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Abstract

Some direct segregated localized boundary-domain integral equation (LBDIE) systems asso-

ciated with the Dirichlet and Neumann boundary value problems (BVP) for a scalar ”Laplace”

PDE with variable coefficient are formulated and analysed. The parametrix is localized by

multiplication with a radial localizing function. Mapping and jump properties of surface and

volume integral potentials based on a localized parametrix and constituting the LBDIE sys-

tems are studied in a scale of Sobolev (Bessel potential) spaces. The main results established

in the paper are the LBDIEs equivalence to the original variable-coefficient BVPs and the

invertibility of the LBDIE operators in the corresponding Sobolev spaces.

Keywords: Partial Differential Equations, Variable coefficients, Boundary value problems, Parametrix,

Localized Boundary-Domain Integral Equations, Pseudo-differential operators

1 Introduction

Partial Differential Equations (PDEs) with variable coefficients arise naturally in mathematical

modelling of inhomogeneous media (e.g. functionally graded materials or materials with damage

induced inhomogeneity) in solid mechanics, electromagnetics, thermo-conductivity, fluid flows

trough porous media, and other areas of physics and engineering.
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The Boundary Integral Equation Method/Boundary Element Method (BIEM/BEM) is a well

established tool for solution Boundary Value Problems (BVPs) with constant coefficients. The

main ingredient for reducing a BVP for a PDE to a BIE is a fundamental solution to the original

PDE. However, it is generally not available in an analytical and/or cheaply calculated form for

PDEs with variable coefficients. Following Levi and Hilbert, one can use in this case a parametrix

(Levi function) as a substitute for the fundamental solution. Parametrices are usually much wider

available than fundamental solutions. They correctly describes the main part of the fundamental

solution although do not have to satisfy the original PDE. This reduces the problem not to a

boundary integral equation but to a system of Boundary-Domain Integral Equations (BDIEs), see

e.g. [17, 18]. A discretization of the BDIE leads then to a system of algebraic equations of the

similar size as in the FEM, however the matrix of the system is not sparse as in the FEM but

dense and thus less efficient for numerical solution.

The Localized Boundary-Domain Integral Equation Method (LBDIEM) emerged recently

[23, 24, 21, 19, 12] addressing this issue and making the BDIE competitive with the FEM for such

problems. The LBDIEM employs specially constructed localized parametrices to reduce BVPs

with variable coefficients to Localized Boundary-Domain Integral or Integro-Differential Equa-

tions. After a locally-supported mesh-based or mesh-less discretization this ends up in sparse

systems of algebraic equations. Further advancing the LBDIEM requires a deeper analytical in-

sight on properties of the corresponding integral operators, particularly on LBDIE solvability,

uniqueness of solution, equivalence to original BVPs and invertibility of the LBDIEs. Analysis

of non-localized segregated BDIEs is presented in [3] and of united BDIDEs in [14]. This paper

develops analysis of some direct segregated localized BDIEs for the Dirichlet and Neumann prob-

lems, based on a parametrix localized by multiplying with a cut-off function, [12]. Some results on

analysis of two LBDIE systems were presented in [4] for smooth localizing functions with compact

support. Here we provide complete proofs of the results for four LBDIE systems associated with

Dirichlet and Neumann BVPs, in the case of not necessarily compact and smooth localization.

The paper is organized as follows. After introducing basic notations in Section 2, we define

classes of localizing functions and derive localized boundary-domain integral identities in Section 3.

In Section 4 we give the localized boundary-domain integral equation formulations for the Dirichlet

and Neumann BVPs and formulate the main theorems of the paper describing (i) equivalence of the

LBDIEs to the original BVPs and (ii) invertibility of the corresponding localized boundary-domain
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integral operators in the appropriate Sobolev spaces. Section 5 is devoted to the study of properties

of localized single layer, double layer and volume potentials, depending on the smoothness of

the localizing function. Section 6 deals with inverse to the localized Newton potential and some

boundary value problem for the localized Newton, single and double layer potentials. The pseudo-

differential operator techniques used in Sections 5 and 6, although close to the standard ones (see

[1, 7, 2, 8]), are complicated by the limited smoothness of the localizing function and thus of the

operator kernels, which needed a special consideration. Finally, in Section 7 we prove the main

theorems formulated in Section 4.

2 Basic notions and notations

Let Ω+ be a bounded open three–dimensional region of R3 and Ω− := R3 \ Ω+. For simplicity,

we assume that the boundary ∂Ω := ∂Ω+ is a simply connected, closed, infinitely smooth surface.

Let a ∈ C∞(R3), 0 < a(x) < C for x ∈ R3. Let also ∂j = ∂xj := ∂/∂xj (j = 1, 2, 3), ∂x =

(∂x1 , ∂x2 , ∂x3).

We consider below localized boundary-domain integral equations associated with the following

scalar elliptic differential equation

Lu(x) := L(x, ∂x)u(x) :=
3∑

i=1

∂

∂xi

(
a(x)

∂u(x)
∂xi

)
= f(x), x ∈ Ω+, (2.1)

where u is an unknown function and f is a given function in Ω+.

In what follows, Hs(Ω+) = Hs
2(Ω+), Hs

loc(Ω
−) = Hs

2,loc(Ω
−), Hs(∂Ω) = Hs

2(∂Ω) denote the

Bessel potential spaces (coinciding with the Sobolev–Slobodetski spaces if s ≥ 0). For an open

set Ω, we, as usual, denote D(Ω) = C∞
comp(Ω) endowed with sequential continuity, D∗(Ω) is the

Schwartz space of sequentially continuous functionals on D(Ω), while D(Ω̄) is the set of restrictions

on Ω̄ of functions from D(R3).

From the trace theorem (see, e.g., [10]) for u ∈ H1(Ω+) (u ∈ H1
loc(Ω

−)) it follows that u|±∂Ω :=

γ± u ∈ H
1
2 (∂Ω), where γ± = γ±∂Ω is the trace operator on ∂Ω from Ω±. We will use γ for γ± if

γ+ = γ−. We will use also notations u± for the traces u|±∂Ω, when this will cause no confusion.

For the linear operator L, we introduce the following subspace of Hs(Ω), c.f. [9, 5, 14],

Hs,0(Ω;L) := {g : g ∈ Hs(Ω), Lg ∈ L2(Ω)}
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endowed with the norm

‖g‖Hs,0(Ω;L) := ‖g‖Hs(Ω) + ‖Lg‖L2(Ω).

For u ∈ H1(Ω±) the co–normal differentiation operators on ∂Ω do not generally exist in the

trace sense. However if u ∈ H1,0(Ω±; L), one can correctly define the generalized (canonical)

co–normal derivative T±u = [Tu]± ∈ H− 1
2 (∂Ω) with the help of the first Green identity (cf., for

example, [5], [11, Lemma 4.3]) ,
〈
T±u , v±

〉
∂Ω

:= ±
∫

Ω±

[
vLu + E(u, v)

]
dx, ∀ v ∈ H1(Ω±), (2.2)

where

E(u, v) :=
3∑

i=1

a(x)
∂u(x)
∂xi

∂v(x)
∂xi

,

and the symbol 〈g1, g2〉∂Ω denotes the duality brackets between the spaces H− 1
2 (∂Ω) and H

1
2 (∂Ω),

coinciding with
∫
Ω g1(x)g2(x)dx if g1, g2 ∈ L2(∂Ω).

3 Localized parametrix and Green identities

Denote by P1(x, y) the parametrix (Levi function) of the operator L(x, ∂x) considered in [12, 3],

P1(x, y) = − 1
4π a(y) |x− y| , x, y ∈ R3, x 6= y, (3.1)

with the property

L(x, ∂x) P1(x, y) = δ(x− y) + R1(x, y), (3.2)

where δ(·) is the Dirac distribution, and the remainder

R1(x, y) =
3∑

i=1

xi − yi

4π a(y) |x− y|3
∂a(x)
∂xi

, x, y ∈ R3, x 6= y, (3.3)

possesses a weak singularity of type O(|x− y|−2) for small |x− y|.
Let, as usual, W k

1 (a, b) denote the Sobolev space of functions belonging along with their k−th

derivative to the space L1(a, b) of absolutely integrable functions on the interval (a, b). Note that

if g ∈ W k
1 (0,∞), k ≥ 1, then g ∈ Ck−1([0,∞)) and djg(t)/dtj → 0 as t →∞ for j = 0, ..., k − 1.

Let us denote the sine-transform of the function χ̆ as

χ̂s(ω) :=

∞∫

0

χ̆ (%) sin(%ω) d%.

Further, let us introduce three classes for localizing functions.
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DEFINITION 3.1 We say χ ∈ Xk for integer k ≥ 0 if χ(x) = χ̆(|x|), χ̆ ∈ W k
1 (0,∞) and

%χ̆(%) ∈ L1(0,∞).

We say χ ∈ Xk
+ for integer k ≥ 1 if χ ∈ Xk, χ(0) > 0 and

σχ(ω) :=
χ̂s(ω)

ω
> 0, ∀ ω ∈ R. (3.4)

We say χ ∈ Xk
1+ for integer k ≥ 1 if χ ∈ Xk

+ and

ωχ̂s(ω) ≤ χ(0), ∀ ω ∈ R. (3.5)

Evidently, we have the following imbeddings: Xk1 ⊂ Xk2 and Xk1
+ ⊂ Xk2

+ , Xk1
1+ ⊂ Xk2

1+ for

k1 > k2.

The class Xk
+ is defined in terms of the sine-transform. The following lemma provides an easily

verifiable sufficient condition for non-negative non-increasing functions to belong to this class.

LEMMA 3.2 Let k ≥ 1. If χ ∈ Xk, χ(0) > 0, χ̆(%) ≥ 0 for all % ∈ (0,∞), and χ̆ is a

non-increasing function on [0, +∞), then χ ∈ Xk
+.

