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A Niching Memetic Algorithm for Simultaneous
Clustering and Feature Selection

Weiguo Sheng, Xiaohui Liu, and Michael Fairhurst

Abstract—Clustering is inherently a difficult task and is made even more difficult when the selection of relevant features is also an
issue. In this paper, we propose an approach for simultaneous clustering and feature selection using a niching memetic algorithm. Our
approach (which we call NMA_CFS) makes feature selection an integral part of the global clustering search procedure and attempts to
overcome the problem of identifying less promising locally optimal solutions in both clustering and feature selection, without making
any a priori assumption about the number of clusters. Within the NMA_CFS procedure, a variable composite representation is devised
to encode both feature selection and cluster centers with different numbers of clusters. Furthermore, local search operations are
introduced to refine feature selection and cluster centers encoded in the chromosomes. Finally, a niching method is integrated to
preserve the population diversity and prevent premature convergence. In an experimental evaluation, we demonstrate the
effectiveness of the proposed approach by using both synthetic and real data.

Index Terms—Clustering, feature selection, genetic algorithm, local search, memetic algorithm, niching method.

1 INTRODUCTION

CLUSTERING or cluster analysis is an important but
challenging task in unsupervised learning. The essence
of the clustering problem is to partition a set of objects into
an a priori unknown number of clusters while minimizing
the within-cluster variability and maximizing the between-
cluster variability. Data clustering is a common technique
for statistical data analysis and has been used in a variety of
engineering and scientific disciplines such as biology (e.g.,
to study genome data [3], [48], [53]) and computer vision
(e.g., to segment images [15], [25], [47]).

Many clustering algorithms have been proposed in the
literature. Generally, they can be divided into two main
categories, namely, hierarchical and partitional [24]. Hier-
archical clustering constructs a hierarchy of partitionings,
represented as a dendrogram in which each partitioning is
nested within the partitioning at the next level in the
hierarchy. In hierarchical clustering, problems due to
initialization and local optima do not arise. However, this
approach considers only local neighbors in each step and
ignores the global shape and size of clusters. Moreover,
hierarchical clustering is static; that is, data objects com-
mitted to a given cluster in the early stages cannot move to a
different cluster. In the work reported here, we concentrate
on partitional clustering, which is dynamic and considers
the global shape and size of clusters.

In partitional clustering, each data object is represented
by a vector of features. Most partitional algorithms assume
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all features to be equally important for clustering in the sense
that they do not distinguish among different features, but
this approach to clustering can create significant limitations
in an unsupervised learning context. The problem is that not
all features are equally important; indeed, some of the
features may be redundant, some may be irrelevant, and
some can even mislead the clustering process. This is one of
the reasons that many clustering algorithms do not perform
well in the face of high-dimensional data, and the task of
selecting the best feature subset, the process known as
feature selection, is therefore important. In addition, feature
selection may lead to more economical clustering algorithms
(in terms of both storage and computational effort) and
contribute to the interpretability of the models generated.
Generally, for a data set of nontrivial size, finding the
optimal clustering solution is a challenging problem [17] and
becomes even more challenging if an appropriate feature set
also needs to be selected.

One way of approaching this challenge is to use stochastic
optimization schemes, prominent among which is an
approach based on genetic algorithms (GAs). The GA, first
developed by Holland [23], is biologically inspired and
embodies many mechanisms mimicking natural evolution.
It has a great deal of potential in scientific and engineering
optimization or search problems. Recently, hybrid methods
[2], [34], [52], which incorporate local searches with
traditional GAs, have been proposed and applied success-
fully to solve a wide variety of optimization problems. These
studies show that pure GAs are not well suited to fine-
tuning structures in complex search spaces and that
hybridization with other techniques can greatly improve
their efficiency. GAs that have been hybridized with local
searches are also known as memetic algorithms (MAs) [35],
[36]. Since we are concerned here with a GA where local
searches play a significant role, this term will be adopted in
this paper.
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Traditional GAs and MAs are generally suitable for
locating the optimal solution of an optimization problem
with a small number of local optima. Complex problems
such as clustering, however, often involve a significant
number of locally optimal solutions. In such cases, tradi-
tional GAs and MAs cannot maintain controlled competi-
tions among the individual solutions and can cause the
population to converge prematurely [44]. To improve the
situation, various methods [9], [19], [32], [41], [46] (usually
called niching methods [44]) have been proposed. The
research reported shows that one of the key elements in
finding the optimal solution to a difficult problem with a
GA approach is to preserve the population diversity during
the search, since this permits the GA to investigate many
peaks in parallel and helps in preventing it from being
trapped in local optima.

In this paper, we first suggest a unified criterion for
simultaneous clustering and feature selection based on a
well-known scatter separability index. A GA-based evolu-
tionary procedure is then proposed to optimize the
criterion. In order to allow simultaneous clustering and
feature selection without the number of clusters being
known a priori, a composite representation is devised to
encode both feature selection and cluster centers with a
variable number of clusters. As a consequence, the cross-
over and mutation operators are suitably modified to tackle
the concept of composite chromosomes with variable
lengths. Additionally, we hybridize the proposed proce-
dure with local search operations, which are introduced to
refine the feature selection and cluster centers, respectively.
These local searches move solutions toward local optima
and allow a significant improvement in the computational
efficiency. Finally, a niching method is integrated with the
resulting hybrid GA to preserve the population diversity
and prevent premature convergence. To evaluate the
proposed algorithm, we have conducted a series of
experiments on both synthetic and real data and compared
it with related work. The results show that our algorithm is
generally able to select relevant features and locate
appropriate clustering with the correct number of clusters
and that it outperforms other methods implemented for
comparison.

