
A Methodology for the Decomposition of Discrete Event Models
for Parallel Simulation

S E Taylor, SC Winter and DR Wilson

University of Westminster, UK

Abstract

Parallel Simulation has presented the possibility of
performing higk speed simulation. However, when
attempting to make a link between the requirenzents of
Parallel Simulation and Discrete Event Simulation wed
in commercial areas such as manufacturing a major
problem a r k s . This lies in the decomposition of the
simulation into a series of concurrently executing
objects.
Using the activity cycle diagram simulation technique
as an illustrative example, thk paper suggests a
solution to thk decomposition problem. This tk
dkcussed within the context ofprovidhg a conceptually
seamless merhalologv fortmnskatingsimulatwn models
into a form which can exploit the benefits of parallel
computing.

1: Introduction

The goal of executing a simulation on a parallel
computer is to decrease the time taken for results to be
obtained from the simulation. The motivation for this
is the acquisition of data from which meaningful
information can be generated for use in the decision
making process, such as scheduling decisions in a
factory. Io cases where the model is large and
complex, paallel processing techniques may be the
only means by which this information can be generated
faster than real time.
The field of researdl dedicated to the development of

simulations which efficiently exploit the processing

1066-61W92 $3.00 0 1992 IEEE
536

power of parallel computers is called pamllel
simulation 111. However, this researdl does not
address the correct translation of the model to be
simulated into a form which can be executed using
parellel simulation techniques. This is seen as a aitical
omission from parallel simulation methodology as there
is no way of validating the relationship between model
and implementation. To facilitate this validation
process, the paper desaibes an intermediary stage
which separates the implementation of the model from
optimisatian issues. This is the focus of work
performed by other researchers at the centre for
Parallel Computing [2].

2: Parallel simulation

A discrete event model consists of a state, which
changes over time, and events, which describe how this
state can change. Io a simulation program, the model
state become a data structure, and events become
procalm called event routines. Alternatively, events
can be combined to become activities ar processes
depending on the conceptual framework selected 131.
Combining this with an event list, to schedule future
state changes, and a simulation clack allows an
algarithm called the simulation executive to simulate
the model's progress through time [41.
To translate this seemingly monolithic structure into a

form which can potentially exploit the multiple
p r o " of a paallel computer, requires that the
above be decomposed into a series of computational
objects which communicate via message passing [ll.
Take the example of a queuing netwoolc. Such a

network contains nodes, consisting of a queue and a

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:34 from IEEE Xplore. Restrictions apply.

server, which are capable of sending jobs to, and
receiving messages from, other nodes in the network.
The generation of the objects required for parallel
simulation is simple; ea& node of the model becomes
an object. When a node receives a job, event routines
model the service of the job and its subsequent arrival
at another node by calculating the length of time this
takes and scheduling events on the event list.
In this object based scheme, however, global

structures such as the event list are not pennitted. To
pennit each object to simulate the node that it
represents, each object must contain its own clock,
event list and simulation executive. Each object also
contains its own state and the event routines required
to simulate the object’s state changes. To schedule the
occu~wlce of an event at another object, an object
sends a timestamped event message to the affected
object. The arrival of a job at a node is therefore
simulated in this parallel scheme by the corresponding
objects sending and receiving a timestamped event
message.
The timestamp of an event message allows a receiving

object to process the event in the comect order. In a
parallel computer it is entirely possible that these
messages may arrive out of sequence. In the
development of a protocol to cowectly implement a
discrete event model, the local causality constraint
(LCC) allows the assumption to be made that all
timestamped messages sent to an object arrive in the
correct order. When it has been shown that the objects
of the parallel simulation conspire to produce the same
results as that of the sequential simulation, a causality
maintenance protocol (CMP) is added to fulfil the role
of the LCC. In parallel simulation there are two
classes of C M P conservative [5] and optimistic [61.
This separation of coding facilitates the development

and validation of parallel simulations by focusing on
the actual simulation performed by each object rather
than a mechanism to order messages arriving at an
object.