Proof. We have to check (3.4). Let us first consider ω > 0 and rewrite the left hand side of (3.4)

as

σχ(ω) =
1
ω

∞∫

0

χ̆ (%) sin(%ω) d% =
1
ω2

∞∫

0

χ̆
(γ

ω

)
sin γ dγ

=
1
ω2

∞∑

m=0

2πm+2π∫

2mπ

χ̆
(γ

ω

)
sin γ dγ. (3.6)

Taking into account that χ̆ is nonnegative and non-increasing we can easily check the following

inequalities for m = 0, 1, 2, ...,
2mπ+2π∫

2mπ

χ̆
(γ

ω

)
sin γ dγ =

2mπ+π∫

2mπ

χ̆
(γ

ω

)
sin γ dγ +

2mπ+2π∫

2mπ+π

χ̆
(γ

ω

)
sin γ dγ

=

π∫

0

[
χ̆
(2mπ + γ

ω

)
− χ̆

(2mπ + γ + π

ω

) ]
sin γ dγ ≥ 0. (3.7)

These inequalities imply that σχ(ω) ≥ 0 for any ω > 0. Actually, we have here a strict

inequality. Indeed, if σχ(ω) = 0 for some ω > 0, then due to continuity and nonnegativity of the

integrand in (3.7), we get

χ̆
(2mπ + γ

ω

)
= χ̆

(2mπ + γ + π

ω

)
, m = 0, 1, 2....; γ ∈ [0, π]. (3.8)
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Taking into account the monotonicity and continuity of χ̆, equality (3.8) implies χ̆(%) = χ̆(0) > 0,

∀ % > 0, which contradicts to the condition χ̆ ∈ W 0
1 (0,∞) = L1(0,∞). Thus σχ(ω) > 0 for any

ω > 0. Since σχ(ω) is an even function, this implies σχ(ω) > 0 for any ω ∈ R\{0}. On the other

hand, by the Lebesgue convergence theorem,

σχ(0) = lim
ω→0

σχ(ω) =

∞∫

0

ρχ̆ (%) d%,

and, consequently, σχ(0) > 0 since χ̆ (%) is non-negative, continuous at % = 0, and χ̆ (0) > 0.

¤

Note that the classes Xk particularly include the localization functions χ with a compact

support that are mostly interesting for applications, see e.g. [12, 16], and also χ with non-compact

support that can be useful in applications for unbounded domains.

Some examples for χ,

χ1k(x) =





[
1− |x|

ε

]k
for |x| < ε,

0 for |x| ≥ ε,
(3.9)

χ2(x) =





exp
[ |x|2
|x|2 − ε2

]
for |x| < ε,

0 for |x| ≥ ε,

(3.10)

χ3(x) =





(
1− |x|

ε

)2 (
1− 2

|x|
ε

)
for |x| < ε,

0 for |x| ≥ ε,

(3.11)

χ4(x) = e−|x| . (3.12)

One can observe that χ
1k

, χ2 , χ3 , are compactly supported while χ4 is not. On the other hand, χ1 ∈
Xk

+, while χ2 , χ4 ∈ X∞
+ due to Lemma 3.2. Evidently, χ3 ∈ X2 is non-monotonous and negative

on a part of its support, which prevents applying Lemma 3.2, however, the direct integration

gives sχ3
(ω) = {εω[ε2ω2 − 10 − 2 cos(εω)] + 12 sin(εω)}ε−3ω−5 > 0, ω ∈ R, implying χ3 ∈ X2

+.

Moreover, our analysis of condition (3.5) (analytical for all χ
1k

, χ2 , χ4 , and numerical for χ2)

shown also that χ11 6∈ X1
1+ and χ2 6∈ X∞

1+, while χ12 ∈ X2
1+, χ13 ∈ X3

1+, χ3 ∈ X2
1+ and χ4 ∈ X∞

1+.

Now we define a localized parametrix

Pχ(x, y) := χ(x− y)P1(x, y), x, y ∈ R3. (3.13)
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Evidently,

L(x, ∂x) Pχ(x, y) = χ(0)δ(x− y) + Rχ(x, y), (3.14)

L(y, ∂y) Pχ(x, y) = χ(0)δ(x− y) + R∗χ(x, y), (3.15)

where

Rχ(x, y) = − 1
4π a(y)

3∑

j=1

{
− ∂

∂yj

[
∂a(x)
∂xj

χ(x− y)
|x− y| + a(x)

∂χ(x− y)
∂xj

1
|x− y|

]

+a(x)
∂χ(x− y)

∂xj

∂

∂xj

1
|x− y|

}
, (3.16)

R∗χ(x, y) = − 1
4π

3∑

j=1

{
− ∂

∂yj

[
∂a(y)
∂yj

χ(x− y)
a(y) |x− y| +

∂χ(x− y)
∂xj

1
|x− y|

]

+
∂χ(x− y)

∂xj

∂

∂xj

1
|x− y|

}
, x, y ∈ R3, x 6= y. (3.17)

We see that the functions Rχ(x, y) and R∗χ(x, y) possess a weak singularity O(|x − y|−2) as

x → y if χ is smooth enough, e.g., χ ∈ X3.

Let us introduce the surface and volume potentials, based on the localized parametrix Pχ,

Vχg(y) := −
∫

∂Ω

Pχ(x, y) g(x) dSx, (3.18)

Wχ g(y) := −
∫

∂Ω

[
T (x, n(x), ∂x))Pχ(x, y)

]
g(x) dSx, (3.19)

Pχ g(y) :=
∫

Ω+

Pχ(x, y) g(x) dx, (3.20)

Rχg(y) :=
∫

Ω+

Rχ(x, y) g(x) dx, (3.21)

R∗χ g(y) :=
∫

Ω+

R∗χ(x, y) g(x) dx . (3.22)

For the case χ = 1 in R3, properties of the potentials (3.18)-(3.21) and the operators generated

by them are studied in [3]. In the case of a non-constant localizing function χ, properties of these

potentials are established in Section 5.
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Let us also define the corresponding boundary operators

Vχ g(y) := −
∫

∂Ω

Pχ(x, y) g(x) dSx, (3.23)

Wχ g(y) := −
∫

∂Ω

[
T (x, n(x), ∂x))Pχ(x, y)

]
g(x) dSx, (3.24)

W ′
χ g(y) := −

∫

∂Ω

[
T (y, n(y), ∂y))Pχ(x, y)

]
g(x) dSx, (3.25)

L±χ g(y) := [T (y, n(y), ∂y))Wχg(y)]±. (3.26)

Due to the results described in Section 5 these operators are well defined.

We remark that from (3.1), (3.13), (3.16)-(3.26), we have,

Pχg =
1
a
Pχ∆g, Vχg =

1
a
Vχ∆g, Wχg =

1
a
Wχ∆(ag), (3.27)

Rχg = − 1
a(y)

3∑

j=1

∂jPχ∆(g ∂ja) +
1

a(y)
Rχ∆(ag), (3.28)

R∗χg = −
3∑

j=1

∂j

[
∂ja

a
Pχ∆g

]
+Rχ∆g, (3.29)

Vχg =
1
a
Vχ∆g, Wχg =

1
a
Wχ∆(ag), (3.30)

W ′
χg = W ′

χ∆
(g)− 1

a

[
∂a

∂n

]
Vχ∆g, L±χ g = L±χ∆

(ag)− 1
a

[
∂a

∂n

]
W±

χ∆
(ag), (3.31)

where the localized potentials Pχ∆ , Rχ∆ , Vχ∆ , Wχ∆ , Vχ∆ , Wχ∆ , W ′
χ∆

, L±χ∆
are associated with

the operator L for a = 1, i.e., with the Laplace operator ∆.

Let us recall the second Green identity for the operator L(x, ∂x),
∫

Ω+

[
v L(x, ∂x)u− u L(x, ∂x)v

]
dx =

〈
T+u , v+

〉
∂Ω
− 〈

T+v , u+
〉

∂Ω
, (3.32)

where u, v ∈ H1,0(Ω+; L) are real functions.

Let y ∈ Ω and Ω+
y be the domain Ω+ with a neighbourhood of y deleted. If χ ∈ X3, then

Pχ(·, y) ∈ H1,0(Ω+
y ; L) for any domain Ω+

y by Corollary 5.2, and for v(x) := Pχ(x, y) and u ∈
H1,0(Ω+; L), we obtain from (3.2) and (3.32) by standard limiting procedures (see, e.g., [17]) the

third Green identity,

χ(0)u +Rχu− VχT+u + Wχu+ = PχLu in Ω+. (3.33)
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Then by the properties of the potentials presented in Section 5, taking trace and co-normal

derivative of (3.33), we derive,

χ(0)
2

u+ +R+
χ u− VχT+u +Wχu+ = P+

χ Lu on ∂Ω, (3.34)

χ(0)
2

T+u + T+Rχu−W ′
χT+u + L+

χ u+ = T+PχLu on ∂Ω. (3.35)

Here R+
χ u := (Rχu )+, P+

χ f := (Pχf )+.

4 Direct segregated LBDIEs for the Dirichlet and Neumann prob-

lems and main theorems

To simplify the LBDIE form, we will assume in Section 4 that χ(0) = 1.

4.1 LBDIE formulations

Let us consider the Dirichlet problem

Lu = f in Ω+, (4.1)

u+ = ϕ0 on ∂Ω, (4.2)

where equation (4.1) is understood in the distributional sense and condition (4.2) in the trace

sense; ϕ0 ∈ H
1
2 (∂Ω) and f ∈ H0(Ω+).

Denoting the unknown co-normal derivative T+u as a new variable ψ and substituting (4.1),

(4.2) in (3.33), (3.34), we arrive at the system of direct segregated LBDIE (D1),

u +Rχu− Vχψ = Pχf −Wχϕ0 in Ω+, (4.3)

R+
χ u− Vχψ = [Pχf ]+ − 1

2
ϕ0 −Wχϕ0 on ∂Ω, (4.4)

with the unknowns u ∈ H1,0(Ω+;L) and ψ ∈ H− 1
2 (∂Ω).

Alternatively, substituting (4.1), (4.2) in (3.33), (3.35) and denoting again the co-normal

derivative T+u as a new variable ψ, we arrive for the Dirichlet BVP at another direct segregated

LBDIE system of the second kind (D2),

u +Rχu− Vχψ = Pχf −Wχϕ0 in Ω+, (4.5)

T+Rχu +
1
2

ψ −W ′
χψ = T+Pχf − L+

χ ϕ0 on ∂Ω (4.6)
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with the unknowns u ∈ H1,0(Ω+;L) and ψ ∈ H− 1
2 (∂Ω).

Let us now consider the Neumann problem

Lu = f in Ω+, (4.7)

T+u = ψ0 on ∂Ω, (4.8)

where equation (4.7) is understood in the distributional sense, while equality (4.8) is understood

in the functional sense in accordance with (2.2); ψ0 ∈ H− 1
2 (∂Ω) and f ∈ H0(Ω+).

Denoting the unknown trace u+ as a new variable ϕ and substituting (4.7), (4.8) in (3.33),

(3.34), we arrive at the direct segregated LBDIE system of the second kind (N2),

u +Rχu + Wχϕ = Pχf + Vχψ0 in Ω+, (4.9)

R+
χ u +

1
2

ϕ +Wχϕ = [Pχf ]+ + Vχψ0 on ∂Ω, (4.10)

with the unknowns u ∈ H1,0(Ω+;L) and ϕ ∈ H
1
2 (∂Ω).

