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Abstract

An implementation of the Localized Boundary-Domain Integral Equation (LBDIE)
method to numerical solution of the Neumann boundary-value problem for a sec-
ond order linear elliptic PDE with variable coefficient is discussed. The LBDIE
method uses a specially constructed localized parametrix (Levi function) to re-
duce the BVP to a localized boundary-domain integral equation. After employing
a mesh-based discretization, the integral equation is reduced to a sparse system
of linear algebraic equations that is solved numerically. Since the Neumann BVP
is not unconditionally and uniquely solvable, neither is the LBDIE. Numerical
implementation of the finite-dimensional perturbation approach that reduces the
integral equation to an unconditionally and uniquely solvable equation, is also
discussed.
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1 Introduction

The boundary element method, based on the boundary integral equations, is a well es-
tablished technique for solution of many problems with constant coefficients. However,
the finite element method appears to be much more effective for variable coefficient
problems.

In order to reduce a Boundary Value Problem (BVP) for a Partial Differential
Equation (PDE) to a boundary integral equation useful for numerical implementation,
a fundamental solution of the PDE must be available in an analytical form and/or
cheaply computable. Such fundamental solutions are well-known for many constant-
coefficient PDEs. Particularly, the BVPs for the classical Laplace equation can be
reduced to a boundary integral equation and then solved by the boundary element
method, see e.g. [2].

Unfortunately, such a fundamental solution is not available in the general case
of the partial differential operators with coefficients varying throughout the domain.
PDEs with variable coefficients arise frequently in applications involving inhomoge-
neous media (e.g., functionally graded materials, [1]). An option for problems with
variable coefficients is to use a parametrix (Levi function) instead of a fundamental
solution for the reduction of the BVP to a boundary-domain integral equation (BDIE),
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see e.g. [3] and references therein. However, discretization of the BDIE leads then to a
dense system of linear algebraic equations, and hence prevents the use of economical
methods that are available for sparse systems.

To avoid this difficulty, it was suggested in [4] to employ a specially constructed lo-
calized parametrix, reducing BVPs with variable coefficients to a Localized Boundary-
Domain Integral Equation (LBDIE). After a mesh-based or mesh-less discretization,
this results in a sparse system of linear algebraic equations, that can be solved by
well-known efficient methods.

Another type of LBDIE for BVP of elasticity with variable coefficients was de-
scribed in [6], where the Green function for a corresponding homogeneous material on
a sphere was employed as a parametrix. The mesh-less method based on the MLS ap-
proximation, c.f. [7,8], and the element-wise polynomial approximation were used for
numerical implementations in [6]. A localized boundary-domain integro-differential
equation, which is equivalent to use of the piece-wise constant cut-off function, c.f. [4],
was used in [9] for numerical solution for the BVP of heat transfer for an inhomoge-
neous material in conjunction with the piece-wise polynomial approximation of the
solution.

In the present paper, we outline implementation of the mesh-based discretization of
the LBDIE formulated in [4] and associated with the Neumann BVP for a linear scalar
variable-coefficient equation. Numerical solutions for some test problems with variable
coefficients are discussed, extending results of [5]. This illustrates applicability of the
discrete algorithms presented in [4] for solution of the BDIEs localized with smooth
cut-off functions.

2 Reduction of the Neumann BVP to LBDIE

Let us consider the following second-order linear elliptic PDE in a two-dimensional
bounded domain Ω,

[Lu](x) :=
∂

∂xi

[
a(x)

∂

∂xi
u(x)

]
= f(x), x ∈ Ω, (1)

subject to the Neumann boundary condition

[Tu](x) := a(x)
∂u(x)
∂n(x)

= t(x), x ∈ ∂Ω, (2)

where u(x) is the unknown function; f(x), t(x) and a(x) > const > 0 are prescribed
functions; n(x) is the outward normal unit vector to the boundary ∂Ω of the domain
Ω; x = (x1, x2); and summation over the repeated indices is implied from 1 to 2.

