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Abstract. This work presents an application of a direct BEM formulation for drop 

deformation and interaction in Stokes flows through converging channels. Parametric 

studies are conducted to investigate the effect, on drop deformation, of the channel’s 

convergence ratio, the drop-fluid viscosity ratio, the interfacial tension and the initial 

relative position of the drops.  

 

1. Introduction 

 

Suspensions of particles, drops and bubbles in viscous fluids occur in many biological 

systems, industrial applications and processes including blood flow, pharmaceutical 

manufacturing, food and chemical processing. It is important to understand the 

properties of the suspensions in order to gain a better understanding of their behaviour 

in these systems. This knowledge can then be used to predict fluid behaviour and 

improve industrial processes. 

 

The study of the motion of particles, drops and bubbles in viscous fluids at low 

Reynolds number dates back to 1851, when Stokes [1] published a paper on the problem 

of a rigid sphere translating through a fluid at zero Reynolds number. Since then, there 

has been much research in this area, both experimental and theoretical. Important areas 
                                                                  
* Corresponding author. E-mail: luiz.wrobel@brunel.ac.uk; Tel: +44 1895 266696; Fax: +44 1895 269803. 



of study include flow with rigid boundaries, such as solid inclusions and plane walls, 

and flows involving deformable boundaries, e.g. flows containing viscous liquid drops 

or gas bubbles [2]. 

 

The BEM is an efficient technique for problems involving deforming boundaries such 

as fluid-fluid interfaces. In these problems, the position of the interfaces must be 

determined as part of the solution. The BEM enables direct calculation of the interface 

velocity. Numerical techniques for ordinary differential equations can then be used to 

find new nodal positions. The BEM also has the ability to deal with large surface 

deformations and other surface effects, such as interfacial tension, can be easily 

incorporated [3, 4]. 

 

Recent reviews of boundary integral methods for viscous free-boundary problems 

involving the deformation of single and multiple fluid-fluid interfaces were produced by 

Weinbaum and Ganatos [5] and Tanzosh et al. [6], while a review of drop deformation 

and break-up at low Reynolds number flows was produced by Stone [7]. Briscoe et al. 

[8] reviewed developments in the understanding of the mixing process of a dispersed 

fluid phase in a continuous fluid phase. 

 

Manga and Stone [9] used a boundary integral method to study the buoyancy-driven 

interactions between two deformable viscous drops based on a formulation similar to 

Rallison and Acrivos’ pioneering work [10]. In this case large deformations are seen 

due to buoyancy forces being much larger than the restoring interfacial tension forces. 

The same formulation was later used to investigate the low Reynolds number motion of 

bubbles, drops and rigid spheres through fluid-fluid interfaces [11]. In this study, one of 

the drops was considered to be infinitely large. Manga and Stone [12] also carried out a 

three-dimensional study of the behaviour of deformable buoyant drops and bubbles in 

dilute low Reynolds number suspension, in which a boundary integral method was used 

to model up to four drops. 

 

Pozrikidis [13] studied the buoyancy-driven motion of a train of drops in a vertical tube, 

with drops of the same viscosity as the surrounding fluid which settle or rise along the 

axis of a vertical cylindrical tube. The method employed used an axisymmetric periodic 

Green’s function for flow in a cylindrical tube. Drop motion was studied as a function 



of the tube radius σc, the drop radius a, the drop separation L and the Bond number. 

Two types of drops were considered, classified according to the value of the ratio σc/a. 

Drops where σc/a>1 were called compact drops, otherwise drops were called elongated. 

Where surface tension was large, compact drops assume a spherical shape and 

elongated drops tend to adhere to the tube wall. For compact drops, a smaller value of 

drop separation ratio L/a leads to more elongated drops and the drops develop a fishtail 

shape at the rear.  

 

Zhou and Pozrikidis studied the two-dimensional flow of single files of drops [14] and 

the shear-driven flow of ordered periodic suspensions of two-dimensional liquid drops 

in a channel [15], using the method of interfacial dynamics. Periodically random 

suspensions were also studied. The behaviour of random suspensions was found to be 

significantly different from that of ordered suspensions.  

 

Li et al. [16] studied the shearing motion of monodisperse suspensions of two-

dimensional deformable liquid drops with uniform surface tension in an infinite domain. 