Now let us go over to the alternative LBDIEs formulation for the Neumann BVP. Again,

denoting the unknown trace u+ as a new variable ϕ and substituting relations (4.7), (4.8) into

(3.33) and (3.35), we arrive at the LBDIE system (N1),

u +Rχu + Wχϕ = Pχf + Vχψ0 in Ω+, (4.11)

T+Rχu + L+
χ ϕ = T+Pχf − 1

2
ψ0 +W ′

χψ0 on ∂Ω. (4.12)

with the unknowns u ∈ H1,0(Ω+;L) and ϕ ∈ H
1
2 (∂Ω).

The digits 1 or 2 in the notations (D1), (D2), (N1), (N2) indicate, respectively, the first

or the second kind of the boundary equation in these systems. We entitled the above LBDIE

systems segregated to underline that the boundary unknown functions ψ and ϕ are treated in the

equations as independent (segregated) of the unknown function u defined in the domain. If the

unknown boundary traces and/or co-normal derivatives are not replaced by segregated unknown

functions, one can arrive at some other systems of direct united localized boundary-domain integral

or integro-differential equations for the Dirichlet, Neumann or mixed problems, cf. [12, 14], but

in the present paper we confine ourselves with analysis of the LBDIE systems (D1), (D2), (N1),

(N2) only.
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4.2 Main theorems

We will prove in Section 7 the following equivalence and invertibility theorems.

THEOREM 4.1 Let χ(0) = 1, ϕ0 ∈ H
1
2 (∂Ω) and f ∈ H0(Ω+).

(i) If a function u ∈ H1(Ω+) solves the Dirichlet problem (4.1)-(4.2) then the pair (u, ψ) with

ψ = T+u ∈ H− 1
2 (∂Ω) solves the LBDIEs (D1) and LBDIEs (D2) with any χ ∈ X3.

(ii) Vice versa, if a pair (u, ψ) ∈ H1(Ω+) ×H− 1
2 (∂Ω) solves the LBDIEs (D1) with χ ∈ X3

+

or LBDIEs (D2) with χ ∈ X3
1+, then u solves the Dirichlet problem (4.1)-(4.2), and T+u = ψ.

(ii) The Dirichlet problem (4.1)-(4.2), the LBDIEs (D1) with χ ∈ X3
+ and LBDIEs (D2) with

χ ∈ X3
1+ are all uniquely solvable.

Let us denote the localized boundary-domain integral operator generated by the left hand sides

in LBDIEs (D1) and (D2), respectively, as

AD1
χ :=


 I +Rχ −Vχ

R+
χ −Vχ


 , AD2

χ :=


 I +Rχ −Vχ

T+Rχ
1
2 I −W ′

χ


 .

THEOREM 4.2 Let χ(0) = 1. The following operators are continuous and continuously invert-

ible,

AD1
χ : H1(Ω+)×H− 1

2 (∂Ω) → H1(Ω+)×H
1
2 (∂Ω) if χ ∈ X3

+, (4.13)

AD2
χ : H1(Ω+)×H− 1

2 (∂Ω) → H1(Ω+)×H− 1
2 (∂Ω) if χ ∈ X3

1+. (4.14)

THEOREM 4.3 Let χ(0) = 1, ψ0 ∈ H− 1
2 (∂Ω) and f ∈ H0(Ω+).

(i) If a function u ∈ H1(Ω+) solves the Neumann problem (4.7)-(4.8) then the pair (u, ϕ) with

ϕ = u+ ∈ H
1
2 (∂Ω) solves the LBDIEs (N2) and LBDIEs (N1) with any χ ∈ X3.

(ii) Vice versa, if a pair (u, ϕ) ∈ H1(Ω+)×H
1
2 (∂Ω) solves the LBDIEs (N2) with χ ∈ X3

+ or

LBDIEs (N1) with χ ∈ X3
1+, then u solves the Neumann problem (4.7)-(4.8) and u+ = ϕ.

(iii) The homogeneous Neumann problem (4.7)-(4.8) admits only one linearly independent

solution u = 1 in H1(Ω+), while the homogeneous LBDIEs (N2) with any χ ∈ X3
+ and LBDIEs

(N1) with any χ ∈ X3
1+ admit only one linearly independent solution (u, ϕ) = (1, 1) in H1(Ω+)×

H
1
2 (∂Ω).

(iii) The condition

〈f , 1〉
Ω+ − 〈ψ0 , 1〉

∂Ω
= 0 (4.15)

11
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is necessary and sufficient for solvability of the nonhomogeneous Neumann problem (4.7)-(4.8)

and nonhomogeneous LBDIEs (N2) with any χ ∈ X3
+ and LBDIEs (N1) with any χ ∈ X3

1+.

Let us denote the localized boundary-domain integral operators generated by the left hand

sides in LBDIEs (N2) and (N1), respectively, as

AN2
χ =:


 I +Rχ Wχ

R+
χ

1
2 I +Wχ


 , AN1

χ :=


 I +Rχ Wχ

T+Rχ L+
χ


 .

THEOREM 4.4 Let χ(0) = 1. The following operators are continuous Fredholm operators with

zero index,

AN2
χ : H1(Ω+)×H

1
2 (∂Ω) → H1(Ω+)×H

1
2 (∂Ω) if χ ∈ X3

+, (4.16)

AN1
χ : H1(Ω+)×H

1
2 (∂Ω) → H1(Ω+)×H− 1

2 (∂Ω) if χ ∈ X3
1+. (4.17)

They have one–dimensional null–spaces, kerAN1
χ = kerAN2

χ , spanned over the element (u, ϕ) =

(1, 1).

Remark that in Theorems 4.1-4.4 we needed χ from X3
+ for LBDIEs (D1) and (N2), but χ

from much more narrow class X3
1+ for LBDIEs (D2) and (N1).

Before proving these theorems in Section 7, we provide necessary tools for this, analysing in

Section 5 mapping and jump properties of the potentials, and constructing in Section 6 the inverse

to the localized volume potential operator.

5 Properties of localized potentials

We analyse here mapping and jump properties of the localized operators Pχ, Rχ, R∗χ, Vχ, Wχ,

Vχ, Wχ, W ′
χ and L±χ , defined in Subsection 3.1.

Let

P̂χ∆(ξ) := Fx→ξ

[
− 1

4 π

χ(x)
|x|

]
= − 1

4 π

∫

R3

χ(x)
|x| e−2πi x·ξ dx, (5.1)

be a Fourier transform of the localized parametrix Pχ∆(x) for the Laplace operator (i.e., corre-

sponding to the case a(x) = 1, see (3.1) and (3.13)). Here and in what follows Fx→ξ and F−1
ξ→x are

the generalized direct and inverse Fourier transform operators, which on the integrable functions

12
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take the form

ĝ(ξ) = Fg(ξ) =
∫

R3

g(x)e−2πix·ξdx, F−1ĝ(x) =
∫

R3

ĝ(ξ)e2πix·ξdξ.

Denote by Pχ∆ the pseudodifferential operator with the symbol P̂χ∆ ,

Pχ∆ g := F−1 [ P̂χ∆(ξ)Fg ] , g ∈ S ′(R3), (5.2)

where S ′(R3) is the space of tempered distributions (Schwartz space). For v ∈ S(R3), where

S(R3) is the space of rapidly decreasing functions, we have,

Pχ∆ v(y) =
∫

R3

Pχ∆(x− y) v(x) dx = − 1
4 π

∫

R3

χ(x− y)
|x− y| v(x) dx. (5.3)

First of all we prove the following main lemma which is crucial in our further analysis.

LEMMA 5.1 (i) Let χ ∈ Xk, with k ≥ 0. Then P̂χ∆ ∈ C(R3),

P̂χ∆(0) = −
∞∫

0

χ̆ (%) % d%, (5.4)

and for ξ 6= 0 the following equalities hold

P̂χ∆(ξ) =
k∗∑

m=0

(−1)m+1

|2πξ|2m+2
χ̆(2m)(0)− 1

|2πξ|k+1

∞∫

0

sin
(
2π|ξ|% +

kπ

2

)
χ̆(k)(%) d% , (5.5)

where k∗ is the integer part of (k − 1)/2 and the sum disappears in (5.5) if k∗ < 0, i.e., if k = 0.

(ii) If χ ∈ X0 and condition (3.4) is satisfied, then

P̂χ∆(ξ) < 0 for all ξ ∈ R3. (5.6)

Proof. Let (%, θ, ϕ) be coordinates of the point x in the spherical coordinate system with the

azimuthal axis directed along ξ. Then

P̂χ∆(ξ) = − 1
4 π

∫

R3

χ(x)
|x| e−2πi x·ξ dx

= − 1
4 π

∞∫

0

π∫

0

2π∫

0

χ̆ (%) e−2πi % |ξ| cos θ% sin θ dϕ dθ d%

= −1
2

∞∫

0

π∫

0

χ̆ (%) e−2πi % |ξ| cos θ% sin θ dθ d%

= − 1
2π|ξ|

∞∫

0

χ̆ (%) sin(2π% |ξ|) d% . (5.7)

13
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Integrating by parts, we have,

P̂χ∆(ξ) = − χ̆(0)
|2πξ|2 −

1
|2πξ|2

∞∫

0

χ̆ ′ (%) cos(2π% |ξ|) d% =
1

|2πξ|2
∞∫

0

χ̆ ′ (%) [1− cos(2π% |ξ|)] d%.

Further, successively integrating by parts, and taking into account that all derivatives of the

localizing function χ̆ up to the order k − 1 vanish as % → ∞, we easily derive (5.5). Equality

(5.4) and continuity of P̂χ∆(ξ) is obtained from penultimate equality in (5.7) by the Lebesgue

convergence theorem. Item (ii) of the lemma immediately follows from (5.7).

¤

Lemma 5.1 implies the following important corollary.

COROLLARY 5.2 (i) There exists a positive constant c1 such that

|P̂χ∆(ξ)| ≤ c1 (1 + |ξ|2)− k+1
2 for all ξ ∈ R3 if χ ∈ Xk, k = 0, 1, (5.8)

|P̂χ∆(ξ)| ≤ c1 (1 + |ξ|2)− k+1
2 for all ξ ∈ R3 if χ ∈ Xk, k = 2, 3, and χ(0) = 0, (5.9)

and the following operators are continuous,

Pχ∆ : Ht(R3) → Ht+k+1(R3) ∀ t ∈ R if χ ∈ Xk, k = 0, 1, (5.10)

: Ht(R3) → Ht+k+1(R3) ∀ t ∈ R if χ ∈ Xk, k = 2, 3, and χ(0) = 0. (5.11)

(ii) If χ ∈ X1
+, then there exist positive constants c1 and c2 such that

c2 (1 + |ξ|2)−1 ≤ |P̂χ∆(ξ)| ≤ c1 (1 + |ξ|2)−1 for all ξ ∈ R3, (5.12)

and the following operator is continuously invertible,

Pχ∆ : Ht(R3) → Ht+2(R3) ∀ t ∈ R. (5.13)

Proof. Item (i) is implied by ansatz (5.5) and continuity of P̂χ∆(ξ) at ξ = 0.