The BVP (1)-(2) appears particularly in modeling stationary heat transfer, elas-
tostatics, electrostatics and diffusion problems for functionally graded materials, as
well as in fluid mechanics of porous media.

To ensure compatibility of boundary condition (2) with equation (1), we assume
that the functions t(x) and f(x) satisfy the compatibility condition, c.f. [10],

∫

∂Ω
t(x)dΓ(x)−

∫

Ω
f(x)dΩ(x) = 0.
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For partial differential operators with variable coefficients, a parametrix can be
defined as a function P (x, y) satisfying the equation

[LP (·, y)](x) = δ(x− y) + R(x, y), (3)

where δ(x − y) is the Dirac delta-function, y is a source point, and the remainder
R(x, y) as a function of point x ∈ Ω, may have at x = y a weak singularity at most.

In the 2D case, the fundamental solution of the operator with ’frozen coefficients’
corresponding to the operator L defined in (1), can be taken as a parametrix, i.e.,

P (x, y) =
1

2πa(y)
ln |x− y|, (4)

where |x− y| =
√

(x1 − y1)2 + (x2 − y2)2, ln |x− y| = loge |x− y|.
After substituting (4) in (3), the remainder R(x, y) can be calculated as

R(x, y) =
xi − yi

2πa(y)|x− y|2
∂a(x)
∂xi

. (5)

The localized parametrix is defined as

Pω(x, y) = χ(x, y)P (x, y), (6)

where χ(x, y) is a sufficiently smooth cut-off function, defined such that χ(y, y) = 1
and χ(x, y) = 0 if x /∈ ω(y); ω(y) is an open localization domain, whose closure ω(y)
contains the point y. Some examples of ω(y) are shown on Fig. 1.
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Figure 1: A domain Ω with possible localization domains ω(yi).

Further, we have

[LPω(·, y)](x) = [L{χ(·, y)P (·, y)}](x) =
[LP (·, y)](x) + [L{(1− χ(·, y))P (·, y)}](x) = δ(x, y) + Rω(x, y).

Hence,
Rω(x, y) = R(x, y) + [L{(1− χ(·, y))P (·, y)}](x).

The second Green identity over the intersection of ω(y) with Ω, for the operator
L from (1), unknown solution u and an arbitrary test function v, has the form,
∫

ω(y)∩Ω
[u(x)[Lv](x)−v(x)[Lu](x)]dΩ(x) =

∫

∂[ω(y)∩Ω]
[u(x)[Tv](x)−v(x)[Tu](x)]dΓ(x).
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Substituting the localized parametrix Pω(x, y) for the test function v(x) in the identity,
taking the usual limits in the singular point x = y, see e.g. [3, Sec. I.9], and taking
into account boundary condition (2), we arrive at the direct LBDIE, c.f. [4],

c(y)u(y)−
∫

ω(y)∩∂Ω
u(x)[TPω(·, y)](x)dΓ(x)−

∫

∂ω(y)∩Ω
u(x)[TPω(·, y)](x)dΓ(x)

+
∫

∂ω(y)∩Ω
Pω(x, y)[Tu](x)dΓ(x) +

∫

ω(y)∩Ω
Rω(x, y)u(x)dΩ(x)

= −
∫

ω(y)∩∂Ω
Pω(x, y)t(x)dΓ(x) +

∫

ω(y)∩Ω
f(x)Pω(x, y)dΩ(x), y ∈ Ω̄ (7)

where

c(y) =





1, for y ∈ Ω,
α(y)
2π

, for y ∈ ∂Ω,

and α(y) is the interior space angle at a point y of the boundary ∂Ω; particularly,
c = 1/2 at a smooth boundary point.