The drop viscosity was the same as that of the surrounding fluid. A periodic distribution 

of squares of randomly distributed drops was used. Loewenberger and Hinch [17] 

developed a three-dimensional numerical formulation for a concentrated emulsion in 

shear flow. As in the study of Li et al. [16], a periodic distribution of squares of 

randomly distributed drops is used. The number of random particles in each periodic 

box was limited to twelve due to computational costs. The emulsion was found to have 

complex non-Newtonian rheology. 

 

Roumeliotis and Fulford [18] developed a boundary integral method in which the drop 

surfaces are parameterized with respect to arc length using cubic splines, enabling the 

surface tension to be represented as piecewise linear. This is applied to the buoyancy-

driven interaction of two and three axisymmetric drops in Stokes flow. 

 

In order to calculate the surface tension forces accurately, the surface curvature must be 

computed accurately. Zinchenko et al. [19] eliminated the mean curvature term from the 

boundary integral formulation. A three-dimensional formulation was developed for 

interacting deformable drops in Stokes flow which was applicable to very large 

deformations and problems with drops having cusped interfaces and drops closely 



approaching break-up. Instead of the curvature, the formulation contained only the 

normal vectors, which are generally less sensitive to discretisation errors than the 

curvature. This allows simulation of problems including point and line singularities. 

 

Khayat et al. [20] used a boundary element formulation to study two-dimensional two-

phase incompressible creeping flow, applying the method to the deformation of a 

viscous drop inside a hyperbolic convergent channel in the absence of surface tension. 

The effect of changing the degree of channel convergence and the viscosity ratio, λ , 

were studied. It was found that the channel geometry significantly influenced drop 

deformation and that drop deformation increased with decreasing viscosity ratio, with 

particularly large extension when λ <1. Both initially circular and elliptical drops were 

considered. 

 

Khayat et al. [21] later studied the deformation of single drops in two-dimensional 

convergent-divergent channel flows. Both Newtonian and viscoelastic fluids were 

considered. The effect of drop size, drop initial position relative both to the channel axis 

and the constriction throat, interfacial tension and fluid elasticity on the drop 

deformation were studied. Experimental results were also obtained and good agreement 

between computational and experimental results was seen. For drops initially positioned 

away from the channel axis, the distance from the axis was found to influence the rate 

and magnitude of drop deformation. In this case, the value of the viscosity ratio was 

found to be particularly important as, for drops with high viscosity ratios, little 

deformation was seen due to the drop rotating and being alternately stretched and 

compressed. 

 

Giraldo et al. [22] recently studied the mobility problem of two particles in a shear flow 

for the complete range of viscous ratio, including bubbles, drops and solid particles. A 

completed indirect boundary integral equation formulation was used [4], and the motion 

of drops studied for different viscosity ratios and capillary numbers. 

 

The present paper extends the above works of Khayat et al. [20, 21] by analysing the 

interaction between two drops. Appropriate numerical algorithms developed for this 

application with quadratic boundary elements are reported in the paper. 

 



2. Integral Equation Formulation for Drop Deformation in Stokes Flow 

 

Since the problem involves drops of a viscous fluid in another carrying fluid, a standard 

subregions technique is applied by considering compatibility and equilibrium conditions 

along the interfaces. 

 

The relevant compatibility conditions at the interface between drop and bulk fluid are:  
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where f
iu  is the interface velocity of the bulk fluid and d

iu  is the velocity at the drop 

surface. This equation represents continuity of velocity. 

 

The relevant equilibrium conditions are 
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where it  is the traction, jiji nt σ= , γ  is the surface tension coefficient, in  is the unit 

outward normal vector and κ  is the surface curvature. The difference between the 

tractions f
it  and d

it  is due to the existence of surface tension. 

 

The velocity field for a point x' in Stokes flow can be written as [3, 4] 
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where μ is the fluid viscosity, ijc  is the free term, and *
iju  is the velocity field of the 

fundamental solution with traction *
ijp  [3, 4]. 

 

Since the BEM formulation in this paper is only concerned with the evolution of the 

drop boundary, and not with the calculation of the tractions on the drop boundary, it is 

possible to combine two integral equations, one for source points belonging to the bulk 



fluid and the other for source points belonging to the drop, in order to eliminate the 

interface tractions by using the equilibrium equation (2) [20, 21], generating the 

following integral equations:. 
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for source points on the solid boundary, and 
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for source points on the drop. In the above equations, d

f

μλ
μ

=  is the viscosity ratio, 
  

with fμ  the bulk fluid viscosity and dμ  the drop viscosity, eS  and dS  represent the 

external and the drop boundary. 