Consider item (ii). The right inequality in (5.12) and thus the continuity of operator (5.13) is

given by (5.8). Properties (5.4) and (5.6) imply the left inequality in (5.12) on any finite interval of

ξ. Since in (5.5) χ(0) 6= 0, while the integral tends to zero as |ξ| → ∞ due to the Lebesgue theorem,

we obtain the left inequality in (5.12) at all ξ ∈ R3. This implies the continuous invertibility of

operator (5.13).

¤
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Let us now analyse properties of the operator Rχ∆ involved in the expressions of the operators

Rχ and R∗χ defined by (3.28) and (3.29). Let us denote,

Rχ∆g :=
∫

R3

Rχ∆(x− y)g(x) dx = F−1 (R̂χ∆ Fg),

where R̂χ∆ = FRχ∆ and

Rχ∆(x− y) = − 1
4π

3∑

j=1

{
∂

∂xj

[
∂χ(x− y)

∂xj

1
|x− y|

]
+

∂χ(x− y)
∂xj

∂

∂xj

1
|x− y|

}

= ∆Pχ∆(x− y)− χ(0)δ(x− y), (5.14)

cf. (3.16) and (3.17) with a = 1 and (5.3).

LEMMA 5.3 Let s ∈ R, χ ∈ Xk, k = 1, 2, 3. The following operators are continuous,

Rχ∆ : Hs(R3) → Hs+k−1(R3), χ ∈ Xk. (5.15)

Proof. Let χ ∈ Xk, k ≥ 1. By definition (5.14) we have, R̂χ∆ = −|2πξ|2P̂χ∆ − χ̆(0) and then by

Lemma 5.1,

R̂χ∆(ξ) =
k∗∑

m=1

(−1)m

|2πξ|2m
χ̆(2m)(0) +

1
|2πξ|k−1

∞∫

0

sin
(
2π%|ξ|+ kπ

2

)
χ̆(k)(%) d% , (5.16)

where k∗ is the integer part of (k − 1)/2, and the sum disappears in (5.16) if k∗ < 1, i.e., k < 3.

Equality (5.16) gives the estimates,

|R̂χ∆(ξ)| ≤ c (1 + |ξ|2)− k−1
2 for all ξ ∈ R3 if χ ∈ Xk, k = 1, 2, 3,

which imply (5.15).

¤

Taking into account that

Pχ∆f = Pχ∆f, Rχ∆f = Rχ∆f for f ∈ H̃s(Ω+), s ∈ R, (5.17)

we can write down the mapping properties for Pχ and Rχ and R∗χ.

15
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THEOREM 5.4 The following operators are continuous

Pχ : H̃s(Ω+) → Hs+2(Ω+), s ∈ R, χ ∈ X1, (5.18)

: Hs(Ω+) → Hs+2(Ω+), −1
2

< s <
1
2
, χ ∈ X1; (5.19)

Rχ, R∗χ : H̃s(Ω+) → Hs(Ω+), s ∈ R, χ ∈ X1, (5.20)

: Hs(Ω+) → Hs(Ω+), −1
2

< s <
1
2
, χ ∈ X1, (5.21)

: H̃s(Ω+) → Hs+1(Ω+), s ∈ R, χ ∈ X2, (5.22)

: Hs(Ω+) → Hs+1(Ω+), −1
2

< s <
1
2
, χ ∈ X2. (5.23)

Proof. The mapping property (5.18) is implied by (5.17), (3.27) and Corollary 5.2. Then (5.19)

follows since Hs(Ω+) = H̃s(Ω+) for −1
2 < s < 1

2 . Similarly, (5.20) and (5.22) are implied by

(3.28) and (3.29) if we take into account Lemma 5.3 and property (5.18). Then again (5.21) and

(5.23) follow from (5.20) and (5.22). ¤

Now we can prove also some mapping properties of the above operators to subspaces Hs,t(Ω;L) ⊂
Hs(Ω) for a range of t. For t = 0, the space Hs,t(Ω;L) is described in Section 2, for other t we

present it following [15].

DEFINITION 5.5 Let s ∈ R and L∗ : Hs(Ω±) → D∗(Ω±) be a linear operator. For t ≥ −1
2 , we

introduce the space

Hs,t(Ω±;L∗) := {g : g ∈ Hs(Ω±), L∗g|Ω± = f̃g|Ω± , f̃g ∈ H̃t(Ω±)}

endowed with the norm ‖g‖Hs,t(Ω±;L∗) := ‖g‖Hs(Ω±) + ‖f̃g‖H̃t(Ω±)
.

The distribution f̃g ∈ H̃t(Ω±), t ≥ −1
2 , in the above definition is an extension of the distribu-

tion L∗g|Ω± ∈ Ht(Ω±), and the extension is unique (if it does exist) since any distribution from

the space Ht(R3) with a support in ∂Ω+ is identical zero if t ≥ −1/2 (see e.g. [11, Lemma 3.39],

[15, Lemma 4]). The uniqueness implies that the norm ‖g‖Hs,t(Ω±;L∗) is well defined.
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THEOREM 5.6 The following operators are continuous

Pχ : H̃s(Ω+) → Hs+2,s(Ω+;L), −1
2

< s <
1
2
, χ ∈ X1, (5.24)

: Hs(Ω+) → Hs+2,s(Ω+;L), −1
2

< s <
1
2
, χ ∈ X1, (5.25)

: Hs(Ω+) → H
5
2
−ε, 1

2
−ε(Ω+; L),

1
2
≤ s <

3
2
, ∀ε ∈ (0, 1), χ ∈ X2, (5.26)

Rχ : H̃s(Ω+) → Hs+1,s−1(Ω+; L),
1
2

< s <
3
2
, χ ∈ X2, (5.27)

: Hs(Ω+) → H
3
2
−ε,s−1(Ω+; L),

1
2

< s <
3
2
, ∀ε > 0, χ ∈ X3. (5.28)

Proof. Mapping properties (5.24), (5.25) directly follow from (5.18), (5.19). To prove (5.26) we

take into account the imbedding Hs(Ω+) ⊂ H
1
2
−ε(Ω+), for 1

2 ≤ s, ε > 0, implying continuity of

the operator Pχ : Hs(Ω+) → H
5
2
−ε(Ω+) due to continuity of (5.25). Then, LPχh = h + R∗χh

due to (3.15), and for 1
2 ≤ s < 3

2 and any ε ∈ (0, 1) the operator R∗χ : Hs(Ω+) ⊂ H
1
2
−ε(Ω+) →

H
3
2
−ε(Ω+) ⊂ H

1
2
−ε(Ω+) = H̃

1
2
−ε(Ω+) is continuous due to property (5.23) from Theorem 5.4

implying continuity of the operator LPχ : Hs(Ω+) → H̃
1
2
−ε(Ω+) and thus (5.26).

Continuity of the operator (5.27) follows directly from continuity of (5.22) in Theorem 5.4.

To deal with (5.28), let us first of all remark that for 1
2 ≤ s < 3

2 and any ε > 0 the operator

Rχ : Hs(Ω+) ⊂ H
1
2
−ε(Ω+) → H

3
2
−ε(Ω+) is continuous due to property (5.23) from Theorem 5.4.

Further, for any u ∈ Hs(Ω+), 1
2 < s < 3

2 ,

Lu−∆u =
3∑

i=1

∂a

∂xi

∂u

∂xi
∈ Hs−1(Ω+) = H̃s−1(Ω+),

that is, the spaces Hs,s−1(Ω+; L) and Hs,s−1(Ω+;∆) coincide.

Let now 1
2 < s < 3

2 . Applying the Laplace operator to (3.28), we have,

∆Rχg =
1

a(y)



−

3∑

j=1

∂j∆Pχ∆(g ∂ja) + ∆Rχ∆(ag)



 + Qg, (5.29)

Qg :=
(

∆
1

a(y)

) 

−

3∑

j=1

∂jPχ∆(g ∂ja) +Rχ∆(ag)





+2
3∑

k=1

(
∂k

1
a(y)

)
∂k



−

3∑

j=1

∂jPχ∆(g ∂ja) +Rχ∆(ag)



 . (5.30)

Due to properties (5.19) and (5.23) of Theorem 5.4, and imbedding Hs(Ω+) ⊂ Hs−1(Ω+), the

operator Q : Hs(Ω+) → Hs−1(Ω+) is continuous if χ ∈ X2.
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Further ∆Pχ∆h = h +R∗χ∆h in Ω+ for any h ∈ Hs(Ω+), where R∗χ∆ = Rχ∆ is defined by

(3.22), (3.15) with a = 1. Due to Theorem 5.4, the operator R∗χ∆ : Hs(Ω+) ⊂ Hs−1(Ω+) →
Hs(Ω+) is continuous and thus ∂j∆Pχ∆ : Hs(Ω+) → Hs−1(Ω+) is continuous as well.

On the other hand, the operator ∆Rχ∆ : Hs(Ω+) ⊂ Hs−1(Ω+) = H̃s−1(Ω+) → Hs−1(Ω+)

is continuous due to Lemma 5.3 if χ ∈ X3. Thus the operator ∆Rχ : Hs(Ω+) → Hs−1(Ω+) is

continuous, implying (5.28).

¤

Before proving mapping properties of co-normal derivatives of potentials, we define following

[15] the canonical co-normal derivative operator acting on functions from Hs,t(Ω;L), extending

to a range of Sobolev spaces the definition of co-normal derivative given by (2.2). By definition,

for u ∈ Hs,t(Ω;L), s ∈ R, t ≥ −1
2 , the distribution Lu ∈ Ht(Ω) can be uniquely extended to a

distribution in H̃t(Ω), which we will call the canonical extension and denote by L0u.

For u ∈ Hs(Ω±), v ∈ H2−s(Ω±), 1/2 < s < 3/2, let us define a bilinear form,

E±(u, v) :=
3∑

i=1

〈a∂iu, ∂iv〉Ω± ,

where 〈 · , · 〉Ω± are the duality brackets between the spaces Hs−1(Ω±) and H̃1−s(Ω±), and we

took into account that H̃1−s(Ω±) = H1−s(Ω±) when 1/2 < s < 3/2.