Note that each point y generally possesses its own localization domain ω(y) in
LBDIE (7); by other words, the localization domain moves with y. The second and
third integrals on the left-hand side of LBDIE (7) disappear if the cut-off function χ
is chosen such that

χ(x, y) =
∂χ(x, y)
∂n(x)

= 0 at x ∈ ∂ω(y) ∩ Ω, (8)

and consequently

Pω(x, y) =
∂Pω(x, y)

∂n(x)
= 0 at x ∈ ∂ω(y) ∩ Ω. (9)

The localized boundary-domain integral equations like (7) consist a new non-
traditional class of equations not covered by the classical theory of the boundary-
domain integral equations presented e.g. in [3]. They have some connections with the
domain decomposition technique (c.f. comments in [4]) but essentially differ from it
by the fact that the localization domain moves with the field point y; that is, each
point y generally possesses its own localization domain ω(y).

3 Finite-dimensional perturbation

The Neumann BVP (1)-(2) is not unconditionally and uniquely solvable, see e.g. [10],
and neither is the integral equation. Consequently, the system of linear algebraic
equations, which will be a discrete analogue of the LBDIE (7), is either singular or
ill-conditioned. For such types of systems, direct methods, particularly the Gauss
elimination, can give unstable solutions, i.e. small changes in the coefficients of the
system’s matrix or in the right-hand side, which can be caused by computer round-off
errors, may produce large changes in the solution. Iterative methods for such systems
may converge very slowly, if at all. The situation can be improved following the
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approach described in [11]. One could check that u(x) = const is a solution of the
LBDIE (7) with the zero right-hand side. Let us assume there are no other solutions of
the homogeneous equation, and only one compatibility condition is to be imposed on
inhomogeneous LBDIE (7). Then one can perturb LBDIE (7) by adding the operator

[K
◦
u](x) :=

1
|∂Ω|

∫

∂Ω
u(x)dΓ(x),

where |∂Ω| denotes the length of the boundary ∂Ω, to the left-hand side of the LBDIE
(7). The perturbed LBDIE can be written as

c(y)u(y)−
∫

ω(y)∩∂Ω
u(x)[TPω(·, y)](x)dΓ(x)−

∫

∂ω(y)∩Ω
u(x)[TPω(·, y)](x)dΓ(x)

+
∫

∂ω(y)∩Ω
Pω(x, y)Txu(x)dΓ(x) +

∫

ω(y)∩Ω
Rω(x, y)u(x)dΩ(x) +

1
|∂Ω|

∫

∂Ω
u(x)dΓ(x)

= −
∫

ω(y)∩∂Ω
Pω(x, y)t(x)dΓ(x) +

∫

ω(y)∩Ω
f(x)Pω(x, y)dΩ(x). (10)

This equation is uniquely and unconditionally solvable, and its solution is a particular
solution of equation (7) such that

1
|∂Ω|

∫

∂Ω
u(x)dΓ(x) = 0,

c.f. [11].
Discretization of the perturbed LBDIE should lead to a system of linear algebraic

equations with a well-conditioned matrix.

4 Discretization of the LBDIEs

Let us discretize the domain Ω into a mesh of triangular elements ek, ek ∩ em = ∅,
k 6= m, with nodes xi, i = 1, . . . J, at the vertices of triangles, and choose lo-
calization domains ω(xi) consisting of the elements adjacent to the node xi, i.e.,
ω(xi) =

⋃
xi∈ek

ek, see Fig. 2. This means that each localization domain will shrink
with the mesh refinement in our localization approach, unlike in traditional domain
decomposition methods.

Let sk be the side of the element ek, constituting ω(xi), which does not pass
through xi. For such localization domains ω(xi), the smooth cut-off function can be
taken as

χ(x, xi) =





p∏
k=1

xi 6∈s̄k

ρ2
k(x)

ρ2
k(x

i)
if x ∈ ω(xi),

0 if x /∈ ω(xi),

(11)

where p is a number of triangles ek in ω(xi), ρk(x), ρk(xi) are the distances from
points x and xi to the side sk of ek. For the nodes xi on the global boundary ∂Ω,
like point x2 in Fig. 2, formula (11) implies that χ(x, xi) 6= 0 at x on the intersection
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Figure 2: Mesh-based discretization and localization domains ω(xi).