 

3. Numerical Algorithms 

 

The numerical formulation employed quadratic boundary elements. Since small time 

steps are used in the simulation, the previous drop position and shape provide a very 

good initial guess for the iteration process at the next time step. Some of the specific 

algorithms adopted in the current implementation are briefly discussed below. 

 

 

 

 



3.1 Mass Conservation 

 

A measure of the accuracy of the numerical algorithms is mass conversation. For this, a 

simple application of the divergence theorem can be derived that allows the drop area at 

each time step to be calculated through the boundary integral  
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3.2 Node Relocation 

 

Initially, elements on the drop surfaces are of equal size with evenly spaced nodes. After 

deformating the drop surfaces by translating nodes as if they were individual particles, 

there is no guarantee that the mid-element nodes will still be equidistant from each end 

node and, in addition, the elements will no longer be of equal size. 

 

As is well known, the physical coordinates (x and y) that describe quadratic element 

geometries can be written as a function of a natural coordinate ξ, as follows: 
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where xi and yi stand for element node coordinates (see the sketch depicted in Figure 1). 

The mid-node location can be computed by evaluating the natural coordinate Mξ  

corresponding to the physical mid-element position. In order to do so in a simple way, 

first, the horizontal and vertical centres of the element are computed (XM = [x3 + x1]/2 

and YM = [y3 + y1]/2) and, in the sequence, their respective natural coordinates ( xξ  and 

yξ ) are evaluated by finding the roots of the following second-order equations:  
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Once xξ and yξ  are computed, Mξ  can be calculated by taking into account a simple 

weighted arithmetic mean,  
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and the new element mid-node location (coordinates x and y) can be obtained by 

applying the computed Mξ  into equations (7) and (8).  

 

In the present work, at each time step, the above described procedures are employed 

three times: twice to relocate the element mid-nodes and once to relocate the element 

end-nodes. First, the mid-nodes of the quadratic elements are translated to their central 

positions (as discussed above); secondly, the above described procedures are employed 

to relocate the element end-nodes, fitting a quadratic curve between adjacent element 

mid-nodes and finding its central position; finally, considering the newly-dimensioned 

elements, the relocation procedures are once again applied to centre the element mid-

nodes. 

 

4. Numerical Simulations 

 
The numerical simulations study initially circular drops placed in a converging channel 

and released, becoming instantaneously subject to the motion of the suspending fluid. 

The fluid in the channel flows due to a pressure difference between inlet and outlet. A 

sketch of the converging channel and drops (initial configuration), as well as some 

geometric parameters, is depicted in Figure 2. In all the numerical simulations discussed 

here, the circular drops are discretised by using 30 equal-sized quadratic boundary 

elements and the adopted time-step is Δt = 0.04 (in the present text, all units are omitted 

since any compatible unit system is valid). 

 

In order to investigate the effect of a second drop on an initially centered drop, a 

parametric study is carried out by considering different initial relative positions of the 

drops, physical properties and geometric definitions. This initial study neglects surface 

tension, thus the capillary number Ca takes the value Ca-1 = 0 (Ca = fμ v/γ , with v a 



characteristic velocity). Figure 3 depicts the evolution of the drops along a channel with 

L = 8.0 and converging ratio H2/H1 = 0.2, considering different physical properties for 

the first drop (initially centered drop) and different radii for the second drop. Snapshots 

are shown in Figure 3 for time intervals of 100Δt. The figure shows that, once the drops 

have entered the constriction, they take on an elongated shape due to elongational and 

shear effects. The results in Figures 3(a)-(b) (one drop analyses) are consistent with 

those of Khayat et al. [20, 21], obtained for different channel geometry but similar 

convergence and viscosity ratios. Results in Figures 3(c)-(h) illustrate how the 

interaction between the drops can increase or decrease, according to the geometrical 

and/or physical parameters involved. The presence of the second drop drastically 

influences the first drop flow in Figure 3(h), while no significant influence is observed 

in that flow due to the second drop presence in Figure 3(c). 