DEFINITION 5.7 For u ∈ Hs,− 1
2 (Ω±; L), 1

2 < s < 3
2 , we define the canonical co-normal

derivative T±u ∈ Hs− 3
2 (∂Ω) as

〈
T±u , w

〉
∂Ω

:= ±〈L0u, ew〉Ω± ± E±(u, ew) ∀ w ∈ H
3
2
−s(∂Ω), (5.31)

where e : Hs− 1
2 (∂Ω) → Hs(R3) is a bounded extension operator. The canonical co-normal deriva-

tive T±u is independent of e, the operator T± : Hs,− 1
2 (Ω±; L) → Hs− 3

2 (∂Ω) is continuous, and

the first Green identity holds in the following form,

± 〈
T±u , v±

〉
∂Ω

= 〈L0u, v〉Ω± + E±(u, v) ∀ v ∈ H2−s(Ω±). (5.32)

Since Hs,t(Ω±; L) ⊂ Hs,− 1
2 (Ω±;L) for t > −1

2 , Definition 5.7 defines the continuous operators

T± : Hs,t(Ω±; L) → Hs− 3
2 (∂Ω) for any t ≥ −1

2 and 1
2 < s < 3

2 .
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COROLLARY 5.8 The operators

Rχ : Hs(Ω+) → Hs(Ω+),
1
2

< s <
3
2
, χ ∈ X2, (5.33)

R+
χ : Hs(Ω+) → Hs− 1

2 (∂Ω),
1
2

< s <
3
2

χ ∈ X2, (5.34)

T+Rχ : Hs(Ω+) → Hs− 3
2 (∂Ω),

1
2

< s <
3
2

χ ∈ X3, (5.35)

are compact.

Proof. Compactness of (5.33) and (5.34) is implied by property (5.23) of Theorem 5.4 along

with the Rellich compact imbedding theorem and the trace theorem. Continuity of the operator

Rχ : Hs(Ω+) → H
3
2
−ε,s−1(Ω+; L), 1

2 < s < 3
2 , for any ε > 0 due to property (5.28) of Theorem 5.6,

implies continuity of the operator T+Rχ : Hs(Ω+) → H−ε(∂Ω), 1
2 < s < 3

2 , for sufficiently small

ε > 0, and thus compactness of operator (5.35) due to the Rellich compact imbedding theorem.

¤

To consider properties of the surface potentials, we remark that they can be presented as

Vχ = χ(0)V1 + Vχ−χ(0), Wχ = χ(0)W1 + Wχ−χ(0). (5.36)

Here V1 and W1 are the surface potentials based on the non-localized parametrix (3.1) and stud-

ied in detail in [3], while Vχ−χ(0) and Wχ−χ(0) are given by (3.18), (3.19) with Pχ−χ(0)(x, y) =

Pχ(x, y)− χ(0)P1(x, y). Due to (3.27), the mapping and jump properties of Vχ−χ(0) and Wχ−χ(0)

are defined by those of their counterparts for the Laplace operator, Vχ−χ(0),∆ and Wχ−χ(0),∆,

based on the corresponding function Pχ−χ(0),∆(x− y) = Pχ∆(x− y)− χ(0)P1∆(x− y).

Let us state mapping properties of the operator

Pχ−χ(0),∆ g(y) =
∫

Ω

Pχ−χ(0),∆(x− y) g(x) dx = − 1
4 π

∫

Ω

χ(x− y)− χ(0)
|x− y| g(x) dx.

LEMMA 5.9 Let χ(x) ∈ Xk, k=1,2,3. The operator

µPχ−χ(0),∆ : H̃t(Ω) → Ht+k+1(R3) ∀ t ∈ R (5.37)

is continuous for any µ ∈ D(R3).

Proof. Let g ∈ H̃t(Ω). Then ĝ(ξ) := Fg(ξ) belongs to C∞(R3) since Ω is bounded. Moreover,

Pχ−χ(0),∆ g(y) = Pχ−χ(0),∆ g(y) :=
∫

R3

Pχ−χ(0),∆ g(x)dx, y ∈ R3.
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Let first χ ∈ Xk, k = 1, 2. Taking into account that P̂χ−χ(0),∆ = P̂χ∆−χ(0)P̂1∆ and P̂1∆(ξ) =

−|2πξ|−2 as the symbol of the volume potential operator for the Laplace operator, Lemma 5.1

leads to the following expression,

P̂χ−χ(0),∆(ξ) = − 1
|2πξ|k+1

∞∫

0

sin
(
2π%|ξ|+ kπ

2

)
χ̆(k)(%) d% . (5.38)

Further we have,

F [Pχ−χ(0),∆ g](ξ) = P̂χ−χ(0),∆(ξ)ĝ(ξ) = P̂χ−χ(0),∆(ξ)µ1(ξ)ĝ(ξ) + P̂χ−χ(0),∆(ξ)[1− µ1(ξ)]ĝ(ξ), (5.39)

where the cut-off function µ1 ∈ D(R3) and µ1(ξ) = 1 for |ξ| ≤ 1. The first term in the right hand

side of (5.39) is integrable and compactly supported, which implies its inverse Fourier transform

is infinitely smooth in R3. For the second term we have due to (5.38),

|P̂χ−χ(0),∆(ξ)[1− µ1(ξ)]| ≤ c1 (1 + |ξ|2)− k+1
2 for all ξ ∈ R3,

which implies continuity of the operator with the symbol P̂χ−χ(0),∆(ξ)[1− µ1(ξ)] from Ht(R3) to

Ht+k+1(R3) ∀ t ∈ R. Combining these statements we obtain continuity of (5.37) for k = 1, 2.

If χ ∈ X3, then integrating (5.38) with k = 2 by parts, we have,

P̂χ−χ(0),∆(ξ) = − 1
|2πξ|4

∞∫

0

[1− cos
(
2π%|ξ|

)
] χ̆(3)(%) d% . (5.40)

This means

|P̂χ−χ(0),∆(ξ)[1− µ1(ξ)]| ≤ c1 (1 + |ξ|2)−2 for all ξ ∈ R3 if χ ∈ X3,

which by the same arguments as above implies continuity of (5.37) for k = 3.

¤

Let us introduce the distributions ψ δ∂Ω and ∂n(ϕ δ∂Ω) defined by the relations

〈ψ δ∂Ω , h〉 := 〈ψ , γh〉
∂Ω

, 〈∂n(ϕ δ∂Ω) , h〉 := 〈ϕ , −∂nh〉
∂Ω

for all h ∈ D(R3). (5.41)

For ψ, φ ∈ Hs− 3
2 (∂Ω), s < 3

2 , one can observe from the right hand sides of (5.41) (where ∂nh

is understood in the trace sense) that ψ δ∂Ω and ∂n(ϕ δ∂Ω) are actually continuous functionals on

h ∈ H2−s(R3) and h ∈ H3−s(R3), respectively. Moreover,

| 〈ψ δ∂Ω , h〉 | = | 〈ψ , γh〉
∂Ω
| ≤ c1 ||ψ||

Hs− 3
2 (∂Ω)

||γh||
H

3
2−s(∂Ω)

≤ c2 ||ψ||
Hs− 3

2 (∂Ω)
||h||H2−s(R3),

| 〈∂n(ϕ δ∂Ω) , h〉 | = |〈ϕ , ∂nh〉
∂Ω
| ≤ c1 ‖ϕ‖

Hs− 3
2 (∂Ω)

‖∂nh‖
H

3
2−s(∂Ω)

≤ c3 ||ϕ||
Hs− 3

2 (∂Ω)
||h||H3−s(R3),
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due to the usual duality estimation and the trace theorem. This shows that ψ δ∂Ω ∈ Hs−2(R3),

∂n(ϕ δ∂Ω) ∈ Hs−3(R3). Evidently, supp [ψδ∂Ω] ⊂ ∂Ω and supp [∂n(ϕ δ∂Ω)] ⊂ ∂Ω, which implies

ψ δ∂Ω ∈ Hs−2
∂Ω (Ω) ⊂ H̃s−2(Ω), ∂n(ϕ δ∂Ω) ∈ Hs−3

∂Ω (Ω) ⊂ H̃s−3(Ω) . Thus the following linear

mappings are continuous,

ψ 7−→ ψ δ∂Ω : Hs− 3
2 (∂Ω) → H̃s−2(Ω) ⊂ Hs−2(R3), s <

3
2

, (5.42)

ϕ 7−→ ∂n(ϕ δ∂Ω) : Hs− 3
2 (∂Ω) → H̃s−3(Ω+) ⊂ Hs−3(R3), s <

3
2
. (5.43)

It is well-known that the single layer, double layer and volume potentials can be represented

as convolutions (see, e.g., [22] for harmonic potentials):

Vχ∆ ψ(y) =
1
4π

∫

∂Ω

χ(x− y)
|x− y| ψ(x) dSx =

1
4 π

[ χ(x)
|x| ∗ (ψ δ∂Ω)

]
, (5.44)

Wχ∆ ϕ(y) =
1
4π

∫

∂Ω

∂

∂n(x)
χ(x− y)
|x− y| ϕ(x) dSx =

1
4 π

[ χ(x)
|x| ∗ [−∂n(ϕ δ∂Ω)]

]
(y), (5.45)

Pχ∆ v(y) = − 1
4 π

∫

R3

χ(x− y)
|x− y| v(x) dx = − 1

4 π

[ χ(x)
|x| ∗ v

]
(y), (5.46)

where the symbol ∗ denotes the generalized convolution operation in R3. This means that the

potentials can be written as pseudodifferential operators,

Vχ∆ ψ = −F−1 { P̂χ∆(ξ) F(ψ δ∂Ω) } = −Pχ∆(ψ δ∂Ω) , (5.47)

Wχ∆ ϕ = −F−1 { P̂χ∆(ξ) F [−∂n(ϕ δ∂Ω) ]} = Pχ∆ [∂n(ϕ δ∂Ω) ], (5.48)

Pχ∆ f = F−1 { P̂χ∆(ξ) F f̃ } = Pχ∆ f̃ , (5.49)

where f̃ is the extension by zero of the function f from Ω onto the whole of R3.