3: Model development

In discrete event simulation the queuing network model
is one of the most simple modelling techniques. To
demonstrate the need for a methodology within the
context of an existing modelling technique, Activity
Cycle DEhgrams (ACD) [7,8], used extensively in the
simulation of manufacturing systems, was selected.
Briefly, the physical entities of a system, its jobs,
machines, etc., are perceived to pass through an
alternating series of active states and idle states. Idle
states are represented as queues, active states as
activities. Entities participate in activities and wait in
queues. For example, a machine and job participate in
an activity called process, but wait for the activity to
begin in queues JQ1 and OQ respectively. An example
of an ACD model is shown in figure 1.
In the model there are three entity classes job,

operator and machine. As illustrated in figure 1, a job
arrives, waits for an operator and machine to become
available to process it and then goes on for inspection.
At inspection there is a chance that the processed job
has some defect that requires that the job must be
reprocessed. If this is the case, the job is passed back
for processing, otherwise the job leaves the shop.
Each time a machine is used, there is a chance that the

machine might breakdown. If this occuls the machine
undergoes repair and, once the task of repairing is
finished, is returned for use. Machines are checked
whenever one is required for processing.
To generate a simulation program from such a model,

the implementor is guided by a set of rules defined by
a conceptual framework [3]. In so called traditional
simulation, there exists three frameworks; event
oriented, activity oriented and process oriented. The
choice of implementation framework is very much
dependent on the modelling technique used and the
model itself. ACD simulations can be generated
according to any of the three. For purposes of this
paper, the event orientation will be used.
The behaviourial logic of the model in the event

orientation is decomposed into a collection of event
classes. These fonn procedure blocks called event

537

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:34 from IEEE Xplore. Restrictions apply.

IC-J L------

',I
: I
: I
: I

: I
J

&Y
Job

Operator

Machine

Figure 1 Example ACD Model

QY
Event Message -
Q R U P ~ ~ ~ C K O ~ o o

Figure 2 Event Oriented P a d e l Simulation
Structure of ACD Model

538

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:34 from IEEE Xplore. Restrictions apply.

routines and gives this orientation locality of time [91.
The simulation executive used to advance the model
through time is called the event scheduling executive
and is shown in table 1. An example of an event
routine generated from the job shop model is shown in
table 2. Note that the ordering of conditional events is
due to prioritking of activities specified in the model
(ie. REPR, INSP then PROC).

WHILE NOT tenninated DO
FIND next event and advance simulation time
to next event time
EXECUTE next event

ENDWHILE
Table 1: Event scheduling executive

endgroc: ADD job TO JQ2;
ADD operator to OQ;
ADD machine to MQ;
st-repr;
st-insp;
s t9sg.

Table 2: Example event routine (endgroc)

Given the bounds of the event orientation, the aim of
this methodology is therefore to generate the objects of
a parallel simulation of the model which is consistent
with the event orientation.

4: Model decomposition

The event orientation demands the translation of the
ACD model in terms of bound events, events which are
time dependent, and conditional events, events which
are dependent on a set of state conditions. Analysis of
the ACD model defines their corresponding event
routines.
Observing the LCC allows the CMP aspects of the

simulation to be ignored, thus making it possible to
focus on model decomposition issues. A suitable basis
for the objects used by parallel simulation is now

To remain consistent with the strong queuing structure
RXpked.

of the ACD model and to avoid additional overhead,
the queues of the ACD model form the objects of the
event oriented parallel simulation. This is also

important in maintaining a strong relationship between
model and implementation. Note that in an activity
oriented simulation, the activities also form objects as
well as queues due to the different requirements of that
conceptual framework.
For each object, assuming that incoming messages are

placed on an event list, the algorithm of table 1
provides the basis for correct event execution.
Translating event interaction into message passing
framework is more complex due to the existance of
events which affect several objects. The effect of this
distributed affect is now discussed for each type of
event.

4.1: Bound events

A bound event, any event with a time dependent
element, in a parallel simulation is scheduled by
the transmission of a timestamped event message
from one object ta another. In this structure a
bound event represents the movement of entities
from one queue to another. Bound events are
timestamped messages sent between objects and
contain a reference to the event that they represent
and any entities that are to be transferred. Each
object will contain the corresponding event routine
so that when an event message arrives, the event
can be correctly simulated.

