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Linear Programming Bounds
for Doubly-Even Self-Dual Codes

Ilia Krasikov and Simon Litsyn,Member, IEEE

Abstract—Using a variant of linear programming method we
derive a new upper bound on the minimum distanced of doubly-
even self-dual codes of lengthn. Asymptotically, for n growing,
it gives d=n � 0:166315 � � � + o(1), thus improving on the Mal-
lows–Odlyzko–Sloane bound of1=6. To establish this, we prove
that in any doubly even-self-dual code the distance distribution is
asymptotically upper-bounded by the corresponding normalized
binomial distribution in a certain interval.

Index Terms—Distance distribution, self-dual codes, upper
bounds.

I. INTRODUCTION

A SELF-DUAL linear code of length and minimum
distance is doubly-even if all its weights are divisible

by . It is known that such codes exist only for divisible
by (this result is attributed to Gleason). Let be the
minimum distance of a doubly-even self-dual code of length

. The question is as follows: given, how large could
be? We consider an asymptotical problem, namely, we want
to estimate

We need some notations. In what follows, all logarithms are
natural, and the logarithm of a negative number is understood
as its real part (by this convention we avoid writing the
absolute values of the expressions under logarithms). As usual

stands for the natural entropy function. The binomial coeffi-
cients are defined by

where is arbitrary and is a nonnegative integer. In
particular, for positive

Let stand for the distance dis-
tribution of a self-dual code . It is invariant under the
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MacWilliams transform

(1)

where is the corresponding Krawtchouk polynomial of
degree

(for properties of Krawtchouk polynomials see e.g., [5], [8],
[9], [11]).

Self-dual codes attract a great deal of attention, mainly
due to their intimate connections with improtant problems
in algebra and number theory (see many references in [1],
[2], [11], [14]). Most of the results are based on an involved
machinery of invariant theory. The following are the best
known upper bounds on the minimum distance of doubly-even
self-dual codes.

Theorem 1 (Mallows–Sloane):In doubly-even self-dual
codes

An alternative proof of this result will be given in the
Appendix. For large , a slightly stronger inequality was
established in [13].

Theorem 2 (Mallows–Odlyzko–Sloane):For every constant
there exists an such that for in doubly-even

self-dual codes

Both bounds yield . Despite of the general belief
that actually , there was no
progress in the last two decades in improving the upper bound
of . For unrestricted self-dual codes the best known upper
bound is due to Ward [15] and it also equals .

In this paper, we obtain an asymptotic improvement of
Theorems 1 and 2.

Theorem 3:

where , is the only real root of

To prove it we use a modification of the linear programming
method for upper-bounding individual components of the
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distance distribution of codes under consideration. The proof
essentially employs estimates for the range of binomiality of
codes, the concept introduced in [6], [7]. Roughly speaking,
the binomiality means that in a certain range the components of
the distance distribution are upper-bounded by the normalized
binomial distribution, the same one as of a randomly chosen
code. We used the MATHEMATICA package in computations;
not all the transformations are straightforward, so we usually
present some intermediate results.

II. BASIC RELATIONS

Let be a doubly-even self-dual code. We start with an
elementary proof to the result of Gleason.

Theorem 4: is symmetric, that is, , and

Proof: From we deduce that the length
is even. Since and for

, (1) yields that . Hence, .
Indeed, if , then , contradicting
and . Now

for even, and otherwise (see, e.g., [4]). Hence,
if . Therefore, by (1)

So, if then along with
, a contradiction.

Remark: The last inequality actually shows that in doubly-
even self-dual codes is the maximal spectral component.
To see this just use in (1) the inequality

that is valid for and even (see [4, Lemma 1]). Noticing,
that for , we get

Evidently, the same fact is true for the central component of
any code dual to a doubly-even code of even length.

Hence, in what follows we assume everywhere thatis a
multiple of .

Let be a polynomial

then (see e.g., [9])

(2)

in particular

The following lemma is a special case of a proposition due
to Delsarte [3].

Lemma 1: Let be a polynomial of degree

then

(3)

Proof: Calculating , we get the claim
from (1).

Define polynomials

(4)

and

(5)

The zeros of are . The
polynomials have two extra zeros, and . The
choice of the polynomials is motivated by the following
immediate consequence of (3).

Lemma 2: Let be odd and . Then

(6)

Proof: Degree of is . So,
for . Since is odd and is divisible by , the sum in
the left-hand side of (3) vanishes. Furthermore,
at and all where . The result
follows.

We compute using the values of
. We start from expanding in the

Krawtchouk basis.
Lemma 3:

In particular

Proof: The proof is by induction in . For it is
checked directly. Put . The following recurrence
holds (see, e.g., [9]):

Substituting

and

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 04:44 from IEEE Xplore.  Restrictions apply.



1240 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 4, JULY 1997

we get

and (replacing by )

Using this equality by the induction hypothesis after shifting
indices in the sums we get

Routine calculations show that

thus proving the claim.
Now we need several combinatorial identities. The next one

is a generalization of the known expression for the derivative
of Chebyshev polynomials [10, p. 258] to
noninteger values of.