THEOREM 5.10 The following operators are continuous

Vχ : Hs− 3
2 (∂Ω) → Hs(R3), s <

3
2

, if χ ∈ X1, (5.50)

: Hs− 3
2 (∂Ω) → Hs,s−1(Ω±;L),

1
2

< s <
3
2
, if χ ∈ X2, (5.51)

Wχ : Hs− 1
2 (∂Ω) → Hs(Ω±), s <

3
2

, if χ ∈ X2, (5.52)

: Hs− 1
2 (∂Ω) → Hs,s−1(Ω±;L),

1
2

< s <
3
2
, if χ ∈ X3. (5.53)
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Proof. Due to (3.27), it suffices to show mapping properties (5.50)-(5.52) for Vχ∆ , Wχ∆ , respec-

tively. In accordance with formula (5.47), Vχ∆ ψ = −Pχ∆(ψ δ∂Ω). Then (5.50) holds due to (5.11)

from Corollary 5.2 since ψ δ∂Ω ∈ Hs−2(R3).

For the double layer potential, let µ0 ∈ D(R3) such that µ0(0) = 1 and present χ = χ0 + χ∞,

where χ0 = µ0χ, χ∞ = (1− µ0)χ, and evidently, Wχ∆ ϕ = Wχ0,∆ ϕ + Wχ∞,∆ ϕ. For χ ∈ X2 we

obtain that χ0 ∈ X2 and is compactly supported, while χ∞ ∈ X2 and χ∞(0) = 0. Then

Wχ∞,∆ : Hs− 3
2 (∂Ω) → Hs(R3), s <

3
2
, (5.54)

is continuous due to ansatz (5.48), continuity of operator (5.11) from Corollary 5.2 and continuity

of mapping (5.43).

On the other hand, since ∂Ω is closed, Wχ0,∆ ϕ has a compact support independent of ϕ, and

in accordance with formulas (5.36), (5.48),

Wχ0,∆ ϕ = χ(0)W1∆ ϕ + Wχ0−χ(0),∆ ϕ, Wχ0−χ(0),∆ ϕ = Pχ0−χ(0),∆[ ∂n(ϕ δ∂Ω) ]

where the latter equality follows from (5.48). Taking into account that χ(0) = χ0(0), then

Lemma 5.9 and continuity of mapping (5.43) imply continuity of the operator

µWχ0−χ(0),∆ : Hs− 3
2 (∂Ω) → Hs(R3), s <

3
2
, (5.55)

for any µ ∈ D(R3) and χ ∈ X2.

In addition, for W1∆ the following mapping properties are well known,

W1∆ : Hs− 1
2 (∂Ω) → Hs(Ω+), µW1∆ : Hs− 1

2 (∂Ω) → Hs(Ω−) ∀ µ ∈ D(R3), s ∈ R ,

which along with (5.55) proves continuity of the operator

Wχ0,∆ : Hs− 1
2 (∂Ω) → Hs(Ω+), µWχ0,∆ : Hs− 1

2 (∂Ω) → Hs(Ω−) ∀ µ ∈ D(R3), s <
3
2

. (5.56)

Taking µ such that µ(x) = 1 on the support of Wχ0,∆ϕ, we have, µWχ0,∆ = Wχ0,∆, i.e., µ can be

dropped in (5.56), and its combining with continuity of (5.54) leads to continuity of (5.52).

To prove (5.51) and (5.53), we remark that these mappings are evident for V1∆ and W1∆,

respectively, since ∆V1∆ = 0, ∆W1∆ = 0 in Ω±; thus (5.51) and (5.53) hold for V1, and W1. On

the other hand,

∆Vχ0−χ(0)ψ = −∆Pχ0−χ(0),∆(ψ δ∂Ω), ∆Wχ0−χ(0)ϕ = ∆Pχ0−χ(0),∆[ ∂n(ϕ δ∂Ω) ],
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which implies continuity of the operators

µ∆Vχ0−χ(0) : Hs− 3
2 (∂Ω) → Hs−1(R3) if χ ∈ X2, (5.57)

µ∆Wχ0−χ(0) : Hs− 3
2 (∂Ω) → Hs−1(R3) if χ ∈ X3, (5.58)

for any µ ∈ D(R3) and s < 3
2 due to Lemma 5.9 and continuity of mappings (5.42), (5.43).

Taking again µ such that µ(x) = 1 on the support of Wχ0,∆ϕ, we have, µ∆Vχ0,∆ = ∆Vχ0,∆,

µ∆Wχ0,∆ = ∆Wχ0,∆, i.e., µ can be dropped in (5.57), (5.58).

Taking into account that the operators

∆Vχ∞ : Hs− 3
2 (∂Ω) → Hs−1(R3) if χ ∈ X2, (5.59)

∆Wχ∞ : Hs− 3
2 (∂Ω) → Hs−1(R3) if χ ∈ X3 (5.60)

are continuous for s < 3
2 , due to (5.47), (5.48), continuity of operators (5.11) from Corollary 5.2

and continuity of mappings (5.42), (5.43), then (5.51) and (5.53) for Vχ and Wχ follow.

¤

LEMMA 5.11 For any µ ∈ D(R), the following operators are compact

µVχ−χ(0) : Hs− 3
2 (∂Ω) → Hs(R3), s <

5
2
, if χ ∈ X2, (5.61)

: Hs− 3
2 (∂Ω) → Hs,s−1(Ω±; L),

1
2

< s <
3
2
, if χ ∈ X3, (5.62)

µWχ−χ(0) : Hs− 1
2 (∂Ω) → Hs(R3), s <

3
2
, if χ ∈ X2, (5.63)

: Hs− 1
2 (∂Ω) → Hs,s−1(Ω±; L),

1
2

< s <
3
2
, if χ ∈ X3. (5.64)

Proof. We have,

Vχ−χ(0),∆ ψ = −Pχ−χ(0),∆(ψ δ∂Ω), Wχ−χ(0),∆ ϕ = Pχ−χ(0),∆[∂n(ϕ δ∂Ω) ].

Then continuity of mappings (5.42), (5.43) and Lemma 5.9 imply that the following operators are

continuous,

µVχ−χ(0),∆ : Hs− 5
2 (∂Ω) → Hs(R3), s <

5
2
, if χ ∈ X2,

: Hs− 5
2 (∂Ω) → Hs+1(R3), s <

5
2
, if χ ∈ X3,

µWχ−χ(0) : Hs− 3
2 (∂Ω) → Hs(R3), s <

3
2
, if χ ∈ X2,

: Hs− 3
2 (∂Ω) → Hs+1(R3), s <

3
2
, if χ ∈ X3.
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Since the imbeddings Hs− 3
2 (∂Ω) ⊂ Hs− 5

2 (∂Ω), Hs− 1
2 (∂Ω) ⊂ Hs− 3

2 (∂Ω) are compact due to the

Rellich theorem, operators (5.61)-(5.64) are compact.

¤

Theorem 5.10, the trace theorem and Definition 5.7 of the canonical co-normal derivative imply

the following boundary mapping properties for the surface potentials.

COROLLARY 5.12 The following operators are continuous for 1
2 < s < 3

2 ,

V ±
χ := γ±Vχ : Hs− 3

2 (∂Ω) → Hs− 1
2 (∂Ω), χ ∈ X1, (5.65)

W±
χ := γ±Wχ : Hs− 1

2 (∂Ω) → Hs− 1
2 (∂Ω), χ ∈ X2, (5.66)

T±Vχ : Hs− 3
2 (∂Ω) → Hs− 3

2 (∂Ω), χ ∈ X2, (5.67)

L±χ := T±Wχ : Hs− 1
2 (∂Ω) → Hs− 3

2 (∂Ω), χ ∈ X3. (5.68)

We will use further the evident representations similar to (5.36),

Vχ = χ(0)V1 + Vχ−χ(0), Wχ = χ(0)W1 +Wχ−χ(0), W ′
χ = χ(0)W ′

1 +W ′
χ−χ(0). (5.69)

THEOREM 5.13 Let ψ ∈ Hs− 3
2 (∂Ω) and ϕ ∈ Hs− 1

2 (∂Ω), 1
2 < s < 3

2 . Then there hold the

following jump relations on ∂Ω

V +
χ ψ − V −

χ ψ = 0, χ ∈ X1, (5.70)

W+
χ ϕ−W−

χ ϕ = −χ(0)ϕ, χ ∈ X2, (5.71)

T+Vχψ − T−Vχψ = χ(0)ψ, χ ∈ X2, (5.72)

T+Wχϕ− T−Wχϕ = χ(0)ϕ
∂a

∂n
, χ ∈ X3. (5.73)

Moreover,

Vχψ = V +
χ ψ = V −

χ ψ, χ ∈ X1, (5.74)

Wχϕ =
1
2
(W+

χ ϕ + W−
χ ϕ), χ ∈ X2, (5.75)

W ′
χψ =

1
2
(T+Vχψ + T+Vχψ), χ ∈ X2. (5.76)

Proof. Similar to the proof of Theorem 5.10, for any µ ∈ D(R3) we have from Lemma 5.9
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continuity of the following operators,

µVχ−χ(0),∆ : Hs− 3
2 (∂Ω) → Hs(R3), χ ∈ X1, (5.77)

: Hs− 3
2 (∂Ω) → Hs+1(R3), χ ∈ X2, (5.78)

µWχ−χ(0),∆ : Hs− 1
2 (∂Ω) → Hs(R3), χ ∈ X2, (5.79)

: Hs− 1
2 (∂Ω) → Hs+1(R3), χ ∈ X3, (5.80)

which (for appropriate memberships of χ) imply continuity across the boundary of corresponding

traces and co-normal derivatives for Vχ−χ(0),∆ and Wχ−χ(0),∆ and thus for Vχ−χ(0) and Wχ−χ(0)

due to (3.27). Because of (5.36) this means the jumps of Vχ and Wχ coincide, up to the multiplier

χ(0), with these of V1 and W1 considered in [3], which give relations (5.70)-(5.73).

To prove (5.74)-(5.76), we use representation (5.69). For V1, W1, W ′
1 the equations corre-

sponding to (5.74)-(5.76) follow from results in [3]. For Vχ−χ(0), Wχ−χ(0), W ′
χ−χ(0) they are

implied by the continuity across the boundary of corresponding traces and co-normal derivatives

for Vχ−χ(0),∆ and Wχ−χ(0),∆, mentioned above. Remark that for Vχ−χ(0), Wχ−χ(0), W ′
χ−χ(0) this

can be also easily obtained from analysis of the kernel singularities.

¤

Note that unlike the case of constat coefficient, a = const, there is a non-zero jump of the

co-normal derivative of the parametrix-based double layer potential, see (5.73).