The remainder of this paper is organized as follows:
After reviewing related work in Section 2, we suggest a
unified criterion for simultaneous clustering and feature
selection in Section 3. Then, in Section 4, we present a
niching MA for optimizing the criterion. Section 5 describes
six data sets employed in the experimental evaluation, and
this is followed by a discussion of the parameter settings of
the algorithm. In the experiments reported in Section 6, the
performance of the proposed algorithm is assessed. We
complete this paper with some concluding remarks and
suggestions for future directions for this work in Section 7.

2 RELATED WORK

GAs are naturally applicable to problems with exponential
search spaces and have consequently been a significant
source of interest for clustering [21], [30], [33], [51]. For
example, Hall et al. [21] and Maulik and Bandyopadhyay
[33] proposed the use of traditional GAs for partitional
clustering. These methods can be very expensive and
susceptible to becoming trapped in locally optimal solutions

for clustering large data sets. Krishana and Murty [30] and
Tsai et al. [51] introduced hybrid GAs by incorporating
clustering-specified local searches into traditional GAs. In
contrast to the methods proposed in [21] and [33], clustering
based on hybrid GAs can be more efficient, but these
techniques can still, however, suffer from premature
convergence. Furthermore, all of the above methods may
exhibit limited performance, since they perform clustering
on all features without selection. GAs have also been
proposed for feature selection [42], [54]. However, they are
usually developed in the supervised learning context, where
class labels of the data are available, and the main purpose is
to reduce the number of features used in classification while
maintaining acceptable classification accuracies.

The second (and related) theme of this paper is feature
selection for clustering, and feature selection research has a
long history, as reported in the literature. Feature selection
in the context of supervised learning [1], [6], [16], [28],
adopts methods that are usually divided into two classes
[5], [28]—filters and wrappers—based on whether or not
feature selection is implemented independently of the
learning algorithm. To maintain the filter/wrapper distinc-
tion used in supervised feature selection, we also classify
feature selection methods for clustering into these two
categories based on whether or not the process is carried out
independently of the clustering algorithm. The filters in
clustering basically preselect the features and then apply a
clustering algorithm to the selected feature subset. The
principle is that any feature carrying little or no additional
information beyond that subsumed by the remaining
features is redundant and should be eliminated. Various
measures such as correlation coefficients [20], statistical
redundancy [22], and linear dependence [7], [50] have been
used in this context. Recently, the Relief Algorithm [26] and
its extensions [29], which identify statistically relevant
features, have also been reported.

The wrappers in clustering, on the other hand, incorpo-
rate the clustering algorithm in the feature subset searching.
Methods used in this category involve a clustering algo-
rithm (e.g., EM [10] and K Means [31]) running on a feature
subset, with the feature subset being assessed by the
clustering performance, as quantified by some appropriate
index. These include a sequential unsupervised feature
selection algorithm [8], feature selection based on the
expectation-maximization (EM) [12], [13] and maximum
entropy [4]. The wrappers can be superior in performance
when compared with the filters, which ignore the properties
of the clustering task at hand [28]. They can be used to
identify the clustering solutions as well. However, the
performance of both clustering and feature selection is
dependent on the incorporated clustering algorithms,
which may be sensitive to their initializations and suffer
from locally optimal solutions. Furthermore, when the
number of clusters is unknown beforehand, the wrappers
have to be applied in such a way as to search through a
range of possible cluster numbers. In contrast, our proposed
method makes feature selection an integral part of the
global clustering search procedure and attempts to identify
high-quality solutions for clustering and feature selection
while automatically evolving the correct number of clusters.
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Fig. 1. The number of clusters varies with the dimension.

3 UNIFIED CRITERION

A number of implementation criteria have been proposed in
the clustering literature. However, they are usually de-
signed for either clustering or feature selection alone. In this
section, we suggest a unified criterion for simultaneous
clustering and feature selection by investigating a well-
known scatter separability index.

Let X = {x,29,...,2,} be a set of n data objects in a
D-dimensional feature space. A partitioning of the set X is
defined as a set of nonempty clusters of X such that data
object z; in X is in exactly one of these clusters. The
partitioning is typically achieved by optimizing a specified
criterion. In the literature, various criteria have been
reported [11], [24], [49]. Some popular criteria are based
on the within-cluster and between-cluster scatter matrices.
One criterion is the trace(S,'S,), in which the within-
cluster variation S, is defined as

k

n
= %:2{: z{: ;ﬂ(dﬁ —m

=1 i=1

(i —my)". (1)
S, measures how scattered the objects are from their cluster
means (compactness), where z;; =1 if x; € cluster j; other-
wise, this is 0. m; = ,} >or 1 zjiw; is the mean of cluster j, and
nj =3y 1,z is the ‘number of objects in cluster j. The
between-cluster variation S, is defined as

(2)

m)(m; —m) g

M»

n;
j=1 n
and measures how scattered the cluster means are from the
sample mean (separability). Here, m =21%""  z; is the
sample mean. In the trace(S,'S,) Crlterlon the between-
cluster variation S, is normalized by the within-cluster
variation S,,. Hence, large values of the criterion correspond
to high-quality clustering solutions. This criterion is invar-
iant under any nonsingular linear transformation and has
been widely used for clustering, where issues such as feature
selection and the number of clusters do not arise. Here, we
investigate these issues and suggest a unified criterion based
on the above approach.

Issue 1: feature selection. Typically, for a particular
application, as much information as possible is gathered
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without considering the significance of each feature to the
underlying clusters. Thus, it is essential to remove
irrelevant or redundant features while performing cluster-
ing. Let us denote the total set of collected features as
U=1{1,2,...,D}. Feature selection for clustering can then
be defined as the problem of selecting d features from U,
which can optimize a specified clustering criterion.