Consider the bound event endgroc which affects
the queues 542, 00 and MQ. When a member
of this event class is executed, the entities of the
three classes are added to queues JQ2, OQ and
MQ respectively. The arrival of a job in JQ2
requires that the inspection activity begins.
Similarly, the availability of the operator and
machine entities allows the possibility of another
job to be processed. In the parallel simulation, the

539

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:34 from IEEE Xplore. Restrictions apply.

effects of the single endgroc event are felt over
several objects. This gives rise to endgroc being
known as a dkfribufed bound event (DBE) .
A DBE is implemented by decomposing it into

events local to an object, several localised bound
events (LBE), one for each entity class affected by
the DBE. A DBE therefore becomes several
LBEs which are sent to each object that represents
the next queue in the corresponding activity cycle.
In its conversion into LBEs, n LBEs will be
therefore generated.
Consider the derivation of the distributed event

routine. The original event routine for endgroc
resulted in the conditional events sf-repr, st-insp
and stp-oc being attempted in an order dictated
by the ACD model. The order in which sf-rqr
and st-insp are attempted will not effect the
validity of the simulation as long at the duration
of the activity INSP is greater than zero.
In the parallel simulation the ordering of the

conditional event execution also has to be
enforced. Based on analysis of the scope of the
conditional event (ie. the queue states required for
the event to be tested) these events can be
distributed across the localised elements of the
DBE. These elements are shown in table 3.

endgroc at JQ1:

e n d y o c at OQ:

endyroc at MQ:

Table 3: Localised

ADD job TO 542;
st-insp.

ADD operator TO OQ;
stqroc.

ADD machine TO MQ;
st-repr;
stqroc.

elements of distributed
bound event (d y r o c)

4.2: Conditional events

Conditional events in the parallel simulation
generate the event messages which are sent and
received by each object. Distribution also
presents a problem to these events. Consider
stgroc. This event occurs whenever a state
change in the simulation makes it possible for the
activity PROC to begin and is dependent on the
states of the queues JQ1, OQ and MQ. It is clear
from the ACD model that this event will occur as
a consequence of the bound events j - m .
end-repr or endgroc. If the execution of this
event is successful, then the event endgroc will
be scheduled.
As it is possible for stgroc to be instigated by

the arrival of a job, operator or machine in the
queues JQ1, OQ and MQ respectively, a parallel
implementation must enable the conditional event
to be instigated from any of these queues. This
gives rise to such an event being termed a
dktributed conditional event (DCE). As with
bound events, a conditional event concerning only
a single queue, is termed a localked conditional
event (LCE). A DCE is identified by a test
involving several entity classes while a LCE is
identified a test on a single entity class.
The implementation of a DCE is more

complicated than a DBE as there is no supporting
communication mechanism. Consider the
execution of the DBE endyroc at JQ1. Thii
causes job to be added to the state JQ1 and the
event s f y o c to be executed. The conditional test
of stgroc requires the combined states of JQ1,
OQ and MQ. This is further complicated when
the ACD model is referenced; activity priority
dictates that REPR must be attempted before
PROC.
To make the conditional test, a mechanism must

be provided to allow an object instigating the

540

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:34 from IEEE Xplore. Restrictions apply.

DCE to determine whether or not the event can
occur. To do this a protocol must be set up
between the objects taking part in the test. This
is a three stage message exchange and is referred
to as the query-reply-update (QRU) protocol.
In the QRU protocol, an object instigating a DCE

sends timestamped query messages to other objects
referenced in the conditional test of the DCE.
The timestamp of the query message allows these
objects to synchronise to the correct point in time
at which the DCE can be executed correctly.
a n synchronisation, the receiving object can
perform one of two actions. It can either return
details of its current state or, if such exist, execute
other conditional events and then return details of
its current state. This allows the correct ordering
of events.
State information is returned in the form of a

rep& message. The instigating object will then be
able to carry out the conditional test of the DCE.
It is assumed that the instigating object will have
information regarding the queue disciplines of
participating queues. This information can form
either part of the reply message or be a permanent
part of the instigating object.
Once the DCE has been evaluated, the instigating

object will have zero or more sets of entities have
begun an activity and a set of times at which they
are due to end the activity; the instigating object
can now schedule the corresponding bound events.
It follows that the bound event marking the end of
this cooperation will be a DBE.
To remain homogenous, the instigating object

only schedules the DBE component for its own
entity class. The other participating objects are
responsible for scheduling their own DBE
component. An uphte message is therefore
returned to the cooperating objects so that they
may update their local state (remove entities now
engaged in the activity) and send their own DBE

components.
These messages are in the form

query(Event, Source-queue, Destination-queue,
Time)
rep ly (Source -q u e u e , Dest inat ion -q u e u e ,
Current-state)
update(Source-queue, Destination-queue,
Update-set)
Where Current-state is the current state of a queue at

a given timestamp T and is in the same form
as Entity-set,
Update-set is a set of information from which
a queue’s state can be updated and event
messages sent.