THEOREM 5.14 Let 1
2 < s < 3

2 . The following operators

Vχ : Hs− 3
2 (∂Ω) → Hs− 1

2 (∂Ω), χ ∈ X1, (5.81)

Wχ : Hs− 1
2 (∂Ω) → Hs− 1

2 (∂Ω), χ ∈ X2, (5.82)

W ′
χ : Hs− 3

2 (∂Ω) → Hs− 3
2 (∂Ω), χ ∈ X2, (5.83)

L±χ : Hs− 1
2 (∂Ω) → Hs− 3

2 (∂Ω), χ ∈ X3, (5.84)

are continuous. Moreover, operators (5.82), (5.83) and

Vχ−χ(0) : Hs− 3
2 (∂Ω) → Hs− 1

2 (∂Ω), χ ∈ X2, (5.85)

L±χ−χ(0) : Hs− 1
2 (∂Ω) → Hs− 3

2 (∂Ω), χ ∈ X3, (5.86)

are compact.
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Proof. The continuity immediately follows from Corollary 5.12 and Theorem 5.13. Compactness

for the potentials W1 and W ′
1 follows from the well-known corresponding results for potentials

W1∆ and W ′
1∆. On the other hand, compactness for potentials Wχ−χ(0) and W ′

χ−χ(0) is implied

by Lemma 5.11 due to Corollary 5.12 and Theorem 5.13. Then (5.36) completes the compactness

proof for (5.82), (5.83). Compactness for (5.85), (5.86) is implied by Lemma 5.11, relation (5.74)

of Theorem 5.13, and the definition of L±χ−χ(0) similar to (5.68). ¤

6 Inverse to the localized Newton potential

Keeping in mind the properties of P̂χ∆(ξ) and thus Pχ∆ studied in Section 5, let us denote by

P−1
χ∆

the pseudodifferential operator with symbol 1/P̂χ∆(ξ),

P−1
χ∆

v := F−1 [ P̂−1
χ∆

(ξ)Fv ] . (6.1)

REMARK 6.1 Let χ ∈ X1
+. By Corollary 5.2, there exist positive constants c1 and c2, such that

c−1
2 (1 + |ξ|2) ≤

∣∣∣P̂−1
χ∆

(ξ)
∣∣∣ ≤ c−1

1 (1 + |ξ|2) for all ξ ∈ R3, (6.2)

which implies that the operator P−1
χ∆

: Ht(R3) → Ht−2(R3) is the continuous inverse to the operator

Pχ∆ : Ht(R3) → Ht+2(R3) for arbitrary t ∈ R.

Note that (5.49) implies Pχ∆ f̃ = Pχ∆f for f ∈ Hs(Ω+), −1
2 < s < 1

2 , where f̃ is the extension

of f by zero from Ω+ onto the whole of R3.

Now we can prove the following assertions for the localized potentials associated with the

Laplace operator, cf. (3.27).

LEMMA 6.2 Let χ ∈ X1
+, ψ ∈ H− 1

2 (∂Ω), ϕ ∈ H
1
2 (∂Ω) and f ∈ H0(Ω+). Then

P−1
χ∆

Vχ∆ ψ = −(ψ δ∂Ω), (6.3)

P−1
χ∆

Wχ∆ ϕ = ∂n(ϕ δ∂Ω), (6.4)

P−1
χ∆
Pχ∆ f = f̃ , (6.5)

and thus suppP−1
χ∆

Vχ∆ ψ ⊂ ∂Ω, suppP−1
χ∆

Wχ∆ ϕ ⊂ ∂Ω, suppP−1
χ∆
Pχ∆ f ⊂ Ω+.
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Proof. Taking into consideration (5.47) we get

P−1
χ∆

Vχ∆ ψ = F−1
{

P̂−1
χ∆

(ξ) F(Vχ∆ ψ)
}

= −F−1
{

P̂−1
χ∆

(ξ) P̂χ∆(ξ)F(ψ δ∂Ω)
}

= −F−1 {F(ψ δ∂Ω) } = −(ψ δ∂Ω).

Quite similarly we derive (6.4) and (6.5). ¤

LEMMA 6.3 Let χ ∈ X1
+, ψ ∈ H− 1

2 (∂Ω), f ∈ H0(Ω+). If

Vχ ψ + Pχ f = 0 in Ω+, (6.6)

then ψ = 0 on ∂Ω and f = 0 in Ω+.

Proof. By (3.27) it suffices to prove the lemma for the case a = 1, i.e., under assumption

Vχ∆ ψ + Pχ∆ f = 0 in Ω+, (6.7)

instead of (6.6). Denote U := Vχ∆ ψ + Pχ∆ f in R3. Let us show that U is zero in R3. To this

end, let us note that U ∈ H̃1(Ω−) due to (6.7). Therefore, there exists a sequence Un ∈ D(Ω−),

n = 1,∞, converging to U in the space H̃1(Ω−), i.e., lim
n→∞ ||U−Un||H1(R3) = 0. Due to Lemma 6.2,

P−1
χ∆

U is a distribution with compact support,

P−1
χ∆

U = f̃ − ψ δ∂Ω, (6.8)

where f̃ is the extension by zero of the function f from Ω+ onto the whole of R3. Therefore,

P−1
χ∆

U = 0 in Ω− in the distributional sense, i.e., 〈P−1
χ∆

U , v〉 = 0 for all v ∈ D(Ω−). In particular,

〈P−1
χ∆

U , Un〉 = 0, n = 1,∞.

Then we have

0 = 〈P−1
χ∆

U , Un〉 = 〈F−1 [P̂−1
χ∆
FU ] , Un〉 = 〈P̂−1

χ∆
FU , FUn 〉

=
∫

R3

P̂−1
χ∆
FU FUn dξ

=
∫

R3

P̂−1
χ∆
|FU |2dξ +

∫

R3

P̂−1
χ∆
FU [FUn −FU ] dξ. (6.9)
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By (6.2), we get from (6.9),
∣∣∣∣∣∣

∫

R3

P̂−1
χ∆
|FU |2dξ

∣∣∣∣∣∣
≤ C

∫

R3

(1 + |ξ|2) |FU | |F(Un − U)| dξ

≤ C||U ||H1(R3) ||Un − U ||H1(R3) → 0 as n →∞.

Thus ∫

R3

P̂−1
χ∆
|FU |2dξ = 0,

whence FU = 0 due to the inequality (6.2) and negativity of P̂−1
χ∆

, see (5.6). Consequently,

U = Vχ∆ ψ + Pχ∆ f = 0 in R3.

Now, from (6.8) it follows that f̃ − ψ δ∂Ω =0 in the distributional sense in R3, which implies

f =0 in Ω+ and ψ=0 on ∂Ω.

¤

Let us prove a counterpart of Lemma 6.3 for the double layer potential Wχ∆ and its combination

with the volume potential.

LEMMA 6.4 Let χ ∈ X3
1+, ϕ ∈ H

1
2 (∂Ω), f ∈ H0(Ω+). If

Pχf + Wχ ϕ = 0 in Ω+, (6.10)

then f = 0 in Ω+ and ϕ = 0 on ∂Ω.

Proof. Let us define

U := Pχ∆f + Wχ∆ ϕ in R3, (6.11)

which evidently belongs to H0(R3). By (3.27) it suffices to prove the lemma for the case a = 1,

i.e., under assumption U = 0 in Ω+ instead of (6.10). Our goal is to show that U is zero in Ω−

which immediately leads to the proof of the lemma due to the jump properties of Wχ∆ and the

invertibility of the operator Pχ∆ . Note that in accordance with Theorems 5.6 and 5.10 we have

the inclusions,

Pχ∆f ∈ H2(R3), (Wχ∆ϕ)|Ω± ∈ H1,0(Ω±;∆) (6.12)

implying U ∈ H1,0(Ω±;∆), U± ∈ H
1
2 (∂Ω) and T±∆U ∈ H− 1

2 (∂Ω). Therefore, by [9, Lemma1.5.3.9]

(see also [15, Lemma 9]) there exists a sequence Ul ∈ D(R3), l = 1,∞, such that lim
l→∞

‖U −
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Ul‖H1,0(Ω−;∆) = 0. Then due to the trace theorem and [15, Lemma 8]

lim
l→∞

‖U− − Ul‖
H

1
2 (∂Ω)

= 0, lim
l→∞

‖T−∆U − ∂nUl‖
H− 1

2 (∂Ω)
= 0. (6.13)

By formula (5.1) and Lemma 5.1 we easily derive

P̂−1
χ∆

(ξ) = −|2πξ|2
χ̆(0)

− m̂(ξ) , m̂(ξ) :=
cχ(2π|ξ|)

χ̆(0)P̂χ∆(ξ)
, (6.14)

where

cχ(2π|ξ|) :=

∞∫

0

χ̆ ′ (%) cos(2π|ξ|%) d% = −χ(0) + 2π|ξ|
∞∫

0

χ̆ (%) sin(2π|ξ|%) d%

= −χ(0) + |2πξ|2sχ(2π|ξ|) = −χ(0)− |2πξ|2P̂χ∆(ξ).

Since χ ∈ X3
1+, condition (3.5) implies

cχ(2π|ξ|) ≤ 0 ∀ξ ∈ R3. (6.15)

and by Lemma 5.1 we get cχ(2π|ξ|) = O(|ξ|−2) as ξ →∞, and thus

0 ≤ m̂(ξ) ≤ C < ∞ ∀ξ ∈ R3 (6.16)

with some positive constant C.

In accordance with equation (6.14) we can represent the pseudodifferential operator P−1
χ∆

in

the following form

P−1
χ∆

=
1

χ(0)
∆−mχ∆ , (6.17)

where ∆ is the Laplace operator in the distributional sense (it corresponds to the symbol −|2πξ|2)
and mχ∆ is a pseudodifferential operator with the symbol m̂(ξ). Evidently, mχ∆ is a bounded

operator from the space H0(R3) into H0(R3) due to (6.16). Taking into account (6.12), this

implies (P−1
χ∆

U)|Ω± ∈ H0(Ω±).

From (6.11) and Lemma 6.2 we have, P−1
χ∆

U = 0 in Ω−, i.e.,

χ(0)P−1
χ∆

U = ∆ U − χ(0)mχ∆ U = 0 in Ω−. (6.18)

By equation (6.11), U = 0 in Ω+, and taking into account the jump properties of the localized

volume and double layer potentials, we conclude T−∆U = 0 on ∂Ω. Using Green’s identity, we then
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obtain,

0 =
∫

Ω−

[ χ(0)P−1
χ∆

U ] Ul dx =
∫

Ω−

∆U Ul dx− χ(0)
∫

Ω−

[mχ∆U ] Ul dx

= −
∫

Ω−

∇U · ∇Ul dx− χ(0)
∫

Ω−

[mχ∆U ] Ul dx.