As such a criterion, the trace(S,'S;) is biased toward
higher dimensions. The value of this criterion monotoni-
cally increases as features are added, assuming equal
clustering assignments. This is not desirable, because we
would like to retain the minimum number of features
consistent with an appropriate level of performance. In
order to compare feature subsets of different dimensional-
ities, we normalize the trace(S,'S,) by a penalty term
(D —d)/(D —1). The resulting criterion, denoted by .J;, can
be written as

Ji = trace(S,'Sy) * (D —d)/(D — 1). (3)

Since trace(S,'S,) remains relatively unchanged for any
addition of features with little discrimination [8], by
minimizing J;, we aim at attaining a feature subset with
good discrimination.

Issue 2: number of clusters. In most real-world situations,
the number of clusters k in a data set is usually unknown
beforehand. Furthermore, when searching for the best
feature subset, we encounter a new situation where the
value of k depends on the feature subset. For example, as
illustrated in Fig. 1, in two dimensions, the data set has four
clusters (as shown in Fig. 1a), whereas in one dimension, it
has only two clusters (as shown in Figs. 1b and 1c). Hence,
using a fixed number of clusters for all feature subsets may
not model the data in each respective subset correctly. Thus,
we need to search for the correct number of clusters while
performing clustering with each candidate feature subset.
For this purpose, we add another penalty term (kpax —
k)/(k — 1) to the criterion J;. Our new criterion, denoted by
Js, becomes

Jy = trace(S;'Sy) * (D — d) /(D — 1) % (kmax — k)/(k — 1).

(4)
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This penalty term is needed, because the criterion J; is
biased toward increasing the number of clusters. For
example, S, is equal to 0 in the extreme case when the
number of clusters is equal to the number of data objects. It
should be noted, however, that both penalty terms in the
Jo formulation are determined empirically and there may
be other more effective penalty terms that could result in
better performance.

4 NICHING MEMETIC ALGORITHM

In this section, we propose a niching MA for simultaneous
clustering and feature selection (NMA_CFS) by optimizing
the unified criterion J,. The proposed algorithm works with
variable composite chromosomes, which are used to
represent solutions. The operation of the algorithm consists
of using a niching selection method for selecting pairing
parents for reproduction, performing different genetic
operators on different parts (i.e., feature selection vector
and cluster centers) of the paired parents, applying local
search operations (i.e., feature add and remove procedures
and one step of K Means) to each offspring, and carrying
out a niching competition replacement. The evolution is
terminated when the fitness value of the best solution in the
population has not changed for g generations. The output of
the algorithm is the best solution encountered during the
evolution. The flow of the algorithm (Algorithm 1) is given
as follows:

Algorithm 1: NMA_CFS.

Step 1. Randomly initialize p sets of solutions, which encode
both feature selection and cluster centers with
different numbers of clusters, by using a variable
composite representation (see Section 4.1).

Step 2. Calculate .J; according to (4) for each solution in the
initial population and set its fitness value as f = Js.

Step 3. Repeat the following steps until the stopping
criterion is met:

a) Select pairing parents based on a niching selection
method (see Section 4.4). This procedure is repeated
until p/2 parent pairs are selected.

b) Generate intermediate offspring by applying
different genetic operators (see Section 4.2) on the
different parts (i.e., feature selection vector and
cluster centers) of the paired parents.

c) Apply feature add and remove procedures
(see Section 4.3) to the offspring.

d) Run one step of K Means (see Section 4.3) on the
offspring.

e) Pair the offspring with the most similar solution
found during a restricted competition replacement
(see Section 4.4).

f) Calculate J; according to (4) for each of the offspring.
If the fitness of the offspring is better than its paired
solution, then the latter is replaced.

Step 4. Provide the feature subset and cluster centers of the
solution from the terminal population with the best
fitness.

In the following sections, we describe in more detail how
the solutions are initially created and how they evolve
during the optimization process, and we briefly analyze the
time complexity of the proposed algorithm.

4.1 Representation and Initialization

In the NMA_CFS procedure, we devise a variable compo-
site chromosome, which can encode both feature selection
and cluster centers with a variable number of clusters. The
feature selection vector in the chromosome is a string with
D binary digits (D is the total number of available features
in the data to be clustered), and each binary digit represents
an individual feature, with values 1 and 0 denoting selected
and ignored, respectively. The cluster centers in the
chromosome consist of D x k; real numbers, where k; is
the number of clusters. The first D positions represent the
D dimensions of the first cluster center, the next D positions
represent those of the second cluster center, and so on. For
example, in five-dimensional data, the chromosome

< 11001 0.5;0.110.7¢0.5,0.64
0.210.9,0.800.790.3;  0.8;0.910.5¢0.600.2; >

encodes centers of three clusters (i.e., (0.5, 0.1, 0.6), (0.2, 0.9,
0.3), and (0.8, 0.9, 0.2)), with the first, second, and fifth
features being selected. It should be noted that only values
of the selected features (values with subscript “1”) are used
to form the cluster centers and the others (values with
subscript “0”) are ignored.

Each solution in the population is constructed using the
variable composite chromosome. The values are initialized
by random assignment of binary digits and real numbers to
the feature selection vector and the k; cluster centers,
respectively. The initial values of the cluster centers are
constrained to be in the range (determined from the data
set) of the feature to which they are assigned but are
otherwise random. The initial number of clusters k; is
calculated according to RandInt(2, kya.). Here, RandInt()
is a function returning a natural number in the range from 2
to ke (inclusive), and k., is the upper bound of the
number of clusters and is taken to be \/n (n is the number of
objects in the data set to be clustered), which is a rule of
thumb used by many investigators in the clustering
literature [38]. The number of clusters for the solutions in
the population will therefore range from 2 to k4.