ω(xi) ∩ ∂Ω. Obviously, the cut-off function χ(x, xi), given by (11), and the localized
parametrix Pω(x, xi), given by (6), (4), satisfy conditions (8), (9).

To obtain the system of linear algebraic equations from the LBDIE (7) or from its
perturbed counterpart (10) by the collocation method, we apply this equation at the
nodes xi, i = 1, . . . J, and substitute an interpolation of u(x) of the form

u(x) ≈
∑

xj∈ω(xi)

u(xj)Φj(x), Φj(x) =
{

φkj(x) if x, xj ∈ ek ⊂ ω(xi),
0 otherwise,

where φkj(x) are the shape functions localized on an element ek, associated with the
node xj . For the triangle elements, φkj(x) can evidently be chosen as linear functions
equal to 1 at xj ∈ ek, and 0 at other vertices of the triangle ek; Φj(x) is then a
piece-wise linear function.

The system of linear algebraic equations obtained after the discretization of LBDIE
(7) can be written as

c(xi)u(xi) +
∑

xj∈ω(xi)

Kiju(xj) = F(xi), i = 1, . . . , J, (12)

where

Kij = −
∫

ω(xi)∩∂Ω
Φj(x)[TPω(·, xi)](x)dΓ(x) +

∫

ω(xi)∩Ω
Φj(x)Rω(x, xi)dΩ(x), (13)

F(xi) = −
∫

ω(xi)∩∂Ω
Pω(x, xi)t(x)dΓ(x) +

∫

ω(xi)∩Ω
f(x)Pω(x, xi)dΩ(x). (14)

Since Kij = 0 at xj /∈ ω(xi), the number of non-zero entries equals the number of
nodes in ω(xi) (the typical number is not more than 8), i.e. the matrix is sparse with
an effective band width around 8.

Discretizing perturbed LBDIE (10), we arrive at the system

c(xi)u(xi) +
∑

xj∈ω(xi)

Kiju(xj) +
∑

xj∈∂Ω

K
◦

ju(xj) = F(xi), i = 1, . . . , J, (15)

where K
◦

j = 1
|∂Ω|

∫
∂Ω Φj(x)dΓ(x). The last system involves the sparse matrix Kij and

the column matrix K
◦

j .
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5 Numerical results

The algorithm was implemented in a computer code with the localized parametrix
Pω(x, y) given by (6), (4), and the cut-off function χ(x, y) given by (11). The inte-
grals in formulae (13) and (14) have a weak singularity of the order of O(ln |x−y|). To
calculate the boundary integrals we used a logarithmically weighted Gaussian quadra-
ture, see e.g. [12]. For the domain integrals, a degenerate transformation of variable,
see e.g. [13, Sec. 11.3], has been implemented, mapping the triangles into squares and
eliminating the weak singularity.

For comparison, both systems (12) and (15) were solved, giving the same results.
To solve system (12), we used the procedure LFSXG of the numerical library IMSL
that exploit the sparsity pattern. For the solution of perturbed system (15), IMSL
routines LFCRG and LFIRG have been adopted. The condition numbers for the
systems were estimated by using the routine LFCRG. In our numerical experiments,
the condition numbers for the non-perturbed system were of the order of 106 − 108,
while for the perturbed system were of the order of 10− 103.

To verify the convergence of the method, we applied the LBDIE method to some
test problems on square and circular domains, for which an exact analytical solution,
uexact, is available. The relative error was calculated as

ε(J) =
max

1≤j≤J
|uapprox(xj)− uexact(xj)|
max

1≤j≤J
|uexact(xj)| .