Whence, by standard limiting procedure and in view of equations (6.13), (6.18), we conclude,

−
∫

Ω−

∇U · ∇U dx− χ(0)
∫

Ω−

[mχ∆U ] U dx = 0. (6.19)

Evidently, mχ∆U ∈ H0(R3) since U ∈ H0(R3). Therefore, taking into account that U is supported

in R3 \ Ω+ and using Plancherel’s theorem we can rewrite (6.19) as follows

−
∫

Ω−

∇U · ∇U dx− χ(0)
∫

R3

m̂(ξ) | FU |2 dξ = 0. (6.20)

By inequalities χ(0) > 0 and (6.16), and inclusion U ∈ H1(Ω−) we get U = 0 in Ω− and thus,

U = 0 in Ω±. Then the jump relations of the localized boundary potentials (see Theorem 5.13)

give, χ(0)ϕ = U− − U+ = 0 on ∂Ω.

Therefore, U = Pχ∆f = 0 in R3, and by Lemma 6.2,

0 = P−1
χ∆

U = P−1
χ∆
Pχ∆f = f in R3.

¤

7 Proofs of main theorems.

The uniqueness and existence results for the Dirichlet and Neumann boundary-value problems

provided in the following theorem are well known (see, e.g., [10]).

THEOREM 7.1 The Dirichlet problem (4.1)-(4.2) with ϕ0 ∈ H
1
2 (∂Ω) and f ∈ H0(Ω+) has a

unique solution in H1,0(Ω+; L).

The homogeneous Neumann problem (4.7)-(4.8) admits a constant as a general solution in

H1,0(Ω+; L), while condition (4.15) is necessary and sufficient for solvability in H1,0(Ω+;L) of

the nonhomogeneous Neumann problem (4.7)-(4.8) with ψ0 ∈ H− 1
2 (∂Ω) and f ∈ H0(Ω+).
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PROOF OF THEOREM 4.1. Let u ∈ H1(Ω+) be a solution of the Dirichlet problem (4.1)-

(4.2). Then u ∈ H1,0(Ω+; L) since f ∈ H0(Ω+), and (3.33)-(3.35) hold true since we see that the

pair (u, ψ) with ψ = T+u solves LBDIEs (D1) as well as LBDIEs (D2), which proves item (i).

Let a pair (u, ψ) ∈ H1(Ω+)×H− 1
2 (∂Ω) solve LBDIEs (D1). From (4.3) and Theorems 5.6 and

5.10 it follows that u ∈ H1,0(Ω+;L). Taking trace of (4.3) on ∂Ω and comparing the result with

(4.4), we easily derive that u+ = ϕ0 on ∂Ω. Therefore, subtracting Green’s identity (3.33) from

(4.3) we obtain

Pχ(Lu− f) + Vχ(T+u− ψ) = 0 in Ω+. (7.1)

Since χ ∈ X3
+, Lemma 6.3 implies that Lu−f = 0 in Ω+ and T+u−ψ = 0 on ∂Ω, which completes

the proof of item (ii) for LBDIEs (D1).

Now, let a pair (u, ψ) solve (D2). From (4.5) we see that u ∈ H1,0(Ω+) by Theorems 5.6 and

5.10. Taking the co-normal derivative of (4.5) on ∂Ω and subtracting it from (4.6), we obtain

T+u = ψ on ∂Ω. Further, take the difference of (4.5) and (3.33) to get

Pχ(Lu− f)−Wχ(u+ − ϕ0) = 0 in Ω+. (7.2)

Whence Lu = f in Ω+ and u+ = ϕ0 on ∂Ω follow from Lemma 6.4 if χ ∈ X3
1+, completing item

(ii) also for LBDIEs (D2).

The claim of item (iii) for the Dirichlet problem is covered by Theorem 7.1. Along with items

(i) and (ii) this implies the claim of item (iii) for LBDIEs (D1) and LBDIEs (D2). ¤

PROOF OF THEOREM 4.2. Theorems 5.6, 5.14 and Corollary 5.8 imply continuity of

operators (4.13) and (4.14).

Denote by AD1
1 the operator

AD1
0 :=


 I −Vχ

0 −V1


 : H1(Ω+)×H− 1

2 (∂Ω) → H1(Ω+)×H
1
2 (∂Ω) (7.3)

where V1 is the (non-localized) operator defined by (3.23) with χ(x, y) = 1. The operator

AD1
χ −AD1

0 : H1(Ω+)×H− 1
2 (∂Ω) → H1(Ω+)×H

1
2 (∂Ω)

is compact due to Theorems 5.11 and 5.14. Note that the operator

V1 : H− 1
2 (∂Ω) → H

1
2 (∂Ω)
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is invertible (see [3], Remark 3.7). Therefore, we conclude that the operator (7.3) is invertible

too. Thus, operator (4.13) is a Fredholm operator with zero index. It is also injective by Theorem

4.1(iii), implying invertibility of operator (4.13).

Similarly, operator (4.14) is a Fredholm operator with zero index since it is a compact pertur-

bation of the following triangular operator matrix with invertible diagonal operators,

AD2
0 :=


 I −Vχ

0 1
2 I


 : H1(Ω+)×H− 1

2 (∂Ω) → H1(Ω+)×H− 1
2 (∂Ω).

Then operator (4.14) is invertible since it is injective by Theorem 4.1(iii). ¤

PROOF OF THEOREM 4.3. Let u ∈ H1(Ω+) be a solution of the Neumann problem (4.9)-

(4.10). Then u ∈ H1,0(Ω+;L) since f ∈ H0(Ω+), and by (3.33) and (3.35) we see that the pair

(u, ϕ) with ϕ = u+ solves LBDIEs (N2) as well as LBDIEs (N1), which proves item (i).

Let a pair (u, ϕ) ∈ H1(Ω+) × H
1
2 (∂Ω) solve the LBDIEs (N2). From mapping properties of

the operators participating in LBDIEs (4.9) (see Theorems 5.6 and 5.10 ) it follows that u ∈
H1,0(Ω+; L). Further, taking the trace of (4.9) on ∂Ω and comparing the result with (4.10), we

easily derive that u+ = ϕ on ∂Ω. Therefore, from Green’s identity (3.33) for the function u we

have

u +Rχu− VχT+u + Wχϕ = PχLu in Ω+. (7.4)

Taking the difference of the equations (4.9) and (7.4) we arrive at the relation

Pχ(f − Lu) + Vχ(ψ0 − T+u) = 0 in Ω+. (7.5)

Since χ ∈ X3
+, Lemma 6.3 then implies that Lu = f in Ω+ and T+u = ψ0 on ∂Ω, i.e., u solves

the Neumann problem (4.9)-(4.10), which completes the proof of item (ii) for LBDIEs (N2).

Now, let a pair (u, ϕ) ∈ H1(Ω+) × H
1
2 (∂Ω) solve LBDIEs (N1). Then u ∈ H1,0(Ω+) by

Theorems 5.6 and 5.10. Taking the co-normal derivative of (4.11) on ∂Ω and subtracting it from

(4.12), we obtain T+u = ψ0 on ∂Ω. Further, from (4.11) and (3.33) we derive

Pχ(Lu− f)−Wχ(u+ − ϕ) = 0 in Ω+.

Whence Lu = f in Ω+ and u+ = ϕ on ∂Ω follow by Lemma 6.4 if χ ∈ X3
1+, completing item (ii)

also for LBDIEs (N1).
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The claims of points (iii) and (iv) for the Neumann problem is covered by Theorem 7.1. Along

with items (i) and (ii) they imply the claims of items (iii) and (iv) for LBDIEs (N2) and LBDIEs

(N1). ¤

PROOF OF THEOREM 4.4 Theorems 5.6, 5.14 and Corollary 5.8 imply continuity of op-

erators (4.16) and (4.17).

Further consider operator (4.17). Let us denote L1g = L+
χ(0)∆(ag) = L+

1∆(ag). The operator

L1 : H
1
2 (∂Ω) → H− 1

2 (∂Ω) is a Fredholm operator with zero index (cf. e.g. [5, Theorem 2], [6, Ch.

XI, Part B, §3,]). Therefore the operator

AN1
0 :=


 I Wχ

0 L+
1


 : H1(Ω+)×H

1
2 (∂Ω) → H1(Ω+)×H− 1

2 (∂Ω). (7.6)

is also Fredholm with zero index. Operator (4.17) is a compact perturbation of AN1
0 since the

operators

Rχ : H1(Ω) → H1(Ω)

L+
χ − L+

1 : H
1
2 (∂Ω) → H− 1

2 (∂Ω),

T+Rχ : H1(Ω+) → H− 1
2 (∂Ω)

are compact, due to Corollary 5.8, relation (3.31) and Theorem 5.14. Thus the operator (4.17) is

Fredholm with zero index. The claims that kerAN1
χ is one–dimensional and the pair (u, ϕ) = (1, 1)

belongs to kerAN1
χ directly follow from Theorem 4.3(iii).

The proof for operator (4.17) is similar, cf. also the proof of Theorem 4.2. ¤

Concluding remarks

Four segregated direct localized boundary-domain integral equation systems associated with the

Dirichlet and Neumann problems for a scalar ”Laplace” PDE with variable coefficient were for-

mulated and analysed in the paper. Mapping and jump properties of surface and volume integral

potentials based on a localized parametrix were studied in a scale of Sobolev (Bessel potential)

spaces for different smoothness of the localizing function. Equivalence of the LBDIEs to the orig-

inal variable-coefficient BVPs was proved in the case when right-hand side of the PDE is from

L2(Ω+), and the Dirichlet and the Neumann data from the spaces H
1
2 (∂Ω) and H− 1

2 (∂Ω), re-
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spectively. The invertibility of the LBDIEs operators was proved in the corresponding Sobolev

spaces.

The main theorems for LBDIEs (D1) and (N2) were proved under condition χ ∈ X3
+ on the

localizing function, while for LBDIEs (D2) and (N1) under more restrictive condition χ ∈ X3
1+.

This is an open question whether the latter condition can be relaxed.

By the same approach, the corresponding LBDIDEs/LBDIDPs for unbounded domains can

be analysed as well. The approach can be extended also to more general PDEs and to systems of

PDEs, while smoothness of the variable coefficients and the boundary can be essentially relaxed,

and the PDE right hand side can be considered in more general spaces, c.f. [13, 14].

This study can serve as a basis for rigorous analysis of numerical, especially mesh-less meth-

ods for the LBDIEs that after discretization lead to sparsely populated systems of linear algebraic

equations attractive for numerical computations (see e.g. [12, 16] for algorithm and implementa-

tion), but this issue deserves a separate consideration.
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