4.2 Crossover and Mutation

In the composite representation, feature selection and
cluster centers are encoded in a single solution. Accordingly,
we have applied different genetic operators, which are
sensitive to the corresponding context, on feature selection
vector and cluster center parts of the paired parents. For the
feature selection vector part, the m-point crossover and flip
mutation [18] are applied. The m-point crossover, which is
performed on each set of paired parents, chooses m cutting
points at random and alternately copies each segment from
the two parents. For example, given a parent pair
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Parent; : < 1]10/0]1  0.50.10.70.50.6 0.20.90.80.70.3
0.80.90.50.60.2 >,
Parenty : < 1]01|1|0  0.40.20.80.40.5 0.90.70.30.50.1
0.10.80.60.90.2  0.40.50.30.40.1 >,

suppose that three cutting points are chosen at positions 1,
3, and 4 (denoted by “|”) in the feature selection vector.
After the m-point crossover, the two intermediate offspring
generated would be

Offspring; : < 10100 0.50.10.70.50.6 0.20.90.80.70.3
0.80.90.50.60.2 >,
Offsprings : < 11011 0.40.20.80.40.5 0.10.80.60.90.2
0.90.70.30.50.1  0.40.50.30.40.1 > .

After crossover, each bit of the offspring is considered for
mutation. Mutation consists of flipping the value of the
chosen bit from 1 to 0, or vice versa. Both crossover and
mutation operations are likely to generate an offspring, with
no features being selected. When such an offspring
emerges, we repeat the operations until a proper offspring
is produced or until a limit on the number of trials is
reached.

For the cluster center part, we use a crossover operation
analogous to the traditional two-point crossover [18]. During
crossover, the cluster centers are considered to be indivisible
(i.e., the crossover points can only lie in between two
clusters” centers). For this purpose, the crossover operation
is defined as follows: Let paired parents P, and P; encode k;
and ky cluster centers (k; < k), respectively. Then, z; and
x9, the crossover points in Pj, are generated according to
RandInt(0,k, —1). If z; is greater than z,, then swap the
value of z; and z, to make sure that o > ;. The cross points
zg and x, in P are then generated as x3 = RandInt(0, ks —
‘CL’Q — Il| — 1) and Ty = T3+ |J}2 — $1|, where |$2 — .TJ1| is the
length of segment between cross points of x; and ;. After
that, the segment information between z; and z; in P,
exchanges with the segment information between z3 and x4
in P5. Continuing with the above example, given the two
intermediate offspring after the m-point crossover

Offspring; : < 10100  0.50.10.70.50.6 | 0.20.90.80.70.3 |
0.80.90.50.60.2 >,
Offsprings : < 11011 0.40.20.80.40.5 0.90.70.30.50.1 |
0.10.80.60.90.2 | 0.40.50.30.40.1 >,

suppose that the crossover points x, xs, x3, and x4 are
generated at positions 1, 2, 2, and 3, respectively (denoted
by “|”). After the crossover, the two offspring would
become

Offspring: : < 10100 0.50.10.70.50.6 0.10.80.60.90.2
0.80.90.50.60.2 >,
Offsprings : < 11011 0.40.20.80.40.5 0.90.70.30.50.1
0.20.90.80.70.3 0.40.50.30.40.1 > .

It can be seen that according to the above rules, the number
of clusters of the offspring will be equal to either k; or k».
The crossover is performed on each set of paired parents.

After crossover, a low probability of Gaussian mutation
is applied on the offspring. Gaussian mutation adds a unit
Gaussian distributed random value to the chosen feature.
The new feature value is clipped if it falls outside the lower
or upper bounds of that feature.

4.3 Local Searches

Pure GAs are not well suited to fine-tuning solutions that
are close to optima [19], and this results in their having a
long runtime. To improve the time efficiency, incorporation
of local searches into the regeneration step of GAs, creating
the so-called MAs, is essential if competitive GAs are to be
used [2]. In this section, we present several local search
operations to effectively design an MA for simultaneous
clustering and feature selection.

Feature add and remove operations. Sequential forward
selection (SFS) and sequential backward selection (SBS) [14]
are two classical heuristic feature selection algorithms
developed for supervised learning. SFS starts with an empty
set of features, and at each iteration, the algorithm tentatively
adds each available feature and selects the feature that
results in the highest estimated performance. The search
terminates when the accuracy of the current subset cannot be
improved by adding any other feature. SBS works in an
analogous way but starts from the full set of available
features and tentatively deletes each feature not deleted
previously. SFS and SBS are simple and fast. However, they
are prone to being trapped in locally optimal solutions.

Here, we introduce two basic operations—add (based on
the SFS) and remove (based on the SBS)—as noted in the
following and incorporate them into the GA to fine-tune the
feature selection encoded in the solution for clustering:

e Add. Choose a feature from the unselected feature
subset that, when combined with the currently
selected features, yields the largest value of the
criterion J; and changes its status to “selected.”

e Remove. Choose a feature from the selected feature
subset that makes the least contribution to the
criterion J; and changes its status to “ignored.”

These operations generate local improvements by adding
the most significant feature or removing the least significant
feature and aim at speeding up the search for the best
feature subset. Each of the operations is applied once (the
add operation followed by the remove operation) to all new
offspring after the crossover and mutation operations.

K Means operation. K Means [31] is an iterative scheme
attempting to minimize the within-cluster sum of squares
errors (SSE):

n k
SSE:ZZZ]‘Z',H‘Ti*m]'H?- (5)

i=1 j=1

Starting from an initial distribution of cluster centers in the
data space, each data object is assigned to a cluster with the
closest center, after which each center itself is updated as
the center of data objects belonging to that particular
cluster. This procedure is repeated until there is no
reassignment of any data object from one cluster to another
or the SSE value ceases to decrease significantly. This
iterative scheme is known to converge fast. However, it
depends highly on the initialization of cluster centers.
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In order to improve the computational efficiency, one
step of K Means is applied to the cluster centers encoded in
all the new offspring during each generation after the
feature add and remove operations. This is done by assigning
each data object to one of the clusters with the nearest center
encoded in the solution. After that, the cluster centers
encoded in the solution are replaced by the means of the
respective clusters.