Lemma 4:

Proof: The proof is by induction on . For it
is checked directly. Denote .
Observe that satisfies the following differential equation:

and is holomorphic at . Differentiating this equation
times in using

we get

That is, for

Now the induction hypothesis yields the claim.
Lemma 5:

where .
Proof: Put .

Comparing the expressions for in the two
previous lemmas we obtain the following corollary.

Corollary 1: For nonnegative integer
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Lemma 6:

Proof: From the previous lemma

Actually, we need only odd’s, so for the sake of simplicity
we will formulate all the results below under this assumption.
Since our proof of the main theorem consists of several
steps and involves a great deal of algebraic manipulations,
let us sketch it. First we show that under certain conditions

, and derive an asymptotic expression for it.
Using it we obtain from (6) upper bounds on depending
on . Optimization in allows proving that for the
distance distribution components are upper-bounded by the
normalized binomial distribution in the range .
Substituting these bounds into the right-hand side of (6) for a
certain choice of (maximal possible under the conditions of
Lemma 2) we get a contradiction.

III. B OUNDS ON THE DISTANCE DISTRIBUTION

We start with asymptotical evaluation of . Let
.

Lemma 7: Let be odd, and assume . Denote

(7)

and . Then for sufficiently large the function
has two local maxima, one at

and another at

The first maximum is the absolute maximum for ,
otherwise, the second maximum is the absolute one. For

they are asymptotically equal.
Proof: For odd, can be negative only for odd,

. First, we show that in this interval the
maximum of is attained at either end of the interval. To
see this consider

It is enough to show that there is no such that
and . It is valid if

The last inequality holds for .
Now

(8)
Differentiating in we find that there are two maxima stated
above, none of them in. Plugging the and into (8) we
obtain that the corresponding extremal values are

and

Now

Furthermore
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and we verify that this derivative is strictly negative in the
interval . For, it is enough to check that

Moreover, for we have . So,
for .

Corollary 2: For odd and

(9)

Proof: Estimating the sum in the expression for
by the maximum term and using the Stirling

approximation for the factorial we get the claim.
Lemma 8:

(10)

Proof: By Stirling approximation.
Now we can show that the distance distribution of self-dual

doubly-even codes is upper-bounded in a certain range by the
corresponding binomial distribution.

Theorem 5: Let , and , where

Then in this interval

Proof: We will prove the theorem by varying the degree
of . If is odd, , and ,
then by Lemma (2)

(11)

Indeed, for such ’s.
Choose

Direct checking shows that for we have ,
where is the smallest real root of the equation

. Since is decreasing in , the minimum
of under the condition is determined by the

equation and thus is the only real root of the equation

Notice that for we have since
the equation is equivalent to . Numerically,

. Hence, , and .
Furthermore, since the chosen is decreasing in, to

validate the condition we need in the
interval . The four roots of the equation , are

The following two

are real, and . Therefore, for being the smaller
one we conclude that whenever .

Now, using (11) and (10) and for the chosen we obtain
the claim from the previous corollary.

Theorem 6: Let be the only real root of

If there exists a doubly-even self-dual code with
, then all its spectrum is asymptotically

upper-bounded by the corresponding normalized binomial
distribution.

Proof: It can be checked directly that under the condition
of the corollary , defined in the previous theorem, is less
than .

IV. PROOF OF THEMAIN THEOREM

By Theorem 1 we can assume that . Choose
in Lemma 2 the largest possible odd . That is,

. We have for the left-hand side of (6), by (9)

Now, by Theorem 6, to upper-bound the right-hand side of
(6) we can substitute the upper binomial estimates of’s.
This gives by virtue of (10)
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where

So, the inequality should hold. In what follows,
we will show that for this is not true, and thus
such a code does not exist.

First we show that

By differentiation, we obtain

Observe that for . Indeed, this is equivalent to

The right-hand side of this inequality is a decreasing function
in , so we check it for . The inequality holds precisely
for . Hence

and

One can check that is a root of . This is
equivalent to being a root of

The equation can be transformed into

giving the result.

Moreover, as it is easy to check, for , that

Thus is the only root of in the interval under
consideration. It remains to prove that for .
Indeed, consider the function

Now, is equivalent to

or, getting rid of the square root

proving the claim.
Hence, finally, for , a contradic-

tion.

APPENDIX

Here we sketch a proof of Theorem 1. In contrast to the
original proof we use only properties of the MacWilliams
transform.

The following auxiliary lemma is used.
Lemma 9: If , for some , then

.
Proof: Note that at , and all

, where . Assume that for chosen
. Plugging into (3), we get that

either

i)

or

ii) .

If i) holds, then . If ii) is true, then .

Now we are ready to prove Theorem 1.
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Proof: We consider three cases, depending onmodulo
. In all these cases we prove that .

Namely, referring to Lemma 9

if we choose , giving
;

if we choose , giving
;

if we choose , giving
.

Observe, that all the chosen’s are odd. Then using the
same arguments as in the proof of Lemma 7 we demonstrate
that in the expression for there is a positive
dominating summand. To prove this for alluse the Stirling
approximation

It proves the claim for . The small cases (there are
only 12 such lengths) are checked directly.
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