Since the exact solution is not unique, the approximate solution was taken as uapprox(xj) =
ũapprox(xj) − ũapprox(x1) + uexact(x1), j = 1, . . . , J , where ũapprox is the numerical
solution.

The following numerical tests were performed.

Test 1. Square domain Ω = {(x1, x2) : −1 ≤ x1, x2 ≤ 1}, where a(x) = x1x2 + 2,
f(x) = 0 for x ∈ Ω and t(x) = 2(x1x2 + 2)(x1n1(x)− x2n2(x)) for x ∈ ∂Ω. An exact
solution for this problem is uexact(x) = x2

1 − x2
2, x ∈ Ω.
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Figure 3: Results for test 1: (a) approximate solution uapprox(x), (b) difference be-
tween approximate and exact solutions, when J = 1089, ε(1089) ≈ 1.7%; (c) relative
error versus number of nodes.

Test 2. Square domain Ω = {(x1, x2) : 1 ≤ x1, x2 ≤ 2}, where a(x) = x2
1 + x2

2,
f(x) = 8(x2

1 + x2
2) for x ∈ Ω and t(x) = 2(x2

1 + x2
2)(x1n1(x) + x2n2(x)) for x ∈ ∂Ω. An

exact solution for this problem is uexact(x) = x2
1 + x2

2, x ∈ Ω.
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Figure 4: Results for test 2: (a) approximate solution uapprox(x), (b) difference be-
tween approximate and exact solutions, when J = 289, ε(289) ≈ 0.35%; (c) relative
error versus number of nodes.

Test 3. Circular domain Ω = {(x1, x2) : (x1 − 1, 5)2 + (x2 − 1, 5)2 ≤ 0.25}, where
a(x) = x2

1 +x2
2, f(x) = 8(x2

1 +x2
2) for x ∈ Ω and t(x) = 2(x2

1 +x2
2)(x1n1(x)+x2n2(x))

for x ∈ ∂Ω. An exact solution for this problem is uexact(x) = x2
1 + x2

2, x ∈ Ω.
Fig.5 and Fig.6 show the results of Test 3 for the circular domain with the non-

discretization-consistent and the discretization-consistent choices for the coefficient
c(xi), xi ∈ ∂Ω, respectively. In the former case α(xi) = 1

2 , xi ∈ ∂Ω, as should
be for the smooth circle boundary. In the latter case, the boundary nodes xi are
considered as vertices with the angles α(xi) of the polygon approximating the circle
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in the implemented mesh-based discretization, and c(xi) = α(xi)
2π . The discretization-

consistent choice gives higher accuracy for the circular domain.
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Figure 5: Results for test 3 with c(xi) = 1
2 on ∂Ω: (a) approximate solution uapprox(x),

(b) difference between approximate and exact solutions when J = 536, ε(536) ≈ 9.1%.
(c) relative error versus number of nodes
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Figure 6: Results for test 3 with c(xi) = α(xi)
2π on ∂Ω: (a) approximate solution

uapprox(x), (b) difference between approximate and exact solutions when J = 536,
ε(536) ≈ 0.14%. (c) relative error versus number of nodes

6 Concluding remarks

Localization of the parametrix by multiplication with a locally supported cut-off func-
tion reduces a BVP to a localized boundary-domain integral equation. This ends up
after discretization in a sparse system of linear algebraic equations, which makes the
method competitive with the Finite Element method.

The numerical experiments show that after the mesh-based discretization the
LBDIE method with a smooth cut-off function leads to a convergent algorithm and,
consequently, is applicable as a numerical method for solution of BVPs with variable
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coefficients. Further theoretical and numerical analysis of the convergence rate and
error estimates would be beneficial for optimal choice of the cut-off functions and
especially their smoothness.

The finite-dimensional perturbation allows to reduce the integral equation of the
Neumann problem to an unconditionally and uniquely solvable integral equation. This
will be especially beneficial for constructing iterative numerical methods for solving
corresponding algebraic systems without preconditioning.
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