Note that regardless of where DBE messages
originate, a message of this kind is required so that
participating objects can update their local states. The
homogeneity of this approach retains the clarity that is
consistent with the modelling approach described thus
far.
Table 4 presents the derivation of the DCE stgroc

and its corresponding event routines. As can be seen
the table, the translation of a DCE into a object form
generates a lot more executable code than its sequential
counterpart. This becomes substantially greater when
all the objects arc considered. Table 4 also lists the
mechanisms used by the QRU protocol for JQ1. For
e x a m p l e . when t h e u p d a t e m e s s a g e
update(JQl,MQ,U,,) is received by MQ from JQ1, a
mechanism is required to remove machine entities from
the state of MQ and then to fabricate event messages to
be subsequently passed on. This is summarised as

SEND event (Event ,Source, Destination ,X,T)

where X and T are the representative entity and time
components of each member of the Update-set.
Conditional events in the parallel simulation represent

synchronisation points which cannot be avoided by
using CMPs due to the requirement that the conditional
tests are made with the object states at the same point
in time. This prevents the asynchronous processing of

541

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:34 from IEEE Xplore. Restrictions apply.

objects involved in the same DCE and limits
parallelism to the simultaneous execution of objects
successfully completing
a conditional event. This is quite a serious limitation
due to the f i e grain nature of most objects encountered
in a discrete event simulation. Using this basis it is
possible to form partitions, groups of tightly coupled
objects. When these are implemented in an efficient
form, each partition will form one processing element.
The four pattitions resulting from the model are shown
in figure 2.

stgroc: SEND query(stqroc,JQl,OQ);
SEND query(stgroc.JQ1 ,MQ);
WAIT reply(OQ,JQl,%&
WAIT reply(MQ,JQ1,SMQ);
WHILE test condition (stqroc) TRUE DO

EXECUTE StJOc
I*
calculates the duration of the activity
PROC and any affect that this has on the
participant entities job, operator and
machine
*I

ENDWHILE
SEND update(JQl,OQ,U&;
SEND update(JQ1 ,MQ,UMQ);
WHILE entities left in U,,, DO

ENDWHILE
Table 4: Localised clement of distributed conditional
event for JQ1 (srgmc)

SEND event(JQ1 ,JQ2,job,T-)

5: Multiple time distributions

As illustrated in the discussion of conditional events,
one or more event messages are sent if a conditional
event is successful. The timestamp increment of these
messages is dependent on the duration of the activity
being modelled.
Referring to the ACD, consider queue MQ. A

machine entity resident in this queue can engage in
either the activity REPR or the activity PROC.

Depending on which activity the machine begins, the
entity will arrive at the preceding queue (in this case
MQ) at a time dependent on either of the time
distributions of the auivities REPR or PROC.
The implication of this to the parallel simulation is that

the object representing the queue MQ will be capable
of sending timestamped messages based on one of two
time distributions. This means that event messages
arriving at the proceeding object can appear to arrive
in the wrong d e r .
In the model decomposition phase of the methodology

this observation is irrelevant as the LCC is in effect.
However, when the LCC is removed and the CMP
added, this effect can have dire consequences. For
example, in conservative protocols the ordering
constraint on a link is violated.

6: Multiple event instigation

Multiple event instigation (MEI) is a direct
consequenw of DBEs and DCEs. Consider the
execution of the DCE s tgmc as instigated by a job
arriving at JQ1. After the execution of this event the
DBE endgmc will be scheduled; components of this
event will arrive at JQ2, OQ and MQ. ie.

event(endgrocJQ1 ,JQ2,job,Tcadgroc)
event(endqrocJQ1 ,W,operatm.Td&
event(endgrocJQ1 ,MQ,machine,T,&

