1997.

[24] PARTSCH, H. A. The Specification and Transfor-
mation of Programs: A Formal Approach to Soft-
ware Development. Springer, 1990.

9

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

[25] THOMAS, P. Learning to program in C, 2 ed. Plum
Hall, Inc., 1989.

[26] TIP, F. A survey of program slicing techniques.
Journal of Programming Languages 3, 3 (Sept.
1995), 121–189.

[27] WARD, M. Proving Program Refinements and
Transformations. DPhil Thesis, Oxford University,
1989.

[28] WARD, M. Assembler to C migration using the Fer-
maT transformation system. In IEEE International
Conference on Software Maintenance (ICSM’99)
(Oxford, UK, Aug. 1999), IEEE Computer Society
Press, Los Alamitos, California, USA.

[29] WARD, M., CALLISS, F. W., AND MUNRO, M.
The maintainer’s assistant. In Proceedings of the
International Conference on Software Maintenance
1989 (1989), IEEE Computer Society Press, Los
Alamitos, California, USA, p. 307.

[30] WEISER, M. Program slicing. IEEE Transactions
on Software Engineering 10, 4 (1984), 352–357.

[31] YANG, W., HORWITZ, S., AND REPS, T. A
program integration algorithm that accommodates
semantics-preserving transformations. ACM Trans-
actions on Software Engineering and Methodology
1, 3 (July 1992), 310–354.

10

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:29 from IEEE Xplore. Restrictions apply.