 

Figure 4 shows the time evolution of the horizontal and vertical mass centre position of 

the initially centered drop, considering the different physical and geometrical 

parameters adopted. It can be observed that the horizontal velocity (tangent to the curve) 

of the initially centered drop is not drastically affected by the second drop, for the cases 

considered. The influence of the second drop on the symmetry of the model can be 

analyzed regarding the vertical mass centre evolution of the initially centered drop: as 

can clearly be observed in Figure 4, the larger the radius of the second drop, the more 

asymmetric the model becomes. 

 

Figure 5 depicts boundary element discretisations for the deformed drop, at time 600Δt 

(one drop analysis – λ = 1.0), taking into account the proposed remeshing procedure and 

no remeshing. Figure 5(b) shows that there is a gradual decrease in the length of the 

elements approaching the drop ends, making the discretisation more refined in this 

region, when no remeshing procedures are considered. As is well known, this may cause 

numerical problems if elements become very small and nodes become too close, as the 

integrals required for the computations of the BEM matrices may become nearly 

singular. The boundary element discretisation depicted in Figure 5(a) highlights the 

effectiveness of the proposed remeshing technique, as approximately equal-sized 

elements (and equally-spaced nodes) are still observed in the BEM discretisation. 

 



In order to further explore the interactions between two drops (one initially centered) 

flowing through a converging channel, several analyses are carried out next, fixing the 

radii of the drops (r1 = r2 = 1.0) and varying their relative positions and physical 

properties, as well as the channel convergence ratio. Considering the same physical 

properties for both drops, four cases are considered, namely: (i) Case 1: Ca = 0.5 and λ 

= 0.5; (ii) Case 2: Ca = 0.5 and λ = 5.0; (iii) Case 3: Ca = 5.0 and  λ = 0.5; (iv) Case 4: 

Ca = 5.0 and λ = 5.0. The selected initial relative positions between the drops are given 

by d1 = 0.0 or 2.0 and d2 = 2.2 or 3.0 and the selected convergence ratios for the channel 

are given by H2/H1 = 0.2 or 0.4 (with L = 3.0, for both cases). 

 

Figure 6 shows the evolution of the drops along a channel with converging ratio defined 

by H2/H1 = 0.2, considering d1 = 0.0, d2 = 2.2 and 3.0, and the four cases analysed with 

different physical properties of the drops. Figure 7 is analogous to Figure 6, considering 

d1 = 2.0. Figures 8 and 9 are analogous to Figures 6 and 7, respectively, considering 

H2/H1 = 0.4. Once again, Figures 6-9 depict snapshots at time intervals of 100Δt. 

 

As expected, the results show that the addition of surface tension decreases drop 

deformation, forcing the drop back to a circular shape as can be seen in Figures 6-9, 

where drops are less elongated and their ends are less pointed. The viscosity ratio also 

influences the flow and drop interaction, and surface tension effects on drop 

deformation are more significant when the viscosity ratio is lower. Geometric aspects, 

such as different initial relative positions between the drops and different channel 

convergence ratios, also have a major influence on the results, as can be observed in the 

figures (in some analyses, the relative position of the drops in the constricted part of the 

channel completely changes, as for instance, in Figures 8(a) and 9(a) or Figures 9(a) and 

(b), where the leading drop within the constricted part of the channel is shifted). It 

should be noted that, in some simulations described in Figures 6-9, extreme physical 

and geometric configurations are being considered: for instance, in Figures 7(a) and (c), 

the deformed drops do not fit in the constricted part of the channel, and the evolution of 

the drops is not depicted for times greater than 300Δt. In these cases, non-physical 

results may arise since the present formulation does not consider drop coalescence. 

 



Figure 10 shows the relative deformation of the initially centered drop, evaluated as 

00 /])([)( PPtPt −=α , where ( )P t  is the drop perimeter at time t = 400Δt and P0 is the 

initial drop perimeter, for the simulations described in Figures 6-9. It can be observed 

that surface tension has a major influence on drop deformation, increasing drop 

deformation up to 2.9 times for some of the cases studied, followed by the channel 

convergence ratio, which increases drop deformation by up to 2.3 times. It is important 

to highlight that, in all the analyses considered here, mass conservation was monitored 

and the change in the drop area did not exceed 1.35%, illustrating the good accuracy 

and robustness of the numerical procedures adopted. 