At JQ2 the event message will be processed at T and
the state of the queue will be subsequently impeded.
At MQ, the message will add machine to the state of
MQ at T and instigate the LCE st-repr. This in turn
will in tum instigate the DCE stgroc. Note that the
time at which stgmc will OCCUT is T. At O(., on the
processing of the message, operator will be added to
the state of OQ and s tgmc executed ako at T. This
leads to stgmc being instigated at T mice.
In the sequential model, the execution of endgmc

will cause the activity PROC to begin for all sets of
job, operator and machine in JQ1, OQ and MQ.
Obviously, for the parallel simulation of the same
model to be correct, the execution of the DBE
endgmc must have the same effect. Clearly, this is

542

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:34 from IEEE Xplore. Restrictions apply.

not the case; both OQ and MQ will instlgate the DCE
stgroc simultaneously causing MEI to occur.
The reason for ME1 taking place is this. A DBE
occuts as a result of multiple classes taking part in the
same activity. The entities which have taken part in
this activity will therefore arrive at their respective
pnxeeding queues simultaneously. When an entity
arrives in a queue a test is triggered to determine if any
of the activities proceeding the queue can begin; the
conditional events marking the start of these activities
are tested. If any of these activities involve multiple
classes, then the corresponding conditional event will
be a DCE. Clearly, in the parallel simulation model
developed so far, v a DBE is scheduled at two or more
queues which then take part in the same DCE, then
MEI will occur. This is also possible if activities exist
with zero durations.
MEI can be identified on an ACD by consideration of

post-activity activity cycles. If two or more entities
participating in an activity can subsequently arrive at a
subsequent activity at the same time then a ME1
situation will arise. This can be identified
automatically.

7: Conclusions

This paper has suggested how a discrete event model
based on an existing modelling technique can be
translated into a form which can exploit the potential
benefits of parallel simulation. These observations form
the basis of a wider methodology to the composition of
valid simulations executing on parallel computers.
The use of techniques consistent with the conceptual

frameworks used in the modelling technique is very
important. This is because this form of simulation is
aimed at the engineer, not the computer scientist.
There already exist barriers to the use of simulation
(perceived cost, investment of skills and resources for
the future). It is hoped that the guidelines presented
here to the use of parallelism within existing simulation
techniques will not complement these problems, but
add the benefits of speed up to a potentially beneficial
technique.

It was identified that within this domain, partitions will
result due to the synchronisation consequences of
distributed conditional events. This will have an
unavoidable effect on parallelism. This indicates that
if the physical system being simulated requires a great
deal of global state testing, then the parallelism in the
comesponding parallel simulation will be limited.
The two problems inherent in the translation of this

modelling technique were shown. One can be
addressed at this stage, the other must be addressed
during the addition of the CMP.
Both conservative and optimistic CMPs have been

implemented successfully [lo].

References

1. Fujimoto, R.M.. 1990 "Parallel Discrete Event
Simulation", Communications of the ACM, 33(10), 30-67.
2. Kalantery, N.; S C Winter, A P Redfem; and D R
Wilson, 1992. "Performance Visualisation of Conservative
and Time Warp Based Parallel Simulation" ln Proceedings of
the 1992 European Simulation Multiconference, York. UK.
scs.
3. Demck, E.J.; B. Balci; and R.E. Nance. 1989, "A
Comparison of Selected Conceptual Frameworks for
Simulation Modelling, The Implementation of Four
Conceptual Frameworks for Simulation Modelling in High
Level Languages." In Proceedings of the 1989 Winter
Simulation Conference, CEEE, 71 1-717.
4. Law, A.M. and Kelton, W.M.. 1991, Simulation
Modelling and Analysis (2nd ed), McGraw Hill, New York.
5. Chandy, K.M. and J. Misra. 1979, "Distributed
Simulation of Networks", Computer Network;. 3. 105-1 13.
6. Jefferson, D.R. 1985. "Virtual Time" ACM Tram. Prog.
Lang. and S'st., 7(3). 404425.
7 . Came, A. 1986, Simulation of Manufacturing Systems,
John Wiley & Sons., Chichester, UK.
8. Pidd, M. 1992, Computer Simulation in Management
Science, John Wiley 8c Sons., Chichester, UK.
9. Overstreet. C.M. 1987, Using Graphs to translate between
world views, Proc 1987 WSC. Thesen A., Grant H. and
Kelton W.D. (eds), 582-589.
10. Taylor, S.J.E. 1992. The Development of Parallel
Processing In Manufacturing Systems Simulation, PhD
Thesis, Leeds Polytechnic (in preparation).

543

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 11:34 from IEEE Xplore. Restrictions apply.