4.4 Niching Method

One of the key elements in overcoming less promising
locally optimal solutions of a difficult optimization problem
with a GA approach is to preserve the population diversity
during the search [44]. In this section, we introduce a
modification of the niching method proposed in [46] and
integrate it into our GA to preserve the population diversity
during the simultaneous search for clustering and feature
selection.

The niching method presented in [46] was designed for
clustering where no feature selection is required and the
number of clusters is known beforehand. In this method, a
niching selection with a restricted competition replacement
was developed to encourage mating among similar solu-
tions while allowing for some competitions among dissim-
ilar solutions. During the niching selection, one parent p; is
selected randomly from the population, and its mate is
selected from a group of solutions called the selection group,
picked randomly from the population. The one most similar
(determined by the euclidean distance based on a phenotypic
metric) to p; is chosen as its mate p,. During the restricted
competition replacement, each offspring is compared with a
group of solutions called the replacement group, picked
randomly from the population, and is then paired with the
most similar one. If the fitness of the offspring is better than
its paired solution, then the latter is replaced.

With appropriate sizes of the selection and replacement
groups, this method can maintain the population diversity
with respect to the cluster centers with a fixed number of
clusters encoded in the solutions. However, for the problem
considered here, it is more important to preserve the
population diversity with respect to the number of clusters,
since the solutions with different numbers of clusters have
rather different feature selection and cluster centers. For this
purpose, we modify the niching selection to encourage
mating among solutions with similar numbers of clusters
and extend the restricted competition replacement to
encourage replacement among solutions with the same
number of clusters while allowing for some competitions
among the solutions with different numbers of clusters. The
modified niching method is implemented as follows:
During the niching selection, one parent p; is still randomly
selected from the population. Its mate p; is now chosen
from the selection group with the most similar number of
clusters as for p;. If this results in a group with more than
one candidate solution, the similarity of feature selection
and cluster centers is further used to select the most similar
one. During the restricted competition replacement, we
now compare the offspring with each solution that has the
same number of clusters as the offspring in the competition
group, and we pair it with the one with the most similar
feature selection and cluster centers if this exists; otherwise,
we pair it with a solution with the lowest fitness. If the

fitness of the offspring is better than its paired solution, then
the latter is replaced.

Crossover among solutions with a large difference in
cluster numbers often produces low-performance offspring.
The modified niching selection tries to promote mating
among solutions with similar numbers of clusters. When
the size of the selection group is equal to one, it is basically a
random selection. As the size increases, there is a greater
possibility of selecting parent pairs with the same number
of clusters. However, the size should be small enough to
allow mating among solutions with different numbers of
clusters. The extended restricted competition replacement is
mostly used to balance competitions during replacement
among solutions with different numbers of clusters. A large
replacement group size will restrict the replacement among
solutions with the same number of clusters. Decreasing the
size will promote more competitions among the solutions
with different numbers of clusters. An appropriate value
should be set to allow both thorough exploration of the
search space with the same number of clusters and
competitions among solutions with different numbers of
clusters. By measuring the similarity of solutions based on
their feature selection and cluster centers during replace-
ment, we are also attempting to preserve the diversity
among the solutions of the same number of clusters with
respect to feature selection and cluster centers.

4.5 Complexity

The major computational load during each generation of
the proposed algorithm is in the feature add and remove
procedures, one step of the K Means operator, and the
fitness evaluation. The feature add procedure takes
O(nkmq,: D?) time. Similarly, the feature remove procedure
has O(nky,qD?) time complexity in the worst case. The
one-step K Means operator and the fitness evaluation of a
given solution take O(nkq.,D) and O(nD) time, respec-
tively. Therefore, the overall complexity of the proposed
algorithm is O(nkma: D*pg), where p is the population
size, and g is the number of generations.

5 DATA SETS AND IMPLEMENTATION PARAMETERS

This section provides a description of the data sets used
for experimentation and the parameter settings of the
proposed algorithm. Several data sets, both real and
synthetic, have been used in our experiments. The
synthetic data sets were generated with different num-
bers of clusters, and each comprises 2,000 data objects.
These data sets contain both “relevant” and “irrelevant”
features, where “relevant” means that we create the
clusters using these features. “Irrelevant” features are
generated as Gaussian normal random variables. The first
data set Synthetic3_7 (as shown in Fig. 2a) consists
of three equiprobable Gaussian clusters, with means
1 = (0.40,0.20), ps = (0.20,0.20), and pus = (0.30,0.32),
respectively. Five irrelevant features are added, yielding
a set of seven-dimensional data. The second data set
Synthetic4_10 (as shown in Fig. 2b) consists of four
clusters, with means at (0.2, 0.2), (0.2, 0.35), (0.3, 0.45),
and (0.3, 0.3), respectively. We add eight Gaussian
normal random irrelevant features. There is some overlap
among the four clusters, and the eight additional
irrelevant features increase the difficulty of the problem.
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Fig. 2. (a) Synthetic3_7, (b) Synthetic4_10, and (c) Synthetic6_20 data sets by projecting the objects onto two of the relevant features.

The third data set Synthetic6_20 (as shown in Fig. 2c) has
20 features, only five of which are relevant (features {1,
3, 6, 9, 15}). There are six Gaussian clusters across the
five relevant features. The means are sampled from a
uniform distribution on the interval [0.1, 0.5]. In each of
the data sets, the clusters are generated with equal sizes.
Note that the synthetic data sets are generated in such a
way that they present different degrees of difficulty for
simultaneous clustering and feature selection.