 
 

5. Conclusions 

 

In this paper, the work of Khayat et al. [20, 21] has been extended to investigate the 

effect of drop interactions on drop deformation in two-dimensional Stokes flow in a 

converging channel. In real processes, the effects of these interactions will become more 

significant as the suspension becomes more concentrated. The number of drops, the 

viscosity ratio of the problem and the proximity of drops all affect the nature and 

importance of the drop interactions. However, some of the results are non-physical since 

the model does not consider drop coalescence.  

 

Problems involving two drops were investigated, for different channel convergence, 

drop initial position, viscosity ratio and capillary number, in order to study the effect 

that drop interaction has on drop deformation. It was seen that, if the drops are initially 

placed close together, the results are significantly different from those seen in the 

equivalent single drop problem.  

 

The numerical algorithms of the BEM formulation were found to be accurate and robust 

for the present simulations, with mass conservation to around 1% in all cases. 
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Figure 1 – Sketch for the element mid-node relocation procedure. 
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Figure 2 – Geometric (initial) configuration for the channel and drops 
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Figure 3 – Evolution of drops in channel with convergence ratio H2/H1 = 0.2 and L = 8.0 
(d1 = 1.0; d2 = 2.2; Ca-1 = 0; r1 = 0.6 and λ2 = 5.0): (a) λ1 = 5.0 and r2 = 0.0; (b) λ1 = 1.0 
and r2 = 0.0; (c) λ1 = 5.0 and r2 = 0.2; (d) λ1 = 1.0 and r2 = 0.2; (e) λ1 = 5.0 and r2 = 0.6; 

(f) λ1 = 1.0 and r2 = 0.6; (g) λ1 = 5.0 and r2 = 1.0; (h) λ1 = 1.0 and r2 = 1.0. 
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Figure 4 – Time evolution of the mass centre position (X0 and Y0) of the initially 
centered drop (see Figure 3): (a) λ1 = 5.0; (b) λ1 = 1.0. 
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Figure 5 – Boundary element discretization for the drop, at time 600Δt (see Figure 

3(b)): (a) considering remeshing procedures; (b) without remeshing. 
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Figure 6 – Evolution of drops in channel with convergence ratio H2/H1 = 0.2 and L = 3.0 
(d1 = 0.0): (a) case 1 and d2 = 2.2; (b) case 1 and d2 = 3.0; (c) case 2 and d2 = 2.2; (d) 

case 2 and d2 = 3.0;  (e) case 3 and d2 = 2.2; (f) case 3 and d2 = 3.0; (g) case 4 and d2 = 
2.2;  (h) case 4 and d2 = 3.0. 
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Figure 7 – Evolution of drops in channel with convergence ratio H2/H1 = 0.2 and L = 3.0 

(d1 = 2.0): (a) case 1 and d2 = 2.2; (b) case 1 and d2 = 3.0; (c) case 2 and d2 = 2.2; (d) 
case 2 and d2 = 3.0;  (e) case 3 and d2 = 2.2; (f) case 3 and d2 = 3.0; (g) case 4 and d2 = 

2.2;  (h) case 4 and d2 = 3.0. 
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Figure 8 – Evolution of drops in channel with convergence ratio H2/H1 = 0.4 and L = 3.0 

(d1 = 0.0): (a) case 1 and d2 = 2.2; (b) case 1 and d2 = 3.0; (c) case 2 and d2 = 2.2; (d) 
case 2 and d2 = 3.0;  (e) case 3 and d2 = 2.2; (f) case 3 and d2 = 3.0; (g) case 4 and d2 = 

2.2;  (h) case 4 and d2 = 3.0. 
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Figure 9 – Evolution of drops in channel with convergence ratio H2/H1 = 0.4 and L = 3.0 

(d1 = 2.0): (a) case 1 and d2 = 2.2; (b) case 1 and d2 = 3.0; (c) case 2 and d2 = 2.2; (d) 
case 2 and d2 = 3.0;  (e) case 3 and d2 = 2.2; (f) case 3 and d2 = 3.0; (g) case 4 and d2 = 

2.2;  (h) case 4 and d2 = 3.0. 
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Figure 10 – Relative deformation of the initially centered drop at time 400Δt 

considering different relative positions (d1 and d2) and physical properties (Cases 1-4) 
for the drops: (a) H2/H1 = 0.2; (b) H2/H1 = 0.4. 

 

 

 

 
 