Three real data sets are also considered, and these are
Iris, the Wisconsin diagnostic breast cancer (WDBC), and
image segmentation. They are taken from the UCI Machine
Learning Repository [37]. The Iris data consists of 150 objects
belonging to three species of Iris, with 50 objects in each
species. This data is described by four real-valued features.
The WDBC data set has 576 data objects, with 30 features
extracted from cell nuclei presented in an image. The image
segmentation data set contains 2,310 objects with 19 features
from seven clusters, where each object consists of features
extracted from a 3 x 3 region taken from seven types of
outdoor images: brickface, sky, foliage, cement, window,
path, and grass. Normalization to zero mean and unit
variance is performed on all the three real data sets so as to
make the contribution of different features roughly equal a
priori. Since we are concerned with unsupervised learning,
the class labels in these data sets are used only for
evaluation of the clustering results.

All parameter values of the NMA_CFS procedure were
determined experimentally on the above data sets. Both
mutation rates (flip and Gaussian mutation) are set to be
0.01. To establish these values, all other parameters are held
constant, with only the mutation rate changing. Ten runs
are completed for a wide range of values of the mutation
rate. The best solutions (in terms of the fitness values) from
the 10 runs are averaged, and the best average is selected.
The sizes of selection and replacement groups are deter-
mined in a similar way. First, the size of the selection group
is varied as all other parameters are held constant, and then
the size of replacement group is determined using the
established selection group size. The selection group sizes
of 6, 8,12, 4, 8, and 16 with the replacement group sizes of
15, 20, 30, 10, 20, and 40 have been established on the above
six data sets, respectively. The population sizes are set to be
50, 70, 100, 40, 70, and 120, respectively. The number of
generations g, which is used to terminate the evolution, is

set to be 20. A larger value of either g or population sizes
may lead to a longer runtime but with no significant
improvement in performance.

6 EXPERIMENTS

In this section, after defining several performance measures
in Section 6.1, we report a series of experiments in
Section 6.2 performed over the synthetic and real data sets
described above. We first evaluate the performance of the
proposed algorithm and compare it with related work.
Additionally, we assess the significance of the niching
method and local search operations within the proposed
algorithm. Finally, the effectiveness of the simultaneous
global clustering and feature subset search mechanism for
optimizing the unified criterion is examined. All results
were obtained on a PC with AMD Athlon 1800 running the
Windows 2000 operation system.

6.1 Performance Measures

Let us suppose that we have obtained a clustering solution
with feature selection. Some natural questions are given as
follows: How good are the clusters? Is the number of
clusters correctly identified? Is the selected feature subset
relevant? In what follows, we describe several performance
measures relevant to answer these questions.

Since the quality of clusters depends on the particular
application, there is no standard criterion for evaluating
clustering solutions in the literature [24]. To answer the first
question, here, we compute classification errors, since we
know the “true” clusters of the synthetic data and the class
labels of the real data. This is done by first running the
algorithm to be tested on each data set. Next, each cluster of
the clustering results is assigned to a class based on
examining the class labels of the data objects in that cluster
and choosing the majority class. After that, the classification
errors are computed by counting the number of misclassi-
fied data objects. To answer the second question, we report
the number of clusters found. We stress that the class labels
are not used during the generation of the clustering results,
and they are intended only to provide independent
verification of the clusters.

To answer the third question, the feature recall and
precision are reported on synthetic data, since the relevant
features are known a priori. Recall and precision are
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Percent Classification Error, Number of Clusters, Feature Recall, and Precision of the Four Algorithms
(NMA_CFS, FS-K Means_BIC, GGA, and K Means) Applied to the Three Synthetic Data Sets

Evaluation Method
Data Set Method % Classification Number of Feature
Feature Recall ..
Error Clusters Precision
NMA CFS 3.2 (£0.3) 3.0 (£0.0) 1.00 (£0.00) 1.00 (£0.00)
FS-k-
Synthetic3_7 means BIC 5.1 (£0.9) 3.0 (£0.0) 1.00 (£0.00) 0.78 (+0.18)
GGA 9.0 (£2.5) fixed at 3 N/A N/A
k-means 18.4 (£7.6) fixed at 3 N/A N/A
NMA CFS 3.9 (£0.5) 4.0 (£0.0) 1.00 (£0.00) 0.87 (£0.09)
. FS-k-
Synthgt1c471 means BIC 5.3 (£1.1) 4.0 (£0.0) 1.00 (£0.00) 0.65 (£0.24)
GGA 9.4 (£3.1) fixed at 4 N/A N/A
k-means 22.3 (£8.3) fixed at 4 N/A N/A
NMA CFS 2.8 (£0.7) 6.0 (£0.0) 0.88 (£0.10) 0.95 (£0.04)
. FS-k-
Synthgt1c6_2 means BIC 6.9 (£2.3) 5.2 (£0.9) 0.73 (0.15) 0.75 (£0.12)
GGA 23.1(x4.2) fixed at 6 N/A N/A
k-means 35.2 (9.1) fixed at 6 N/A N/A
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The entries in the table (averaged over 10 runs) give the means in the form mean (+ 95 percent confidence interval).

concepts from text retrieval [43]. Feature recall is the
number of relevant features in the selected subset divided
by the total number of relevant features. Feature precision is
the number of relevant features in the selected subset
divided by the total number of features selected. These
indices give us an indication of the quality of the features
selected. High values of feature recall and precision are
desired. Note that, with respect to the real data, we report
only the number of feature selected, since the relevant
features are unknown.

6.2 Results

We first conducted a set of experiments on both synthetic
and real data to evaluate the proposed algorithm, compar-
ing this with a feature selection wrapped around the
K Means algorithm (denoted by FS-K Means_BIC). To
investigate whether feature selection can help in finding
better clusters, we also report the results of the genetically
guided algorithm (GGA) [21] and K Means [31] (clustering
using all features) on the data described above.

Before discussing the results, we first briefly describe the
algorithms to be compared and their implementation
details. The FS-K Means_BIC uses SFS [14] to search for
feature subsets. The criterion used in this algorithm is the
trace(Sy? Sp) normalized using a cross projection scheme
[12]. To find the number of clusters, it is applied to search
through a range of possible cluster numbers and evaluate
the “goodness” of the results in each case by adding the
Bayesian information criterion (BIC) [39], [45] penalty term
to the normalized criterion. The GGA to be compared
employs a traditional GA for clustering. To make the
comparison between the two GA-based methods (GGA and
NMA_CFS) more meaningful, the same terminal criterion
(i.e., that the fitness value of the best solution in the
population has not changed for g generations) is used in
both algorithms. Since the GGA converges much more
slowly than the NMA_CEFS, the g value in the GGA is set to

be relatively large, with g = 40. The population size of GGA
is taken to be identical to the NMA_CFS for experiments on
each of the data sets. Other parameters of the GGA are
specified according to the original values reported with the
best performance. The K Means algorithm has been
described earlier in Section 4.3. This algorithm is initialized
by dividing the data set into a partitioning of k clusters at
random and then uses the £ cluster centers as the initial
centers [40]. The stopping criterion for the K Means
algorithm is an iteration for which no data object changes
clusters. The number of clusters k, which is assumed to be
fixed in both GGA and K Means, is set to be equal to the
correct number of clusters for experiments on each data set.
All four algorithms were independently run 10 times on
each of the data sets, and their results were then averaged.

Table 1 lists the results of classification errors, number of
clusters, feature recall, and precision found with respect to
the synthetic data. It clearly shows that NMA_CFS is able to
select relevant features and locate appropriate clusters with
the correct number of clusters. In comparison with the FS-K
Means_BIC, NMA_CFS achieves lower classification errors
on all three synthetic data sets. For the FS-K Means_BIC, the
classification errors turn out to be 5.1 percent, 5.3 percent,
and 6.9 percent on the three data sets, respectively. In
comparison, in the NMA_CFS, the classification errors are
around 3.2 percent, 3.9 percent, and 2.8 percent, respec-
tively. Furthermore, our proposed algorithm offers more
precise feature selection. For example, on Synthetic4_10, the
feature precision of the FS-K Means_BIC is 0.65, while our
method shows 0.87. The performance improvement of our
proposed algorithm over the FS-K Means_BIC is mainly
due to the use of the simultaneous global clustering and
feature selection optimization mechanism, which can over-
come less promising locally optimal solutions. In compar-
ison with the GGA and K Means, both NMA_CFS and FS-K
Means_BIC show significantly better performance in terms
of classification errors. The poor performance of both GGA
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TABLE 2
Percent Classification Error, Number of Clusters, and Number of Features Selected by the Four Algorithms
(NMA_CFS, FS-K Means_BIC GGA, and K Means) Applied to the Three Real Data Sets

Evaluation Method

Data Set Method % Classification Number of Number of Features
Error Clusters Selected
NMA CFS 3.7 (£1.7) 3.0 (£0.0) 1.9 (£0.2)
FS-k-
Iris means BIC 10.8 (+4.8) 4.5 (£0.5) 2.7 (£0.4)
GGA 14.1 (£5.6) fixed at 3 fixed at 4
k-means 17.8 (£6.9) fixed at 3 fixed at 4
NMA CFS 9.2 (£0.4) 2.0 (£0.0) 14.8 (0.9)
FS-k-
WDBC means BIC 14.2 (£1.6) 2.0 (£0.0) 15.9 (£1.8)
GGA 15.6 (+0.0) fixed at 2 fixed at 30
k-means 15.6 (£0.0) fixed at 2 fixed at 30
NMA CFS 35.2 (£1.8) 6.6 (£1.4) 2.4 (£0.5)
FS-&-
Image segmentation means BIC 36.3 (£2.6) 8.7 El.5) 460.7)
GGA 36.4 (£2.4) fixed at 7 fixed at 19
k-means 38.6 (£3.8) fixed at 7 fixed at 19

The entries in the table (averaged over 10 runs) give the means in the form mean (+ 95 percent confidence interval).

and K Means is mainly because they retain the irrelevant
features for clustering. This result may indicate that feature
selection helps in finding better clusters.

Table 2 shows the results on the three real data sets.
Looking first at the Iris data, NMA_CFS achieves the best
classification error, followed by FS-K Means_BIC, GGA, and
K Means. NMA_CFS also finds the correct number of
clusters, while FS-K Means_BIC tends to overestimate the
number of clusters. Both NMA_CFS and FS-K Means_BIC
consistently choose features 3 (petal length) and 4 (petal
width). In fact, we learn from this experiment that these are
the most important features for clustering the Iris data. Two
typical clustering solutions identified by NMA_CFS and FS-
K Means_BIC are shown in Figs. 3a and 3b, respectively, as a
scatterplot on the two important features. Looking next at
the other two data sets, our algorithm still exhibits the best
performance in terms of the classification errors. In the case
of image segmentation data, feature selection does not
significantly improve the classification errors of FS-K
Means_BIC and NMA_CFS. However, they produce com-
parable results with significantly fewer features. FS-K
Means_BIC selects about 3.4 features (typically {4, 10, 12,
18}) out of 19, while our proposed algorithm picks
2.4 features (typically {4, 11}) on the average. Feature 4
stands for “short-line-density-5.” These results imply that
many features in the image segmentation data are redun-
dant or irrelevant for clustering.

Next, we carried out experiments to assess the signifi-
cance of the niching method and local search operations
within the NMA_CFS. For this purpose, we assess and
compare the NMA_CFS with three variants: NMA_CFS
without local search operations (NMA_CFS_1), NMA_CFS
without the niching method (NMA_CFS_2), and NMA_CFS
without either the niching method or local search opera-
tions (NMA_CFS_3). In the cases of NMA_CFS_2 and
NMA_CFS_3, parent pairs are selected using roulette wheel
selection, and the population of the next generation is

generated by replacing the worst solutions of previous
population with the offspring. These algorithms are
compared using the same parameter settings. In order to
investigate the convergence properties, a relatively large
parameter value g = 50 is used in the terminal condition for
all four algorithms.

Fig. 4 shows the average classification errors of the best
solutions over the runtime corresponding to the four
algorithms on the Synthetic6_20. It is observed that
NMA_CFS_3 performs the worst. The niching method and
local search operations improve the performance of the
algorithm in different ways. NMA_CFS_1 shows that the
niching method helps prevent the algorithm from conver-
ging to less promising solutions. However, the convergence
of the algorithm is slow. NMA_CFS_2 shows that as
compared with NMA_CFS_1, the local search operations
significantly speed up the convergence during the evolu-
tion. However, it is susceptible to less promising optimal
solutions with higher classification errors. By incorporating
both the niching method and local search operations,
NMA_CFS can efficiently recover solutions with low
classification errors. In fact, this is the main reason for
using the niching method and local search operations in
NMA_CFS.

Finally, we report experiments to examine the effective-
ness of the simultaneous global clustering and feature
subset search mechanism by comparing it with the
traditional SFS [14] wrapped around the K Means proce-
dure [31] to optimize the unified criterion .J, (denoted by
FS-K Means_J;). To search for the number of clusters, we
run FS-K Means_J,, with a range of numbers of clusters
from 2 to k..., and evaluate J, of the results in each case.
kmaz 1S taken to be /n for each data set. The results are
presented in Table 3.

The results show that the NMA_CFS with the simulta-
neously applied global clustering and feature subset search
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Fig. 3. Typical partitioning found on the Iris data set by (a) NMA_CFS and (b) FS-K Means_BIC shown on the two important features (different
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Fig. 4. Percent classification errors of the best solutions (averaged over five runs) plotted against the runtime corresponding to the four algorithms on

the Synthetic6_20 data set.

mechanism outperforms FS-K Means_J,. The difference
between the two algorithms lies in the search procedure
used for the optimization of J;. Consequently, the results
reveal that the proposed mechanism can overcome less
promising locally optimal solutions and are therefore able
to more accurately select relevant features and identify
appropriate partitionings. The traditional SFS wrapped
around the K Means procedure, however, usually con-
verges to less promising locally optimal solutions. This is
mainly because SFS has difficulty in anticipating the
complex interactions among features.

7 CONCLUSIONS

We have designed and implemented NMA_CFS by
optimizing the suggested unified criterion J;. The signifi-
cance of the niching method and local search operations
within the proposed algorithm has been clearly shown in
the experimental results, which also confirm that the
simultaneous global clustering and feature subset optimiza-
tion mechanism is effective in approaching the problem.
The resulting algorithm is generally able to select relevant
features and locate appropriate partitionings with the
correct number of clusters and outperforms other methods
implemented for comparison.
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TABLE 3
Comparing the Results of the Two Algorithms (NMA_CFS and FS-K Means_J;) Applied to the Six Data Sets
Evaluation Method
Data Set Method % Classification = Number of e Feature Feature
Features L.
Error Clusters Recall Precision
Selected
NMA CFS 3.2 (£0.3) 3.0 (0.0) Ll 140 100
. (£0.00) (£0.00)
Synthetic3 7 N/A 100 0.82
FS-k-means J, 5.0 (£1.2) 3.0 (x0.0) (£0.00) (£0.16)
NMA._CFS 3.9 (20.5) 4.0 (£0.0) N/A 1.00 0.87
. (£0.00) (£0.09)
Synthetic4 10 N/A 1.00 0.60
FS-k-means_J, 5.9 (£1.3) 4.0 (£0.0) (£0.00) (£0.26)
NMA_CFS 2.8 (£0.7) 6.0 (20.0) N/A 0.88 0.95
. (£0.10) (£0.04)
Synthetic6 20 N/A 0.64 0.65
FS-k-means_J, 8.4 (£2.9) 5.5 (=0.6) (£0.19) (+0.21)
Iris NMA CFS 3.7 (=1.7) 3.0 (£0.0) 1.9 (£0.2) N/A N/A
FS-k-means J, 9.4 (£3.9) 4.0 (£0.7) 2.5 (£0.6) N/A N/A
WDBC NMA CEFS 9.2 (x0.4) 2.0 (£0.0) 14.8 (x0.9) N/A N/A
FS-k-means_J, 13.7 (£2.1) 2.0 (£0.0) 15.2 (£2.1) N/A N/A
Image NMA CFS 35.2 (£1.8) 6.6 (£1.4) 2.4 (£0.5) N/A N/A
segmentation  FS-k-means J, 36.9 (£2.8) 8.5 (£1.8) 3.7 (£0.6) N/A N/A

The entries in the table (averaged over 10 runs) give the means in the form mean (= 95 percent confidence interval).

For future work, it will be very interesting to apply the
NMA_CFS procedure to real data sets with an abundance of
irrelevant or redundant features. An example of such an
application is to cluster gene expression data, in which the
goal is to identify the informative gene subset for cluster
discovery from a large data set that is contaminated with
very-high-dimensional irrelevant features. In this case,
identifying a relevant subset that adequately captures the
underlying structure in the data can be particularly useful.
Additionally, as a general optimization framework, the
proposed algorithm can be applied for text mining [27]. In
such a case, an unbiased clustering criterion in some sense
can be produced by computing the mutual information
between clusters, thus enabling a better verification of the
properties of the proposed optimization scheme.
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